KR20150112514A - Hot-rolled steel sheet and method of manufacturing the same - Google Patents

Hot-rolled steel sheet and method of manufacturing the same Download PDF

Info

Publication number
KR20150112514A
KR20150112514A KR1020140036851A KR20140036851A KR20150112514A KR 20150112514 A KR20150112514 A KR 20150112514A KR 1020140036851 A KR1020140036851 A KR 1020140036851A KR 20140036851 A KR20140036851 A KR 20140036851A KR 20150112514 A KR20150112514 A KR 20150112514A
Authority
KR
South Korea
Prior art keywords
less
steel sheet
rolling
hot
temperature
Prior art date
Application number
KR1020140036851A
Other languages
Korean (ko)
Inventor
김형래
임지형
한성경
최종민
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020140036851A priority Critical patent/KR20150112514A/en
Publication of KR20150112514A publication Critical patent/KR20150112514A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed are a hot-rolled steel sheet having excellent low-temperature toughness and corrosion resistance, and a manufacturing method thereof. According to the present invention, the method to manufacture a hot-rolled steel sheet comprises the steps of: reheating, at a temperature of 1200°C or higher for two hours or longer, a slab plate composed of 0.04-0.06 wt% of carbon (C), 0.1-0.2 wt% of silicon (Si), 0.4-0.8 wt% of manganese (Mn), 0.01 wt% or less of phosphorus (P), 0.001 wt% or less of sulfur (S), 0.02-0.05 wt% of aluminum (Al), 0.04-0.08 wt% of vanadium (V), 0.02-0.05 wt% of niobium (Nb), 0.01-0.02 wt% of titanium (Ti), 0.5-0.7 wt% of chromium (Cr), 0.001-0.003 wt% of calcium (Ca), 0.006 wt% or less of nitrogen (N), and the remainder consisting of iron (Fe) and inevitable impurities; rough-rolling the reheated plate in a temperature region of recrystallizing austenite; finish-rolling the plate having completed the rough-rolling in a non-recrystallizing region of the austenite; and cooling the plate having completed the finish-rolling, and winding the plate at a temperature equal to or lower than 600°C.

Description

열연강판 및 그 제조 방법 {HOT-ROLLED STEEL SHEET AND METHOD OF MANUFACTURING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a hot-rolled steel sheet,

본 발명은 열연강판 제조 기술에 관한 것으로, 보다 상세하게는 저온인성 및 내부식성이 우수한 열연강판 및 그 제조 방법에 관한 것이다.
More particularly, the present invention relates to a hot-rolled steel sheet excellent in low-temperature toughness and corrosion resistance and a method of manufacturing the same.

최근, 심해저와 같이 황화수소(H2S) 가스로 인해 강관이 부식될 수 있는 가혹한 환경에서 원유나 가스의 채굴 및 수송이 증가하고 있다. 이에 따라, 원유나 가스의 채굴이나 수송을 위한 대규모 파이프 라인 건설 역시 증가하고 있다. In recent years, mining and transportation of crude oil and gas have been increasing in harsh environments where steel pipes can corrode due to hydrogen sulfide (H 2 S) gas as in the deep sea. As a result, large-scale pipeline construction for crude oil and gas mining and transportation is also increasing.

이러한 파이프 라인에 사용되는 소재는 고강도를 가져야 함과 동시에, 황화수소 가스에 대한 내부식 특성이 우수하여야 하며, 또한 저온인성이 우수할 것이 요구된다. The material used for such pipelines must have high strength, good corrosion resistance to hydrogen sulfide gas, and excellent low temperature toughness.

본 발명에 관련된 배경기술로는 대한민국 공개특허공보 제10-0770572호(2007.10.26 공고)가 있으며, 상기 문헌에는 소입 열처리특성이 우수한 고탄소 강판 및 그 제조 방법이 기재되어 있다.
A background art related to the present invention is Korean Patent Laid-Open Publication No. 10-0770572 (published on October 26, 2007), which discloses a high carbon steel sheet excellent in quenching heat treatment characteristics and a method for manufacturing the same.

본 발명의 목적은 내부식성 및 저온인성이 우수한 열연강판 및 그 제조 방법을 제공하는 것이다.
An object of the present invention is to provide a hot-rolled steel sheet excellent in corrosion resistance and low-temperature toughness and a method for producing the same.

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 열연강판 제조 방법은 중량%로, 탄소(C) : 0.04~0.06%, 실리콘(Si) : 0.1~0.2%, 망간(Mn) : 0.4~0.8%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 바나듐(V) : 0.04~0.08%, 니오븀(Nb) : 0.02~0.05%, 티타늄(Ti) : 0.01~0.02%, 크롬(Cr) : 0.5~0.7%, 칼슘(Ca) : 0.001~0.003%, 질소(N) : 0.006% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 1200℃ 이상의 온도에서 2시간 이상 재가열하는 단계; 재가열된 판재를 오스테나이트 재결정 온도 영역에서 조압연하는 단계; 조압연이 완료된 판재를 오스테나이트 미재결정 영역에서 사상압연하는 단계; 및 사상압연이 완료된 판재를 냉각하여, 600℃ 이하의 온도에서 권취하는 단계;를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for manufacturing a hot-rolled steel sheet, comprising the steps of: 0.04 to 0.06% of carbon (C), 0.1 to 0.2% of silicon (Si) (V): 0.04 to 0.08%, niobium (Nb): 0.02 to 0.05%, phosphorus (P): 0.01% or less, sulfur (S) And a slab made of unavoidable impurities and iron (Fe) in an amount of 0.001 to 0.003% of calcium (Ca), 0.006 to less than 0.006% of titanium (Ti), 0.5 to 0.7% of chromium (Cr) Reheating the plate material at a temperature of 1200 캜 or more for 2 hours or more; Subjecting the reheated plate to rough rolling in the austenite recrystallization temperature range; Subjecting the roughly rolled plate to finish rolling in a non-austenite recrystallization zone; And cooling the sheet material after the finish rolling, and winding the sheet material at a temperature of 600 ° C or lower.

이때, 상기 조압연은 80% 이상의 압하율로 수행되고, 상기 사상압연은 70% 이상의 압하율로 수행되는 것이 바람직하다. At this time, the rough rolling is performed at a reduction ratio of 80% or more, and the finishing rolling is preferably performed at a reduction ratio of 70% or more.

또한, 상기 냉각은 20℃/sec 이상의 평균냉각속도로 수행되는 것이 바람직하다.
Further, it is preferable that the cooling is performed at an average cooling rate of 20 DEG C / sec or more.

상기 목적을 달성하기 위한 본 발명의 실시예에 따른 열연강판은 중량%로, 탄소(C) : 0.04~0.06%, 실리콘(Si) : 0.1~0.2%, 망간(Mn) : 0.4~0.8%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 바나듐(V) : 0.04~0.08%, 니오븀(Nb) : 0.02~0.05%, 티타늄(Ti) : 0.01~0.02%, 크롬(Cr) : 0.5~0.7%, 칼슘(Ca) : 0.001~0.003%, 질소(N) : 0.006% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지고, 면적률로 90% 이상의 침상형 페라이트 및 석출물을 포함하는 미세조직을 갖는 것을 특징으로 한다. In order to achieve the above object, the hot-rolled steel sheet according to an embodiment of the present invention includes 0.04 to 0.06% of carbon (C), 0.1 to 0.2% of silicon (Si), 0.4 to 0.8% of manganese (Mn) (P): not more than 0.01%, sulfur (S): not more than 0.001%, aluminum (Al): 0.02 to 0.05%, vanadium (V): 0.04 to 0.08%, niobium (Nb) (Fe) and unavoidable impurities, and the surface area of the steel sheet is in the range of 0.01 to 0.02% of Ti, 0.5 to 0.7% of Cr, 0.001 to 0.003% of Ca, 0.006% Shaped ferrite and precipitates at a rate of 90% or more.

상기 열연강판은 항복강도 380~500MPa, 인장강도 510~680MPa의 강도, HIC 시험 후 CLR 6% 이하, CTR 3% 이하 및 CSR 1.5% 이하의 내부식성 및 -60℃ 평균충격인성 100J 이상의 저온인성을 나타낼 수 있다.
The hot-rolled steel sheet has a strength of a yield strength of 380 to 500 MPa, a tensile strength of 510 to 680 MPa, a CLR of 6% or less after HIC test, a CTR of 3% or less and a CSR of 1.5% or less and a low temperature toughness of- .

본 발명에 따른 열연강판 제조 방법에 의하면, 망간(Mn), 바나듐(V), 크롬(Cr) 등의 합금 성분 제어 및 조압연, 사상압연 압하율 등의 공정 제어를 통하여, 강도, 내부식성 및 저온인성이 우수한 열연강판 제조할 수 있다. According to the method for producing a hot-rolled steel sheet according to the present invention, strength, corrosion resistance, and corrosion resistance can be improved through control of alloy components such as manganese (Mn), vanadium (V), and chromium (Cr), and process control such as rough rolling, A hot-rolled steel sheet excellent in low-temperature toughness can be produced.

이에 따라, 본 발명에 따른 열연강판은 심해저와 같이 황화수소 가스로 인한 부식 환경에서 송유관 등의 소재로 활용하기 적합하다.
Accordingly, the hot-rolled steel sheet according to the present invention is suitable for use as a material for an oil pipeline or the like in a corrosive environment due to hydrogen sulfide gas, such as a deep sea floor.

도 1은 본 발명에 따른 열연강판 제조 방법을 나타낸 것이다.
도 2는 시편 2 및 시편 3에 대하여 HIC 시험 후 C-scan 결과를 나타낸 것이다.
1 shows a method of manufacturing a hot-rolled steel sheet according to the present invention.
Fig. 2 shows the results of C-scan after HIC test for specimen 2 and specimen 3. Fig.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and the manner of achieving them, will be apparent from and elucidated with reference to the embodiments described hereinafter in conjunction with the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 열연강판 및 그 제조 방법에 관하여 상세히 설명하면 다음과 같다.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a hot-rolled steel sheet according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

열연강판Hot-rolled steel sheet

본 발명에 따른 열연강판은 중량%로, 탄소(C) : 0.04~0.06%, 실리콘(Si) : 0.1~0.2%, 망간(Mn) : 0.4~0.8%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 바나듐(V) : 0.04~0.08%, 니오븀(Nb) : 0.02~0.05%, 티타늄(Ti) : 0.01~0.02%, 크롬(Cr) : 0.5~0.7%, 칼슘(Ca) : 0.001~0.003%, 질소(N) : 0.006% 이하를 포함한다. The hot-rolled steel sheet according to the present invention contains 0.04 to 0.06% of carbon (C), 0.1 to 0.2% of silicon (Si), 0.4 to 0.8% of manganese (Mn) (S): 0.001% or less, aluminum (Al): 0.02 to 0.05%, vanadium (V): 0.04 to 0.08%, niobium (Nb): 0.02 to 0.05% (Cr): 0.5 to 0.7%, calcium (Ca): 0.001 to 0.003%, and nitrogen (N): 0.006% or less.

상기 성분들 외 나머지는 철(Fe)과 제강 과정 등에서 불가피하게 혼입되는 불순물로 이루어진다. The rest of the above components are composed of iron (Fe) and impurities inevitably incorporated in the steelmaking process.

이하, 본 발명에 따른 열연강판에 포함되는 각 성분의 역할 및 함량에 대하여 설명하기로 한다.
Hereinafter, the role and content of each component included in the hot-rolled steel sheet according to the present invention will be described.

탄소(C)Carbon (C)

탄소(C)는 소재 강도를 확보 및 미세조직 제어를 위해 첨가하는데, 후물에서도 충분한 강도를 가지기 위한 저온 조직으로 침상형 페라이트를 형성하면서, 내식성도 향상시키기 위해서 0.04중량% 이상이 요구된다. 다만, 탄소 함량이 0.06중량를 초과하는 경우, 액상에서 확산이 어려운 γ상을 형성시켜 합금 원소의 확산억제를 유발하여 편석이 발생할 우려가 크며 아울러 충격인성저하에 영향을 미친다. Carbon (C) is added for securing the material strength and for microstructure control, and in order to improve the corrosion resistance while forming the needle-shaped ferrite with the low temperature structure to have sufficient strength even in the after-treatment, 0.04% by weight or more is required. However, when the carbon content is more than 0.06 wt.%, A γ phase which is difficult to diffuse in the liquid phase is formed to cause diffusion inhibition of the alloying element, so there is a great possibility that segregation will occur, and the impact toughness is deteriorated.

이에 본 발명에서는 탄소의 함량을 강판 전체 중량의 0.04~0.06중량%로 제한하였다.
Therefore, in the present invention, the content of carbon is limited to 0.04 to 0.06 wt% of the total weight of the steel sheet.

망간(Mn)Manganese (Mn)

망간(Mn)은 고용강화 원소로써 매우 효과적이며 강의 경화능을 향상시켜서 강도확보에 효과적인 원소이다. 또한 망간은 오스테나이트 안정화 원소로써 페라이트, 펄라이트 변태를 지연시킴으로써 페라이트의 결정립 미세화에 기여할 수 있다. 이러한 효과들은 망간이 0.4중량% 이상 첨가될 때 현저하다. 다만, 망간이 0.8중량%를 초과하여 다량 첨가시에 용접성을 크게 떨어뜨리며 MnS 게재물 생성시키며 및 중심편석을 유발시켜 강의 내부식성을 크게 떨어뜨린다. Manganese (Mn) is a very effective element for solid solution strengthening and improves the hardenability of steel and is an effective element for securing strength. Further, manganese can contribute to grain refinement of ferrite by delaying ferrite and pearlite transformation as an austenite stabilizing element. These effects are remarkable when 0.4 wt% or more of manganese is added. However, when manganese is added in excess of 0.8 wt%, it greatly reduces the weldability, generates MnS inclusions, and induces center segregation, thereby greatly reducing the corrosion resistance of the steel.

따라서, 상기 망간의 함량은 강판 전체 중량의 0.4~0.8중량%인 것이 바람직하고, 내부식성 향상 측면에서 보다 바람직하게는 0.4~0.6중량%를 제시할 수 있다.
Therefore, the content of manganese is preferably 0.4 to 0.8% by weight of the total weight of the steel sheet, and more preferably 0.4 to 0.6% by weight in view of improvement in corrosion resistance.

실리콘(Si), 알루미늄(Al)Silicon (Si), aluminum (Al)

실리콘(Si)은 탈산제로서 작용하며, 강도 향상에 기여한다. 상기 실리콘은 강판 전체 중량의 0.1~0.2중량%로 포함되는 것이 바람직하다. 실리콘의 첨가량이 0.1중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 실리콘의 첨가량이 0.2중량%를 초과하는 경우, 강의 용접성을 떨어뜨리고 열연공정 시 재가열공정 및 열간압연 시에 적스케일을 생성시킴으로써 표면품질에 문제를 줄 수 있으며, 용접 후 도금성을 저해할 수 있다. Silicon (Si) acts as a deoxidizer and contributes to strength improvement. The silicon is preferably contained in an amount of 0.1 to 0.2% by weight based on the total weight of the steel sheet. When the addition amount of silicon is less than 0.1% by weight, the effect of the addition is insufficient. On the contrary, when the addition amount of silicon exceeds 0.2% by weight, the weldability of the steel is lowered, and the re-heating process during hot rolling and the formation of the rolling scale during hot rolling may cause problems in surface quality, .

알루미늄(Al)은 실리콘(Si)과 함께 탈산제로 작용한다. 상기 알루미늄은 강판 전체 중량의 0.02~0.05중량%로 포함되는 것이 바람직하다. 알루미늄의 함량이 0.02중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 알루미늄의 함량이 0.05중량%를 초과하는 경우, 슬라브의 표면 품질이 저하될 수 있다.
Aluminum (Al) together with silicon (Si) acts as a deoxidizer. The aluminum is preferably contained in an amount of 0.02 to 0.05% by weight based on the total weight of the steel sheet. When the content of aluminum is less than 0.02% by weight, the effect of the addition is insufficient. On the contrary, when the content of aluminum exceeds 0.05% by weight, the surface quality of the slab may be deteriorated.

인(P), 황(S), 질소(N)Phosphorus (P), sulfur (S), nitrogen (N)

인(P)은 용접성이 악화되고 슬라브 중심 편석에 의해 내부식성을 저하시키는 요인이 된다. 이에, 본 발명에서는 인의 함량을 강판 전체 중량의 0.01%이하로 제한하였다.Phosphorus (P) is deteriorated in weldability and becomes a factor which deteriorates corrosion resistance by slab center segregation. In the present invention, the content of phosphorus is limited to 0.01% or less of the total weight of the steel sheet.

황(S)은 강의 인성 및 용접성을 저해하고 MnS 비금속 개재물을 증가시켜 강의 내부식성을 저하시키는 요인이 된다. 이에, 본 발명에서는 황의 함량을 강판 전체 중량의 0.001% 이하로 제한하였다. Sulfur (S) inhibits the toughness and weldability of steel and increases MnS nonmetallic inclusions, which causes corrosion resistance of steel to deteriorate. Therefore, in the present invention, the sulfur content is limited to 0.001% or less of the total weight of the steel sheet.

질소(N)는 티타늄(Ti), 니오븀(Nb) 등과 결합하여 탄질화물을 형성함으로써 결정립을 미세화하는데 기여한다. 그러나 질소가 강 내 다량 함유되어 있을 경우, 고용 질소가 증가하여 강의 충격특성 및 연신율을 떨어뜨리고 용접부 인성을 크게 저해된다. 이에 본 발명에서는 질소의 함량을 강판 전체 중량의 0.006중량% 이하로 제한하였다.
Nitrogen (N) contributes to refining the crystal grains by forming carbonitride by bonding with titanium (Ti), niobium (Nb) and the like. However, when nitrogen is contained in a large amount in the steel, the amount of solute nitrogen is increased, which deteriorates the impact characteristics and elongation of the steel and greatly deteriorates the toughness of the welded part. In the present invention, the content of nitrogen is limited to 0.006% by weight or less based on the total weight of the steel sheet.

바나듐(V)Vanadium (V)

바나듐(V)은 강 중에 탄질화 석출물을 석출하거나 또는 철(Fe) 내 고용강화를 통하여 강판의 강도 향상에 기여한다. 특히, 본 발명에서는 내부식성 향상을 위하여 망간의 함량이 0.8중량% 이하인 바, 바나듐이 첨가를 통하여 강도를 보상할 수 있다. Vanadium (V) contributes to the improvement of the strength of the steel sheet by precipitating carbonitride precipitates in the steel or strengthening the solid solution in the steel (Fe). Particularly, in the present invention, the content of manganese is 0.8 wt% or less in order to improve the corrosion resistance, so that the strength can be compensated by adding vanadium.

상기 바나듐은 강판 전체 중량의 0.04~0.08중량%로 첨가되는 것이 바람직하다. 바나듐의 첨가량이 0.04중량% 미만일 경우, 강도 보상 효과가 불충분하다. 반면, 바나듐이 0.08중량%를 초과하여 첨가될 경우, 더 이상의 효과없이 강판 제조 비용만 크게 증가할 수 있으며, 강판의 인성이 저하될 수 있다.
The vanadium is preferably added in an amount of 0.04 to 0.08% by weight based on the total weight of the steel sheet. When the addition amount of vanadium is less than 0.04% by weight, the effect of compensating the strength is insufficient. On the other hand, when vanadium is added in an amount exceeding 0.08% by weight, the production cost of the steel sheet may be significantly increased without further effect, and the toughness of the steel sheet may be deteriorated.

니오븀(Nb)Niobium (Nb)

니오븀(Nb)은 강 중에 탄질화물을 석출하거나 또는 Fe 내 고용강화를 통하여 강판의 강도를 향상시키는데 기여한다. 특히, 니오븀은 압연시 재결정 온도를 상승시켜 재결정을 억제함으로써 미재결정역 압화를 증대시키며, 망간 저감에 따른 γ→α 변태온도 증가하는 것을 억제시켜 충분한 사상압연 영역을 확보하며, 아울러 최종 미세조직의 결정립을 미세화시켜 저온인성을 향상시키는 역할을 한다. 또한, 본 발명에서는 탄소 함량이 0.06중량% 이하인 바, 오스테나이트 내 Nb고용을 최대화시킴으로 석출 강화 효과를 증가시킬 수 있다. Niobium (Nb) contributes to enhance the strength of the steel sheet through precipitation of carbonitride in the steel or solid solution strengthening in Fe. Particularly, niobium increases the recrystallization temperature by raising the recrystallization temperature during rolling, thereby increasing the non-recrystallization reverse pressurization, securing the gamma-alpha transformation temperature due to the reduction of manganese and ensuring sufficient yarn rolling region, And serves to improve the low temperature toughness by refining the crystal grains. Further, in the present invention, since the carbon content is 0.06 wt% or less, the precipitation strengthening effect can be increased by maximizing Nb employment in austenite.

상기 니오븀은 강판 전체 중량의 0.02~0.05중량%로 첨가되는 것이 바람직하다. 니오븀의 첨가량이 0.02중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 니오븀의 첨가량이 0.05중량%를 초과하는 경우, 탄소에 의해서 니오븀의 고용도가 감소하여 니오븀이 완전히 고용되지 못하여 재질 및 내부식성을 열위시킬 우려가 있다.
The niobium is preferably added in an amount of 0.02 to 0.05% by weight based on the total weight of the steel sheet. When the addition amount of niobium is less than 0.02% by weight, the effect of addition thereof is insufficient. On the contrary, when the addition amount of niobium exceeds 0.05% by weight, the solubility of niobium decreases due to carbon, so that niobium is not completely dissolved, and there is a fear that the material and corrosion resistance are disadvantageous.

티타늄(Ti)Titanium (Ti)

티타늄(Ti)은 고온안정성이 높은 Ti(C, N) 석출물을 생성시킴으로써 용접시 오스테나이트 결정립 성장을 방해하여 용접부 조직을 미세화시키며, 이를 통하여 강의 인성 및 강도를 향상시키는데 기여한다. Titanium (Ti) produces Ti (C, N) precipitates with high stability at high temperatures, which hinders the growth of austenite grains during welding and makes the welded structure finer, thereby contributing to improving the toughness and strength of steel.

상기 티타늄은 강판 전체 중량의 0.01중량% 이상 첨가될 때 상기의 효과를 충분히 발휘한다. 다만, 티타늄의 첨가량이 0.02중량%를 초과하는 경우, 조대한 석출물을 생성시켜 강의 내부식성을 저하시키는 요인이 될 수 있다.
When the titanium is added in an amount of 0.01% by weight or more based on the total weight of the steel sheet, the above effect is sufficiently exhibited. However, when the addition amount of titanium exceeds 0.02% by weight, coarse precipitates may be formed, which may cause a decrease in corrosion resistance of the steel.

크롬(Cr)Chromium (Cr)

크롬(Cr)은 슬라브 제조시 망간(Mn)의 확산을 증대시켜 중심편석을 억제시키는데 기여하며, 열간압연 후 냉각시 저온 변태상을 형성하여 강도 향상에 기여한다. 또한, 크롬은 전술한 몰리브덴과 함께 조관 후 열처리시 다량의 카바이드를 형성하여 내부식성 향상에 기여한다. Chromium (Cr) contributes to suppression of center segregation by increasing diffusion of manganese (Mn) during slab manufacturing and contributes to strength improvement by forming a low temperature transformation phase upon cooling after hot rolling. In addition, chromium, together with molybdenum described above, forms a large amount of carbide during the heat treatment after joining to contribute to improvement of corrosion resistance.

본 발명에서 망간의 함량이 0.8중량% 이하임을 고려할 때 상기 크롬이 강판 전체 중량의 0.5중량% 이상 첨가될 때 저온인성 효과 효과가 충분히 발휘될 수 있다. 다만, 크롬의 첨가량이 0.7중량%를 초과하는 경우, 용접성이 저하될 수 있다.
Considering that the content of manganese in the present invention is 0.8 wt% or less, the effect of low temperature toughness effect can be sufficiently exhibited when the chromium is added in an amount of 0.5 wt% or more of the total weight of the steel sheet. However, when the addition amount of chromium exceeds 0.7% by weight, the weldability may be deteriorated.

칼슘(Ca)Calcium (Ca)

칼슘(Ca)은 CaS 개재물을 형성시켜, 내부식성 및 용접성을 저하시키는 요인이 되는 MnS 개재물의 생성을 방해하는 역할을 한다. 칼슘은 강판 전체 중량의 0.001중량% 이상 첨가될 때 상기의 효과를 충분히 발휘한다. 다만, 칼슘의 첨가량이 0.003중량%를 초과하는 경우, 연주성을 저해하는 요인이 된다.
Calcium (Ca) functions to prevent formation of MnS inclusions which form CaS inclusions and cause corrosion resistance and deterioration of weldability. When calcium is added in an amount of 0.001% by weight or more based on the total weight of the steel sheet, the above effect is sufficiently exhibited. However, when the addition amount of calcium exceeds 0.003% by weight, the playability is deteriorated.

상기 합금 조성을 갖는 본 발명에 따른 열연강판은 면적률로 90% 이상의 침상형 페라이트 및 석출물을 포함하는 미세조직을 가질 수 있다. 이와 함께 베이나이트, 펄라이트, 폴리고날 페라이트 등의 미세조직은 면적률로 10% 이하가 될 수 있다. The hot-rolled steel sheet according to the present invention having the above alloy composition may have a microstructure including an acicular ferrite and a precipitate having an area ratio of 90% or more. In addition, the microstructure such as bainite, pearlite, and polygonal ferrite can be 10% or less in area ratio.

또한, 본 발명에 따른 열연강판은 기계적 물성 측면에서, 항복강도 380~500MPa, 인장강도 510~680MPa의 강도, HIC 시험 후 CLR(Crack Length Ratio) 6% 이하, CTR(Crack Thickness Ratio) 3% 이하 및 CSR(Crack Sensitivity Ratio) 1.5% 이하의 내부식성 및 -60℃ 평균충격인성 100J 이상의 저온인성을 나타낼 수 있다.
The hot-rolled steel sheet according to the present invention has a strength of a yield strength of 380 to 500 MPa, a tensile strength of 510 to 680 MPa, a crack length ratio (CLR) of 6% or less, a CTR (crack thickness ratio) of 3% And CSR (Crack Sensitivity Ratio) of 1.5% or less and a low temperature toughness of -60 ° C and an average impact toughness of 100 J or more.

열연강판 제조 방법Hot-rolled steel sheet manufacturing method

도 1은 본 발명에 따른 열연강판 제조 방법을 나타낸 것이다.1 shows a method of manufacturing a hot-rolled steel sheet according to the present invention.

도 1을 참조하면, 도시된 열연강판 제조 방법은 슬라브 재가열 단계(S110), 조압연 단계(S120), 사상압연 단계(S130) 및 냉각/권취 단계(S140)를 포함한다.
Referring to FIG. 1, the illustrated hot-rolled steel sheet manufacturing method includes a slab reheating step S110, a rough rolling step S120, a finishing rolling step S130, and a cooling / winding step S140.

우선, 슬라브 재가열 단계(S110)에서는 전술한 합금 조성을 갖는 반제품 상태의 슬라브 판재를 재가열한다. 슬라브 재가열을 통하여, 주조시 편석된 성분의 재고용 및 니오븀 등의 재고용이 이루어질 수 있다. First, in the slab reheating step (S110), the semi-finished slab material having the above-described alloy composition is reheated. Through the reheating of the slab, the segregated components in the casting can be reused and reused such as niobium can be achieved.

슬라브 재가열은 1200℃ 이상의 온도에서 2시간 이상 수행되는 것이 바람직하며, 1200~1300℃에서 2~4시간동안 수행하는 것이 보다 바람직하다. 슬라브 재가열 온도가 1200℃에 미치지 못하거나, 재가열 시간이 2시간에 미치지 못할 경우, 니오븀(Nb) 등의 충분한 재고용이 이루어지지 않을 수 있다.
The slab reheating is preferably performed at a temperature of 1200 ° C or more for 2 hours or more, and more preferably for 2 to 4 hours at 1200 to 1300 ° C. If the reheating temperature of the slab is less than 1200 占 폚 or the reheating time is less than 2 hours, sufficient reuse of niobium (Nb) or the like may not be achieved.

다음으로, 조압연 단계(S120)에서는 재가열된 판재를 오스테나이트 재결정 온도 영역, 대략 900~950℃에서 조압연한다. Next, in the rough rolling step (S120), the reheated plate is rough-rolled in the austenite recrystallization temperature range, approximately 900 to 950 占 폚.

조압연은 후술하는 사상압연에서 충분한 압하가 이루어질 수 있도록 80% 이상의 압하율로 수행될 수 있다.
The rough rolling can be performed at a reduction ratio of 80% or more so that sufficient rolling can be performed in the finishing rolling described later.

다음으로, 사상압연 단계(S130)에서는 조압연이 완료된 판재를 오스테나이트 미재결정 영역, 대략 820~880℃에서 사상압연한다. 본 발명에서는 오스테나이트 미재결정 온도증가로 인하여 고온에서 사상압연이 가능하다. 사상압연은 γ→α의 핵생성 사이트 형성을 위해서 충분한 전단(shear) 영역이 형성될 수 있도록 70% 이상의 압하율로 수행되는 것이 바람직하다.
Next, in the finishing rolling step (S130), the roughly rolled plate is finished in an austenite non-recrystallized region, approximately 820 to 880 캜. In the present invention, it is possible to finish rolling at a high temperature due to an increase in the austenite non-recrystallization temperature. It is preferable that the finishing rolling is performed at a reduction ratio of 70% or more so that a sufficient shear region can be formed for formation of a nucleation site of gamma alpha.

다음으로, 냉각/권취 단계(S140)에서는 사상압연이 완료된 판재를 냉각하여 권취한다. Next, in the cooling / winding step (S140), the plate material on which the finish rolling has been completed is cooled and wound.

이때, 냉각은 20℃/sec 이상, 보다 바람직하게는 25~60℃/sec의 평균냉각속도로 600℃ 이하, 보다 바람직하게는 500~600℃의 온도까지 냉각하는 것이 바람직하다. 본 발명에서 열간압연 후 평균냉각속도를 20℃/sec 이상으로 하고, 냉각종료온도를 600℃ 이하로 제한한 이유는 γ→α의 변태 촉진, 그리고 변태시 미세한 석출물 형성하기 위함이다. 냉각시 평균냉각속도가 20℃/sec 미만이거나, 냉각종료온도가 600℃를 초과하는 경우, 결정립이 조대화될 수 있고, 석출물 형성이 불충분할 수 있다.
At this time, the cooling is preferably performed at an average cooling rate of 20 ° C / sec or more, more preferably 25 to 60 ° C / sec to 600 ° C or less, and more preferably 500 to 600 ° C. In the present invention, the reason why the average cooling rate after hot rolling is 20 ° C / sec or more and the cooling end temperature is limited to 600 ° C or less is to accelerate the transformation of gamma to alpha and to form a fine precipitate at the time of transformation. When the average cooling rate during cooling is less than 20 占 폚 / sec, or when the cooling termination temperature exceeds 600 占 폚, the crystal grains may coarsen and the precipitate formation may be insufficient.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
The contents not described here are sufficiently technically inferior to those skilled in the art, and a description thereof will be omitted.

1. 시편의 제조1. Preparation of specimens

표 1에 기재된 조성 및 표 2에 기재된 공정 조건으로 1~5를 제조하였다. 1 to 5 were prepared according to the composition shown in Table 1 and the process conditions shown in Table 2.

[표 1] (단위 : 중량%)[Table 1] (unit:% by weight)

Figure pat00001
Figure pat00001

[표 2][Table 2]

Figure pat00002

Figure pat00002

2. 물성 평가2. Property evaluation

제조된 시편 1~5에 대하여 인장시험, 충격시험 및 HIC(Hydrogen induced cracking) 테스트를 실시하였으며, 그 결과를 표 3에 나타내었다. 또한, 시편 2 및 시편 3의 HIC 테스트 후, C-scan 결과를 도 2에 나타내었다. The tensile test, the impact test and the HIC (Hydrogen induced cracking) test were performed on the prepared specimens 1 to 5, and the results are shown in Table 3. The results of the C-scan after the HIC test of the specimen 2 and the specimen 3 are shown in Fig.

[표 3][Table 3]

Figure pat00003
Figure pat00003

표 4를 참조하면, 본 발명에서 제시한 합금 조성 및 제조 조건을 만족하는 시편 1 및 시편 2의 경우, 항복강도 380~500MPa, 인장강도 510~680MPa의 고강도를 나타내면서도 우수한 내부식 특성 및 저온인성을 나타내었다. Referring to Table 4, in the case of Specimen 1 and Specimen 2 satisfying the alloy composition and manufacturing conditions proposed in the present invention, it was found that the specimens 1 and 2 exhibited high strength of yield strength of 380 to 500 MPa and tensile strength of 510 to 680 MPa, Respectively.

반면, 탄소 및 망간 함량이 상대적으로 높으며, 티타늄이 포함되지 않은 시편 3의 경우, 강도 특성은 우수하였으나, 내부식 특성 및 저온충격인성이 상대적으로 좋지 못하였다. On the other hand, the specimen 3 containing a relatively high content of carbon and manganese and having no titanium had excellent strength characteristics, but was poor in internal characteristics and low temperature impact toughness.

또한, 도 2를 참조하면, 시편 2에 비하여 시편 3의 경우, 다량의 크랙이 발생한 것을 볼 수 있다. 이를 통하여, 시편 2가 시편 3에 비하여 내부식 특성이 현저히 우수한 것을 알 수 있다.Also, referring to FIG. 2, it can be seen that, in the case of the specimen 3, a large amount of cracks occurred compared to the specimen 2. As a result, it can be seen that the specimen 2 has remarkably excellent anti-corrosion properties as compared with the specimen 3.

한편, 열간압연 후 냉각 조건이 본 발명에서 제시한 조건에 부합하지 않는 시편 4의 경우 및 슬라브 재가열 온도가 상대적으로 낮은 시편 5이 경우, 내부식 특성은 양호하였으나, 강도 특성이 상대적으로 좋지 못하였다.
On the other hand, in the case of the specimen 4 in which the cooling conditions after hot rolling did not meet the conditions proposed in the present invention and the specimen 5 in which the slab reheating temperature was relatively low, the internal characteristics were good, but the strength characteristics were relatively poor .

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Such changes and modifications are intended to fall within the scope of the present invention unless they depart from the scope of the present invention. Accordingly, the scope of the present invention should be determined by the following claims.

Claims (5)

중량%로, 탄소(C) : 0.04~0.06%, 실리콘(Si) : 0.1~0.2%, 망간(Mn) : 0.4~0.8%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 바나듐(V) : 0.04~0.08%, 니오븀(Nb) : 0.02~0.05%, 티타늄(Ti) : 0.01~0.02%, 크롬(Cr) : 0.5~0.7%, 칼슘(Ca) : 0.001~0.003%, 질소(N) : 0.006% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 1200℃ 이상의 온도에서 2시간 이상 재가열하는 단계;
재가열된 판재를 오스테나이트 재결정 온도 영역에서 조압연하는 단계;
조압연이 완료된 판재를 오스테나이트 미재결정 영역에서 사상압연하는 단계; 및
사상압연이 완료된 판재를 냉각하여, 600℃ 이하의 온도에서 권취하는 단계;를 포함하는 것을 특징으로 하는 열연강판 제조 방법.
(P): 0.01% or less, sulfur (S): 0.001% or less, carbon (C): 0.04 to 0.06%, silicon (Si): 0.1 to 0.2%, manganese (Ti): 0.01 to 0.02%, and chromium (Cr): 0.5 to 0.7%, and more preferably, the aluminum (Al): 0.02 to 0.05%, the vanadium (V): 0.04 to 0.08%, the niobium Reheating the slab plate composed of 0.001 to 0.003% of calcium (Ca), 0.006% or less of nitrogen (N) and the balance of iron (Fe) and unavoidable impurities at a temperature of 1200 ° C or more for 2 hours or more;
Subjecting the reheated plate to rough rolling in the austenite recrystallization temperature range;
Subjecting the roughly rolled plate to finish rolling in a non-austenite recrystallization zone; And
And cooling the sheet material after the finish rolling and winding the sheet material at a temperature of 600 캜 or less.
제1항에 있어서,
상기 조압연은 80% 이상의 압하율로 수행되고,
상기 사상압연은 70% 이상의 압하율로 수행되는 것을 특징으로 하는 열연강판 제조 방법.
The method according to claim 1,
The rough rolling is performed at a reduction ratio of 80% or more,
Wherein the finishing rolling is performed at a reduction ratio of 70% or more.
제1항에 있어서,
상기 냉각은 20℃/sec 이상의 평균냉각속도로 수행되는 것을 특징으로 하는 열연강판 제조 방법.
The method according to claim 1,
Wherein the cooling is performed at an average cooling rate of 20 DEG C / sec or more.
중량%로, 탄소(C) : 0.04~0.06%, 실리콘(Si) : 0.1~0.2%, 망간(Mn) : 0.4~0.8%, 인(P) : 0.01% 이하, 황(S) : 0.001% 이하, 알루미늄(Al) : 0.02~0.05%, 바나듐(V) : 0.04~0.08%, 니오븀(Nb) : 0.02~0.05%, 티타늄(Ti) : 0.01~0.02%, 크롬(Cr) : 0.5~0.7%, 칼슘(Ca) : 0.001~0.003%, 질소(N) : 0.006% 이하 및 나머지 철(Fe)과 불가피한 불순물로 이루어지고,
면적률로 90% 이상의 침상형 페라이트 및 석출물을 포함하는 미세조직을 갖는 것을 특징으로 하는 열연강판.
(P): 0.01% or less, sulfur (S): 0.001% or less, carbon (C): 0.04 to 0.06%, silicon (Si): 0.1 to 0.2%, manganese (Ti): 0.01 to 0.02%, and chromium (Cr): 0.5 to 0.7%, and more preferably, the aluminum (Al): 0.02 to 0.05%, the vanadium (V): 0.04 to 0.08%, the niobium 0.001 to 0.003% of calcium (Ca), 0.006% or less of nitrogen (N), and the balance of iron (Fe) and unavoidable impurities,
Characterized in that the steel sheet has a microstructure including acicular type ferrite and precipitate having an area ratio of 90% or more.
제4항에 있어서,
상기 열연강판은 항복강도 380~500MPa, 인장강도 510~680MPa의 강도, HIC 시험 후 CLR(Crack Length Ratio) 6% 이하, CTR(Crack Thickness Ratio) 3% 이하 및 CSR(Crack Sensitivity Ratio) 1.5% 이하의 내부식성 및 -60℃ 평균충격인성 100J 이상의 저온인성을 나타내는 것을 특징으로 하는 열연강판.
5. The method of claim 4,
The hot-rolled steel sheet preferably has a yield strength of 380 to 500 MPa, a tensile strength of 510 to 680 MPa, a crack length ratio (CRR) of 6% or less after HIC test, a CTR (crack thickness ratio) of 3% or less, and a CSR (crack sensitivity ratio) of 1.5% And a low-temperature toughness of -60 deg. C and an impact toughness of 100 J or higher.
KR1020140036851A 2014-03-28 2014-03-28 Hot-rolled steel sheet and method of manufacturing the same KR20150112514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140036851A KR20150112514A (en) 2014-03-28 2014-03-28 Hot-rolled steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140036851A KR20150112514A (en) 2014-03-28 2014-03-28 Hot-rolled steel sheet and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20150112514A true KR20150112514A (en) 2015-10-07

Family

ID=54343760

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140036851A KR20150112514A (en) 2014-03-28 2014-03-28 Hot-rolled steel sheet and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20150112514A (en)

Similar Documents

Publication Publication Date Title
KR102481712B1 (en) Seek hot-rolled H-beam having a yield strength of 500 megapascals and method for manufacturing the same
EP3392366B1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
CA3081221A1 (en) Steel material for welded steel pipe, and method for manufacturing the same
KR101940880B1 (en) Sour resistance steel sheet having excellent low temperature toughness and post weld heat treatment property, and method of manufacturing the same
US20230357907A1 (en) Steel sheet having excellent hydrogen induced cracking resistance and longitudinal strength uniformity, and manufacturing method therefor
KR101778406B1 (en) Thick Plate for Linepipes Having High Strength and Excellent Excessive Low Temperature Toughness And Method For Manufacturing The Same
US11578392B2 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
KR20190077180A (en) High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
KR20190036028A (en) Non-heated type hot-rolled steel sheet, method of manufacturing the same, steel pipe, and method of manufacturing steel pipe using non-heated type hot-rolled steel sheet
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
KR101505279B1 (en) Hot-rolled steel sheet and method of manufacturing the same
KR101767771B1 (en) The steel sheet for welding structure having excellent heat affected zone toughness and method for manufacturing the same
JP4264296B2 (en) Low yield ratio 570 MPa class high strength steel with excellent weld toughness and slitting characteristics and method for producing the same
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
KR20150124811A (en) Steel sheet for line pipe and method of manufacturing the same
KR101467031B1 (en) Steel and method of manufacturing the same
KR20150112514A (en) Hot-rolled steel sheet and method of manufacturing the same
KR102250324B1 (en) Steel material and method of manufacturing the same
KR101185222B1 (en) Api hot-rolled steel sheet with high strength and method for manufacturing the api hot-rolled steel sheet
KR101572319B1 (en) Method of manufacturing hot-rolled steel sheet and high strength steel pipe
KR20240105702A (en) Hot rolled steel having high sour resistance and method of manufacturing the same
KR101412376B1 (en) Method for hot rolling and steel sheet of line pipe manufactured using the same
KR101412372B1 (en) Hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application