KR20150107695A - Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease - Google Patents

Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease Download PDF

Info

Publication number
KR20150107695A
KR20150107695A KR1020150122964A KR20150122964A KR20150107695A KR 20150107695 A KR20150107695 A KR 20150107695A KR 1020150122964 A KR1020150122964 A KR 1020150122964A KR 20150122964 A KR20150122964 A KR 20150122964A KR 20150107695 A KR20150107695 A KR 20150107695A
Authority
KR
South Korea
Prior art keywords
ischemic
gcp
cells
mesenchymal stem
adipose
Prior art date
Application number
KR1020150122964A
Other languages
Korean (ko)
Inventor
김성환
김무현
Original Assignee
학교법인 동아학숙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 동아학숙 filed Critical 학교법인 동아학숙
Priority to KR1020150122964A priority Critical patent/KR20150107695A/en
Publication of KR20150107695A publication Critical patent/KR20150107695A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/35Fat tissue; Adipocytes; Stromal cells; Connective tissues

Abstract

The present invention relates to adipose-derived mesenchymal stem cells (ASCs) overexpressing a granulocyte chemotactic protein-2 (GCP-2) gene. The adipose-derived mesenchymal stem cells according to the present invention overexpress a VEGF-A and an HGF gene to promote angiogenesis, reduce a left ventricular end diastolic diameter (LVEDD) and a left ventricular end systolic diameter (LVESD) value, increase a left ventricular ejection fraction (LVEF) value to improve a cardiac function, and increase vascular density of an ischemic area, thereby being valuably usable in treating an ischemic disease.

Description

GCP-2 유전자를 과발현하는 지방 간엽줄기세포를 포함하는 허혈성 질환 치료용 조성물{COMPOSITIONS COMPRISING ADIPOSE-DERIVED MESENCHYMAL STEM CELL OVEREXPRESSING GCP-2 GENE FOR TREATING ISCHEMIC DISEASE}TECHNICAL FIELD The present invention relates to a composition for treating ischemic diseases comprising lipid mesenchymal stem cells overexpressing a GCP-2 gene. More particularly, the present invention relates to a composition for treating ischemic diseases comprising lipid mesenchymal stem cells overexpressing GCP-

본 발명은 지방 간엽줄기세포를 포함하는 허혈성 질환 치료용 조성물에 관한 것으로, 더욱 구체적으로 GCP-2 유전자를 과발현하는 지방 간엽줄기세포를 포함하는 허혈성 질환 치료용 조성물에 관한 것이다.
The present invention relates to a composition for treating ischemic diseases comprising lipid mesenchymal stem cells, and more particularly to a composition for treating ischemic diseases comprising lipid mesenchymal stem cells overexpressing the GCP-2 gene.

심장혈관 의학에서 최근에 이루어진 많은 연구 성과에도 불구에도, 허혈성 심장혈관병(ischaemic cardiovascular disease)은 서구화된 사회에서 가장 심각한 건강문제 중 하나이다(Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics. 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009;119:480-486). Despite many recent studies in cardiovascular medicine, ischaemic cardiovascular disease is one of the most serious health problems in Westernized societies (Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics. 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009; 119: 480-486).

최근 줄기세포 생물학 분야의 발전으로 세포를 기반한 치료가 손상된 기관과 조직의 치료를 위한 매력적인 새로운 전략이 되고 있다(Kamihata H, Matsubara H, Nishiue T, et al., Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001;104: 1046-52). Recent advances in stem cell biology have made cell-based therapies an attractive new strategy for the treatment of injured organs and tissues (Kamihata H, Matsubara H, Nishiue T, et al., Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001; 104: 1046-52).

특히, 중간엽 줄기세포(mesenchymal stem cell, MSCs)는 성체 줄기세포의 중요한 소스이므로, MSCs가 심혈관 병에 대한 잠재적인 치료를 위해 제안되고 있다(Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7: 211-228. / Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem 2004;14:311-324. / Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004;109:1292-1298. / Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 2006;17:279-290. / Byun KH, Kim SW. Is stem cell-based therapy going on or out for cardiac disease., Korean Circ J 2009;39:87-92.).In particular, since mesenchymal stem cells (MSCs) are an important source of adult stem cells, MSCs have been proposed for potential treatment of cardiovascular diseases (Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al. Multilineage cells from human adipose tissue: implications for cell-based therapies Tissue Eng 2001; 7: 211-228. Rejman J, Traktuev D, Li J, Merfeld-Clauss S, and Temm-Grove CJ, Bovenkerk, in Cell Physiol Biochem 2004; 14: 311-324. Human adipose tissue-to-cell adhesion molecule (MEC) has been shown to induce apoptosis in human adipose tissue [1], [2], [ derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 2006; 17: 279-290. / Byun KH , Kim SW, Is stem cell-based therapy on or out for cardiac disease, Korean Circ J 2009; 39: 87-92.).

지방세포 유래 MSCs(adipose tissue-derived MSCs, ASCs)는 환자로부터의 분리가 용이하여 널리 연구되어 왔다. 그러나, 최근 ASCs와 관련된 연구에서 임상적 치료에 적용하기 어려운 문제점들이 보고되고 있는데, 대표적으로 허혈성 심장(ischaemic heart)에서 증명된 이식 세포의 낮은 생존율에 관한 것이 있다(Shake JG, Gruber PJ, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 2002;73:1919-1925. discussion 1926. / Toma C, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-98. / Cho HJ, et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart. J Exp Med 2007;204:3257-3269. / Kang HJ, et al. Magnetic bionanoparticle enhances homing of endothelial progenitor cells in mouse hindlimb ischemia. Korean Circ J 2012;42:390-396).Adipose tissue-derived MSCs (ASCs) from fat cells have been widely studied because of their ease of isolation from patients. However, recent studies related to ASCs have reported problems that are difficult to apply to clinical treatments, such as the low survival rate of transplanted cells that have been demonstrated in the ischaemic heart (Shake JG, Gruber PJ, et al : A study of mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects Ann Thorac Surg 2002; 73: 1919-1925. Cho HJ, et al. Role of host tissues for sustained humoral effects after endothelial progenitor cell transplantation into the ischemic heart J Exp Med 2007; 204: 3257-3269. / Kang HJ, et al. Magnetic bionanoparticle enhances homing of endothelial progenitor cells in mouse hindlimb ischemia. Korean Circ J 2012; 42: 390-396).

한편, 화학주성 사이토카인(chemotactic cytokine, chemokine)은 면역반응, 항상성 유지, 종양생성, 신혈관생성 등에서 중요한 역할을 하고 있다(Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001;250:91-104. / Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 2004;22:891-928). GCP-2(Granulocyte chemotactic protein-2, GCP-2/CXCL6)는 혈관내피세포와 혈관형성 성질을 보이는 섬유아세포(fibroblast) 그리고 중간엽 줄기세포(mesenchymal cell)에서 발현되는 것으로 보고되었다(Wuyts A, et al. Lab Invest 2003;83:23-34). On the other hand, chemotactic cytokines (chemokines) play an important role in immune responses, homeostasis, tumorigenesis, neovascularization, etc. (Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001; 250: 104. / Rote, von Andrian U. Chemokines in innate and adaptive host defense: basic chemokines grammar for immune cells. Annu Rev Immunol 2004; 22: 891-928). It has been reported that GCP-2 (granulocyte chemotactic protein-2, GCP-2 / CXCL6) is expressed in vascular endothelial cells and fibroblasts and mesenchymal cells showing angiogenic properties (Wuyts A, et al., Lab Invest 2003; 83: 23-34).

본 발명에서는 줄기세포에서 GCP-2의 과다발현이 혈관생성 및 세포 생존 가능성을 높일 수 있는 새로운 방법이 될 수 있을 것이라는 전략을 수립하고 새로운 허혈성 질환 치료제를 발굴하고자 예의 연구노력 하였다. 그 결과, GCP-2 유전자가 과발현된 지방유래 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs)가 VEGF-A 및 HGF 유전자를 과발현하여 혈관형성을 촉진하고, IGF-1 및 Akt-1 유전자를 과발현하여 세포사멸을 억제하며, eNOS, Tie-2, 및 vWF 유전자를 과발현함으로써 혈관내피세포(endothelial cell)로 분화할 수 있고, LVEDD(left ventricular end diastolic diameter) 및 LVESD(Left ventricular end systolic diameter) 값을 감소시키며, LVEF(Left ventricular ejection fraction) 값을 증가시켜 심장기능을 개선시키고, 허혈성 부위(ischemic area)의 혈관 밀집도(vascular density)를 증가시켜, 허혈성 질환에 대한 치료적 효능이 있음을 확인하고, 본 발명을 완성하게 되었다.
In the present invention, a strategy of over-expression of GCP-2 in stem cells could be a new method for enhancing angiogenesis and cell viability, and efforts were made to find a therapeutic agent for a new ischemic disease. As a result, adipose-derived mesenchymal stem cells (ASCs) overexpressing the GCP-2 gene promoted angiogenesis by overexpressing the VEGF-A and HGF genes, and the IGF-1 and Akt-1 genes (LVEDD) and left ventricular end-systolic diameter (LVESD). In addition, the vascular endothelial growth factor (VEGF) and the vascular endothelial growth factor (vWF) Decrease in heart rate, increase in left ventricular ejection fraction (LVEF) value to improve cardiac function, increase vascular density in ischemic area, and confirm therapeutic efficacy against ischemic diseases Thereby completing the present invention.

따라서, 본 발명의 목적은 GCP-2 유전자를 과발현하여 세포 이동 및 혈관생성과 관련된 유전자와 단백질을 발현분비하고, 심근 경색을 감소시키며, 허혈성 질환에 대한 치료적 효능이 있는 지방 간엽줄기세포를 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a method for the treatment and prophylaxis of gastrointestinal stem cells capable of overexpressing the GCP-2 gene to express and secrete genes and proteins involved in cell migration and angiogenesis, reduce myocardial infarction, I have to.

본 발명의 다른 목적은 GCP-2 유전자를 과발현하는 지방 간엽줄기세포를 포함하는 허혈성 질환의 치료용 약제학적 조성물을 제공하는 데 있다.It is another object of the present invention to provide a pharmaceutical composition for the treatment of ischemic diseases comprising lipid mesenchymal stem cells overexpressing the GCP-2 gene.

본 발명의 또 다른 목적은 GCP-2 유전자를 과발현하는 지방 간엽줄기세포를 이용한 허혈성 질환의 치료방법을 제공하는 데 있다.It is still another object of the present invention to provide a method for treating ischemic diseases using lipid mesenchymal stem cells overexpressing the GCP-2 gene.

본 발명의 다른 목적은 허혈성 질환의 치료용 약물(medicament)을 제조하기 위한 GCP-2 유전자를 과발현하는 지방 간엽줄기세포의 용도를 제공하는 데 있다.
Another object of the present invention is to provide a use of lipojunctional stem cells overexpressing the GCP-2 gene for the preparation of medicament for the treatment of ischemic diseases.

본 발명의 한 양태에 따르면, 본 발명은 GCP-2(Granulocyte chemotactic protein-2) 유전자를 과발현하는 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs) 또는 그 배양 배지(Conditioned media)의 약제학적 유효량; 및 약제학적으로 허용되는 담체를 포함하는 허혈성 질환 치료용 약제학적 조성물을 제공한다.According to one aspect of the present invention, there is provided a pharmaceutical composition comprising adipose-derived mesenchymal stem cells (ASCs) overexpressing a granulocyte chemotactic protein-2 (GCP-2) gene or its conditioned medium Effective amount; And a pharmaceutically acceptable carrier. The present invention also provides a pharmaceutical composition for the treatment of ischemic diseases.

본 발명에서 상기 GCP-2 유전자는 동물 유래의 모든 GCP-2 유전자를 포함하며, 케모카인(chemokine)으로서 기능을 수행할 수 있도록 GCP-2 단백질이 GCP-2 수용체(receptor)에 결합하는 한, 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합과 관련된 GCP-2 유전자 서열의 변이를 포함한다.In the present invention, the GCP-2 gene includes all the GCP-2 genes derived from an animal. As long as the GCP-2 protein binds to the GCP-2 receptor so as to function as a chemokine, , Insertions, non-conservative or conservative substitutions, or combinations of these.

본 발명의 상기 GCP-2 유전자를 줄기세포에 도입시키는데 사용되는 벡터는 플라스미드 벡터, 코즈미드 벡터, 바이러스 벡터 등을 포함한다. 적합한 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. The vector used for introducing the GCP-2 gene of the present invention into a stem cell includes a plasmid vector, a cosmid vector, a viral vector and the like. Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoter, operator, initiation codon, termination codon, polyadenylation signal, enhancer, and can be prepared variously according to the purpose.

상기 GCP-2 유전자는 당 분야의 공지 방법, 예를 들어 벡터 형태의 네이키드 DNA로 직접 주사하거나(Wolff et al., Science, 247:1465-8, 1990: Wolff et al., J Cell Sci. 103:1249-59, 1992), 리포좀(Liposome), 양이온성 고분자(Cationic polymer)등을 이용하여 세포 안으로 전달될 수 있다. The GCP-2 gene may be directly injected into known methods in the art, for example, naked DNA in vector form (Wolff et al., Science, 247: 1465-8, 1990: Wolff et al., J Cell Sci. 103: 1249-59, 1992), liposomes, cationic polymers, and the like.

본 발명자들은 GCP-2 유전자를 바이러스 벡터에 삽입하여 지방유래 간엽줄기세포에 형질전환(transfection)시켰고, NOD/SCID 마우스를 이용한 심근경색 모델을 통하여 GCP-2(Granulocyte chemotactic protein-2) 유전자를 과발현하는 지방 간엽줄기세포의 치료 능력을 연구하였다. 또한, 허혈성 부위에 GCP-2(Granulocyte chemotactic protein-2) 유전자를 과발현하는 지방 간엽줄기세포 세포를 이식하여 유전자 발현의 변화, 다중 주변분비 인자(paracrine factor)의 분비, 세포 이동 및 혈관 생성에 미치는 영향, 심근경색의 경감 여부 등을 종합적으로 분석하여 GCP-2(Granulocyte chemotactic protein-2) 유전자를 과발현하는 지방 간엽줄기세포의 주입 또는 이식이 허혈성 질환의 치료를 증진함을 확인할 수 있었다. The present inventors transplanted the GCP-2 gene into a viral vector and transfected the adipocyte mesenchymal stem cells and overexpressed the GCP-2 gene through myocardial infarction model using NOD / SCID mouse The ability of stem cells to treat mesenchymal stem cells was studied. In addition, grafted mesenchymal stem cell cells overexpressing the GCP-2 gene in the ischemic area were found to be involved in changes in gene expression, secretion of multiple paracrine factors, cell migration and angiogenesis And the reduction of myocardial infarction. In addition, the injection of grafted mesenchymal stem cells (GCP-2) overexpressing the GCP-2 gene promoted the treatment of ischemic diseases.

또한, 본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 이용되는 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs)는 GCP-2가 형질전환되지 않은 통상의 ASCs 세포와 비교하여 혈관형성 촉진 인자(pro-angiogenic factor)인 VEGF-A 및 HGF 유전자를 과발현하여 혈관형성을 촉진하는 특징이 있다. In addition, according to a preferred embodiment of the present invention, the adipose-derived mesenchymal stem cells (ASCs) used in the composition of the present invention are more effective than the normal ASCs cells in which GCP-2 is not transformed, It is characterized by promoting angiogenesis by overexpressing the pro-angiogenic factors VEGF-A and HGF genes.

또한, 본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 이용되는 지방 간엽줄기세포는 GCP-2가 형질전환되지 않은 통상의 ASCs 세포와 비교하여 항 세포사멸 인자(anti-apoptotic/cell survival factors)인 IGF-1 및 Akt-1 유전자를 과발현하여 세포사멸을 억제하는 특징이 있다.In addition, according to a preferred embodiment of the present invention, the lipid mesenchymal stem cells used in the composition of the present invention have anti-apoptotic / cell survival factors, as compared with normal ASCs cells in which GCP-2 is not transformed ) ≪ / RTI > IGF-1 and Akt-1 gene to inhibit apoptosis.

또한, 본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 이용되는 지방 간엽줄기세포는 eNOS(endothelial nitric oxide synthase), Tie-2, 및 vWF(Von Willebrand factor) 유전자를 과발현하고, 혈관내피세포(endothelial cell)로 분화할 수 있는 것을 특징으로 한다.In addition, according to a preferred embodiment of the present invention, the lipid mesenchymal stem cells used in the composition of the present invention overexpress eNOS (endothelial nitric oxide synthase), Tie-2, and vWF (von Willebrand factor) (endothelial cell).

또한, 본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 이용되는 지방 간엽줄기세포는 LVEDD(left ventricular end diastolic diameter) 및 LVESD(Left ventricular end systolic diameter) 값을 감소시키고, LVEF(Left ventricular ejection fraction) 값을 증가시켜 심장기능의 개선을 촉진시킬 수 있다.According to a preferred embodiment of the present invention, the lipid mesenchymal stem cells used in the composition of the present invention reduce the left ventricular end diastolic diameter (LVEDD) and the left ventricular end systolic diameter (LVESD) fraction can be increased to promote improvement of cardiac function.

또한, 본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 이용되는 지방 간엽줄기세포는 허혈성 부위(ischemic area)의 혈관 밀집도(vascular density)를 증가시키는 것을 특징으로 한다..Also, according to a preferred embodiment of the present invention, the fat mesenchymal stem cells used in the composition of the present invention are characterized by increasing the vascular density of the ischemic area.

또한, 본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물에 이용되는 지방 간엽줄기세포의 배지(Conditioned media)는 섬유아세포(fibroblasts)의 증식을 촉진하고, 섬유아세포(fibroblasts)의 상처 봉합을 촉진하며, 혈액 순환 속도를 증가시키는 것을 특징으로 한다.In addition, according to a preferred embodiment of the present invention, the conditional medium of the fat mesenchymal stem cells used in the composition of the present invention promotes the proliferation of fibroblasts and promotes wound closure of fibroblasts And the blood circulation rate is increased.

본 발명의 상기 허혈성 질환은 허혈성 심장질환, 허혈성 심근경색, 허혈성 심부전, 허혈성 장염, 허혈성 혈관질환, 허혈성 안질환, 허혈성 망막증, 허혈성 녹내장, 허혈성 신부전, 허혈성 뇌졸중, 또는 허혈성 하지질환을 포함하며, 바람직하게는 허혈성 심장질환, 허혈성 심근경색, 또는 허혈성 심부전을 포함한다.The ischemic diseases of the present invention include ischemic heart disease, ischemic myocardial infarction, ischemic heart failure, ischemic enteritis, ischemic vascular disease, ischemic eye disease, ischemic retinopathy, ischemic glaucoma, ischemic renal failure, ischemic stroke, Includes ischemic heart disease, ischemic myocardial infarction, or ischemic heart failure.

본 발명의 다른 양태에 따르면, 본 발명은 GCP-2(Granulocyte chemotactic protein-2) 유전자를 과발현하는 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs) 또는 그 배양 배지(Conditioned media)의 약제학적 유효량; 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물을 인간을 제외한 동물에 투여하는 단계를 포함하는 허혈성 질환의 치료방법을 제공한다.According to another aspect of the present invention, there is provided a pharmaceutical composition comprising adipose-derived mesenchymal stem cells (ASCs) overexpressing a granulocyte chemotactic protein-2 (GCP-2) gene or its conditioned medium Effective amount; And a pharmaceutically acceptable carrier, to an animal other than a human, comprising the step of administering to a mammal an ischemic disease.

본 발명의 조성물은 1ml 당 1.0 x 104개 내지 1.0 x 108개, 바람직하게는 1.0 x 105개 내지 1.0 x 107개, 더욱 바람직하게는 1.0 x 106개의 세포를 포함할 수 있다.The composition of the present invention may comprise 1.0 x 10 4 to 1.0 x 10 8 , preferably 1.0 x 10 5 to 1.0 x 10 7 , more preferably 1.0 x 10 6 cells per ml.

또한, 본 발명의 조성물은 통상적인 방법에 따라 환자의 신체 내 투여에 적합한 단위투여형의 제제로 제형화시켜 투여할 수 있으며, 상기 제제는 1회 또는 수회 투여에 의해 치료 효과를 나타낼 수 있는 효과적인 투여량을 포함한다. 적합한 제형의 예로는 비경구 투여 제제로서 주사용 앰플과 같은 주사제, 주입 백과 같은 주입제 등을 들 수 있다. 주사용 앰플은 사용 직전에 주사액과 혼합 조제할 수 있으며, 주사액으로는 생리 식염수, 포도당, 만니톨, 링거액 등을 사용할 수 있다. 주입 백은 염화폴리비닐 또는 폴리에틸렌 재질의 것을 사용할 수 있다.In addition, the composition of the present invention can be formulated into a unit dosage form suitable for administration to a patient in the body according to a conventional method, and the composition can be administered by one or several administrations, ≪ / RTI > Examples of suitable formulations include injections such as injection ampoules, injection bags, etc., injected as parenteral administration preparations, and the like. The injectable ampoule may be mixed with the injection solution immediately before use. As the injection solution, physiological saline, glucose, mannitol, and Ringer's solution may be used. The injection bag may be made of polyvinyl chloride or polyethylene.

상기 약학 제제에는 유효 성분 외에 하나 이상의 약학적으로 허용가능한 담체가 추가로 포함될 수 있으며, 예를 들어, 주사제의 경우에는 보존제, 무통화제, 가용화제 또는 안정화제 등이, 국소 투여용 제제의 경우에는 기제(base), 부형제, 윤활제 또는 보존제 등이 포함될 수 있다.In addition to the active ingredient, the pharmaceutical preparation may further contain one or more pharmaceutically acceptable carriers. For example, in the case of an injection, a preservative, an anhydrous agent, a solubilizer or a stabilizer may be added. In the case of a preparation for topical administration Bases, excipients, lubricants or preservatives, and the like.

본 발명의 조성물 또는 약학 제제는 통상적인 투여 방법에 의해 투여될 수 있으며, 바람직하게는 비경구적 투여방법에 의해 투여될 수 있으며, 예를 들어, 주사에 의해 투여되거나, 질환 부위 또는 그 주변의 진피 또는 피하에 직접 주입되어 이식될 수 있다.The composition or pharmaceutical preparation of the present invention may be administered by a conventional method of administration, preferably by a parenteral administration method, and may be administered, for example, by injection, Or can be implanted directly into the subcutaneous tissue.

본 발명의 세포의 1일 투여량은 1.0 x 105 내지 1.0 x 107, 바람직하게는 1.0 x 105 내지 1.0 x 106 세포/kg체중을 1회 또는 수회로 나누어 투여할 수 있다. 그러나, 실제 투여량은 질환, 질환의 중증도, 투여 경로, 환자의 체중, 연령 및 성별 등에 따라 변할 수 있다.
The daily dose of the cells of the present invention may be administered once or several times in a dose of 1.0 x 10 5 to 1.0 x 10 7 , preferably 1.0 x 10 5 to 1.0 x 10 6 cells / kg. However, the actual dosage may vary depending on the disease, the severity of the disease, the route of administration, the weight of the patient, age and sex, and the like.

이상 설명한 바와 같이, 본 발명의 조성물은 VEGF-A 및 HGF 유전자를 과발현하여 혈관형성을 촉진하고, IGF-1 및 Akt-1 유전자를 과발현하여 세포사멸을 억제하며, eNOS, Tie-2, 및 vWF 유전자를 과발현함으로써 혈관내피세포(endothelial cell)로 분화할 수 있고, LVEDD(left ventricular end diastolic diameter) 및 LVESD(Left ventricular end systolic diameter) 값을 감소시키며, LVEF(Left ventricular ejection fraction) 값을 증가시켜 심장기능을 개선시키고, 허혈성 부위(ischemic area)의 혈관 밀집도(vascular density)를 증가시켜, 허혈성 질환의 치료에 유용하게 사용될 수 있다.
As described above, the composition of the present invention overexpresses VEGF-A and HGF genes to promote angiogenesis, overexpresses IGF-1 and Akt-1 genes to inhibit apoptosis, and inhibits eNOS, Tie-2, and vWF (LVEF), left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD), and increased left ventricular ejection fraction (LVEF) May be useful in the treatment of ischemic diseases by improving cardiac function and increasing vascular density in the ischemic area.

도 1은 hASCs/GCP-2 세포 처리 후, qRT-PCR 분석을 통해 혈관생성 및 항세포사멸과 관련된 유전자 발현 패턴을 분석한 그래프이다.
도 2a는 배양 배지(conditioned media) 처리 후, 섬유아세포 상처 봉합을 분석한 그림이다.
도 2b는 배양 배지(conditioned media) 처리 후, ex vivo에서 증식된 섬유아세포를 분석한 그림이다.
도 3a는 In vitro에서 혈관형성 능력을 분석한 그림이다.
도 3b는 RT-PCT을 통해 혈관내피세포 특이적 유전자의 발현(EC-specific gene expression changes)을 분석한 사진이다.
도 3c는 혈관내피세포 특이적 유전자의 발현(EC-specific gene expression changes) 결과를 정량화하여 도시한 그래프이다.
도 4는 심장 초음파 검사(echocardiography) 결과를 분석한 그래프이다.
도 5a는 hASCs/GCP-2 세포 이식 후, 심근경색 부위(infarct scar area)를 비교 분석한 그림이다.
도 5b는 hASCs/GCP-2 세포 이식 후, 경색이 일어난 경계 부근에서 혈관 밀도를 비교 분석한 그림이다.
도 5c는 hASCs/GCP-2 세포 이식 후, TUNEL 분석을 통하여 세포 생존을 분석한 그림이다.
도 5d는 qRT-PCR 분석을 통해, VEGF-A 발현을 분석한 그래프이다.
FIG. 1 is a graph showing gene expression patterns associated with angiogenesis and anti-apoptosis through qRT-PCR analysis after treatment with hASCs / GCP-2 cells.
Figure 2a is an analysis of fibroblast wound closure after treatment with conditioned media.
FIG. 2B is an analysis of fibroblasts proliferating ex vivo after treatment with conditioned media. FIG.
FIG. 3A is an analysis of the angiogenic ability in vitro. FIG.
FIG. 3B is a photograph showing EC-specific gene expression changes of vascular endothelial cell-specific genes through RT-PCT.
FIG. 3c is a graph showing quantitative results of expression of EC-specific gene expression changes in vascular endothelial cells.
4 is a graph showing the results of echocardiography.
FIG. 5A is a comparative analysis of the infarct scar area after hASCs / GCP-2 cell transplantation. FIG.
FIG. 5B is a comparative analysis of blood vessel density near the border where infarction occurred after hASCs / GCP-2 cell transplantation.
FIG. 5c shows cell survival analysis by TUNEL analysis after hASCs / GCP-2 cell transplantation. FIG.
FIG. 5D is a graph showing the analysis of VEGF-A expression through qRT-PCR analysis. FIG.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention is not construed as being limited by these embodiments.

실시예 1. 실험 방법 및 실험 재료의 준비Example 1. Preparation of Experimental Methods and Experimental Materials

1-1. 세포 배양1-1. Cell culture

인간 지방유래 간엽줄기세포(hASCs)의 분리는 CHo HH. 등의 방법에 따라 실행하였다(Cho HH, Kim YJ, et al. The role of chemokines in proangiogenic action induced by human adipose tissue-derived mesenchymal stem cells in the murine model of hindlimb ischemia. Cell Physiol Biochem 2009;24:511-518). 인간 샘플을 포함한 모든 프로토콜은 환자의 동의를 얻었고, 동아대와 부산대의 생명윤리위원회(Institutional Review Boards)에 의해 승인되었다. 세포를 배지[a-MEM, 10% foetal bovine serum (FBS), 100 U/mL of penicillin, and 100 mg/mL of streptomycin]에서 배양하고, 37℃, 5% CO2를 유지시켰다. 모든 실험은 3 내지 5회 계대 배양한 hASCs를 사용하였다. HUVECs(Human umbilical vein endothelial cells )과 HDFs(normal human dermal fibroblasts)는 ATCC(Manassas, VA, USA)로부터 구입하였다.
Isolation of human adipose derived mesenchymal stem cells (hASCs) was carried out using CHO HH. (Cho HH, Kim YJ, et al.) The role of chemokines in proangiogenic action induced by human adipose tissue-derived mesenchymal stem cells in the murine model of hindlimb ischemia Cell Physiol Biochem 2009; 24: 511 -518). All protocols, including human samples, were approved by the Institutional Review Boards of DongAh and Pusan National University. Cells were cultured in medium [a-MEM, 10% fetal bovine serum (FBS), 100 U / mL of penicillin, and 100 mg / mL of streptomycin] and maintained at 37 ° C and 5% CO 2 . All experiments were performed with 3- to 5-pass subcultured hASCs. Human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts (HDFs) were purchased from ATCC (Manassas, VA, USA).

1-2. 바이러스 벡터 구축 및 형질도입1-2. Construction and transduction of viral vectors

형질도입은 hASC/GCP-2 세포 라인을 사용하였다. 바이러스 벡터의 제작(construction)과 세포 내로의 도입(transduction)은 종래 방법에 따라 실시하였다(Cho HH, et al. Cell Physiol Biochem 2009;24:511-518). GCP2 유전자는 pCMVSPORT6-GCP2(21C Frontier human gene bank) 플라스미드(donor plasmid)로부터 획득하였고, BP/LR 클로나아제(clonase, Invitrogen, Carlsbad, CA, USA)를 사용하여 목적 벡터(destination vector) pLenti6/V5로 삽입하였다. 바이러스 벡터의 제작을 확인하기 위하여, 전체 플라스미드를 서열분석(sequencing)하였다. 렌티바이러스(replication-defective lentivirus)를 세포 내로 도입하기 위해서, 293T 세포, 리포펙타민 플러스(lipofectamine Plus, Invitrogen), 및 패키징 믹스(packaging mix, Invitrogen)를 사용하였다. 형질 도입 후, 48시간 혹은 72시간 뒤에 바이러스 샘플을 획득하였고, Millex-HV 0.45 mm PVDF 필터(Millipore, Billerica, MA, USA)를 사용하여 여과하였다. 폴리브렌(polybrene, 5mg/mL)을 사용하여 바이러스가 들어있는 액상을 6시간 동안 hASCs에 반응하여 바이러스의 세포 도입(transduction)을 실행하였고, 블라스티시딘(blasticidin, 10 mg/mL, Invitrogen)을 사용하여 바이러스가 도입된 세포를 선별하였다.
The hASC / GCP-2 cell line was used for the transfection. Construction of the viral vector and transduction into the cell were carried out according to the conventional method (Cho HH, et al. Cell Physiol Biochem 2009; 24: 511-518). The GCP2 gene was obtained from pCMVSPORT6-GCP2 (21C Frontier human gene bank) plasmid and cloned into the target vector pLenti6 / GCP2 using a BP / LR clonase (Invitrogen, Carlsbad, CA, USA) V5. To confirm the production of viral vectors, the entire plasmid was sequenced. 293T cells, lipofectamine Plus, Invitrogen, and packaging mix (Invitrogen) were used to introduce replication-defective lentivirus into cells. Virus samples were obtained 48 hours or 72 hours after transduction and filtered using a Millex-HV 0.45 mm PVDF filter (Millipore, Billerica, MA, USA). The virus-containing liquid phase was reacted with hASCs for 6 hours using polybrene (5 mg / mL) to induce viral cell transduction and blasticidin (10 mg / mL, Invitrogen) Were used to screen for virus-introduced cells.

1-3. RT-PCR 및 qRT-PCR 분석1-3. RT-PCR and qRT-PCR analysis

qRT-PCR 분석은 종래 방법을 따라 진행하였다(Kang HJ, et al. Korean Circ J 2012;42:390-396 / Kim SW, et al. J Am Coll Cardiol 2010;56:593-607). 총 RNA는 3 내지 5회 계대 배양된 세포로부터 분리하였다. RNA-stat 시약(Iso-Tex Diagnostics, Friendswood, TX, USA) 및 RNA 추출 키트(iNtRON Biotechnology, Korea)를 사용하였으며, 제조사의 프로토콜에 따라 진행하였다. 분리된 RNA는 Taqman 시약(Taqman Reverse Transcripton Reagents, Applied Biosystems, Foster City, CA, USA)을 사용하여 역전사(reverse-transcription)하였다. 이렇게 합성된 cDNA는 인간/마우스 특이적인(human/mouse-specific) 프라이머와 항체를 사용하여 qRTPCR 혹은 RTPCR에 적용하였다. RNA 수준은 검출 시스템(ABI PRISM 7000 Sequence Detection System, Applied Biosystems, Foster City, CA, USA)을 사용하여 정량하였다. GAPDH 발현량을 기준으로 상대적인 mRNA 발현 수준이 계산되었으며, 종래 방식을 따랐다(Kang HJ, Kim JY, et al. Korean Circ J 2012;42:390-396.). 프라이머 및 프로브 세트는 어플라이드 바이오시스템(Applied Biosystems)으로부터 구입하였다.
qRT-PCR analysis was performed according to the conventional method (Kang HJ, et al. Korean Circ J 2012; 42: 390-396 / Kim SW, et al J Am Coll Cardiol 2010; 56: 593-607). Total RNA was isolated from subcultured cells three to five times. RNA-stat reagents (Iso-Tex Diagnostics, Friendswood, TX, USA) and RNA extraction kit (iNtRON Biotechnology, Korea) were used. The isolated RNA was reverse-transcribed using Taqman Reagent Reagents (Applied Biosystems, Foster City, CA, USA). The synthesized cDNA was applied to qRTPCR or RTPCR using human / mouse-specific primers and antibodies. RNA levels were quantified using a detection system (ABI PRISM 7000 Sequence Detection System, Applied Biosystems, Foster City, CA, USA). Relative mRNA expression levels were calculated based on GAPDH expression level and followed the conventional method (Kang HJ, Kim JY, et al. Korean Circ J 2012; 42: 390-396). Primer and probe sets were purchased from Applied Biosystems.

1-4. 세포사멸 분석(Apoptosis assay)1-4. Apoptosis assay

종래 방식에 따라 6시간 동안 혈청 결핍(serum deprivation, SD)에 의해 세포 사멸을 유도하였다(Kim MH, Zhang HZ, Kim SW. J Mol Cell Cardiol 2011;51:702-712). Apoptotic cells은 Annexin V-FITC binding assay kit (Oncogene, San Diego, CA, USA)을 사용하여 검사하였으며, Cell death was induced by serum deprivation (SD) for 6 hours according to the conventional method (Kim MH, Zhang HZ, Kim SW, J Mol Cell Cardiol 2011; 51: 702-712). Apoptotic cells were examined using the Annexin V-FITC binding assay kit (Oncogene, San Diego, CA, USA)

사멸 세포는 아넥신 V-FITC 결합 분석 키트(Annexin V-FITC binding assay kit, Oncogene, San Diego, CA, USA)를 사용하여 측정하였고, FACScan(Becton Dickinson, San Jose, CA, USA)을 사용하여 분석하였다.
Apoptotic cells were measured using an Annexin V-FITC binding assay kit (Oncogene, San Diego, Calif., USA) and analyzed using FACScan (Becton Dickinson, San Jose, CA, USA) Respectively.

1-5. 세포이동 분석(Cell migration assay)1-5. Cell migration assay

세포이동 분석(cell migration assay)을 실행하기 위하여, 배지(conditioned medium)를 종래 방식에 따라 수득하였다(Zhang C, et al. Clin Cancer Res 2009;15:4017-4027.). 세포(1 × 106)를 T-75 플라스크에 접종하고 일반배지 또는 페니실린(100 U/mL), 스트렙토마이신(100 mg/mL, Gibco), 및 10% 우태아 혈청(fetal bovine serum)이 함유된 저당 DMEM(low-glucose Dulbecco modified Eagle medium, Gibco, Grand Island, NY, USA)에서 세포가 80% 정도 채워질 때까지 48시간동안 배양하였다. 각 샘플로부터의 배양배지를 1000g에서 원심분리한 후, 실험을 위한 배지(conditioned medium)로 사용하였다. HDFs는 타입 I 콜라겐(0.2 mg/mL)을 코팅한 24-웰 배양 플레이트에 1 × 105/웰 밀도로 접종하였다. 그리고, 웰을 다 채울 정도로 37℃, 5% CO2에서 24시간 동안 배양하였다. 멸균한 피펫 팁을 사용하여 세포층을 스크래치(scratching)한 후 조정배지를 넣어 배양하였다. 세포 이동(cell mobility)을 측정하기 위하여, 스크래치 후 72시간 후에, 다섯 곳을 무작위로 정하여 사진을 촬영하였다. 상처부위(wound area)는 상처 가장자리(wound margin)를 이용하여 결정하였고, NIH 이미지 프로그램(http://rsb.info.nih.gov/nih-image/)을 사용하여 계산하였다.
In order to carry out the cell migration assay, the conditioned medium was obtained according to conventional methods (Zhang C, et al. Clin Cancer Res 2009; 15: 4017-4027). Cells (1 × 10 6 ) were inoculated into T-75 flasks and incubated with normal medium or penicillin (100 U / mL), streptomycin (100 mg / mL, Gibco), and 10% fetal bovine serum (Dulbecco's modified Eagle medium, Gibco, Grand Island, NY, USA) for 48 h until cells were filled to about 80%. The culture medium from each sample was centrifuged at 1000 g and used as a conditioned medium for experiments. HDFs were inoculated to a 24-well culture plate coated with type I collagen (0.2 mg / mL) at a density of 1 x 10 < 5 > / well. And, 37 ℃ enough to fill all the wells, and incubated in 5% CO 2 for 24 hours. The cell layer was scratched using a sterile pipette tip and cultured in a conditioned medium. To measure cell mobility, five sites were randomly selected after 72 hours of scratching and photographed. The wound area was determined using a wound margin and calculated using the NIH Imaging Program (http://rsb.info.nih.gov/nih-image/).

1-6. 급성심근경색(Acute Myocardial Infarction) 유도 및 세포 이식1-6. Acute myocardial infarction induction and cell transplantation

실험은 미국 국립보건원에 의해 발행된 실험동물의 보호 및 이용을 위한 가이드(NIH Publication No.85-23, 1996 개정)에 따라 진행하였으며, 인간의 조직과 샘플 사용에 관한 헬싱키 선언(Declaration of Helsinki)의 원칙을 따라 실행하였다. 급성 심근경색(myocardial infarction, MI)의 마우스 모델은 종래 방법에 따라 준비하였다(Kang HJ, et al. Korean Circ J 2012;42:390-396. / Yu LH, Kim MH, et al. Int J Cardiol 2010;139:166-172). 모든 과정은 동아의대 기관 동물 보호 및 이용 위원회(DIACUC)의 승인 하에 이루어졌다. 통증(Pain and distress)에 관한 부분은 동아대학교 의과학 연구지원센터의 조언을 받아 규칙적인 마취(analgesia)를 실행하였다. The experiment was conducted in accordance with the Guide for the Protection and Use of Laboratory Animals (NIH Publication No. 85-23, 1996) issued by the National Institutes of Health, and the Declaration of Helsinki on human tissue and sample use. In accordance with the principles of. A mouse model of myocardial infarction (MI) was prepared according to the conventional method (Kang HJ, et al., Circ J 2012; 42: 390-396. 2010; 139: 166-172). The entire process was done with the approval of DIACUC. Regarding pain and distress, I conducted regular analgesia with advice from Dong - A University Medical Research Support Center.

12-13주령의 NOD/SCID 마우스(NOD.CB17-Prkdcskid/J strain, The Jackson Laboratory, Bar Harbor, Maine, USA)를 무작위로 다섯 개의 그룹으로 나누었다[ hASCs 그룹, hASCs/GCP-2 처리한 그룹, 항-GCP-2-중화항체(anti-GCP-2-neutralizing antibodies)를 처리한 hASCs/GCP-2 그룹(각각 n=15), PBS 그룹 (n=15), 샴(sham-operation) 그룹(LAD 결찰 없이 수술 진행)]. 12-13 week old NOD / SCID mice (NOD.CB17-Prkdc skid / J strain, The Jackson Laboratory, Bar Harbor, Maine, USA) were randomly divided into five groups (hASCs group treated with hASCs / GCP-2 (N = 15), PBS group (n = 15), sham-operation (n = 15) treated with anti-GCP-2-neutralizing antibodies Group (surgery without LAD ligation)].

모든 마우스는 75mg/kg 케타민, 1mg/kg 메테토미딘(medetomidine), 600mg/kg 아트로핀(atropine)을 사용하여 마취하였으며, 0.05mg/kg 부프레노핀(buprenorphine)을 투여하였다. 마취의 깊이는 호흡 수(respiratory rate)와 도피반사(withdrawal reflex)를 측정하여 결정하였다. 분당 130회로 0.25-0.30 ml의 공기를 공급할 수 있는 기기(Inspira-Advanced Safety Ventilator)를 사용하여 산소를 공급하였으며, 이것은 기도에 관을 삽입하여 실행하였다. 마우스를 오른편으로 놓아서, 좌흉개술(left thoracotomy)을 통해 심장이 드러나도록 하였다. 심근을 제거한 후, 입체현미경(stereomicroscope)을 사용하여 좌측 전하행 동맥(left anterior descending artery, LAD)이 보이도록 하였다. 나일론 봉합선(9.0 nylon suture)을 사용하여 심방심실연결부(atrioventricular junction)에서 0.3 mm 떨어진 위치에 혈관이 막히도록 유도하였다. 혈관의 폐색(occlusion)이 제대로 이루어졌는지 확인하기 위하여 결찰(ligation) 후 좌심실의 창백(left ventricular pallor)을 관찰하였다. All mice were anesthetized with 75 mg / kg ketamine, 1 mg / kg medetomidine, 600 mg / kg atropine and administered with 0.05 mg / kg buprenorphine. The depth of anesthesia was determined by measuring the respiratory rate and withdrawal reflex. Oxygen was supplied using an instrument capable of supplying 0.25-0.30 ml of air (Inspira-Advanced Safety Ventilator) at 130 rpm, which was performed by inserting a tube into the airway. The mouse was placed on the right side to allow the heart to be revealed through left thoracotomy. After removal of myocardium, a stereomicroscope was used to view the left anterior descending artery (LAD). A nylon suture (9.0 nylon suture) was used to induce occlusion of the blood vessel at a distance of 0.3 mm from the atrioventricular junction. Left ventricular parenchyma was observed after ligation to confirm the occlusion of the blood vessels.

이식한 세포를 구별하기 위하여 세포를 용기 당 2 내지 3 × 106 세포를 사용하여 100mm 배양 용기에서 37℃와 4℃에서 15분간 준비하고, 4μM Dil(chloromethyl - benzamido - 1,1′ - dioctadecyl - 3,3,3′3′ - tetramethylindo - carbocyanine, Molecular Probes, USA)로 표지(labeling) 하였다. GCP-2에 대한 중화항체(Neutralizing antibodies)(R&D Systems)는 세포 이식 1시간 전에 처리하였다. 급성 심근경색(acute myocardial infarction, AMI)후, 50ul PBS 또는 1 × 106 세포를 포함한 PBS를 심근내로 주사하였다. 주사위치는 경색된 부분의 경계에서 3개의 위치를 선택하였다. hASCs/GCP-2 혹은 PBS를 처리한 후, 4주째에 심장의 기능을 확인하기 위하여, 살아남은 실험동물에 대하여 심장 초음파 검사(echocardiography, ECHO)를 실시하였고, 이후 조직 분석을 위하여 해부하였다.
In order to distinguish transplanted cells, cells were prepared in a 100 mm culture container at 2-3 ° C. for 15 minutes at 37 ° C. and 4 ° C. using 2 to 3 × 10 6 cells per container. 4 μM Dil (chloromethyl - benzamido - 1,1 '- dioctadecyl - 3,3,3'3'-tetramethylindo-carbocyanine, Molecular Probes, USA). Neutralizing antibodies to GCP-2 (R & D Systems) were treated 1 hour before cell implantation. After acute myocardial infarction (acute myocardial infarction, AMI), the PBS containing 50ul PBS or 1 × 10 6 cells were injected into the cardiac muscle. The dice selected three positions at the boundary of the infarcted part. echocardiography (ECHO) was performed on surviving experimental animals to confirm cardiac function at 4 weeks after treatment with hASCs / GCP-2 or PBS, and then dissected for tissue analysis.

1-7. 심장 기능(cardiac function) 검사 1-7. Cardiac function test

심장기능은 15-16MHz 소형 선상 배열 트랜스듀서(linear array transducer, hockey stick)를 이용하여 측정하였다. 복장뼈주위(Parasternal) 긴축단면도(long-axis view)와 단축단면도(short-axis view)는 M-모드와 2D(two-dimensional ) 초음파 이미지를 모두 촬영하였다. 좌심실 이완기말 직경(left ventricle end-diastolic diameter, LVEDD), 좌심실 수축기말 직경(left ventricle end-systolic diameter, LVESD), 좌심실 박출계수(left ventricular ejection fraction, LVEF) 등은 종래 방식으로 측정하였다(Yu LH, Kim MH, et al. Int J Cardiol 2010;139:166-172).
Cardiac function was measured using a 15-16 MHz linear array transducer (hockey stick). The parasternal long-axis view and the short-axis view of both dressed bones have taken both M-mode and 2D (two-dimensional) ultrasound images. Left ventricular end-diastolic diameter (LVEDD), left ventricle end-systolic diameter (LVESD), left ventricular ejection fraction (LVEF) , Kim MH, et al., Int J Cardiol 2010; 139: 166-172).

1-8. 조직학(Histological) 및 면역조직화학(immunohistochemical) 분석 1-8. Histological and immunohistochemical analysis

심장 초음파 검사(echocardiography, ECHO)를 완료한 후, 모든 실험동물은 조직 분석을 위하여 티오펜탈(thiopental-sodium, 40 mg/kg)을 혈관내로 주사하여 안락사 시키고 해부하였다. 4% 파라포름알데하이드(paraformaldehyde, PFA, Sigma-Aldrich, St Louis, MO, USA) 수용액을 처리하고, 심장을 적출하여 파라핀(paraffin)으로 처리하였다(Yu LH, Kim MH, et al. Int J Cardiol 2010;139:166-172). 이 후, 좌심방 전체에 대하여 5μm 가로 섹션을 연속적으로 수득하였고, 절편을 매슨 트리크롬 염색(Masson-Trichrome stain)과 면역조직분석(immunohistochemical analysis)을 위하여 사용하였다. 각각의 적출된 심장으로부터 중간 유두상(mid-papillary)에 가까운 4개의 섹션을 획득하여, 상처 부위(scar area)의 측정과 염색(staining)에 사용하였다. 흉터부분은 매슨 크롬 염색법에 의해 파란색으로 염색되며, 기기(Scan Scope CS system, Aperio Technologies, Inc., Vista, CA, USA)를 사용하여 정량적으로 계산하였다. 면적의 단위는 밀리미터 제곱을 사용하였다. After echocardiography (ECHO) was completed, all experimental animals were euthanized and dissected by injecting thiopental-sodium (40 mg / kg) into the blood vessels for tissue analysis. Treatment with an aqueous solution of 4% paraformaldehyde (PFA, Sigma-Aldrich, St Louis, MO, USA) and heart was excised and treated with paraffin (Yu LH, Kim MH, et al. Int J Cardiol 2010; 139: 166-172). Thereafter, 5 mu m transverse sections were continuously obtained for the entire left atrium, and the sections were used for Masson-Trichrome staining and immunohistochemical analysis. Four sections near the mid-papillary were obtained from each extracted heart and used for measurement and staining of the scar area. Scars were stained blue by Matheson chrome staining and quantitatively calculated using the instrument (Scan Scope CS system, Aperio Technologies, Inc., Vista, CA, USA). The unit of the area is the square of the millimeter.

경색이 일어난 경계 부분의 혈관 조밀도(vascular density)를 측정하기 위하여, 미세혈관(microvessel)의 수를 측정하였다. 측정은 400배의 광학현미경을 사용하였으며, 심장 하나당 다섯 섹션에서 실행하였다. 섹션은 중간유두상에 가까운 부분으로, ILB4(biotinylated ILB4, 1:250; Vector Laboratory, Inc.)로 1차 염색하고, SA(streptavidin) Alexa Fluor 488(1:400; Invitrogen)을 2차로 처리하였다. 각 섹션에서 5개의 고배율시야관찰(high-power field)을 무작위로 선택하였고, 각 부분에서 미세혈관(microvessel)의 수를 측정하였다. 심장에서 세포사멸의 측정은 TUNEL 어세이 키트(Promega)를 이용하여 측정하였다. 근육 액틴(muscle actin)의 1차 염색을 위하여 HHF35(1:400; Dako)를 사용하였고, 2차 염색을 위하여 Cy3 (1:500; Jackson Immunoresearch Laboratories)를 사용하였다. 조직 섹션을 고정하고, 현미경(laser scanning confocal microscope, LSM510, Carl Zeiss)을 사용하여 관찰하였다. 인간 세포(human cell)를 관찰하기 위하여 Cy3-융합(Cambio, Cambridge,UK) 인간 X 염색체 프로브(human X chromosome probe)로 FISH(fluorescence in situ hybridization)를 실행하였다.
The number of microvessels was measured to determine the vascular density at the infarcted border. Measurements were taken using a 400x optical microscope and performed in five sections per heart. Section was stained first with ILB4 (biotinylated ILB4, 1: 250; Vector Laboratory, Inc.) and treated with SA (streptavidin) Alexa Fluor 488 (1: 400; Invitrogen) . Five high-power fields were randomly selected in each section and the number of microvessels was measured at each section. Measurement of apoptosis in the heart was measured using a TUNEL Assay Kit (Promega). HHF35 (1: 400; Dako) was used for primary staining of muscle actin, and Cy3 (1: 500; Jackson Immunoresearch Laboratories) was used for secondary staining. The tissue sections were fixed and observed using a microscope (laser scanning confocal microscope, LSM510, Carl Zeiss). FISH (fluorescence in situ hybridization) was performed with a human X chromosome probe, Cy3-fusion (Cambio, Cambridge, UK) to observe human cells.

1-10. 통계분석(Statistical Analysis)1-10. Statistical Analysis

모든 데이터는 평균 ± 표준오차 또는 표준오차로 요약하였다. 두 그룹사이의 비교를 위해서는 Student’s t-test를 적용하여 분석하였다. 다양한 요소들을 분석하기 위하여 Bonferroni’ 다중 비교 테스트를 적용한 ANOVA를 사용하였다. 통계학적 의미는 p<0.05 의 값에 적용하였다. 모든 통계 분석은 SPSS v 12.0 소프트웨어(SPSS, Inc., Chicago, IL, USA)를 사용하였다.
All data were summarized as mean ± standard error or standard error. Student's t-test was used for comparison between the two groups. In order to analyze various factors, ANOVA with Bonferroni's multiple comparison test was used. Statistical significance was applied to values of p <0.05. All statistical analyzes were performed using SPSS v 12.0 software (SPSS, Inc., Chicago, IL, USA).

실시예 2. 세포 특성 분석Example 2. Cell Characterization

4 내지 6세대의 계대 배양한 세포를 사용한 분석에서 hASCs는 배양시 스핀들 섬유아세포(spindle fibroblast) 유사 형태(morphology)를 나타내었다. FACS 분석을 통하여 hASCs는 중간엽 줄기세포에 특이한 특징을 보여주었는데, CD13, CD29, CD44, CD73, CD105에 대하여 양성이고, CD34, CD45에 대하여 음성이었다.
In the analysis using subcultured cells of the fourth to sixth generations, hASCs showed spindle fibroblast morphology at the time of culture. Through FACS analysis, hASCs showed characteristic features on mesenchymal stem cells, positive for CD13, CD29, CD44, CD73, CD105 and negative for CD34 and CD45.

실시예 2. hASCs/GCP-2 세포의 GCP-2 단백질 발현 분석Example 2. Analysis of GCP-2 protein expression in hASCs / GCP-2 cells

hASCs/GCP-2 세포의 GCP-2 단백질 분비를 확인하기 위하여, ELISA 분석을 수행하였다. GCP-2 바이러스 벡터를 처리한 hASC(hASCs/GCP-2) 세포와 대조군 벡터를 처리한 hASCs(hASCs) 세포를 비교했을 때, GCP-2 단백질의 발현 수준은 hASCs/GCP2 세포에서 훨씬 높게 분석되었다(1343 ± 15 vs. 125 ± 12.4pg/mL; P<0.001, n=7 ).
ELISA analysis was performed to confirm GCP-2 protein secretion in hASCs / GCP-2 cells. The expression level of GCP-2 protein was significantly higher in hASCs / GCP2 cells when compared to hASCs (hASCs / GCP-2) cells treated with GCP-2 viral vectors and hASCs (1343 ± 15 vs. 125 ± 12.4 pg / mL; P <0.001, n = 7).

실시예 3. hASCs/GCP-2 세포의 혈관생성 및 항-세포사멸 특성 분석Example 3. Analysis of angiogenesis and anti-apoptotic properties of hASCs / GCP-2 cells

hASCs/GCP-2 세포의 혈관형성(angiogenic)과 항세포사멸(anti-apoptotic) 특성을 분석하기 위하여, qRT-PCR을 실행하였다. 그 결과, VEGF-A, HGF(hepatocyte growth factor)와 같은 혈관형성 촉진 인자(pro-angiogenic factor)가 hASCs 세포와 비교하여 hASCs/GCP-2 세포에서 높게 발현되었다(각 29.9 및 2.1 배)(도 1A). 또한, 신혈관생성(neovascularization)에 중요한 역할을 하는 IL-8, GCP-2와 같은 케모카인(chemokine)도 크게 상향 조절(up-regulation) 되었다(각 12.5 및 9.0배). 또한, IGF-1, Akt-1 같은 항 세포사멸 인자(anti-apoptotic/cell survival factors)가 대조군과 비교하여 높게 발현되었다(각 254.0 및 3.1 배). qRT-PCR was performed to analyze the angiogenic and anti-apoptotic characteristics of hASCs / GCP-2 cells. As a result, pro-angiogenic factors such as VEGF-A and HGF (hepatocyte growth factor) were highly expressed in hASCs / GCP-2 cells compared with hASCs cells (29.9 and 2.1 times, respectively) 1A). In addition, chemokines such as IL-8 and GCP-2, which play an important role in neovascularization, were also up-regulated (12.5 and 9.0 fold, respectively). In addition, anti-apoptotic / cell survival factors such as IGF-1 and Akt-1 were highly expressed (254.0 and 3.1 times, respectively) in comparison with the control group.

hASCs/GCP-2 세포의 세포보호효과(cytoprotective effect)를 검사하기 위하여, in vitro 세포사멸 분석(apoptosis assay)을 실행하였다. 그 결과, hASCs 세포군과 HUVECs 세포군과 비교하여 hASCs/GCP-2 세포군에서 사멸 세포(apoptotic cell)의 수가 크게 줄어들었다(도 1B). To examine the cytoprotective effect of hASCs / GCP-2 cells, an in vitro apoptosis assay was performed. As a result, the number of apoptotic cells in the hASCs / GCP-2 cell group was greatly reduced compared to the hASCs and HUVECs cell lines (Fig. 1B).

이러한 결과를 바탕으로 hASCs/GCP-2 세포가 혈관형성(angiogenic) 및 항-세포사멸(anti-apoptotic)과 관련된 유전자를 높은 레벨로 발현함을 확인할 수 있었다.
Based on these results, it was confirmed that hASCs / GCP-2 cells express high levels of genes related to angiogenic and anti-apoptotic genes.

실시예 4. hASCs/GCP-2 배양 배지의 세포 이동, 증식, 및 혈류 개선 특성 분석Example 4. Analysis of cell migration, proliferation, and improvement of blood flow in hASCs / GCP-2 culture medium

hASCs/GCP-2 세포로부터 분비된 단백질이 신혈관생성(neovasculogenesis) 과정에서 세포 이동(cell migration)을 촉진시킬 수 있는지 확인하기 위하여, in vitro 상처 분석(scratch assay)를 수행하였다. 실험은 HUVECs, 및 hASCs와 비교하여 수행하였으며, 72시간 후 측정하였다. 분석 결과, hASCs/GCP-2 배지(conditioned media)가 HDF(Human dermal fibroblasts)의 상처 봉합 속도를 크게 증가시킴을 알 수 있었다(20.2 ± 2.1 vs. 37.9 ± 4.9, 50.9 ± 4.6, 각; n=4)(도 2A). 또한 hASCs/GCP-2 배지에서 배양한 섬유아세포(fibroblast)의 증식속도(proliferation rate)가 크게 증가하였다(도 2B).An in vitro scratch assay was performed to determine whether secreted proteins from hASCs / GCP-2 cells could promote cell migration during neovasculogenesis. Experiments were performed in comparison with HUVECs, and hASCs, and measured 72 h later. The hMSCs / GCP-2 conditioned medium significantly increased the rate of wound closure of human dermal fibroblasts (20.2 ± 2.1 vs. 37.9 ± 4.9, 50.9 ± 4.6, n = 4) (Figure 2A). In addition, the proliferation rate of fibroblast cultured in hASCs / GCP-2 medium was greatly increased (FIG. 2B).

다음으로, in vivo 주변분비(paracrine) 메카니즘과 관련되어 있는지를 명확히 하기 위하여, 분비된 단백질의 효과를 IH 마우스 모델(ischaemic hindlimb mouse model)을 사용하여 조사하였다. LDPI 분석 결과, 21일후 hASCs/GCP-2 조정배지를 주사한 다리에서 혈액 순환 속도가 크게 증가하는 것을 확인할 수 있었다.
Next, in order to clarify whether it is associated with the in vivo paracrine mechanism, the effect of the secreted protein was examined using an ischaemic hindlimb mouse model. LDPI analysis showed that blood circulation rate increased significantly in the legs injected with hASCs / GCP-2 conditioned medium after 21 days.

실시예 5. hASCs/GCP-2 세포의 in virto. 혈관내피세포 분화능 분석Example 5 in virto of hASCs / GCP-2 cells. Analysis of endothelial cell differentiation potential

hASCs/GCP-2 세포와 대조군 hASCs 세포의 혈관내피세포 분화 가능성(EC differentiation potential)을 조사하기 위하여, 각각의 세포 타입을 EGM-2 배지에서 배양하였다. To investigate the EC differentiation potential of hASCs / GCP-2 cells and control hASCs cells, each cell type was cultured in EGM-2 medium.

hASCs/GCP-2 세포와 hASCs 세포를 혈관내피세포로 분화시키는 10일째, 상당히 흥미로운 현상을 발견하였다. hASCs/GCP-2 세포와 hASC 세포 모두 긴 튜브 모양의 구조(linear tubular structures)를 형성하였으며, 이것은 이들 세포가 신혈관형성(vasculogenesis)에 기여한다는 사실과 일치한다. On the 10th day of hASCs / GCP-2 and hASCs cells differentiation into vascular endothelial cells, we found a very interesting phenomenon. Both hASCs / GCP-2 and hASC cells formed linear tubular structures, consistent with the fact that these cells contribute to vasculogenesis.

특히, hASCs/GCP-2 세포 투여군에서는 독특한 가지 모양의 구조를 형성하여, 충분히 성숙한 혈관으로 분화되는 것을 관찰할 수 있었다(도 3A). In particular, hASCs / GCP-2 cells were observed to differentiate into fully mature blood vessels by forming a unique egg-shaped structure (FIG. 3A).

이러한 튜브 모양의 세포를 확인하기 위하여, 혈관내피세포에 특이적 마커(EC-specific markers)로 쓰이는 UEA-1 렉틴(lectin)과 KDR(kinase insert domain receptor)를 염색하였다. UEA-1 lectin and KDR (kinase insert domain receptor), which are used as EC-specific markers for vascular endothelial cells, were stained to identify these tubular cells.

면역조직화학(immunocytochemistry) 분석 결과, hASCs/GCP-2 세포 처리군에서 훨씬 많은 수의 혈관내피세포 마커를 확인하였으며, 이러한 결과를 통하여 hASCs/GCP-2 세포가 hASCs 세포와 비교하여 높은 혈관내피세포 분화 능력이 있음을 확인할 수 있었다. As a result of immunocytochemistry analysis, a greater number of vascular endothelial cell markers were identified in the hASCs / GCP-2 cell treated group. These results indicate that hASCs / GCP-2 cells are more potent than vascular endothelial cells And the ability to differentiate was confirmed.

다음으로 혈관내피세로의 분화시 나타나는 혈관내피세포 특이적 유전자 발현(EC-specific gene expression)을 측정하기 위하여, RT-PCR을 수행하였다. 분화하지 않은 상태에서의 hASCs/GCP-2와 hASCs는 eNOS(endothelial nitric oxide synthase)와 Tie-2를 발현하였다. 특히 분화하지 않은 상태에서의 hASCs/GCP-2에서 Tie-2가 높은 레벨로 발현되었다(도 3B 및 3C). hASCs/GCP-2를 혈관내피세포로 분화를 시작한 지 10일 후, vWF(Von Willebrand factor)의 발현이 점차적으로 증가하였다. Next, RT-PCR was performed to measure vascular endothelial cell-specific gene expression (EC-specific gene expression) upon differentiation of vascular endothelial cells. HASCs / GCP-2 and hASCs in the undifferentiated state expressed eNOS (endothelial nitric oxide synthase) and Tie-2. Tie-2 was expressed at high levels in hASCs / GCP-2, particularly in the non-differentiated state (FIGS. 3B and 3C). After 10 days of hASCs / GCP-2 initiation into vascular endothelial cells, vWF (Von Willebrand factor) expression gradually increased.

유전자 발현정도를 정량화 했을 때, 5 내지 15일에 걸쳐 hASCs/GCP-2에서는 eNOS, Tie-2, 및 vWF 발현정도가 아주 높게 측정되었다(도 3C). 이러한 결과를 통하여 hASCs/GCP-2가 혈관내피세포로의 분화에 큰 잠재력을 갖고 있음을 확인할 수 있다.
When the degree of gene expression was quantified, eNOS, Tie-2, and vWF expression levels were highly measured in hASCs / GCP-2 over 5 to 15 days (Fig. 3C). These results indicate that hASCs / GCP-2 has great potential for differentiation into vascular endothelial cells.

실시예 6. MI 모델에서 hASCs/GCP-2 세포의 치료 효과 분석Example 6. Analysis of therapeutic effect of hASCs / GCP-2 cells in the MI model

허혈성 심장(ischaemic heart)에 대한 hASCs/GCP-2 세포의 치료 능력(therapeutic potential)을 조사하기 위하여 우리는 NOD/SCID mice에서 관상동맥 결찰(coronary ligation)을 통하여 심근경색(MI)을 유도하였다. 그리고 심실벽의 경색이 일어난 부위(peri-infarct zone)로 1 × 106의 세포를 주입하였다. 비교를 위하여 대조군(n=15, 각 군별)으로 PBS를 주사하였다. 세포를 이식한 후 4주째에 심장 초음파 검사(echocardiography, ECHO)를 실시하였다.To investigate the therapeutic potential of hASCs / GCP-2 cells for ischaemic heart, we induced myocardial infarction (MI) through coronary ligation in NOD / SCID mice. And 1 × 10 6 cells were injected into the peri-infarct zone of the ventricular wall. For comparison, PBS was injected into the control group (n = 15, each group). Echocardiography (ECHO) was performed at 4 weeks after transplantation.

그 결과, PBS 투여군과 비교하여 hASCs/GCP-2 세포를 주입한 군에서는 좌심실 이완기말 직경(LVEDD)(3.36 ± 0.47 vs. 3.94 ± 0.46mm; P=0.009)과 좌심실 수축기말 직경(LVESD)(2.02 ± 0.47 vs. 2.96 ± 0.41mm; P< 0.001) 값이 감소하는 것으로 나타났다. RESULTS: LVEDD (3.96 ± 0.47 vs. 3.94 ± 0.46 mm; P = 0.009) and LVESD (LVESD) were significantly higher in the hASCs / 2.02 +/- 0.47 vs. 2.96 +/- 0.41 mm; P < 0.001).

또한, hASCs/GCP-2 세포를 주입한 군에서는 각각 hASCs, PBS, 및 GCP-2 중성화 항체 처리 hASCs/GCP-2 세포를 사용한 군 보다 좌심실 박출계수(LVEF) 값이 높게 측정되었다(72.2 ± 7.5 vs. 65.7 ± 3.5%; P=0.022, vs. 48.1 ± 5.0%; P<0.001, vs. 63.1 ± 8.3%; P=0.018). hASCs/GCP-2를 주입한 군은 상처부위가 아물어 면적이 감소되는 것을 측정하는 실험에서도 hASCs 혹은 PBS 주입 군과 비교하여 감소정도가 크게 측정되었다(도 5A). LVEF was also higher in the hASCs / GCP-2 injected group than in the hASCs, PBS, and GCP-2 neutralizing antibody treated hASCs / GCP-2 cells (72.2 ± 7.5 vs P = 0.022, vs. 48.1 + 5.0%, P <0.001, vs. 63.1 + 8.3%, P = 0.018). In the group injected with hASCs / GCP-2, the degree of decrease in the wound area was also measured in comparison with hASCs or PBS-injected group (FIG. 5A).

또한, 경색부위의 경계면에서 혈관 조밀도(vascular density)는 hASCs/GCP-2세포를 주입했을 때, hASCs 혹은 PBS를 주입한 그룹보다 높은 값을 보였다(도 5B).In addition, vascular density at the infarcted interface was higher than that of hASCs / PBS-injected group when hASCs / GCP-2 cells were injected (FIG. 5B).

hASCs/GCP-2 세포를 주입했을 때 심장 회복에 대한 치료 기작을 분석하기 위하여, 우리는 저산소증으로 경색이 일어난 부위에서 세포 괴사 정도를 측정하였다. 사멸 세포(apoptotic cell)는 TUNEL(terminal deoxynucleotidyl transferase mediated dUTPbiotin nick end labelling) 분석을 이용하여 검출하였으며, 대조군과 hASCs/GCP-2 주입군을 3일에 걸쳐 측정하였다. To analyze the mechanism of treatment for heart recovery when hASCs / GCP-2 cells were injected, we measured the degree of cell necrosis at sites of hypoxia-infarct infarction. Apoptotic cells were detected by TUNEL (terminal deoxynucleotidyl transferase mediated dUTPbiotin nick end labeling) assay and the control and hASCs / GCP-2 infusion groups were measured over 3 days.

근육 액틴 단백질(muscle actin)을 염색(triple staining)해서, 사멸세포가 근세포(myocyte)임을 확인하였고, 대조군과 비교하여 hASCs/GCP-2 세포를 주입한 심장에 큰 차이가 있음을 관찰하였다(도 5C). The muscle actin was stained with triple staining to confirm that the apoptotic cells were myocytes and there was a large difference in the hearts injected with hASCs / GCP-2 cells compared to the control group (Fig. 5C).

이러한 결과를 바탕으로, hASCs/GCP-2 세포가 심근경색으로 손상된 심근에 를 이식되어 사용되는 경우, 심장 보호효과(protective effect)가 있음을 확인할 수 있었다.
Based on these results, it was confirmed that a protective effect of hASCs / GCP-2 cells when used in transplantation of myocardial muscle damaged by myocardial infarction was confirmed.

실시예 7. hASCs/GCP-2 세포 이식 후 혈관형성 인자 발현 분석 Example 7. Analysis of angiogenic factor expression after hASCs / GCP-2 cell transplantation

허혈성 심장에 hASCs/GCP-2를 이식한 후에 나타나는 cytokine 발현 변화를 관찰하기 위하여, 마우스에 심근경색을 일으켰다. 그 후 안락사를 실행하고 심장조직을 분리하였다. 그 결과, VEGF-A와 Ang(angiopoietin)-1의 발현 수준이 hASCs/GCP-2 세포를 주입한 군에서 hASCs 세포와 PBS를 주입한 군에 비해 크게 증가함을 확인할 수 있었다(도 5D).
In order to observe changes in cytokine expression after transplantation of hASCs / GCP-2 into the ischemic heart, myocardial infarction was induced in the mouse. Then euthanasia was performed and cardiac tissue was isolated. As a result, the expression levels of VEGF-A and Ang (angiopoietin) -1 were significantly increased in hASCs / GCP-2 cells injected group compared to hASCs cells and PBS injected group (FIG.

실시예 8. hASCs/GCP-2 세포의 생착(engraftment) 및 혈관내피세포 전환분화(EC trans-differentiation) 분석Example 8. Analysis of engraftment and EC trans-differentiation of hASCs / GCP-2 cells

hASCs/GCP-2를 주사하였을 때, 생착(engraftment) 및 생존능(survival potentiai)을 평가하기 위하여, NOD/SCID 마우스를 사용하여 심근경색 모델(MI model)을 만들었다. 1 × 106개의 Dil-표지 세포를 허혈성 심장의 가장자리로 주사하였다. 조직면역분석(immunohistochemistry)으로 확인 결과. hASCs 세포(84.1 ± 54.2)를 처리한 군과 비교하였을 때, hASCs/GCP-2 세포 처리군은 높은 생착율(152.3 ± 52.5)을 보였다(도 6A). 또한 이식된 세포의 생존율을 정량하기 위하여, 허혈성 심장을 효소 처리한 후 유세포 분석(flow cytometric analysis)을 실시하였다. 분석은 세포 이식 후 4주째에 실행하였다. 분석결과 hASCs/GCP-2(0.47±0.28)를 주입한 군에서 hASCs(0.12±0.19) 세포를 처리한 군보다 높은 이식률을 나타내었다. To evaluate engraftment and survival potency when hASCs / GCP-2 was injected, myocardial infarction model (MI model) was constructed using NOD / SCID mouse. 1 x 10 &lt; 6 &gt; dil-labeled cells were injected at the edge of the ischemic heart. Results confirmed by immunohistochemistry. The hASCs / GCP-2 cell treated group had a high engraftment rate (152.3 ± 52.5) (Fig. 6A) when compared to the hASCs cells (84.1 ± 54.2) treated group. In order to determine the survival rate of the transplanted cells, ischemic heart was treated with enzyme and flow cytometric analysis was performed. Analysis was performed at 4 weeks after cell transplantation. The results showed that the hASCs / GCP-2 (0.47 ± 0.28) injected group had a higher graft rate than the hASCs (0.12 ± 0.19) treated group.

다음으로 in vivo에서 hASCs/GCP-2 세포가 혈관내피세포로 분화하는 능력을 평가하기 위하여, 혈관내피세포 단백질 ILB4(isolectin B4)에 대하여 면역염색(immunostaining)을 실시하였다. Dil-표지 세포를 이식한 후 4주째에 Dil과 ILB4에 모두 양성인(double-positive) 세포를 관찰하였다. hASCs 세포를 처리한 군과 비교하여 hASCs/GCP-2 세포를 처리한 허혈성 심장에서 더 많은 수의 세포를 관찰할 수 있었다(4.8 ± 2.1 vs. 1.3 ± 1.2; P= 0.006, n=7)(도 6B). Next, to evaluate the ability of hASCs / GCP-2 cells to differentiate into vascular endothelial cells in vivo, the vascular endothelial cell protein ILB4 (isolectin B4) was subjected to immunostaining. Double-positive cells were observed in both Dil and ILB4 at 4 weeks after transplantation of the dil-labeled cells. A larger number of cells were observed in the ischemic heart treated with hASCs / GCP-2 cells compared to the hASCs treated group (4.8 ± 2.1 vs. 1.3 ± 1.2; P = 0.006, n = 7) 6B).

또한, 삼차원 이미지(Three-dimensional z-stacked images)를 통하여 hASCs/GCP-2 세포가 혈관 구조에 들어가 있음을 확인하였고, 혈관내피세포 마커의 발현도 확인하였다. 이러한 결과는 hASCs/GCP-2 세포가 혈관내피세포로 분화했음을 보여준다(도 6C). Three-dimensional z-stacked images were also used to confirm that hASCs / GCP-2 cells were present in the vascular structure and vascular endothelial marker expression was also observed. These results show that hASCs / GCP-2 cells differentiated into vascular endothelial cells (Fig. 6C).

ILB4를 발현하는 세포가 실제로 이식된 hASCs/GCP-2 세포인지 확인하기 위하여, 인간 X 염색체(human X chromosome)를 이용한 FISH 분석을 실행하였다. FISH analysis using a human X chromosome was performed to confirm whether ILB4-expressing cells were actually transplanted hASCs / GCP-2 cells.

FISH 결과 ILB4 양성 세포가 기증자(human donor)의 것임을 확인함으로써, hASCs/GCP-2 세포가 혈관내피세포로 분화되었음을 확인할 수 있었다. 이러한 결과들을 통하여 hASCs/GCP-2 세포주(cell line)가 높은 생존율과 혈관내피세포로 분화하는 능력이 있음을 확인할 수 있었다.
By confirming that ILB4-positive cells were from human donors by FISH, it was confirmed that hASCs / GCP-2 cells were differentiated into vascular endothelial cells. These results indicate that hASCs / GCP-2 cell line has high survival rate and ability to differentiate into endothelial cells.

Claims (9)

GCP-2(Granulocyte chemotactic protein-2) 유전자를 과발현하는 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs) 또는 그 배양 배지(Conditioned media)의 약제학적 유효량; 및 약제학적으로 허용되는 담체를 포함하는 허혈성 질환 치료용 약제학적 조성물.A pharmaceutically effective amount of adipose-derived mesenchymal stem cells (ASCs) or its conditioned media overexpressing GCP-2 (Granulocyte chemotactic protein-2) gene; &Lt; / RTI &gt; and a pharmaceutically acceptable carrier. 제1항에 있어서, 상기 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs)는 VEGF-A 및 HGF 유전자를 과발현하여 혈관형성을 촉진하는 것을 특징으로 하는 허혈성 질환 치료용 약제학적 조성물.The pharmaceutical composition for treating ischemic diseases according to claim 1, wherein the adipose-derived mesenchymal stem cells (ASCs) overexpress VEGF-A and HGF genes to promote angiogenesis. 제1항에 있어서, 상기 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs)는 IGF-1 및 Akt-1 유전자를 과발현하여 세포사멸을 억제하는 것을 특징으로 하는 허혈성 질환 치료용 약제학적 조성물.The pharmaceutical composition for the treatment of ischemic diseases according to claim 1, wherein the adipose-derived mesenchymal stem cells (ASCs) overexpress the IGF-1 and Akt-1 genes to inhibit apoptosis. 제1항에 있어서, 상기 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs)는 eNOS, Tie-2, 및 vWF 유전자를 과발현하고, 혈관내피세포(endothelial cell)로 분화할 수 있는 것을 특징으로 하는 허혈성 질환 치료용 약제학적 조성물.2. The method according to claim 1, wherein the adipose-derived mesenchymal stem cells (ASCs) are capable of overexpressing eNOS, Tie-2, and vWF genes and differentiating into endothelial cells &Lt; / RTI &gt; or a pharmaceutically acceptable salt thereof. 제1항에 있어서, 상기 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs)는 LVEDD(left ventricular end diastolic diameter) 및 LVESD(Left ventricular end systolic diameter) 값을 감소시키고, LVEF(Left ventricular ejection fraction) 값을 증가시키는 것을 특징으로 하는 허혈성 질환 치료용 약제학적 조성물.The method according to claim 1, wherein the adipose-derived mesenchymal stem cells (ASCs) decrease the left ventricular end diastolic diameter (LVEDD) and the left ventricular end systolic diameter (LVESD) ) &Lt; / RTI &gt; of the compound of formula (I). 제1항에 있어서, 상기 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs)는 허혈성 부위(ischemic area)의 혈관 밀집도(vascular density)를 증가시키는 것을 특징으로 하는 허혈성 질환 치료용 약제학적 조성물.The pharmaceutical composition for the treatment of ischemic diseases according to claim 1, wherein the adipose-derived mesenchymal stem cells (ASCs) increase the vascular density of the ischemic area. 제1항에 있어서, 상기 배지(Conditioned media)는 섬유아세포(fibroblasts)의 증식을 촉진하고, 섬유아세포(fibroblasts)의 상처 봉합을 촉진하며, 혈액 순환 속도를 증가시키는 것을 특징으로 하는 허혈성 질환 치료용 약제학적 조성물.The method of claim 1, wherein the conditioned media promotes proliferation of fibroblasts, promotes wound closure of fibroblasts, and increases blood circulation rate. A pharmaceutical composition. 제1항에 있어서, 상기 허혈성 질환은 허혈성 심장질환, 허혈성 심근경색, 허혈성 심부전, 허혈성 장염, 허혈성 혈관질환, 허혈성 안질환, 허혈성 망막증, 허혈성 녹내장, 허혈성 신부전, 허혈성 뇌졸중 및 허혈성 하지질환으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 허혈성 질환 치료용 약제학적 조성물.The method of claim 1, wherein the ischemic disease is selected from the group consisting of ischemic heart disease, ischemic myocardial infarction, ischemic heart failure, ischemic colitis, ischemic vascular disease, ischemic eye disease, ischemic retinopathy, ischemic glaucoma, ischemic renal failure, ischemic stroke, &Lt; / RTI &gt; or a pharmaceutically acceptable salt thereof. GCP-2(Granulocyte chemotactic protein-2) 유전자를 과발현하는 지방 간엽줄기세포(adipose-derived mesenchymal stem cells, ASCs) 또는 그 배양 배지(Conditioned media)의 약제학적 유효량; 및 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물을 인간을 제외한 동물에 투여하는 단계를 포함하는 허혈성 질환의 치료방법.A pharmaceutically effective amount of adipose-derived mesenchymal stem cells (ASCs) or its conditioned media overexpressing GCP-2 (Granulocyte chemotactic protein-2) gene; And a pharmaceutically acceptable carrier, to an animal other than a human.
KR1020150122964A 2015-08-31 2015-08-31 Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease KR20150107695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150122964A KR20150107695A (en) 2015-08-31 2015-08-31 Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150122964A KR20150107695A (en) 2015-08-31 2015-08-31 Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130083696A Division KR20150009655A (en) 2013-07-16 2013-07-16 Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease

Publications (1)

Publication Number Publication Date
KR20150107695A true KR20150107695A (en) 2015-09-23

Family

ID=54246061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150122964A KR20150107695A (en) 2015-08-31 2015-08-31 Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease

Country Status (1)

Country Link
KR (1) KR20150107695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236131A1 (en) * 2017-06-20 2018-12-27 주식회사 툴젠 Angiopoietin-1- or vegf-secreting stem cell and pharmaceutical composition for prevention or treatment of cardiovascular disease, comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236131A1 (en) * 2017-06-20 2018-12-27 주식회사 툴젠 Angiopoietin-1- or vegf-secreting stem cell and pharmaceutical composition for prevention or treatment of cardiovascular disease, comprising same
JP2020524165A (en) * 2017-06-20 2020-08-13 エヌセイジ コーポレーション Stem cells secreting angiopoietin-1 or VEGF and pharmaceutical composition for preventing or treating cardiovascular disease containing the same

Similar Documents

Publication Publication Date Title
Zhang et al. Enhancing efficacy of stem cell transplantation to the heart with a PEGylated fibrin biomatrix
Kim et al. Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model
CA2504019C (en) Stromal cell-derived factor-1 mediates stem cell homing and tissue regeneration in ischemic cardiomyopathy
CA2688032C (en) Cd34 stem cell-related methods and compositions
US20040161412A1 (en) Cell-based VEGF delivery
US20040131601A1 (en) Injection of bone marrow-derived cells and medium for angiogenesis
AU767402B2 (en) Intramyocardial injection of autologous bone marrow
Liu et al. Lysophosphatidic acid protects mesenchymal stem cells against ischemia-induced apoptosis in vivo
Zeng et al. ILK regulates MSCs survival and angiogenesis partially through AKT and mTOR signaling pathways
WO2005104766A2 (en) Injection of bone marrow-derived conditioned medium for angiogenesis
KR20150009655A (en) Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease
KR20150107695A (en) Compositions comprising adipose-derived mesenchymal stem cell overexpressing gcp-2 gene for treating ischemic disease
US20060051334A1 (en) Injection of bone marrow-derived conditioned medium for angiogenesis
CA2487410C (en) Intramyocardial injection of autologous bone marrow
WO2019027299A2 (en) Pharmaceutical composition for preventing or treating vascular disorders including mesenchymal stem cell expressing hepatocyte growth factor as active ingredient
KR20150009656A (en) Compositions comprising amniotic mesenchymal stem cell for treating ischemic disease
AU2010241483B2 (en) Stromal cell-derived factor-1 mediates stem cell homing and tissue regeneration
KR20150106865A (en) Compositions comprising amniotic mesenchymal stem cell for treating ischemic disease
Ben-Shoshan et al. Constitutive Expression of HIF-1α and HIF-2α in Bone Marrow Stromal Cells Differentially Promote their Pro-angiogenic Properties.
CA2897188A1 (en) Cd34 stem cell-related methods and compositions

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Withdrawal due to no request for examination