KR20150117185A - A Composition for Improving Lipid Metabolism and Inhibiting Fat Accumulation Containing Dipeptides of WE or WR - Google Patents

A Composition for Improving Lipid Metabolism and Inhibiting Fat Accumulation Containing Dipeptides of WE or WR Download PDF

Info

Publication number
KR20150117185A
KR20150117185A KR1020140042654A KR20140042654A KR20150117185A KR 20150117185 A KR20150117185 A KR 20150117185A KR 1020140042654 A KR1020140042654 A KR 1020140042654A KR 20140042654 A KR20140042654 A KR 20140042654A KR 20150117185 A KR20150117185 A KR 20150117185A
Authority
KR
South Korea
Prior art keywords
dipeptide
pparα
liver
composition
activity
Prior art date
Application number
KR1020140042654A
Other languages
Korean (ko)
Inventor
이성준
가요요
이지혜
김연지
김종호
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020140042654A priority Critical patent/KR20150117185A/en
Publication of KR20150117185A publication Critical patent/KR20150117185A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/405Indole-alkanecarboxylic acids; Derivatives thereof, e.g. tryptophan, indomethacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/734Alginic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a pharmaceutical composition or a food containing dipeptide WE or WR as an active ingredient and, more specifically, to a pharmaceutical composition or a food containing dipeptide WE or WR as an active ingredient, capable of effectively reducing neutral lipid or cholesterol concentrations in blood or liver by activating peroxisome proliferator-activated protein α (PPAR α), particularly, which is closely related to life-habit disease and metabolic syndrome, and inhibiting fat accumulation, or treating or alleviating fatty liver by improving lipid metabolism inside a body.

Description

다이펩티드 WE 또는 WR을 유효성분으로 함유하는 지질대사 개선 및 지방축적 억제용 조성물{A Composition for Improving Lipid Metabolism and Inhibiting Fat Accumulation Containing Dipeptides of WE or WR}[0001] The present invention relates to a composition for improving lipid metabolism and inhibiting lipid accumulation, which comprises dipeptide WE or WR as an active ingredient,

본 발명은 다이펩티드 WE 또는 WR을 유효성분으로 함유하는 의약조성물 또는 식품에 관한 것으로, 더욱 자세하게는 생활 습관병 및 대사증후군과 특히 밀접한 관련이 있는 PPAR α(peroxisome proliferator-activated protein α)를 활성화시킴으로써, 혈중 또는 간에서 중성지질 또는 콜레스테롤 농도를 효과적으로 저하시키고, 체내 지질대사를 개선하여 지방축적 억제 또는 지방간을 치료 또는 개선할 수 있는, 다이펩티드 WE 또는 WR을 유효성분으로 함유하는 의약조성물 또는 식품에 관한 것이다.
TECHNICAL FIELD The present invention relates to a pharmaceutical composition or food containing the dipeptide WE or WR as an active ingredient and more particularly to a pharmaceutical composition or food containing the dipeptide WE or WR as an active ingredient by activating PPAR alpha (peroxisome proliferator-activated protein alpha), which is particularly closely related to lifestyle diseases and metabolic syndrome, The present invention relates to a pharmaceutical composition or food containing an effective amount of a dipeptide WE or WR, which can effectively reduce neutral lipid or cholesterol concentration in blood or liver and improve lipid metabolism in the body to inhibit fat accumulation or treat or improve fatty liver will be.

대사 증후군이(metabolic syndrome)란 내당능 장애, 고혈압, 고지혈증, 비만, 심혈관계 죽상동맥 경화증 등의 질환이 함께 나타나는 것을 말한다. 현재까지의 각종 역학조사 자료에 의하면 선진국 혹은 개발도상국의 국민 전체 중 약 25%가 대사증후군을 가지는 것으로 보고되었고 우리나라의 경우도 유병률이 지속해서 증가하고 있다. Metabolic syndrome refers to the combination of diseases such as impaired glucose tolerance, hypertension, hyperlipidemia, obesity, and cardiovascular atherosclerosis. According to various epidemiologic data to date, about 25% of the population of developed or developing countries have metabolic syndrome, and the prevalence of the disease continues to increase in Korea.

최근, 대사증후군의 예측 인자로서 알코올과 관계없이 지방이 간세포에 과다 축적되어 간 무게의 5% 이상을 차지하는 질병인 비알코올성 지방간에 대한 관심이 높아지고 있다. 특히, 비알코올성 지방간은 비만, 당뇨병, 고지혈증 등 대사증후군의 모든 인자와 연관성이 높으며, 대사증후군이 없는 사람들에 비해 대사증후군 질환이 있는 사람에게 간의 지방량이 4배 높게 나타난 연구 결과도 발표되었고, 식약청 조사에 따르면 우리나라 성인 비알코올성 지방간 유병률이 2004년 11.5%에서 2010년 23.6%로 두 배가량 증가하였다고 보고되었다. 비알코올성 지방간이 지속될 경우 간의 지방변성, 염증세포 침윤, 간세포 괴사 등이 생기고 이로 인하여 지방간염이 생기며 이는 간경변증, 간부전 및 간세포암으로 진행될 수 있다. In recent years, as a predictor of metabolic syndrome, fat is accumulating in hepatocytes, irrespective of alcohol, and non-alcoholic fatty liver disease, which accounts for more than 5% of the liver weight, is increasing. In particular, nonalcoholic fatty liver has been associated with all the factors of metabolic syndrome such as obesity, diabetes and hyperlipidemia, and it has been reported that the amount of liver fat is four times higher in people with metabolic syndrome disease than those without metabolic syndrome, According to the survey, the prevalence of adult nonalcoholic fatty liver disease in Korea has increased from 11.5% in 2004 to 23.6% in 2010. If the nonalcoholic fatty liver is persistent, liver fat degeneration, inflammatory cell infiltration, hepatocellular necrosis, and the like result, resulting in fatty liver, which can lead to liver cirrhosis, liver failure and hepatocellular carcinoma.

비알코올성 지방간은 만성질환으로서 일반적으로 생활습관에서 비롯되는 병이며, 이 습관을 바꾸면 어느 정도 치료 가능한 것으로 알려졌다. 하지만 대부분의 만성질환자는 생활습관만으로는 교정이 어려운 경우가 많아 지질저하 약물치료를 비롯한 관리가 필요한 실정이다. 지질저하 약물의 경우 평생 투여해야 하며, 간 기능 수치 상승 및 근육병 등의 합병증 발병 위험이 있고, 특히 간 기능 수치가 3배 이상 상승하는 경우엔 약물치료가 어렵다는 특징을 가지므로 식품 성분 중 만성질환으로서 비알코올성 지방간을 치료해 줄 수 있는 유용한 유효 성분에 대한 연구의 필요성이 대두되고 있다Nonalcoholic fatty liver disease is a chronic disease that is usually caused by lifestyle habits, and it is known that changing this habit can treat some degree. However, most of the chronic illnesses are difficult to correct by lifestyle alone, and management including lipid-lowering drug treatment is necessary. Lipid-lowering drugs should be administered for a lifetime, and there is a risk of complications such as elevated liver function levels and muscular dysfunction. Especially, when the liver function level is increased three times or more, There is a need for studies on useful active ingredients that can treat non-alcoholic fatty liver

주요 생활습관/대사성 질환을 예방하고 치료하는 기전에는 여러 가지 방법이 알려졌으나, 최근 10여 년간 세포 내 핵 수용체 조절을 통한 기전이 새로이 알려졌다. 구체적으로, 세포질에 존재하는 핵 수용체에 리간드가 결합하여 활성화되면 핵으로 이동한 후, 일련의 표적 유전자 프로모터(promoter)에 결합하여 전사조절인자로 작용하여 유사한 대사과정에 관여하는 유전자의 발현을 조절하게 된다. Several methods have been known for the prevention and treatment of major lifestyle / metabolic diseases. Recently, however, a mechanism for regulating intracellular nuclear receptors has been newly recognized for a decade. Specifically, when a ligand binds to a nuclear receptor present in the cytoplasm and is activated, it is transferred to the nucleus and then binds to a series of target gene promoters to act as a transcriptional regulator and regulate the expression of a gene involved in a similar metabolic process .

이러한 핵 수용체 가운데 생활습관병 및 대사증후군과 특히 밀접한 관련이 있는 것으로서 PPARs(peroxisome proliferator-activated proteins)가 있으며, PPARs는 PPAR-α, -γ, -β/δ 의 세 가지 서브-타입을 가진다. 이 중에서 PPARα는 주로 간 조직에서 주요한 역할을 하며, 지방산 및 중성지질 합성에 관여하는 유전자들과 중성지질 분해 관련 유전자 발현을 조절하여 지질대사, 지단백 대사, 콜레스테롤 대사에 관여하는 것으로 알려졌다. 이러한 PPARα의 새로운 작용과 역할이 알려지면서 신약개발에 이용되고 있고, 피브레이트(Fibrate)는 체내 중성지질 저하제로 개발되어 시판되고 있으며 전 세계적으로 큰 시장을 확보하고 있다. 그러나, 피브레이트는 이상지질혈증 환자의 중성지방을 낮추는 효과는 탁월하지만, 소화기장애 및 담석이 생길 수 있는 부작용을 가진다. Of these nuclear receptors, there are PPARs (peroxisome proliferator-activated proteins), which are particularly closely related to lifestyle-related diseases and metabolic syndrome, and PPARs have three sub-types of PPAR-a, -γ, -β / δ. Among them, PPARα plays a major role in liver tissue, and it is known that PPARα is involved in lipid metabolism, lipoprotein metabolism, and cholesterol metabolism by regulating genes involved in fatty acid and neutral lipid synthesis and neutral lipolysis related gene expression. As new roles and roles of PPARα are known, they have been used in the development of new drugs. Fibrate has been developed as a neutral lipid lowering agent in the body, and has been widely marketed worldwide. However, fibrates have an excellent effect of lowering triglycerides in dyslipidemic patients, but have side effects that can cause digestive disorders and gallstones.

다이펩티드(dipeptide)는 두 종의 아미노산이 펩타이드 결합으로 연결된 아미노산 중합체이며 식이 단백질이 체내에서 분해되는 산물 중 하나로 유리 아미노산(free amino acid) 보다 빠르게 소장을 통해 흡수되고 혈액으로 운반될 수 있으므로 영양학적, 생리학적으로 우수하다. 특히 다이펩티드는 생체 독성이 낮고 질병 표적 단백질에 대한 선택성이 우수할 뿐만 아니라 화학적 합성이 가능하여 의약에서부터 신소재, 나노과학, 분자 영상, 약물전달 등 다양한 분야의 연구와 응용에 광범위하게 쓰이고 있다. A dipeptide is an amino acid polymer in which two amino acids are linked by a peptide bond and is one of the products in which the dietary protein is degraded in the body. Since it can be absorbed through the small intestine faster than free amino acid and transported to the blood, , And is physiologically superior. In particular, the dipeptide has low bio-toxicity, is excellent in selectivity for disease target proteins, and can be chemically synthesized, making it widely used in various fields of research and application in various fields such as medicine, new materials, nanoscience, molecular imaging, drug delivery.

이러한 배경하에서, 본 발명자들은 혈중 또는 간에서 중성지질 또는 콜레스테롤 농도를 효과적으로 저하시키고, 체내 지질대사를 개선하여 지방축적 억제 또는 지방간을 치료 또는 개선할 수 있는 성분을 개발하고자 예의 노력한 결과, 다이펩티드 WR 또는 WE가 목적하는 효능을 나타내는 것을 확인하고, 본 발명을 완성하게 되었다.
Under these circumstances, the present inventors have made intensive efforts to develop a component capable of effectively inhibiting lipid accumulation or treating or improving fatty liver by effectively lowering neutral lipid or cholesterol concentration in blood or liver and improving lipid metabolism in the body. As a result, diepeptide WR Or WE exhibit the desired efficacy, thereby completing the present invention.

본 발명의 목적은 혈중 또는 간에서 중성지질 또는 콜레스테롤 농도를 효과적으로 저하시키고, 체내 지질대사를 개선하여 지방축적 억제 또는 지방간을 치료 또는 개선할 수 있는 의약조성물 또는 식품을 제공하는 데 있다.
It is an object of the present invention to provide a medicinal composition or food which is capable of effectively lowering neutral lipid or cholesterol concentration in blood or liver and improving lipid metabolism in the body to inhibit fat accumulation or to treat or ameliorate fatty liver.

상기 목적을 달성하기 위하여, 다이펩티드 트립토판-글루탐산(H-Trp-Glu-OH: WE) 또는 트립토판-알지닌(H-Trp-Arg-OH: WR)을 유효성분으로 함유하는 지방축적 억제, 지방간 치료, 혈중 중성지방 또는 콜레스테롤 강하, 또는 간내 중성지방, 또는 콜레스테롤 강하용 의약조성물을 제공한다.In order to achieve the above object, the present invention provides a method of inhibiting lipid accumulation, comprising the steps of: administering a dipeptide tryptophan-glutamic acid (H-Trp-Glu-OH: WE) or tryptophan-arginine Treatment, blood triglyceride or cholesterol lowering, or hepatic triglyceride, or cholesterol lowering.

또한, 다이펩티드 트립토판-글루탐산(H-Trp-Glu-OH: WE) 또는 트립토판-알지닌(H-Trp-Arg-OH: WR)을 유효성분으로 함유하는 지방축적 억제, 지방간 개선, 혈중 중성지방 또는 콜레스테롤 강하, 또는 간내 중성지방, 또는 콜레스테롤 강하용 식품을 제공한다.
In addition, it has been reported that inhibition of fat accumulation, improvement of fatty liver, serum triglyceride (H-Trp-Glu-OH: WE) or tryptophan-arginine Or cholesterol lowering, or intrahepatic triglyceride, or cholesterol lowering.

본 발명에서는 다이펩티드 WE 또는 WR을 유효성분으로 이용하므로, 종래 주로 사용되고 있던 스타틴류의 약물에 비하여 부작용이 적은 안전한 약물을 제조함으로써, 대사증후군을 포함하여 지방 대사의 개선 또는 관련 질환의 치료를 원하는 환자 또는 소비자들의 기대에 부응할 수 있고, 다이펩티드 WE 또는 WR을 함유한 건강기능성 식품을 제조하여 복용함으로써, 지방축적 억제, 지방간 개선, 혈중 중성지방 또는 콜레스테롤 강하 또는 간내 중성지방 또는 콜레스테롤 강하에 도움이 될 수 있다.
In the present invention, since the dipeptide WE or WR is used as an active ingredient, it is possible to produce a safe drug having less adverse side effects than those of statins, which have been conventionally used, and to improve the fat metabolism or treat the related diseases It can be used for the prevention of fat accumulation, improvement of fatty liver, blood triglyceride or cholesterol lowering, or intrahepatic triglyceride or cholesterol lowering by preparing and taking a health functional food containing the dipeptide WE or WR, .

도 1은 다이펩티드 WE(왼쪽) 또는 WR(오른쪽)의 구조, 구조식 및 분자량을 나타낸 것이다.
도 2는 다이펩티드 WE(왼쪽: 10, 50, 100, 500μM) 또는 WR(오른쪽: 50, 100, 500, 1000μM) 조성물과, GW7647(1μM)를 pSG5-PPARα와 pCMV-3xPPRE-Luc 벡터를 동시에 형질감염시킨 CHO-K1 세포에 24시간 처리한 후 다이펩티드 조성물(WE 또는 WR)의 PPARα 활성 루시퍼레이즈 에세이(luciferase assay)실험방법을 통하여 검증한 결과를 나타낸 것이다. 두 그룹간 유의성 검사는 one-way ANOVA를 이용하였고, 각 그래프의 오차막대는 평균±SEM으로 나타내었다.
도 3은 다이펩티드 WE(왼쪽) 또는 WR(오른쪽)와 GW7647가 PPARα에 대한 직접적인 리간드로 작용할 수 있는지 TR-FRET 에세이를 통하여 검증한 결과를 나타낸 것이다(유의성 검사: one-way ANOVA; 오차막대: 평균±SEM).
도 4는 다이펩티드 WE(중간) 또는 WR(아래)이 직접적으로 PPARα LBD (ligand binding domain)와 결합하는지 확인하기 위해 Biacore 2000 기기를 이용하여 표면 플라즈몬 공명(surface plasmon resonance, SPR) 실험을 수행한 결과를 나타낸 것이다. 양성대조군으로는 GW7647(위)이 사용되었다.
도 5는 다이펩티드 WE(10, 50, 100, 500μM) 조성물과, GW7647(1μM)로 세포에 24시간 처리하여 PPARα와 그 표적 유전자의 qPCR의 결과를 나타낸 그래프이다(유의성 검사: one-way ANOVA; 오차막대: 평균±SEM). 약어: PPARα, Peroxisome proliferator-activated receptors alpha; FATP4, fatty-acid transport protein 4; ACS, acsyl-CoA synthetase; CPT1, carnitine palmitoyltransferase 1; ACOX, acyl-CoA oxidase.
도 6은 다이펩티드 WR(50, 100, 500, 1000μM) 조성물과, GW7647(1μM)로 세포에 24시간 처리하여 PPARα와 그 표적 유전자의 qPCR의 결과를 나타낸 그래프이다(유의성 검사: one-way ANOVA; 오차막대: 평균±SEM). 약어: PPAR α, Peroxisome proliferator-activated receptors alpha; FATP4, fatty-acid transport protein 4; ACS, acsyl-CoA synthetase; CPT1, carnitine palmitoyltransferase 1; ACOX, acyl-CoA oxidase.
도 7은 다이펩티드 WE(위: 10, 50, 100, 500μM) 또는 WR(아래: 50, 100, 500, 1000μM) 조성물과, GW7647(1μM)를 24시간 동안 처리한 뒤 간 세포 H4IIE에서의 형광으로 표지된 지방산을 이용하여 세포 내 지방산 흡수를 측정한 결과를 나타낸 것이다(유의성 검사: one-way ANOVA; 오차막대: 평균±SEM).
도 8은 다이펩티드 WE(10, 50, 100, 500μM) 조성물과, GW7647(1μM)로 지질을 축적시킨 간세포 H4IIE에 24시간 처리한 뒤 세포 내 콜레스테롤 함량(왼쪽)과 중성지방 함량(오른쪽)을 지질자동화 분석기기(COBAS C111)를 사용하여 분석한 결과를 나타낸 것이다. 분석된 세포 내 지질성분은 세포 내 총 단백질 함량을 측정하여 표준화시켰다. 두 그룹간 유의성 검사는 one-way ANOVA를 이용하였고, 각 그래프의 오차막대는 평균 ±SEM으로 나타내었다.
도 9는 다이펩티드 WR(50, 100, 500, 1000μM) 조성물과, GW7647(1μM)로 지질을 축적시킨 간세포 H4IIE에 24시간 처리한 뒤 세포 내 콜레스테롤 함량(왼쪽)과 중성지방 함량(오른쪽)을 지질자동화 분석기기(COBAS C111)를 사용하여 분석한 결과를 나타낸 것이다. 분석된 세포 내 지질성분은 세포 내 총 단백질 함량을 측정하여 표준화시켰다. 두 그룹간 유의성 검사는 one-way ANOVA를 이용하였고, 각 그래프의 오차막대는 평균 ±SEM으로 나타내었다.
Figure 1 shows the structure, structure and molecular weight of the dipeptide WE (left) or WR (right).
FIG. 2 shows the results of the simultaneous determination of pSG5-PPARa and pCMV-3xPPRE-Luc vectors with the dipeptide WE (left: 10, 50, 100, 500 μM) or WR (right: 50, 100, 500, 1000 μM) composition and GW7647 (WE or WR) after the treatment with transfected CHO-K1 cells for 24 hours. The results are shown in the following table. ≪ tb >< TABLE > One-way ANOVA was used for the significance test between the two groups, and the error bars of each graph were expressed as mean ± SEM.
Figure 3 shows the results of a TR-FRET assay verifying whether the dipeptide WE (left) or WR (right) and GW7647 can act as direct ligands for PPARa (significance test: one-way ANOVA; Mean ± SEM).
Figure 4 demonstrates surface plasmon resonance (SPR) experiments using a Biacore 2000 instrument to verify whether the dipeptide WE (intermediate) or WR (bottom) binds directly to the PPAR alpha ligand binding domain (LBD) The results are shown. GW7647 (above) was used as a positive control.
FIG. 5 is a graph showing the results of qPCR of PPAR alpha and its target gene by treating the cells with the dipeptide WE (10, 50, 100, 500 μM) composition and GW7647 (1 μM) for 24 hours (significance test: one-way ANOVA ; Error bars: mean ± SEM). Abbreviations: PPARα, Peroxisome proliferator-activated receptors alpha; FATP4, fatty-acid transport protein 4; ACS, acyl-CoA synthetase; CPT1, carnitine palmitoyltransferase 1; ACOX, acyl-CoA oxidase.
FIG. 6 is a graph showing the results of qPCR of PPAR alpha and its target gene treated with the dipeptide WR (50, 100, 500, 1000 μM) composition and GW7647 (1 μM) for 24 hours (significance test: one-way ANOVA ; Error bars: mean ± SEM). Abbreviations: PPAR α, Peroxisome proliferator-activated receptors alpha; FATP4, fatty-acid transport protein 4; ACS, acyl-CoA synthetase; CPT1, carnitine palmitoyltransferase 1; ACOX, acyl-CoA oxidase.
FIG. 7 shows the results of treatment of GW7647 (1 [mu] M) with diepeptide WE (top, 10, 50, 100, 500 [mu] M) or WR (ANOVA: mean ± SEM) were used to determine the intracellular fatty acid uptake.
FIG. 8 shows the intracellular cholesterol content (left) and triglyceride content (right) after 24 hour treatment with the dipeptide WE (10, 50, 100, 500 μM) composition and hepatocyte H4IIE with lipid accumulation with GW7647 (COBAS C111). The results of the analysis are shown in Fig. The intracellular lipid components were normalized by measuring the intracellular total protein content. One-way ANOVA was used for the significance test between the two groups, and the error bars of each graph were expressed as mean ± SEM.
FIG. 9 is a graph showing the changes in intracellular cholesterol content (left) and triglyceride content (right) after 24 hour treatment with lipopolysaccharide hepatocyte H4IIE with a dipeptide WR (50, 100, 500, 1000 μM) composition and GW7647 (COBAS C111). The results of the analysis are shown in Fig. The intracellular lipid components were normalized by measuring the intracellular total protein content. One-way ANOVA was used for the significance test between the two groups, and the error bars of each graph were expressed as mean ± SEM.

본 발명은 다이펩티드 트립토판-글루탐산(H-Trp-Glu-OH: WE) 또는 트립토판-알지닌(H-Trp-Arg-OH: WR)을 유효성분으로 함유하는 지방축적 억제, 지방간 치료, 혈중 중성지방 또는 콜레스테롤 강하, 또는 간내 중성지방 또는 콜레스테롤 강하용 의약조성물에 관한 것이다. The present invention relates to a method for inhibiting lipid accumulation, treatment of fatty liver, blood neutrality (blood circulation), and the like, which comprises dipeptide tryptophan-glutamic acid (H-Trp-Glu-OH: WE) or tryptophan-arginine Fat or cholesterol lowering, or intrahepatic triglyceride or cholesterol lowering.

본 발명에 따른 지방축적 억제, 지방간 치료, 혈중 중성지방 또는 콜레스테롤 강하, 또는 간내 중성지방 또는 콜레스테롤 강하는 "지질 대사 개선"에 의해 나타나는 것으로, 지질 대사 개선은 환경적 요인이나 대사 이상 등의 유전적 요인에 의한 지방의 체내 축적에 기인하여 유도되는, 체지방의 축적의 억제, 항비만, 체중 증가의 억제를 의미할 수 있다. 또한, 혈청 LDL 콜레스테롤(cholesterol) 농도 억제, 혈청 트리글리세리드(triglyceride) 농도 상승 억제, 간세포 콜레스테롤 합성 억제 및 ACAT 활성 억제를 의미할 수 있다. 이러한 지질 대사 개선을 통해, 고혈압, 고지혈증, 동맥경화증, 심근경색, 뇌혈관 장해, 대사증후군 등의 질환을 치료, 예방 또는 개선할 수 있다.The improvement of lipid metabolism caused by the inhibition of lipid accumulation, the treatment of fatty liver, the blood triglyceride or cholesterol lowering, or the intrahepatic triglyceride or cholesterol lowering according to the present invention is caused by the improvement of lipid metabolism, Which is induced by the accumulation of fat in the body by the factor, inhibiting the accumulation of body fat, inhibiting the anti-obesity and weight gain. In addition, it may mean inhibiting the concentration of serum LDL cholesterol, inhibiting elevation of serum triglyceride concentration, inhibiting hepatocyte cholesterol synthesis, and inhibiting ACAT activity. Through the improvement of lipid metabolism, diseases such as hypertension, hyperlipidemia, arteriosclerosis, myocardial infarction, cerebrovascular disorder, metabolic syndrome can be treated, prevented or improved.

일 관점에서, 상기 다이펩티드 WE 또는 WR은 PPARα(Peroxisome proliferator-activated receptor alpha)의 활성을 증가시키는 것을 특징으로 할 수 있다. 실시예를 참조하면, 루시페레이즈 에세이 (luciferase assay) 실험결과 WE 다이펩티드를 처리 시, 비처리군인 음성대조군과 비교하여 100μM과 500μM에서 각각 53%, 62% PPARα 활성이 증가하였으며 98% 증가되었다. 또한, WR 다이펩티드 처리했을 때 1000μM에서 유의적으로 PPARα 활성이 51% 증가됨을 확인하였다. 이는 WE 또는 WR 다이펩티드를 간조직 세포에 처리했을 때 PPARα 활성이 증가함을 의미한다. In one aspect, the dipeptide WE or WR may be characterized by increasing the activity of PPAR alpha (Peroxisome proliferator-activated receptor alpha). As a result of luciferase assay, 53% and 62% PPARα activities were increased at 100 μM and 500 μM, respectively, and 98%, respectively, when treated with WE dipeptide, compared with the negative control group . In addition, it was confirmed that PPARα activity was significantly increased by 51% at 1000 μM when treated with WR dipeptide. This means that PPARa activity is increased when the WE or WR dipeptide is treated on liver tissue cells.

양성대조군인 GW7647과 시험물질인 WE, WR 모두 PPARα의 활성을 높이는 길항제(agonist)로 작용하고 있는 것으로 나타났으며, 활성 효능을 갖는 최고 농도의 50%에 해당하는 EC50값이 GW7647은 18.6nM, WE은 83.4μM, WR 437μM로 계산 되었고 EC50값으로 WE와 WR을 비교하였을 때 WE가 더 높은 활성을 갖는 것으로 평가되었다. Both the positive control group GW7647 and the test substances WE and WR were shown to act as agonists for increasing the activity of PPARα and the EC 50 value corresponding to 50% of the maximum activity having the active effect was GW7647 of 18.6 nM , WE was 83.4 μM, and WR was 437 μM. WE and WR were compared with EC 50 values.

양성대조군인 GW7647은 100μM~25μM, 다이펩티드 WE는 5mM~1mM, WR은 10mM~2.5mM 범위에서 PARα-ligand binding domain과 결합하는 것으로 나타났다. 결합정수 KD (kinetic dissociation constant) 값은 GW7647이 약 96.4nM, WE가 약 120μM, WR이 약 604μM로 계산되었다. 따라서, 두 종의 다이펩티드 모두 PPARα-LBD와 결합가능하며, TR-FRET 시험결과와 동일하게 다이펩티드 WE의 결합효율이 WR보다 뛰어난 것으로 나타났다.The positive control group, GW7647, binds to PARα-ligand binding domain in the range of 100 μM to 25 μM, dipeptide WE to 5 mM to 1 mM, and WR to 10 mM to 2.5 mM. Kinetic dissociation constants (KD) were calculated for GW7647 at about 96.4 nM, WE at about 120 μM, and WR at about 604 μM. Thus, both types of dipeptides are capable of binding PPARα-LBD, and the binding efficiency of the dipeptide WE is superior to that of WR in the same manner as the TR-FRET test results.

렛트의 간세포 모델인 H4IIE 세포주에 다이펩티드 WE와 WR의 PPARα 유전자와 PPARα에 의해 조절되는 지질대사 관련 유전자를 mRNA 수준에서의 발현을 qRT-PCR 검증한 결과 음성대조군과 WE 처리군을 비교하였을 때 100μM, 500μM의 두 농도에서 유의성 있게 PPARα, FATP4, ACS 발현이 증가하였으며, CPT1, ACOX 유전자는 고농도 (500μM)로 WE를 처리하였을 때 유의적으로 발현이 증가되었다. FATP4, ACS 는 PPARα에 의해 발현이 조절되는 유전자이며 간조직 세포내에 지방산 흡수를 매개하는 단백질을 생산한다. CPT1, ACOX 유전자도 PPARα에 의해 발현이 조절되는 유전자이며 지방산 베타산화과정 효소를 생산한다. 결론적으로 유전자 발현결과는 다이펩피드 두 종이 PPARα에 결합한 후, 활성화시켜 표적 유전자 발현 증가로 혈중 지방산을 간조직으로 흡수하여 산화분해시키는 과정을 촉진함으로써, 혈중 중성지질 강하와 간조직 지질축적 억제에 기여하게 됨을 알 수 있다. QRT-PCR analysis of the expression of PPARα and dipeptide-related genes regulated by PPARα and PPARα on the mRNA level of dipeptide WE and WR in the H4IIE cell line, a rat hepatocyte model, revealed that 100 μM , And 500 μM, respectively. The CPT1 and ACOX genes were significantly increased (500 μM) when WE was treated. FATP4 and ACS are genes whose expression is regulated by PPARα and produce proteins that mediate fatty acid uptake in liver tissue cells. The CPT1 and ACOX genes are genes whose expression is regulated by PPARα and produce fatty acid beta oxidation enzymes. In conclusion, gene expression results show that the two dipeptides bind to PPARα and are then activated to increase the expression of the target gene, thereby promoting the oxidative degradation of the fatty acid by absorbing the fatty acid into the liver, thereby inhibiting the blood lipid lowering and the lipid accumulation It can be seen that

다이펩티드 WR의 경우, 고농도(1000μM) 처리시 유의적으로 PPARα 활성이 증가하였다. 또한, ACOX 유전자는 500μM, 1000μM의 두 농도에서 유의성 있게 유전자 발현이 증가하였고, FATP4, ACS, CPT1 유전자는 고농도 (1000μM)로 WR를 처리하였을 때 발현이 증가됨을 확인하였다. 결론적으로 다이펩티드 WE와 WR을 처리했을 때 PPARα 유전자 활성과 PPARα 활성에 의한 지질대사와 관련된 하위 유전자의 발현이 증가되었으며, 이러한 유전자들의 활성으로 인해 세포내 지질함량이 감소 효능을 나타낼 수 있는 것을 의미한다. In the case of dipeptide WR, PPARα activity was significantly increased at high concentration (1000 μM). In addition, ACOX gene significantly increased gene expression at both 500 μM and 1000 μM concentrations, and FATP4, ACS, and CPT1 genes were expressed at high concentrations (1000 μM) when treated with WR. In conclusion, when dipeptides WE and WR were treated, the expression of PPARα gene and PPARα-related sub-gene related to lipid metabolism was increased, and the activity of these genes showed that the intracellular lipid content could be reduced do.

qRT-PCR 실험 결과를 바탕으로 다이펩티드 WE 또는 WR이 지방산 흡수 (fatty acid uptake) 관련 유전자인 FATP4, ACS 발현이 높음을 확인하고 실제로 세포내에서 두 종의 다이펩티드 WE 또는 WR 처리에 의한 지방산 흡수 변화를 측정하였다. WE를 100μM, 500μM 처리하였을 시 음성대조군 대비 형광으로 표지된 지방산의 흡수가 유의적으로 20% 증가되었다. WR 경우에는 고농도(1000μM) 처리했을 때 지방산 흡수가 음성대조군 대비 20% 유의적으로 증가되었음을 확인하였다. 이 결과는 두 종의 다이펩티드의 PPARα 활성으로 간세포에서 지방산 흡수 기전이 활성화 되는 것으로 평가된다. PPARα가 활성화 되면 혈중 중성지질에서 유래한 지방산을 간조직 세포내로 흡수하여 지방산 베타 산화과정을 거쳐 분해하므로 혈중 중성지질을 낮추는 작용이 있음이 알려져 있고, 두 가지 다이펩티드 WE 또는 WR도 이러한 작용이 있음을 의미한다. Based on the results of the qRT-PCR, it was confirmed that the expression of FATP4 and ACS, which are related to fatty acid uptake, was high in the dipeptide WE or WR, and the fatty acid absorption by the two types of dipeptide WE or WR Change was measured. When 100 .mu.M and 500 .mu.M of WE were treated, the absorption of fluorescently labeled fatty acid was significantly increased by 20% as compared to the negative control. In the case of WR, fatty acid uptake was significantly increased by 20% compared to negative control when treated at high concentration (1000 μM). These results suggest that PPARα activity of the two dipeptides activates the fatty acid uptake mechanism in hepatocytes. It is known that when PPARα is activated, the fatty acids derived from the neutral lipids in the blood are absorbed into the liver tissue cells and decomposed through the fatty acid beta oxidation process, so that the neutral lipids in the blood are lowered, and both of the dipeptides WE and WR have this action .

최종적으로, 지질을 충분히 축적시킨 간조직 배양세포에 다이펩티드 (WE, WR)을 처리했을 때 세포 내 지질강하 효능을 평가하였다. 다이펩티드 WE를 100μM, 500μM 농도 처리 시 세포 내 콜레스테롤 함량이 유의성 있게 감소하였고, 50μM, 100μM, 500μM 의 농도로 처리하였을 때 세포 내 중성지방 함량이 유의성 있게 감소하는 것을 확인하였다. 이는 두 종류의 다이펩티드가 비알콜성 지방간을 개선시킬 수 있음을 의미한다. Finally, the intracellular lipid lowering effect was evaluated when the dipeptide (WE, WR) was treated with hepatocyte cultured cells in which lipid was sufficiently accumulated. The intracellular cholesterol content was significantly decreased when treated with 100 μM and 500 μM of dipeptide WE, and the intracellular triglyceride content was significantly decreased when treated with 50 μM, 100 μM and 500 μM concentrations. This means that both types of dipeptides can improve non-alcoholic fatty liver.

결론적으로, 이와 같은 다이펩티드 WE 또는 WR의 간세포 내 지질강하 및 지질축적 억제 효과는 PPARα의 활성에 의한 결과로 해석할 수 있다. 본 발명에서 두 종의 다이펩티드 조성물은 PPARα의 활성을 증가시키는 활성제로서 작용하여 이는 PPARα 활성에 의한 혈중 중성지질에서 유래한 지방산 흡수를 촉진하고 흡수된 지방산을 산화하여 분해를 유도한다. 따라서 두 종의 다이펩티드 WE 또는 WR은 간에서 중성 지질의 산화 및 흡수를 촉진하여 간 지질대사를 개선시키며 비알콜성 지방간 치료 효능을 갖는 것으로 평가된다. In conclusion, lipid lowering and lipid accumulation inhibitory effects of such a dipeptide WE or WR in liver cells can be interpreted as a result of the activity of PPARα. In the present invention, the two types of dipeptide compositions act as activators for increasing the activity of PPARα, which promotes the absorption of fatty acids derived from neutral lipids in blood and oxidizes the absorbed fatty acids by PPARα activity to induce degradation. Therefore, the two types of dipeptides, WE or WR, are expected to promote the oxidation and absorption of neutral lipids in the liver, thereby improving liver lipid metabolism and having a non-alcoholic fatty liver therapeutic effect.

본 발명의 약학 조성물은 비경구, 국소, 피하, 근육내, 초내, 경구, 비강내, 복강내 또는 국부 투여(예를 들면, 크림형태로 피부에)용이거나 예방용 및/또는 치료용이다. 바람직하게는, 본 발명의 조성물은 비경구, 근육내 또는 비강내 투여된다. 본원의 WE 또는 WR 조성물은 매우 낮은 투여량에서 독성없이 목적하는 효과를 제공하는 이점을 갖는다. The pharmaceutical compositions of the present invention are for parenteral, topical, subcutaneous, intramuscular, intravenous, oral, intranasal, intraperitoneal, or topical administration (e.g., in the form of a cream) for oral use, prophylactic and / or therapeutic use. Preferably, the compositions of the invention are administered parenterally, intramuscularly or intranasally. The WE or WR compositions herein have the advantage of providing the desired effect without toxicity at very low doses.

WE 또는 WR을 함유하는 본 발명의 조성물은 혈류에 흡수되는 방식으로 제형화될 수 있다. 본 발명의 조성물은 세포내 과정에서 조성물의 존재에 더 이상 의존하지 않는 후속적 변화를 일으키도록 세포내 양에서의 변화를 유도하는 지질대사 개선 및 지방축적 억제용 치료제이다. 펩티드의 다소 빠른, 예를 들면 5분 이내의 분해에도 불구하고 펩티드의 효과가 오래, 즉 몇 주 내지 몇 달 동안 지속되는 것으로 관찰되었다. The composition of the present invention containing WE or WR can be formulated in such a way that it is absorbed into the bloodstream. The composition of the present invention is a therapeutic agent for improving lipid metabolism and inhibiting fat accumulation, which induces a change in an intracellular amount so as to cause a subsequent change that is no longer dependent on the presence of the composition in an intracellular process. It has been observed that the effect of the peptide lasts for a long period of time, say weeks to months, despite the peptide being somewhat faster, e.g. within 5 minutes.

본 발명의 WE 또는 WR이 그들 자체로서는 일반적으로 사용되는 낮은 농도에서 수용성이지만, 이들은 바람직하게는 산의 형태로 또는 약학적으로 허용가능한 제제, 예를 들면 아세트산, 시트르산, 말레산, 숙신산, 나트륨, 칼륨, 암모늄 또는 아연과 함께 형성된 알칼리 염의 형태로 사용된다. 본 발명의 WE 또는 WR이 자유롭게 용해되는 염은 또한, 예를 들면 탠산 또는 팔모산과 같은 약간 수용성인 약학적으로 허용가능한 염으로 변화되거나, 더 큰 담체에 공유 커플링되어 시간이 경과함에 따라 유리되는 제형에 포함되거나 또는 시간이 경과함에 따라 유리되는 캡슐에 포함되는 등에 의해 체액에서 낮은 용해도를 갖는 염으로 전환될 수 있다.While WE or WR of the present invention are water soluble at the generally used lower concentrations, they are preferably administered in the form of acids or in pharmaceutically acceptable preparations such as acetic acid, citric acid, maleic acid, Is used in the form of an alkali salt formed with potassium, ammonium or zinc. The salts in which the WE or WR of the present invention are freely dissolved can also be converted to a slightly water-soluble pharmaceutically acceptable salt such as, for example, tannic acid or palmoic acid, or can be covalently coupled to a larger carrier, May be converted into a salt having low solubility in body fluids, such as contained in a formulation or contained in a capsule that is liberated over time.

본 발명의 WE 또는 WR 약학 제제는 유리 펩티드 또는 수용성의 약학적으로 허용가능한 염, 예를 들면 나트륨, 칼륨, 암모늄 또는 아연 염의 형태로 사용될 수 있다. 본 발명의 다이펩티드는 조성물에 독립적으로 활성을 부여하는 다른 활성 성분과 함께 투여될 수 있음이 이해될 것이다. 약학적으로 허용가능한 염은 편리하게는 종래의 방법에 의해 WE 또는 WR (또는 그의 작용물질)로부터 제조될 수 있다. 따라서, 이런 염은 예를 들면 WE 또는 WR를 바람직한 약학적으로 허용가능한 수산화금속 또는 다른 금속 염기의 수용액으로 처리하고 생성된 용액을 바람직하게는 질소 대기하의 감압하에서 증발건조시킴으로써 제조될 수 있다. 다르게는 WE 또는 WR의 용액을 목적하는 금속의 알콕사이드와 혼합하고 후속적으로 용액을 증발건조시킬 수 있다. 약학적으로 허용가능한 수산화물, 염기 및 알콕사이드는 이 목적을 위해 양이온을 갖는 것들을 포함하고, 이들은 칼륨, 나트륨, 암모늄, 칼슘 및 마그네슘을 포함하지만 이에 한정되지 않는다. 다른 대표적인 약학적으로 허용가능한 염은 하이드로클로라이드, 하이드로브로마이드, 설페이트, 비설페이트, 아세테이트, 옥살레이트, 발라레이트, 올리에이트, 라우레이트, 보레이트, 벤조에이트, 락테이트, 포스페이트, 토술레이트, 시트레이트, 말리에이트, 푸마레이트, 숙시네이트, 타르트레이트 등을 포함한다.The WE or WR pharmaceutical preparations of the present invention may be used in the form of free peptides or water-soluble pharmaceutically acceptable salts such as sodium, potassium, ammonium or zinc salts. It will be appreciated that the dipeptides of the present invention may be administered with other active ingredients that impart activity independently to the composition. Pharmaceutically acceptable salts can conveniently be prepared from WE or WR (or an agonist thereof) by conventional methods. Thus, such salts may be prepared, for example, by treating WE or WR with an aqueous solution of a preferred pharmaceutically acceptable metal hydroxide or other metal base and evaporating the resulting solution, preferably under reduced pressure, under a nitrogen atmosphere. Alternatively, a solution of WE or WR may be mixed with the alkoxide of the desired metal and subsequently the solution may be evaporated to dryness. Pharmaceutically acceptable hydroxides, bases and alkoxides include those having cations for this purpose, including, but not limited to, potassium, sodium, ammonium, calcium and magnesium. Other exemplary pharmaceutically acceptable salts include the hydrochloride, hydrobromide, sulfate, bisulfate, acetate, oxalate, ballalate, oleate, laurate, borate, benzoate, lactate, phosphate, Malate, fumarate, succinate, tartrate and the like.

비경구 투여의 경우, 본 발명은 약학적으로 허용가능한 담체, 바람직하게는 수성 담체에 용해된 WE 또는 WR, 또는 이들의 중합체성, 다량체성 또는 환상 형태, 또는 이들의 유도체의 용액를 포함하는 약학 제제를 제공한다. 안정성을 증가시키기 위해 알부민, 지단백질, 글로불린 등과 같은 단백질 및/또는 당단백질을 포함하는 물, 완충액, 0.4% 염수, 0.3% 글리신 등과 같은 다양한 수성 담체를 사용할 수 있다. 이들 조성물은 종래의 잘 공지된 멸균 방법으로 멸균될 수 있다. 생성된 수성 용액을 사용하기 위해서 포장하거나, 무균 조건하에서 여과하고 동결건조시킬 수 있고, 동결건조된 제제물은 투여 전에 멸균된 수용액과 혼합한다. 상기 조성물은, 예를 들면 pH 조절 및 완충제, 긴장도 조절제 등과 같은 생리 조건에 근접시키기에 필요한 약학적으로 허용가능한 보조 물질, 예를 들면 아세트산나트륨, 락트산나트륨, 염화나트륨, 염화칼륨, 염화칼슘 등을 포함할 수 있다. 저장 기간 및 약동적 반감기를 증가시키기 위해서 WE 또는 WR, 유사체, 유도체, 작용물질 등을 안정화시키는 것이 바람직할 수 있다. 저장 안정성은 a) 소수화제(예를 들면 글리세롤); b) 당(예를 들면 슈크로즈, 만노즈, 소르비톨, 람노즈, 자일로즈); c) 복합 탄수화물(예를 들면 락토즈); 및/또는 d) 정균제와 같은 부형제를 추가하여 개선된다. 펩티드의 약동적 반감기는 화학적 유도체화(예를 들면, 측쇄 또는 N- 또는 C-말단에 커플링시킴으로써)에 의해 담체 펩티드, 폴리펩티드 및 탄수화물에 커플링시키거나, 또는 아미노산을 다른 아미노산(상기와 같음)으로 화학적으로 변형시킴으로써 변형된다. 펩티드의 약동적 반감기 및 약력학은 또한 a) 캡슐화시키거나(예를 들면 리포좀에); b) 수화 정도를 제어하거나(예를 들면, 펩티드의 글리코실화 정도 및 유형을 제어하거나); c) 펩티드의 정전기 전하 및 소수성을 조절함으로써 조절될 수 있다.In the case of parenteral administration, the present invention encompasses pharmaceutical preparations comprising a solution of WE or WR dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier, or a polymeric, multimeric or cyclic form thereof, or a derivative thereof, Lt; / RTI > Various aqueous carriers such as water, buffers, 0.4% saline, 0.3% glycine and the like may be used to increase the stability, such as albumin, lipoproteins, globulins and the like and / or proteins and / or glycoproteins. These compositions can be sterilized by conventional well-known sterilization methods. The resulting aqueous solution may be packaged for use or filtered under aseptic conditions and lyophilized, and the lyophilized preparation is mixed with the sterile aqueous solution prior to administration. Such compositions may include, for example, pharmaceutically acceptable auxiliary substances necessary for approximating physiological conditions such as pH control and buffering agents, tonicity adjusting agents and the like, for example sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride and the like have. It may be desirable to stabilize WE or WR, analogs, derivatives, agonists, etc. to increase the shelf life and weak dynamic half life. Storage stability can be determined by a) a hydrophobizing agent (e.g., glycerol); b) sugars (such as sucrose, mannose, sorbitol, rhamnose, xylose); c) complex carbohydrates (such as lactose); And / or d) an excipient such as a bacteriostatic agent. The weak dynamic half-life of the peptide may be determined by coupling to the carrier peptide, polypeptide and carbohydrate by chemical derivatization (e. G., By coupling to the side chain or N- or C- terminus), or by coupling the amino acid with another amino acid ). ≪ / RTI > The weak dynamic half-life and pharmacodynamics of the peptide may also be a) encapsulated (e. G., In liposomes); b) controlling the degree of hydration (e. g., controlling the degree and type of glycosylation of the peptide); c) modulating the electrostatic charge and hydrophobicity of the peptide.

본 발명에 따른 WE 또는 WR-함유 조성물은 비경구 투여(예를 들면 정맥내, 피하, 근육내 투여)에 적합한 상용적 약제로 투여될 수 있다. 상기 제제는 멸균과 같이 통상적으로 약학 처리될 수 있고, 방부제, 안정화제, 습윤제 등과 같은 보조제를 포함할 수 있다.The WE or WR-containing composition according to the present invention may be administered as a conventional pharmaceutical agent suitable for parenteral administration (for example, intravenous, subcutaneous, intramuscular administration). The formulations may be conventionally treated with pharmaceuticals, such as sterilization, and may contain adjuvants such as preservatives, stabilizers, wetting agents, and the like.

WE 또는 WR 조성물은 전형적으로 약 0.5μg/kg 내지 약 mg/kg, 바람직하게는 약 1 내지 약 50μg/kg의 투여량에서 생물학적으로 활성이 있다. 약학 조성물의 WE 또는 WR의 농도는 다양할 수 있고, 즉 약 0.001중량% 정도 내지 15 또는 20중량%까지일 수 있고, 환자에 대한 치료의 특정한 필요성 및 투여 방식에 따라 액체 부피, 점도 등에 의해 주로 선택될 것이다. 근육내로 사용되는 경우 혈관신생을 억제하기에 효과적인 양, 예를 들면 약 0.001 내지 0.01중량%의 WE 또는 WR의 활성 성분을 갖는 주사용 용액으로 사용된다. 정제, 캡슐 또는 좌약의 형태로 제조되는 경우 활성 물질이 정제, 좌약 또는 캡슐당 약 0.1mg의 WE 또는 WR의 양으로 존재하는 것이 바람직하다. 이 주사 형태에 대한 약학적으로 허용가능한 비히클(vehicle)은 0.9% 수성 염화나트륨, 증류수, 노보카인(Novocaine) 용액, 링거(Ringer) 용액, 글루코즈 용액 등과 같은 임의의 약학적으로 허용가능한 용매일 수 있다. 이런 형태에서는, 캡슐, 좌약 또는 정제는 충진제, 전분, 글루코즈 등과 같은 다른 종래의 부형제 및 비히클을 또한 포함할 수 있다. 국소 제제의 경우, WE 또는 WR는 일반적으로 우레아계 연화제, 석유계 연고 등에 약 0.1 내지 10,000ppm, 바람직하게는 약 1 내지 1000ppm, 가장 바람직하게는 약 10 내지 100ppm의 농도로 포함되어 있다. 비경구, 경구 및 국소 투여형 화합물을 제조하는 실제 방법은 당분야에 숙련된 이들에게 공지되어 있거나 자명하고, 예를 들면 본원에 참고로 인용된 문헌[Remington's Pharmaceutical Science, 17판, Mack Publishig Company, Easton, PA(1985)]에 상세하게 설명되어 있다The WE or WR composition is typically biologically active at doses of from about 0.5 μg / kg to about mg / kg, preferably from about 1 to about 50 μg / kg. The concentration of WE or WR in the pharmaceutical composition may vary, i.e. from about 0.001% to 15% or 20% by weight, depending on the particular need for treatment and the mode of administration of the patient, Will be selected. When used intramuscularly, it is used as an injectable solution having an effective amount for inhibiting angiogenesis, for example, an active ingredient of about 0.001 to 0.01% by weight of WE or WR. When prepared in the form of tablets, capsules or suppositories, it is preferred that the active substance is present in an amount of about 0.1 mg of WE or WR per tablet, suppository or capsule. A pharmaceutically acceptable vehicle for this injection form may be any pharmaceutically acceptable solvent, such as 0.9% aqueous sodium chloride, distilled water, Novocaine solution, Ringer solution, glucose solution and the like . In this form, the capsules, suppositories or tablets may also contain other conventional excipients such as fillers, starches, glucose and the like and vehicles. In the case of topical preparations, WE or WR is generally contained in a concentration of about 0.1 to 10,000 ppm, preferably about 1 to 1000 ppm, and most preferably about 10 to 100 ppm for urea-based softener, petroleum-based ointment and the like. Actual methods of preparing parenteral, oral, and topical dosage forms are well known or will be readily apparent to those skilled in the art and are described, for example, in Remington's Pharmaceutical Science, 17th Ed., Mack Publishig Company, Easton, PA (1985)]

근육내 및 비강내 경로가 본 발명의 조성물을 투여하기에 바람직하다. 근육내 투여를 위한 본 발명의 조성물의 한 바람직한 투여량은 성인의 경우 1회 투여당 약 50 내지 100μg의 WE 또는 WR (총 치료가 300 내지 1000μg인 경우); 1세 미만의 유아의 경우 1회 투여당 약 10㎍; 1 내지 3세의 유아의 경우 1회 투여당 약 10 내지 20μg; 4 내지 6세의 유아의 경우 1회 투여당 약 20 내지 30μg; 7 내지 14세의 어린이의 경우 1회 투여당 약 50μg이다. 모든 전술된 투여량은 3 내지 10일의 치료에 대해 유용하고 환자의 필요에 따라 변화될 수 있다. 치료는 필요에 따라 통상적으로 1 내지 6달내에 반복될 수 있다. 다른 바람직한 양태에서 약 10μg/㎏ 내지 약 1mg/㎏의 WE 또는 WR 약학 제제의 투여량이 약 6일 내지 약 10일의 기간 동안, 선택적으로는 담당 의사의 결정에 따라 약 30일 이하의 기간 동안 개체에게 매일 투여될 수 있다. 한 바람직한 치료 과정에서 WE 또는 WR 요법은 5 내지 7일 동안은 1 내지 100μg/㎏의 투여량으로 근육내 투여되고 이어서 동일한 주사 요법이 반복되기 전에 1 내지 6달 동안 중지된다.Intramuscular and intranasal routes are preferred for administration of the compositions of the present invention. One preferred dose of the composition of the invention for intramuscular administration is about 50 to 100 [mu] g WE or WR (in the case of a total treatment of 300-1000 [mu] g) per single administration for an adult; About 10 μg per dose for infants under one year of age; About 10 to 20 [mu] g per single dose for infants 1 to 3 years of age; About 20 to 30 μg per single dose for infants aged 4 to 6 years; For children between 7 and 14 years old, about 50 μg per single dose. All of the above-mentioned dosages are useful for 3 to 10 days of treatment and may be varied according to the needs of the patient. Treatment may be repeated within 1 to 6 months, as needed. In another preferred embodiment, the dosage of the WE or WR pharmaceutical agent is from about 10 μg / kg to about 1 mg / kg for a period of from about 6 days to about 10 days, optionally, for a period of up to about 30 days, ≪ / RTI > In one preferred course of treatment, the WE or WR regimen is intramuscularly administered at a dose of 1 to 100 μg / kg for 5 to 7 days and then stopped for 1 to 6 months before the same injection regimen is repeated.

WE 또는 WR 조성물은 단독으로 또는 약학적으로 허용가능한 담체와 배합되어 단일 투여량 또는 다중 투여량으로 투여될 수 있다. 적합한 약학 담체는 불활성 고형 희석제 또는 충진제, 멸균 수용액 및 다양한 무독성 유기 용매를 포함한다. WE 또는 WR를 약학적으로 허용가능한 담체 및 선택적인 항생제와 혼합하여 약학 조성물을 제조한다. 그런 다음 본 발명의 복합 치료제를 정제, 로젠지(lozenge), 시럽, 주사 용액 등과 같은 다양한 투여 형태로 용이하게 투여한다. 복합 치료제는 또한 동일한 단위 투여 형태로 WE 또는 WR 포함할 수 있다. 경우에 따라 약학 담체는 향료, 결합제, 부형제 등과 같은 추가의 성분을 포함할 수 있다.The WE or WR composition may be administered alone or in combination with a pharmaceutically acceptable carrier in a single dose or in multiple doses. Suitable pharmaceutical carriers include inert solid diluents or fillers, sterile aqueous solutions and various non-toxic organic solvents. WE or WR is mixed with a pharmaceutically acceptable carrier and a selective antibiotic to produce a pharmaceutical composition. The combined therapeutic agents of the invention are then conveniently administered in a variety of dosage forms such as tablets, lozenges, syrups, injection solutions, and the like. The combination therapy may also contain WE or WR in the same unit dosage form. Optionally, the pharmaceutical carrier may contain additional ingredients such as flavoring agents, binders, excipients, and the like.

따라서, 경구 투여의 경우, 전분, 바람직하게는 감자 또는 타피오카 전분, 알긴산 및 특정한 착체 실리케이트와 같은 다양한 붕해제, 및 폴리비닐피롤리돈, 수크로즈, 젤라틴 및 아카시아와 같은 결합제와 함께, 시트르산나트륨, 탄산칼슘 및 인산칼슘과 같은 다양한 부형제를 포함하는 정제를 사용할 수 있다. 또한, 스테아르산마그네슘, 나트륨 라우릴 설페이트 및 활석과 같은 윤활제가 정제 목적으로 종종 유용하다. 유사한 유형의 고형 조성물을 또한 염 및 경질의 충진된 젤라틴 캡슐의 충진제로서 사용할 수 있다. 이 목적에 바람직한 물질은 락토즈 또는 우유 당 및 고분자량 폴리에틸렌 글리콜을 포함한다. 엘릭시르(elixir)의 수성 현탁액이 경구 투여에 바람직한 경우, 그 내부의 필수 활성 WE 또는 WR 성분은 물, 에탄올, 프로필렌 글리콜, 글리세린 및 이들의 혼합물과 같은 희석제와 함께 다양한 감미제, 향미제, 착색 물질 또는 염료, 및 경우에 따라, 유화제 또는 현탁제와 혼합될 수 있다.Thus, in the case of oral administration, starch, preferably potato or tapioca starch, various disintegrants such as alginic acid and specific complex silicates, and binders such as polyvinylpyrrolidone, sucrose, gelatin and acacia, Tablets containing various excipients such as calcium carbonate and calcium phosphate may be used. Lubricants such as magnesium stearate, sodium lauryl sulfate and talc are also often useful for purification purposes. Solid compositions of a similar type may also be used as fillers in salt and hard-filled gelatin capsules. Preferred materials for this purpose include lactose or milk sugars and high molecular weight polyethylene glycols. When an aqueous suspension of elixir is desired for oral administration, the essential active WE or WR components therein may be formulated with various sweetening, flavoring, coloring matter or flavoring agents, such as water, ethanol, propylene glycol, glycerin and mixtures thereof, Dyes, and, if desired, emulsifying or suspending agents.

비경구 투여의 경우, 호마유 또는 낙화생화유 또는 수성 폴리프로필렌 글리콜, 및 전술된 상응하는 수용성의 약학적으로 허용가능한 금속 염의 멸균 수성 염수 용액중의 WE 또는 WR의 용액을 사용할 수 있다. 이런 수성 용액은 필요에 따라 적합하게 완충되어야 하고 액체 희석제는 먼저 충분한 염수 또는 글루코즈로 등장성으로 만들어야 한다. 이들 특정한 수성 용액은 정맥내, 근육내, 피하 및 복강내 주사에 특히 적합하다. 사용되는 멸균 수성 매질은 모두 당분야의 숙련된 이들에게 공지된 표준 기술에 의해 쉽게 수득될 수 있다. 또한, 상기 목적에 적합한 용액을 이용하여 전술된 화합물을 국소적으로(예를 들면 배치된 카테터(catheter)를 통해) 즉석에서 투여하는 것이 가능하다.In the case of parenteral administration, solutions of WE or WR in a sterile aqueous broth solution of homoe oil or groundnut oil or aqueous polypropylene glycol, and the corresponding water-soluble pharmaceutically acceptable metal salts mentioned above, can be used. This aqueous solution should be suitably buffered as required and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are particularly suitable for intravenous, intramuscular, subcutaneous and intraperitoneal injection. The sterile aqueous media employed may all be readily obtained by standard techniques known to those skilled in the art. It is also possible to administer the above-described compounds locally (for example, via a catheter placed on the spot) using a solution suitable for this purpose.

치료받은 개체의 50% 이상이 치료되기에 적절한 양을 "치료 효과 투여량"으로 정의한다. 급성 질병의 치료는 일반적으로 약 3 내지 10일 걸릴 것이다. 만성 질병의 치료 또는 예방적 치료는 동일한 과정을 갖지만, 약 1 내지 6달 이상 오랜 기간후에 반복될 수 있다. 일부 경우에, 약 2 내지 약 20일, 바람직하게는 약 3 내지 약 14일, 보다 바람직하게는 약 4 내지 약 10일의 기간동안 매일 간헐적으로 조성물을 투여하는 것이 바람직하고, 이는 약 15일 이상, 바람직하게는 약 20일 이상 또는 약 1 내지 6달 또는 그 이상 반복될 수 있다.An amount sufficient for more than 50% of the treated individuals to be treated is defined as "therapeutically effective dose ". Treatment of an acute disease will generally take about 3 to 10 days. The treatment or prophylactic treatment of a chronic disease has the same process, but can be repeated after a long period of time of about 1 to 6 months or more. In some cases, it is preferable to administer the composition intermittently daily for a period of from about 2 to about 20 days, preferably from about 3 to about 14 days, more preferably from about 4 to about 10 days, , Preferably about 20 days or more, or about 1 to 6 months or more.

WE 또는 WR 조성물의 전달 경로는 치료가 필요한 질병 및 부위에 의해 결정된다. 국소 도포의 경우 WE 또는 WR 조성물을 국부 부위에 도포하는 것(예를 들면 바늘을 그 부위의 조직에 위치시킴으로써) 또는 침윤 붕대를 예를 들면 수술제거 후의 종양 부위에 위치시키는 것이 가능하고; 다른 질병의 경우 WE 또는 WR 조성물을 전신 투여하는 것이 바람직할 수 있다. 다른 적용의 경우, WE 또는 WR 조성물 등은 정맥내, 복강내, 근육내, 피하, 비강내 및 피내 주사, 및 기관지내 흡입(예를 들면 분무기를 이용하여), 경피 전달(예를 들면 피부 패치(patch)의 지용성 담체를 이용하여), 또는 위장내 전달(예를 들면 캡슐 또는 정제를 이용하여)에 의해 전달될 수 있다.The delivery route of the WE or WR composition is determined by the disease and site requiring treatment. In the case of topical application, it is possible to apply the WE or WR composition to a localized site (e.g., by placing the needle in the tissue at that site), or to place the invading bandage on the tumor site, e.g., after surgical removal; For other diseases, it may be desirable to administer the WE or WR composition systemically. For other applications, the WE or WR composition may be administered intravenously, intraperitoneally, intramuscularly, subcutaneously, intranasally and intradermally, and by inhalation (e.g., using a sprayer), transdermal delivery (using a liposoluble carrier of the patch), or by intragastric delivery (e.g., using a capsule or tablet).

일반적으로, 본 발명의 WE 또는 WR 조성물, 예를 들면 L-Trp-L-Glu 조성물의 약학적으로 허용가능한 산과의 산 부가염은 본 발명의 WE 또는 WR 조성물 자체와 생물학적으로 등가일 것이다.Generally, the acid addition salt of the WE or WR composition of the present invention, e.g., a pharmaceutically acceptable acid, of the L-Trp-L-Glu composition will be biologically equivalent to the WE or WR composition of the present invention itself.

바람직한 치료 조성물, 접종물, 경로 및 투여량은 물론 임상적 적용에 따라 다양할 것이다. 근육내 주사의 경우 접종물은 전형적으로 물, 염수 또는 인산염 완충된 염수와 같은 생리학적으로 허용가능한 희석제에 펩티드를 현탁시킴으로써, 건조된 펩티드(또는 펩티드 콘쥬게이트(conjugate))로부터 제조된다. 치료받는 환자의 상태에 따라 투여량의 일부 변화가 필요하고, 어떤 경우든 의사가 개별적인 환자에 대한 적절한 투여량을 결정할 것이다. 단위 투여량당 펩티드의 효과량은 다른 것들 중에서 체중, 생리 상태 및 선택된 접종 요법에 의존한다. 펩티드의 단위 투여량은 담체 중량을 제외한(담체가 사용되는 경우) 펩티드의 중량을 의미한다. 세포의 미세환경에서 조직 부위에서의 WE 또는 WR, 예를 들면 L-Trp-L-Glu의 농도가 10-5 내지 10-9M에 접근하면 효과적인 치료가 달성될 것이다. 숙련된 의사는 본 발명의 치료에 대한 환자의 반응을 관측하고 그에 따라 투여량을 조절하기 위해 임상 및 실험 지표(전술한 바와 같음)를 이용할 수 있다. The desired therapeutic composition, inoculum, route and dosage will vary depending on the clinical application as well. In the case of intramuscular injection, the inoculum is typically prepared from a dried peptide (or peptide conjugate) by suspending the peptide in a physiologically acceptable diluent such as water, saline or phosphate buffered saline. Depending on the condition of the patient being treated, some change in dosage is required and in any case the physician will determine the appropriate dosage for the individual patient. The effective amount of the peptide per unit dose depends on body weight, physiological status and selected inoculation therapy among others. The unit dose of the peptide means the weight of the peptide (if carrier is used), excluding the weight of the carrier. Effective treatment will be achieved when the concentration of WE or WR, for example L-Trp-L-Glu, at the tissue site in the microenvironment of the cell approaches 10 -5 to 10 -9 M. Skilled doctors can use clinical and laboratory indicators (as described above) to observe the patient's response to the treatment of the present invention and adjust the dosage accordingly.

WE 또는 WR, 작용물질, 길항물질 등의 약동학 및 약력학은 환자에 따라 상이할 것이므로, 조직에서 치료 농도를 수득하기 위한 가장 바람직한 방법은 투여량을 점진적으로 증진시키고 임상 및 실험 지표(전술한 바와 같음)를 관측하는 것이다. 이러한 투여량을 늘리는 치료 요법의 경우 초기 투여량은 투여 경로에 의존할 것이다. 대략적인 분자량이 200 내지 400 달톤인 WE 또는 WR가 정맥내 투여되는 경우, 약 0.5μg/체중㎏의 초기 투여량이 투여되고 투여량은 투여량을 늘리는 요법의 각각의 간격마다 10배씩 농도가 증가한다.Since the pharmacokinetics and pharmacodynamics of WE or WR, agonists, antagonists, etc., will vary from patient to patient, the most preferred method for obtaining therapeutic concentrations in the tissues is to gradually increase the dosage and to monitor clinical and laboratory indicators ). In the case of therapeutic regimens for increasing such doses, the initial dosage will depend on the route of administration. When WE or WR with an approximate molecular weight of 200 to 400 Daltons is administered intravenously, an initial dose of about 0.5 [mu] g / kg body weight is administered and the dosage increases by 10-fold for each interval of the dose-increasing therapy .

정제, 캡슐 또는 좌약의 형태로 제공되는 경우, 활성 물질이 정제, 좌약 또는 캡슐당 약 0.1mg의 양으로 존재하는 것이 바람직하다. 이런 형태로 제공되는 경우, 캡슐, 좌약 또는 정제는 또한 다른 종래의 부형제 및 비히클, 예를 들면 충진제, 전분, 글루코즈 등을 포함할 수 있다.When provided in the form of tablets, capsules or suppositories, it is preferred that the active substance is present in an amount of about 0.1 mg per tablet, suppository or capsule. When provided in this form, the capsules, suppositories or tablets may also contain other conventional excipients and vehicles such as fillers, starches, glucose, and the like.

본 발명은 다른 관점에서, WE 또는 WR을 유효성분으로 함유하는 지방축적 억제, 지방간 개선, 혈중 중성지방 또는 콜레스테롤 강하 또는 간내 중성지방 또는 콜레스테롤 강하용 식품에 관한 것이다. In another aspect, the present invention relates to a food for inhibiting fat accumulation, improving liver fat, serum triglyceride or cholesterol, or intracranial triglyceride or cholesterol lowering which contains WE or WR as an active ingredient.

본 발명의 식품은 산화 예방을 위한 약제, 식품 및 음료 등에 다양하게 이용될 수 있다. 본 발명의 기능성 식품은, 예를 들어, 각종 식품류, 사탕, 초콜릿, 음료, 껌, 차, 비타민 복합제, 건강보조 식품류 등이 있고, 분말, 과립, 정제, 캡슐 또는 음료인 형태로 사용할 수 있다.The food of the present invention can be variously used for medicines for preventing oxidation, foods and beverages. The functional food of the present invention can be used in the form of powder, granule, tablet, capsule or beverage, for example, various foodstuffs, candy, chocolate, beverage, gum, tea, vitamin complex and health supplement.

본 발명의 식품은 식품 또는 음료의 형태일 수 있다. 이 때, 식품 또는 음료 중의 유효성분의 양은 일반적으로 전체 식품 중량의 0.01 내지 50 중량%, 바람직하게는 0.1 내지 20 중량%로 포함될 수 있으며, 건강 음료 조성물은 100 mL를 기준으로 0.02 내지 10 g, 바람직하게는 0.3 내지 1 g의 비율로 가할 수 있다. The food of the present invention may be in the form of a food or beverage. The amount of the active ingredient in the food or beverage may be generally 0.01 to 50% by weight, preferably 0.1 to 20% by weight of the total food, and the health beverage composition may contain 0.02 to 10 g, And preferably 0.3 to 1 g.

상기 건강 음료 조성물은 지시된 비율로 필수 성분으로 WE 또는 WR을 함유하는 외에는 액체 성분에는 특별한 제한은 없으며, 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들어, 포도당, 과당 등의 디사카라이드, 예를 들어 말토스, 슈크로스 등의 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알코올이다. 상술한 것 이외의 향미제로서 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제(사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 mL당 일반적으로 약 1 내지 20g, 바람직하게는 약 5 내지 12g이다.The health beverage composition is not particularly limited to liquid ingredients other than those containing WE or WR as essential ingredients in the indicated ratios, and may contain various flavors or natural carbohydrates such as ordinary beverages as an additional ingredient. Examples of the above-mentioned natural carbohydrates include monosaccharides such as disaccharides such as glucose and fructose, polysaccharides such as maltose, sucrose and the like, such as dextrin, cyclodextrin and the like And sugar alcohols such as xylitol, sorbitol and erythritol. Natural flavors (tau martin, stevia extracts (e.g., rebaudioside A, glycyrrhizin, etc.) and synthetic flavors (saccharin, aspartame, etc.) can be advantageously used as flavors other than those described above The ratio of the natural carbohydrate is generally about 1 to 20 g, preferably about 5 to 12 g per 100 mL of the composition of the present invention.

상기 외에도, 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 본 발명의 조성물들은 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 식품 100 중량부 당 0 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다.
In addition to the above, flavorings such as various nutrients, vitamins, minerals (electrolytes), synthetic flavors and natural flavors, colorants and heavies (cheese, chocolate etc.), pectic acid and its salts, alginic acid and its salts, Protective colloid thickeners, pH adjusting agents, stabilizers, preservatives, glycerin, alcohols, carbonating agents used in carbonated drinks, and the like. In addition, the compositions of the present invention may contain natural fruit juice and pulp for the production of fruit juice drinks and vegetable drinks. These components may be used independently or in combination. The proportion of such additives is generally selected in the range of 0 to about 20 parts by weight per 100 parts by weight of the food.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시 예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시 예에 의해 제한되는 것으로 해석되지는 않는다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention is not construed as being limited by these embodiments.

실시예 1. 다이펩티드 WE 또는 WR의 PPARα 활성 검증Example 1. Assay of PPAR? Activity of dipeptide WE or WR

실시예들에서 사용된 다이펩티드 WE와 WR의 효과를 검증하기 위한 배양세포로 쥐의 간세포 모델인 H4IIE(Rat reuber hepatoma, Korea Cell Line Bank(KCLB)) 세포주와 햄스터의 난소(ovary)로부터 분리된 CHO-K1(Chinese hamster ovary, KCLB) 세포주를 사용하였다. 각각의 배양세포는 MEM/EBSS, DMEM/F-12(Logan, UT, USA)배지에 10% 비활성화 우태아 혈청(Logan, UT, USA) 및 1% 페니실린-스트렙토마이신 항생제 용액을 첨가하여 37℃ 및 5% 이산화탄소 조건에서 배양되었다. In order to verify the effect of the dipeptides WE and WR used in the examples, the cells were cultured in a rat hepatocyte model H4IIE (Rat reuber hepatoma, Korea Cell Line Bank (KCLB)) cell line and a hamster ovary CHO-K1 (Chinese hamster ovary, KCLB) cell line was used. For each culture, 10% inactivated fetal bovine serum (Logan, UT, USA) and 1% penicillin-streptomycin antibiotic solution were added to MEM / EBSS, DMEM / F-12 And 5% CO2.

본 실험에서 사용된 다이펩티드 WE(H-Trp-OH) 및 WR(H-Trp-Arg-OH)의 특성은 도 1에 나와있다. 다이펩티드 WE 또는 WR의 PPARα 활성 검증을 위하여 리포터 유전자 에세이(reporter gene assay)를 실시하였다. 특정 기질을 산화하여 빛을 방출하는 작용을 촉매하는 효소인 루시페레이즈(luciferase)가 리포터 유전자로 사용되었으며, 배양세포에 형질감염(transfection) 방법으로 삽입된 벡터의 프로모터 구간의 PPARE에 PPARα/RXR 이량체가 결합하면 루시퍼레이즈(luciferase)가 발현되어 활성을 감지할 수 있도록 디자인되었다. 이 원리를 바탕으로 하여 농도별 다이펩티드 처리에 따른 PPARα활성으로 PPRE 및 PPARα의 결합 정도를 측정하였다. 보다 구체적으로, CHO-K1(Chinese hamster ovary) 세포를 24-웰 플레이트(24-well plate)에 웰 (well)당 2X105 농도로 분주하여 24시간 배양한 후, Hilymax(Dojindo, MD, USA) 형질감염시약을 이용하여 pCMV-3xPPARE-Luc백터와 pSG5-PPARα(Addgene, MA, USA) 벡터를 동시에 24시간 동안 형질감염시켰다. 이후 두 종의 다이펩티드 WE(10~500μM) 또는 WR(50~1000μM)를, PPARα 합성 길항제인 GW7647(1μM)과 같이 24시간 동안 처리하였으며 Firefly luciferase assay kit(Biotium, Hayward, CA, USA)를 사용하여 루시페라아제(luciferase) 활성을 측정하였다.The characteristics of the dipeptides WE (H-Trp-OH) and WR (H-Trp-Arg-OH) used in this experiment are shown in FIG. A reporter gene assay was performed to verify the PPARα activity of the dipeptide WE or WR. Luciferase, an enzyme that catalyzes the action of light emission by oxidizing a specific substrate, was used as a reporter gene, and PPARE of the promoter region of the vector inserted by transfection into the cultured cells was added to PPARα / RXR When the dimer is bound, luciferase is designed to express its activity. Based on this principle, the degree of binding of PPRE and PPARα was measured by PPARα activity following treatment with dipeptide by concentration. More specifically, CHO-K1 (Chinese hamster ovary) cells were cultured in a 24-well plate at a concentration of 2 × 10 5 per well, cultured for 24 hours, and cultured in Hilymax (Dojindo, MD, USA) The transfection reagent was used to transfect pCMV-3xPPARE-Luc vector and pSG5-PPARα (Addgene, MA, USA) vector for 24 hours at the same time. Two types of dipeptides WE (10-500 μM) or WR (50-1000 μM) were treated with PPARα synthetic antagonist GW7647 (1 μM) for 24 hours and then the Firefly luciferase assay kit (Biotium, Hayward, CA, USA) Was used to measure luciferase activity.

도 2에 나타난 바와 같이, WE 다이펩티드를 처리한 결과, 아무것도 처리하지 않은 음성대조군보다 100μM과 500μM에서 각각 53%와 62% PPARα 활성이 증가하였으며 1μM로 처리한 양성대조군에서는 98% 증가하였다. 또한, WR 다이펩티드를 처리했을 때 1000μM에서 유의적으로 PPARα 활성이 51% 증가하였으며 양성대조군 GW7647(1μM) 처리했을 경우에는 59% 증가하였다. 결국, 다이펩티드 WE 또는 WR의 PPARα 활성 검증결과, 다이펩티드를 높은 농도로 처리했을 때 PPARα 활성이 증가함을 확인할 수 있었다.
As shown in Fig. 2, the treatment with WE dipeptide resulted in an increase of 53% and 62% PPARα activity at 100 μM and 500 μM, respectively, in the positive control group treated with 1 μM, and a 98% increase in the positive control group treated with 1 μM. In addition, PPARα activity was significantly increased by 51% at 1000 μM when treated with WR dipeptide and increased by 59% when treated with positive control GW7647 (1 μM). As a result, the PPARα activity of the dipeptide WE or WR was confirmed to be increased when the dipeptide was treated at a high concentration.

실시예 2. 다이펩티드의 PPARα 리간드 효능 분석Example 2. Analysis of PPAR? Ligand efficacy of dipeptides

다이펩티드의 PPARα에 대한 직접적인 리간드로 작용할 수 있는지 평가하고자, 공활성제(coactivator)를 사용하여 길항제(agonist) 혹은 저해제(antagonist)로서의 활성효능을 평가하는 시험법인 TR-FRET 실험을 수행하였다. PPARα에 리간드(ligand)가 결합하면, PPARα의 입체구조가 변화하여 공활성제(coactivator)의 결합이 용이하게 되고, 이는 PPARα에 의한 전사를 유도하게 되는데, GST 항체를 통해 테르븀(terbium)이 표지된 PPARα에 리간드가 결합하면 PPARα에 형광으로 표지된 공활성제(coactivator)의 펩타이드 결합이 이루어진다. 테르븀은 340nm 파장에서 들뜬 상태가 되고, 이 에너지는 공활성제(coactivator) 펩타이드의 형광신호로 전이되는데, 이 신호를 520nm에서 측정한다. 따라서 PPARα에 리간드 결합이 증가할수록 TR-FRET 시그널은 증가한다. 본 발명에서는 형광표지된 PGC1α 펩타이드를 PPARα에 대한 공활성제로 사용하였으며, Spectra Max 기기를 사용하여 형광파장을 측정하였다(excitation 340nm, emission 520nm). 그래프와 EC50값은 GraphPad™ Prism5.0 프로그램을 사용하였으며 양성대조군으로는 PPARα의 길항제(agonist)로 개발된 GW7647을 사용하여 다이펩티드(WE 또는 WR) 효능을 비교 분석하였다.A TR-FRET test was conducted to evaluate the activity of dipeptide as an agonist or an antagonist using a coactivator in order to evaluate whether it could act as a direct ligand to PPAR ?. When a ligand is bound to PPARα, the steric structure of PPARα is changed to facilitate the binding of coactivator, which induces transcription by PPARα, which is labeled with terbium through GST antibody When the ligand binds to PPAR alpha, the peptide bond of the fluorescently labeled coactivator is made in PPAR alpha. Terbium is excited at the wavelength of 340 nm, and this energy is transferred to the fluorescence signal of the coactivator peptide, which is measured at 520 nm. Thus, as the ligand binding to PPARα increases, the TR-FRET signal increases. In the present invention, the fluorescence-labeled PGC1? Peptide was used as a coactivator for PPAR ?, and the fluorescence wavelength was measured using a Spectra Max instrument (excitation 340 nm, emission 520 nm). Graphs and EC 50 values were analyzed using the GraphPad ™ Prism 5.0 program and the dipeptide (WE or WR) efficacy was compared and analyzed using GW7647 developed as a PPARα agonist as a positive control.

그 결과, 도 3에 나타난 바와 같이, 양성대조군인 GW7647과 시험물질인 WE 모두 PPARα의 길항제로 작용하고 있는 것으로 나타났으며, 활성효능을 갖는 최고농도의 50%에 해당하는 EC50값이 GW7647은 18.6nM, WE은 83.4μM로 나타났다. 다이펩티드 WR 경우에도 PPARα의 길항제로 작용하고 있는 것으로 검증되었으며 EC50값은 437μM로 계산되었다. TR-FRET 실험결과, 두 종의 다이펩티드 모두 PPARα 활성을 높이는 길항제적인 경향을 나타냈으며 EC50값으로 WE와 WR을 비교하였을 때 WE가 더 높은 활성을 갖는 것으로 평가되었다.
As a result, as shown in FIG. 3, both the positive control group GW7647 and the test substance WE act as antagonists of PPARα, and the EC 50 value corresponding to 50% of the maximum activity having the active activity was GW7647 18.6 nM, and WE was 83.4 μM. The dipeptide WR was also proved to act as an antagonist of PPARa and the EC 50 value was calculated as 437 μM. As a result of TR-FRET, both types of dipeptides showed antagonistic tendency to increase PPARα activity, and WE was found to have higher activity when WE and WR were compared with EC 50 values.

실시예 3. 다이펩티드와 PPARα의 결합효능 평가 Example 3. Evaluation of binding affinity of dipeptide with PPARa

다이펩티드 WE와 WR이 직접 PPARα LBD (ligand binding domain)와 결합하는지 확인하기 위해 Biacore 2000 기기(GE healthcare 제품, 스웨덴)를 이용하여 표면 플라즈몬 공명(surface plasmon resonance, SPR) 실험을 수행하였다. 구체적으로, human-PPARα LBD(ligand binding domain) 단백질을 CM5 센서칩(GE healthcare, 스웨덴)에 고정시키고 다이펩티드(WR 또는 WE)를 각각 고농도 5mM부터 저농도 0.5mM 순으로 주입시켜 주었으며 이때 분석환경은 25℃로 유지되었다. SPR 실험에서 다이펩티드(WR 또는 WE) 주입 후, 물질이 human-PPARα LBD과 결합하면 SPR 신호인 RU(response unit)가 증가하게 되며, 신호강도(RU)-시간과의 그래프로 나타내게 된다. 일정 시간 후, 테스트 물질이 제외된 완충용액(10mM HEPES, 150mM NaCl, 3mM EDTA, and 0.005%[v/v] surfactant P20, 1% DMSO, pH 7.4)만을 다시 흘려보내 주면, human-PPARα LBD와 물질사이의 결합이 해제되며, RU 값이 감소한다. 즉, 해당반응에서의 결합능(Ka 값)과 해제능(Kd 값)을 이용하여 결합정수(KD) 값을 계산하였다. 양성대조군으로는 PPARα 길항제로 알려진 GW7647을 사용하여 비교 분석하였다.Surface plasmon resonance (SPR) experiments were performed using a Biacore 2000 instrument (GE healthcare product, Sweden) to confirm that the dipeptides WE and WR directly bind to the PPARα ligand binding domain (LBD). Specifically, the human-PPARα ligand binding domain (LBD) protein was immobilized on a CM5 sensor chip (GE healthcare, Sweden) and the dipeptide (WR or WE) was injected at a concentration of 5 mM each in the order of 0.5 mM. 25 < 0 > C. In SPR experiments, when a substance binds to human-PPARα LBD after injection of a dipeptide (WR or WE), the SPR signal, RU (response unit), increases and is expressed as a graph of signal intensity (RU) versus time. After a certain period of time, only the buffer solution (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, and 0.005% [v / v] surfactant P20, 1% DMSO, pH 7.4) The bond between the substances is released, and the RU value decreases. That is, the binding constant (KD) value was calculated using the binding ability (Ka value) and the releasing ability (Kd value) in the reaction. GW7647, a PPARα antagonist, was used as a positive control.

실험결과, 도 4에 나타난 바와 같이, 양성대조군인 GW7647은 100μM~25μM, 다이펩티드 WE는 5mM~1mM, WR은 10mM~2.5mM 범위에서 PARα-ligand binding domain과 결합하는 것으로 나타났다. 결합 정수 KD(kinetic dissociation constant) 값은 GW7647이 약 96.4nM, WE가 약 120μM, WR이 약 604μM로 계산되었다. SPR 실험결과, 두 종의 다이펩티드 모두 PPARα-LBD와 결합 가능하며, TR-FRET 시험결과와 마찬가지로 다이펩티드 WE의 결합효율이 WR보다 뛰어난 것으로 나타났다.
As shown in FIG. 4, the positive control GW7647 binds to the PARα-ligand binding domain in the range of 100 μM to 25 μM, the dipeptide WE to 5 mM to 1 mM, and the WR to 10 mM to 2.5 mM. Kinetic dissociation constants (KD) were calculated for GW7647 at about 96.4 nM, WE at about 120 μM, and WR at about 604 μM. As a result of the SPR test, both types of dipeptides were able to bind to PPARα-LBD, and the binding efficiency of dipeptide WE was superior to WR in the same manner as the TR-FRET test results.

실시예 4. 다이펩티드 WE 또는 WR 처리에 의한 PPAR α와 관련 유전자 조절 Example 4. Regulation of PPAR alpha and related genes by treatment with dipeptide WE or WR

다이펩티드 WE와 WR에 의한 PPARα 및 간 지질대사 관련 표적 유전자의 분석을 위해 qRT-PCR(quantitative real-time PCR)을 실시하였다. 본 발명에서는 PPARα 활성을 통한 간 지질대사 개선에 초점을 맞추어 이미 밝혀져 있는 PPARα 표적 유전자로 지방산 흡수와 관련된 FATP4(fatty-acid transport protein 4), ACS(acsyl-CoA synthetase) 유전자와 지방산화대사에 관련된 CPT1(carnitine palmitoyltransferase 1) 및 ACOX(acyl-CoA oxidase) 총 4종의 유전자를 선별하였다. 보다 구체적으로, H4IIE(Rat reuber hepatoma) 세포를 6-웰 플레이트 (6-well plate)에서 24시간 동안 배양한 다음, 양성대조군으로 PPARα 길항제(agonist)인 GW7647(1μM), 다이펩티드 WE는 4농도(10, 50, 100, 500μM) WR는(50, 100, 500, 1000μM)로 24시간 처리하였다. 이후 각 웰(well)당 1mL의 RNAiso Plus 시약을 첨가하여 추출된 RNA 2μg를 사용하여 cDNA를 합성(Mbiotech)하였다. 이후 상기 합성된 cDNA 1μL를 SYBR Green PCR Master Mix 10μL, 10pmol 순방향 프라이머(forward primer) 1μL, 10pmol 역방향 프라이머(reverse primer) 1μL 및 증류수 8μL를 함유하는 반응액에 첨가하여 qRT-PCR(quantitative real-time PCR)을 실시하였다. 각 유전자의 발현은 GAPDH(glyceraldehyde-3-phosphate dehydrogenase)를 기준 유전자(reference gene)로 표준화하여 수치화하였다. QRT-PCR (quantitative real-time PCR) was performed for analysis of PPARα and lipid metabolism-related target genes by dipeptides WE and WR. The present invention focuses on the improvement of liver lipid metabolism through PPARα activity. It has already been revealed that the PPARα target gene is related to fatty acid transport protein 4 (FATP4), acsyl-CoA synthetase (ACS) CPT1 (carnitine palmitoyltransferase 1) and ACOX (acyl-CoA oxidase) were selected. More specifically, H4IIE (Rat reuber hepatoma) cells were cultured in a 6-well plate for 24 hours. Then, PPAR [alpha] agonist GW7647 (1 [mu] M) and dipeptide WE (10, 50, 100, 500 μM) WR was treated with (50, 100, 500, 1000 μM) for 24 hours. Then, cDNA was synthesized (Mbiotech) using 2 μg of extracted RNA by adding 1 mL of RNAiso Plus reagent to each well. Then, 1 μL of the synthesized cDNA was added to a reaction mixture containing 10 μL of SYBR Green PCR Master Mix, 1 μL of a 10 pmol forward primer, 1 μL of a 10 pmol reverse primer, and 8 μL of distilled water and subjected to qRT-PCR PCR) was performed. Expression of each gene was quantified by standardizing glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a reference gene.

실험결과, 도 5에 나타난 바와 같이, 음성대조군과 WE 처리군을 비교하였을 때 100μM, 500μM의 두 농도에서 유의성 있게 PPARα 유전자와 PPARα에 의해 조절되는 지질대사 관련 유전자 FATP4 및 ACS의 발현이 증가하였으며, CPT1, ACOX 유전자는 고농도(500μM)로 WE를 처리하였을 때 유의적으로 발현이 증가하였다. As shown in FIG. 5, when the negative control and the WE treatment groups were compared, the expression levels of the PPARα gene and PPARα-related lipid metabolism-related genes FATP4 and ACS were significantly increased at two concentrations of 100 μM and 500 μM, Expression of CPT1 and ACOX genes was significantly increased when WE was treated at high concentration (500 μM).

도 6에 나타난 바와 같이, 다이펩티드 WR를 처리하였을 때의 PPARα 유전자 발현 조사결과, 음성대조군과 비교하여 고농도(1000μM) 처리 시 유의적으로 PPARα 활성이 증가하였다. 또한, ACOX 유전자는 500μM, 1000μM의 두 농도에서 유의성 있게 유전자 발현이 증가하였고, FATP4, ACS, CPT1 유전자는 고농도(1000μM)로 WR를 처리하였을 때 발현이 증가함을 확인하였다. 결국, 다이펩티드의 지질대사 관련 유전자의 발현 강화 효과를 확인하기 위해 RT-PCR을 실시한 결과, 다이펩티드 WE 또는 WR을 처리했을 때 PPARα 유전자 활성과 PPARα 활성에 의한 지질대사와 관련된 하위 유전자의 발현이 증가 되었으며, 상기 유전자들의 활성으로 인해 세포 내 지질함량을 감소시키는 효능을 나타낸 것으로 확인되었다.
As shown in FIG. 6, the expression of PPARα gene when treated with dipeptide WR significantly increased PPARα activity when treated at high concentration (1000 μM) as compared with negative control. In addition, ACOX gene significantly increased gene expression at both 500 μM and 1000 μM concentrations, and FATP4, ACS, and CPT1 genes were highly expressed when treated with WR at high concentration (1000 μM). As a result, RT-PCR was performed to confirm the effect of the dipeptide on the expression of the lipid metabolism-related gene. As a result, the expression of the PPARα gene and the sub-gene related to lipid metabolism by PPARα activity upon treatment with the dipeptide WE or WR And it was confirmed that the activity of the genes decreased the lipid content in the cells.

실시예 5. 두 종의 다이펩티드 WE 또는 WR 처리에 의한 지방산 흡수 변화 Example 5. Fatty acid uptake by two types of dipeptide WE or WR treatment

qRT-PCR 실험에서 확인한 PPARα 관련 유전자군 중 WE 또는 WR 다이펩티드를 처리하였을 때 지방산 흡수(fatty acid uptake) 관련 유전자인 FATP4, ACS 발현이 높음을 확인하고 실제로 세포 내에서 두 종의 다이펩티드 WE와 WR 처리에 의한 지방산 흡수 변화를 측정하였다. 본 발명을 위해서, 형광 기능성을 갖는 형광 탐침자BODIPY(boron-dipyrromethene)로 표지된 지방산과 유세포 분석기(FACS Calibur; BD Biosciences, San Jose, CA, USA)를 이용하였다. 본 발명을 위해서 H4IIE(Rat reuber hepatoma)세포는 6-웰 플레이트(6-well plate)에 1X105cell/well로 분주 되었으며, 양성대조군으로 PPARα 길항제인 GW7647(1μM) 및 다이펩티드 WE(4농도: 10, 50, 100, 500μM) 또는 WR(4농도: 50, 100, 500, 1000μM)로 24시간 동안 처리하였다. 이후, BODIPY가 붙은 지방산을 상온에서 1분간 처리한 뒤 0.1% 비활성화 우태아 혈청이 포함된 차가운 HBSS(Hank's buffered salt solution) 완충용액을 첨가하여 반응을 종결한 뒤 유세포분석기용 완충용액을 사용하여 세포를 재현탁(resuspension)하여 유세포분석기(FACS Calibur; BD Biosciences, San Jose, CA, USA)로 형광을 측정하였다. Among the PPARα-related genes identified in the qRT-PCR experiment, when the WE or WR dipeptide was treated, it was confirmed that the expression of FATP4 and ACS, which are related to fatty acid uptake, was high. In fact, two kinds of dipeptides WE Changes in fatty acid uptake by WR treatment were measured. For the present invention, a fatty acid and a flow cytometer (FACS Calibur; BD Biosciences, San Jose, CA, USA) labeled with fluorescence functionalized probe BODIPY (boron-dipyrromethene) was used. For the present invention, H4IIE (Rat reuber hepatoma) cells were plated on a 6-well plate at 1 × 10 5 cells / well. As a positive control, the PPARα antagonist GW7647 (1 μM) and dipeptide WE (4 concentration: 10, 50, 100, 500 μM) or WR (4 concentration: 50, 100, 500, 1000 μM) for 24 hours. Then, the fatty acid with BODIPY was treated at room temperature for 1 minute, and then the reaction was terminated by adding a cold buffer solution (Hanks' buffered salt solution) containing 0.1% inactivated fetal bovine serum, (FACS Calibur; BD Biosciences, San Jose, Calif., USA).

그 결과, 도 7에 나타난 바와 같이, H4IIE (Rat reuber hepatoma) 세포에 WE를 100 μM, 500μM 처리하였을 때 음성대조군 대비 형광으로 표지된 지방산의 흡수가 유의적으로 20% 증가하였으며 이 증가율은 GW7647(1μM) 양성대조군과도 동일하였다. WR 경우에는 고농도(1000μM) 처리했을 때 지방산 흡수가 음성대조군 대비 20% 유의적으로 증가하였음을 확인하였다. 결국, 간 배양세포에 다이펩티드 WE 또는 WR를 처리했을 경우 지방산 흡수가 증가하는 것을 확인할 수 있었고 이를 앞서 수행한 qRT-PCR 실험결과와 종합해보면 두 종의 다이펩티드의 PPARα 활성으로 간세포에서 지방산 흡수 기전이 활성화되는 것으로 평가하였다.
As a result, as shown in FIG. 7, when 100 μM and 500 μM of WE were treated with H4IIE (Rat reuber hepatoma) cells, the fluorescence-labeled fatty acid absorption was significantly increased by 20% as compared to the negative control, 1 [mu] M) positive control group. In the case of WR, fatty acid uptake was significantly increased by 20% compared to the negative control when treated at high concentration (1000 μM). As a result, it was confirmed that the lipid acid uptake was increased by treatment with dipeptide WE or WR in the liver cultured cells. Taken together with the result of the qRT-PCR experiment performed earlier, the PPARα activity of the two kinds of dipeptides resulted in the fatty acid absorption mechanism Was evaluated as being activated.

실시예 6. 간세포 지질축적 강하 효능 평가 Example 6. Assessment of hepatic cell lipid accumulation lowering efficacy

다이펩티드 WR과 WE가 간세포 지질함량을 감소시키는지 알아보기 위하여 배양세포에 인위적으로 지질을 축적시키고, 다이펩티드를 처리한 세포로부터 지질을 추출하여 중성지방 및 콜레스테롤 농도를 측정하였다. 보다 구체적으로, 본 발명을 위해서 H4IIE (Rat reuber hepatoma)세포를 6-웰 플레이트 (6-well plate)에 5X105 cell/well 농도로 분주하여 24시간 동안 배양한 다음, 팔미테이트(palmitate)와 올레산(oleate)을 넣고 24시간 방치하여 지질을 충분히 축적시킨 후 양성대조군으로 PPARα 길항제인 GW7647(1μM) 및 다이펩티드 WE(4농도: 10, 50, 100, 500μM) 또는 WR(4농도: 50, 100, 500, 1000μM)로 24시간 동안 처리하였다. 상기 처리된 세포에 대해서 각 웰(well)당 헥산/이소프로파놀(hexane/isopropanol)을 2:1 비율로 1mL씩 넣고 상온에서 30분간 방치하여 세포로부터 지질을 추출하고, 감압농축기로 용매를 모두 증발시킨 뒤 95% 에탄올에 희석하여 세포 내 남아있는 콜레스테롤 함량과 중성지방 함량을 지질 자동화 분석기기(COBAS C111)를 사용하여 분석하였다. 분석된 세포 내 지질성분은 세포 내 총 단백질 함량을 측정하여 표준화시켰다. In order to investigate whether the dipeptides WR and WE decrease the hepatic lipid content, cultured cells were artificially accumulated lipid, and lipid was extracted from the cells treated with the dipeptide to measure the triglyceride and cholesterol concentration. More specifically, for the present invention, H4IIE (Rat reuber hepatoma) cells were seeded in a 6-well plate at a concentration of 5 × 10 5 cells / well and cultured for 24 hours. Then, palmitate and oleic acid (4 concentrations: 50, 100, 500 μM) and GW7647 (1 μM) and dipeptide WE (4 concentrations: 10, 50, 100, and 500 μM) as the positive control groups after the oleate was added for 24 hours. , 500, 1000 [mu] M) for 24 hours. To the treated cells, 1 mL of hexane / isopropanol was added at a ratio of 2: 1 per well to each well, and the mixture was allowed to stand at room temperature for 30 minutes to extract lipids from the cells. After evaporation, the cells were diluted with 95% ethanol, and the residual cholesterol and triglyceride contents in the cells were analyzed using a liposome automation analyzer (COBAS C111). The intracellular lipid components were normalized by measuring the intracellular total protein content.

그 결과, 도 8에 나타난 바와 같이, 지질을 충분히 축적시킨 간 배양세포에 다이펩티드 WE를 100μM, 500μM 농도 처리 시 세포 내 콜레스테롤 함량이 GW7647을 처리했을 때 수준으로 유의성 있게 감소하였고, 50μM, 100μM, 500μM 의 농도로 처리하였을 때 세포 내 중성지방 함량이 유의성 있게 감소하는 것을 확인하였다. 또한, 도 9에 나타난 바와 같이, WR를 고농도(1000μM)로 처리하였을 때 세포 내 중성지방 함량이 유의성 있게 감소한 것을 확인하였다. As a result, as shown in FIG. 8, the intracellular cholesterol content was significantly decreased at the level of 100 μM and 500 μM of the dipeptide WE at the level of GW7647 treated with heparinized cells, and 50 μM, 100 μM, The concentration of intracellular triglyceride was significantly decreased when the concentration was 500μM. In addition, as shown in FIG. 9, when the WR was treated at a high concentration (1000 μM), it was confirmed that the intracellular triglyceride content was significantly decreased.

상기 실시예들의 통계분석에 있어 두 그룹간 유의성 검사는 one-way ANOVA를 이용하였고, 각 그래프의 오차막대는 평균 ±SEM으로 나타내었다.
In the statistical analysis of the above embodiments, a one-way ANOVA was used for the significance test between the two groups, and the error bars of each graph were expressed as mean ± SEM.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시의 일예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (4)

다이펩티드 트립토판-글루탐산(H-Trp-Glu-OH: WE) 또는 트립토판-알지닌(H-Trp-Arg-OH: WR)을 유효성분으로 함유하는 지방축적 억제, 지방간 치료, 혈중 중성지방 또는 콜레스테롤 강하, 또는 간내 중성지방, 또는 콜레스테롤 강하용 의약조성물.
Inhibiting lipid accumulation, containing the dipeptide tryptophan-glutamic acid (H-Trp-Glu-OH: WE) or tryptophan-arginine (H-Trp-Arg-OH: WR) as an active ingredient, Depressed, or intrahepatic triglyceride, or cholesterol lowering.
제1항에 있어서, 상기 다이펩티드 WE 또는 WR은 PPARα(Peroxisome proliferator-activated receptor alpha)의 활성을 증가시키는 것을 특징으로 하는 의약조성물.
The pharmaceutical composition according to claim 1, wherein the dipeptide WE or WR increases the activity of PPAR alpha (Peroxisome proliferator-activated receptor alpha).
다이펩티드 트립토판-글루탐산(H-Trp-Glu-OH: WE) 또는 트립토판-알지닌(H-Trp-Arg-OH: WR)을 유효성분으로 함유하는 지방축적 억제, 지방간 개선, 혈중 중성지방 또는 콜레스테롤 강하, 또는 간내 중성지방, 또는 콜레스테롤 강하용 식품.
Inhibition of fat accumulation, inhibition of fatty liver, serum triglyceride, or cholesterol (triglyceride), which contains dipeptide tryptophan-glutamic acid (H-Trp-Glu-OH: WE) or tryptophan-arginine Drop, or food in the liver for triglycerides, or cholesterol lowering.
제3항에 있어서, 상기 다이펩티드 WE 또는 WR은 PPARα의 활성을 증가시키는 것을 특징으로 하는 식품.4. The food according to claim 3, wherein the dipeptide WE or WR increases the activity of PPARa.
KR1020140042654A 2014-04-09 2014-04-09 A Composition for Improving Lipid Metabolism and Inhibiting Fat Accumulation Containing Dipeptides of WE or WR KR20150117185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140042654A KR20150117185A (en) 2014-04-09 2014-04-09 A Composition for Improving Lipid Metabolism and Inhibiting Fat Accumulation Containing Dipeptides of WE or WR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140042654A KR20150117185A (en) 2014-04-09 2014-04-09 A Composition for Improving Lipid Metabolism and Inhibiting Fat Accumulation Containing Dipeptides of WE or WR

Publications (1)

Publication Number Publication Date
KR20150117185A true KR20150117185A (en) 2015-10-19

Family

ID=54399508

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140042654A KR20150117185A (en) 2014-04-09 2014-04-09 A Composition for Improving Lipid Metabolism and Inhibiting Fat Accumulation Containing Dipeptides of WE or WR

Country Status (1)

Country Link
KR (1) KR20150117185A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107296264A (en) * 2016-04-14 2017-10-27 高安友 Prevention and treatment high fat of blood, the giant salamander fatty foods of fatty liver and preparation method thereof
JP2020130120A (en) * 2019-02-25 2020-08-31 不二製油グループ本社株式会社 Food composition for inhibiting liver fat synthesis
WO2022184165A1 (en) * 2021-03-05 2022-09-09 湖南大学 Polypeptide for inhibiting intracellular lipid accumulation, and synthesis method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107296264A (en) * 2016-04-14 2017-10-27 高安友 Prevention and treatment high fat of blood, the giant salamander fatty foods of fatty liver and preparation method thereof
JP2020130120A (en) * 2019-02-25 2020-08-31 不二製油グループ本社株式会社 Food composition for inhibiting liver fat synthesis
WO2022184165A1 (en) * 2021-03-05 2022-09-09 湖南大学 Polypeptide for inhibiting intracellular lipid accumulation, and synthesis method therefor

Similar Documents

Publication Publication Date Title
US10960040B2 (en) Composition for preventing and treating muscle diseases or improving muscular function, containing platycodon grandiflorum extract
US20210401916A1 (en) Composition for prevention and treatment of muscular diseases or for improvement of muscle function containing 3,5-dicaffeoylquinic acid or chrysanthemum extract
US20120010285A1 (en) Agent for promoting energy consumption
US20180153852A1 (en) Composition for preventing and treating muscle diseases or improving muscular function, containing morusin, kuwanon g, or mori cortex radicis
KR101957014B1 (en) Peptides having anti-inflammatory activity and composition the same for anti-inflammatory
US20100137226A1 (en) Fatigue-reducing agent
EP1481669A1 (en) Use of polyhydroxy phenols and polyphenols for modulating p-selectin activity
JP6423275B2 (en) Nitric oxide concentration increasing agent
KR20150117185A (en) A Composition for Improving Lipid Metabolism and Inhibiting Fat Accumulation Containing Dipeptides of WE or WR
US20100119499A1 (en) Stilbene-based compositions and methods of use therefor
JP4568813B2 (en) Polyhydroxyphenols and their use in P-selectin binding
KR20120008125A (en) Composition for the prevention and treatment of fatty liver diseases containing l-serine as an active ingredient
JP6524222B2 (en) Composition for improving muscle function or exercise capacity comprising kilenol or extract of Sieges vecchia herb
KR101135132B1 (en) Novel use of panduratin derivatives or extract of Boesenbergia pandurata
JP2017145236A (en) Ages-related reaction inhibitor, prophylactic/therapeutic agent for ages-related diseases, and supplement, functional food, and cosmetic composition
JP2016509020A (en) Composition for preventing or treating renal fibrosis comprising dimethyl fumarate as an active ingredient
JP4428486B1 (en) Fibrous activator
KR101283562B1 (en) Composition for inhibition of multidrug resistance containing an extract of Trichosanthes kirilowii maxim
CN104812253B (en) Increase the bioavilability of flavan-3-alcohol with the carbohydrate with low-glycemic
JP5346623B2 (en) PPAR activator
US10799477B2 (en) Pharmaceutical composition for preventing or treating LDL cholesterol-related diseases, containing ribosome-binding preparation
KR101729236B1 (en) TLR7 agonist agent for treatment and prevention of liver disease
WO2021131568A1 (en) Composition for suppressing or improving reduction in amount of physical activity
JPWO2007049628A1 (en) Blood fluidity improver
JP2019026585A (en) Anorectic agent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application