KR20150105284A - Alloy compositions for improved adhesion and corrosion rate of the sprayed coating - Google Patents

Alloy compositions for improved adhesion and corrosion rate of the sprayed coating Download PDF

Info

Publication number
KR20150105284A
KR20150105284A KR1020150125557A KR20150125557A KR20150105284A KR 20150105284 A KR20150105284 A KR 20150105284A KR 1020150125557 A KR1020150125557 A KR 1020150125557A KR 20150125557 A KR20150125557 A KR 20150125557A KR 20150105284 A KR20150105284 A KR 20150105284A
Authority
KR
South Korea
Prior art keywords
wire
present
weight
amorphous
corrosion
Prior art date
Application number
KR1020150125557A
Other languages
Korean (ko)
Inventor
김병두
Original Assignee
김병두
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김병두 filed Critical 김병두
Priority to KR1020150125557A priority Critical patent/KR20150105284A/en
Publication of KR20150105284A publication Critical patent/KR20150105284A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous

Abstract

The present invention relates to an alloy composition for a thermal spray coating containing chromium, boron, silicon, nickel, niobium, molybdenum, manganese, an evaporation loss as main ingredients in order to improve attachment performance during spraying and improve corrosion resistance of an attached coating. According to the present invention, the alloy composition for a thermal spray coating composed of 13.2 wt% of Cr, 2.56 wt% of B, 3.71 wt% of Si, 5.59 wt% of Ni, 6.57 wt% of Nb, 0.33 wt% of Mo, 0.73 wt% of Mn, 0.07 wt% of Fe as evaporation conservation, and the balance of Fe.

Description

부착율과 내식성이 향상된 용사피막용 합금조성물{Alloy compositions for improved adhesion and corrosion rate of the sprayed coating}[0001] The present invention relates to an alloy composition for spray coating having improved adhesion rate and corrosion resistance,

본 발명은 크롬, 붕소, 실리콘, 니켈, 니오븀, 몰리브덴, 망간, 증발손실분을 주성분으로 포함함으로써 용사시 부착율을 향상시키고 부착된 피막의 내식성을 개선시키는 용사피막용 합금조성물에 관한 것이다. The present invention relates to an alloy composition for thermal spray coating which contains chromium, boron, silicon, nickel, niobium, molybdenum, manganese, and evaporation loss as main components to improve the deposition rate during spraying and improve the corrosion resistance of the deposited coating.

내마모성 요구를 충족시키기 위해, 종래 마찰을 받으면 비정질로 전이되는 변성합금을 이용하여 코팅층을 형성함으로써, 그 코팅층의 마찰 전이 경화 및 마찰계수 감소효과를 이용하여 내마모성을 향상시킬 수 있도록 하는 기술이 제안되었다. 예를 들어, wire 형태로는 미국 특허 등록번호 제4725512호에는 Fe-Cr-B-계열의 코어드 와이어가 개시되어 있다. 변성합금은 용사라는 공정의 용융분사시 용융금속이 비행하면서 급냉시 일부가 비정질로 응고되지만 마찰에 의해 추가적으로 비결정질 조직으로 변화하기 때문에 고온경도가 높고, 마찰계수가 낮고 내열충격성이 높은 것으로 나타나 고온 마모를 요하는 부분에 널리 사용되고 있다. 그런데 이러한 Fe-Cr-B-계열은 마찰받기 전의 초기 마모에 의해 쉽게 마모되는 단점이 있다. In order to meet wear resistance requirements, a technique has been proposed in which a coating layer is formed using a modified alloy that is transformed into an amorphous material when it is subjected to conventional friction, thereby improving wear resistance using the friction transition curing and friction coefficient reduction effect of the coating layer . For example, in the form of a wire, U.S. Patent No. 4725512 discloses a Fe-Cr-B-based core wire. In the modified alloy, when the molten metal is sprayed during the process of spraying, part of the molten metal solidifies as amorphous during quenching while it is changed into amorphous structure by friction, so that it has a high temperature hardness, a low coefficient of friction and a high thermal shock resistance, Is widely used. However, such a Fe-Cr-B-based alloy has a disadvantage that it is easily worn out due to initial wear before friction.

이러한 초기 마모 단점을 해결하기 위해 예를 들어 국내 특허 등록번호 제10-0499820호에는 붕화물 강화 변성합금계의 코어드 와이어가 제안된 바 있다. 그런데, 이 붕화물 강화 변성합금계의 경우에는 초기 마모에 대한 내마모성이 향상된 효과가 있으나, 부착성이 나쁘고 수용액속에서 부식이 발생하는 문제가 발생하였다.In order to solve such shortcomings of wear and tear, for example, Korean Patent Registration No. 10-0499820 has proposed a cored wire having a boride-modified modified alloy system. However, in the case of the boron-modified modified alloy system, the abrasion resistance against the initial abrasion was improved, but the adhesion was poor and the corrosion occurred in the aqueous solution.

더욱이 이들 미국 특허 등록번호 제4725512호의 Fe-Cr-B-계열과 국내 특허 등록번호 제10-0499820호의 비정질계 둘 모두 부착율이 40-50%정도로서 낭비가 심하고 고온 환경이나 수용액에서 부식성이 떨어진다는 단점이 있었다. In addition, both of the Fe-Cr-B series of US Patent No. 4725512 and the amorphous alloy of Korean Patent Registration No. 10-0499820 both have a high deposition rate of about 40-50% and are highly wasteful and deteriorate in a high temperature environment or an aqueous solution There were disadvantages.

분말형태로는 국내특허 10-0690281, 10-0974806 10-0974807 등이 있으며 10-0690281의 경우는 용사처리 하여 피막을 만들었을 때 경도가 Hv 600-700 에 불과하면서도 내식성이 부족하여 물속에서도 부식되는 단점이 있었다. 결정질의 경우 입내와 입내의 편석부분, 입계의 전위차가 각각 다르므로 부식 환경이 되면 쉽게 부식이 진행되지만, 비정질의 경우에는 입계 및 편석이 없고 전체가 균질의 불안정한 상태가 되어 곧바로 완전한 부동태피막을 형성하여 부식을 차단하므로 내부식성이 매우 뛰어나다. 그러나 100% 비정질로 전이시키는 공정은 없고, 일부는 결정질로 남게 되며, 그 잔류 결정부분이 부식의 요인이 되고 있다. 10-0690281은 지나치게 비정질에만 의존하는 경우로서 잔류 결정질 부분이 부식에 취약하게 된 것으로 추정된다.10-0690281, 10-0974806 10-0974807, etc. in the form of powders and 10-0690287 in case of 10-0690281, the hardness is only Hv 600-700 when the coating is formed by spraying, but the corrosion resistance is insufficient, There were disadvantages. In the case of crystalline, the corrosion is easily progressed in the corrosive environment because the potential difference between the grain and the segregation part and the grain boundary in the mouth are different from each other. However, in the case of amorphous, there is no grain boundary and segregation and the whole becomes homogeneous unstable state, So that corrosion resistance is very excellent. However, there is no process of transition to 100% amorphous, some remain as crystalline, and the residual crystal part becomes a cause of corrosion. 10-0690281 suggests that the residual crystalline portion is vulnerable to corrosion when it is excessively dependent on amorphous.

10-0974806, 10-0974807 은 경도가 Hv900-1000으로 높았고 보호윤활류 속에서는 마찰계수도가 극히 낮아 내마모 저마찰용으로는 우수하였으나 물속에서는 10-0974806 과 같이 부식되는 단점이 있었다. 그러므로 잔류결정질 부분도 내식성을 구비하게 할 필요가 있다. 이들 분말형태의 경우 부착율이 38%정도로서 비용 상승의 요인이 되는 단점도 있었다. 비정질과 결정질이 혼합되면 내마모성이 더 유리해 지는 경우도 있으나 내부식성에는 문제가 생기기도 한다. 10-0974806 and 10-0974807 showed high hardness of Hv900-1000 and low coefficient of friction in protective lubrication was excellent for wear resistance and low friction but it was corroded like 10-0974806 in water. Therefore, the residual crystalline portion also needs to have corrosion resistance. In the case of these powder forms, the deposition rate is about 38%, which is a disadvantage in cost increase. A mixture of amorphous and crystalline may be more advantageous in terms of abrasion resistance, but may also cause problems in corrosion resistance.

본 발명은 상술한 종래 기술의 문제점을 해결하고 여러 가지 다른 장점들을 추가하기 위하여 안출된 것으로서, 특히 용융되었다가 피사체에 부착 응고시 비정질로 변성되는 피막제에 있어서 크롬, 붕소, 실리콘, 니켈, 니오븀, 몰리브덴 및 망간을 주성분으로 포함함으로써 용융상태에서 적심성이 좋아 부착율이 개선되고, 고온산화 분위기나 수용액속에서 내식성이 향상되도록 하여 가혹한 마모 및 부식 환경에서 뛰어난 새로운 내식성이 향상된 용사피막용 합금조성물을 제공하는 것을 그 목적으로 한다.The present invention has been made to solve the above-mentioned problems of the prior art and to add various other advantages, and in particular, it is an object of the present invention to provide a film forming apparatus, Molybdenum and manganese as main components to improve the adhesion rate in the molten state and improve the corrosion resistance in a high temperature oxidizing atmosphere or in an aqueous solution to thereby provide an alloy composition for a thermal spray coating which is improved in corrosion resistance and in corrosion resistance, The purpose is to provide.

상기 목적은 본 발명에 따라 제공되는 용사피막용 합금조성물은 크롬(Cr) 13.2 중량%, 붕소(B) 2.56 중량%, 실리콘(Si) 3.71 중량%, 니켈(Ni) 5.59 중량%, 니오븀(Nb) 6.57 중량%, 몰리브덴(Mo) 0.33 중량%, 망간(Mn) 0.73 중량%, 증발보전분(Va)으로 철(Fe) 0.07 중량%, 나머지 잔량으로 철(Fe)로 이루어진 것을 특징으로 한다.The above object is achieved by the alloy composition for thermal spray coating according to the present invention, which comprises 13.2% by weight of chromium (Cr), 2.56% by weight of boron (B), 3.71% by weight of silicon (Si), 5.59% by weight of nickel (Ni) (Fe) as evaporation preservative (Va), 0.07% by weight of iron (Fe), and the remaining balance of iron (Fe).

본 발명의 실시예들에 따른 코어드 와이어를 제조하여 용사피막 코팅 처리하면 부착율이 80%정도로 개선되고 피막의 비커스 경도가 1,000 ~ 1,300Hv인 것을 특징으로 하는 보일러 수관이 제공될 수 있다.A boiler water pipe may be provided wherein the adhesion rate is improved to about 80% and the Vickers hardness of the coating is 1,000 to 1,300 Hv when the cored wire according to the embodiments of the present invention is manufactured and spray coated.

상술한 구성을 가지는 본 발명에 따른 코어드 와이어나 분말을 제조하여 이것을 용사공정을 이용하여 피막을 형성시키면 부착율의 증가뿐만 아니라 고온산화분위기 및 수용액에 대한 내식성이 향상되도록 하여 가혹한 마모 환경과 부식 환경에서도 모재를 보호하는 등의 현저한 효과가 있다.When the core wire or powder according to the present invention having the above-described constitution is formed and the coating is formed using the spraying process, the adhesion rate is increased and the corrosion resistance to the high temperature oxidizing atmosphere and the aqueous solution is improved, There is a remarkable effect such as protecting the base material in the environment.

도 1은 본 발명의 일 실시예에 따른 비정질계 코어드 와이어(Wire 3)와, 종래의 코어드 와이어(Wire 2, Wire 1)를 사용하여 만든 피막시편의 X-선 회절 분석 결과를 개별도(a) 및 합체도(b)로서 비교하여 보여주는 그래프.
도 2는 본 발명의 일 실시예에 따른 내식성이 향상된 코어드 와이어(Wire 3)와, 종래의 코어드 와이어(Wire 2, Wire 1)의 시편을 만들어 내식성 실험 결과를 보여주는 표면 비교 사진.
도 3은 본 발명의 일 실시예에 따른 코어드 와이어(Wire 3)와, 종래의 코어드 와이어(Wire 2, Wire 1)의 시편을 만들어 내식성 실험에서 동전위 분극시험을 통해 부식거동을 비교하여 보여주는 그래프.
도 4는 본 발명의 일 실시예에 따른 코어드 와이어(Wire 3)와, 종래의 코어드 와이어(Wire 2, Wire 1)의 시편을 만들어 내식성 실험에서 고온부식(고온산화)를 통해 부식거동을 비교하여 보여주는 그래프.
FIG. 1 is a graph showing X-ray diffraction analysis results of an amorphous core wire (Wire 3) according to an embodiment of the present invention and a conventional coating wire made of a cored wire (Wire 2, Wire 1) (a) and the cohesion diagram (b).
Fig. 2 is a surface comparison photograph showing corrosion resistance test results of a cored wire having improved corrosion resistance according to an embodiment of the present invention and a conventional cored wire (Wire 2, Wire 1).
FIG. 3 is a graph illustrating the corrosion behavior of the conventional cored wire (Wire 3) and conventional cored wire (Wire 2, Wire 1) according to an embodiment of the present invention, Showing graph.
FIG. 4 is a graph showing the corrosion behavior of high-temperature corrosion (high-temperature oxidation) test of cored wire according to an embodiment of the present invention and conventional cored wire (Wire 2, Wire 1) Graph showing comparison.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 청구범위에 의해 한정된다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. And are intended to fully inform the person skilled in the art the scope of the invention and are defined by the claims of the invention.

본 발명의 실시 예를 설명함에 있어 이미 공지되어 있는 기능이나 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. The following terms are defined in consideration of the functions in the embodiments of the present invention, which may vary depending on the intention of the user, the intention or the custom of the operator. Therefore, the definition should be based on the contents throughout this specification.

이하 본 발명의 구체적인 실시예에 따른 부착성 및 내식성이 향상된 코어드 와이어를 설명한다.Hereinafter, a core wire having improved adhesion and corrosion resistance according to a specific embodiment of the present invention will be described.

미국 특허 등록번호 제4725512호에 개시된 종래의 와이어가 철(Fe), 크롬(Cr), 붕소(B), 실리콘(Si), 및 망간(Mn)을 포함하여 구성되고, 국내 특허 등록번호 제10-0499820호에 개시된 종래의 와이어가 철(Fe), 크롬(Cr), 붕소(B), 실리콘(Si), 몰리브덴(Mo) 및 망간(Mn)을 포함하여 구성되는 것에 비하여, 본 발명에 따른 내식성이 향상된 비정질 피막제조용 합금 조성물, 이로 제조된 코어드 와이어, 또는 분말은 철(Fe), 크롬(Cr), 붕소(B), 실리콘(Si), 니켈(Ni), 니오븀(Nb), 몰리브덴(Mo) 및 망간(Mn)을 포함하여 구성된다는 것을 특징으로 한다. 본 발명에 따른 코어드 와이어는 종래의 코어드 와이어들에 비해 니켈(Ni) 및 니오븀(Nb)이 더 포함되는데, 그 성분 함량은 인성, 부착력, 및 내식성이 향상되도록 결정될 수 있다. The conventional wire disclosed in U.S. Patent No. 4725512 includes iron (Fe), chromium (Cr), boron (B), silicon (Si), and manganese (Mn) (B), silicon (Si), molybdenum (Mo) and manganese (Mn) in comparison with the conventional wire disclosed in JP-A-0499820, An alloy composition for the production of an amorphous film having improved corrosion resistance, a cored wire or a powder made of the same is characterized by containing at least one of Fe, Cr, B, Si, Ni, (Mo) and manganese (Mn). The core wire according to the present invention further includes nickel (Ni) and niobium (Nb) compared to conventional core wires, and the component content thereof can be determined so as to improve toughness, adhesion, and corrosion resistance.

본 발명의 구체적인 일실시예의 코어드 와이어는 철(Fe) 46.5~79.9 중량%, 크롬(Cr) 10~25 중량%, 붕소(B) 1.0~5.0 중량%, 실리콘(Si) 1.5~5.0 중량%, 니켈(Ni) 3.0~7.0 중량%, 니오븀(Nb) 4.0~8.0 중량%, 몰리브덴(Mo) 0.1~1.5 중량%, 망간(Mn) 0.5~2.0 중량%을 포함하여 구성될 수 있다. 한편 용사 공정으로 피막을 형성하는 경우에는 증발보전량(Va)로 전술한 총중량에 대하여 0∼5 중량부로 더 포함될 수 있다. 본 발명의 합금 조성물, 이러한 합금 조성물로 제조된 코어드 와이어, 이러한 합금 조성물로 제조된 분말 등을 을 구성하는 원소들의 특징을 살펴보면 다음과 같다.The core wire of the embodiment of the present invention comprises 46.5 to 79.9 wt% of iron (Fe), 10 to 25 wt% of chromium (Cr), 1.0 to 5.0 wt% of boron (B) 3.0 to 7.0% by weight of nickel, 4.0 to 8.0% by weight of niobium, 0.1 to 1.5% by weight of molybdenum and 0.5 to 2.0% by weight of manganese (Mn). On the other hand, when the coating is formed by the spraying process, the evaporation preservation amount (Va) may be further included in the range of 0 to 5 parts by weight based on the total weight. Elements constituting the alloy composition of the present invention, the cored wire made of such an alloy composition, the powder made of such an alloy composition and the like are as follows.

1) 철(Fe) : 본 발명에 따라 기재(matrix)를 이루는 성분으로서, 다른 성분들의 함량에 따라 약 46.5 ~ 79.5 중량%를 함유할 수 있다.1) Iron (Fe): As a component of the matrix according to the present invention, it may contain about 46.5 to 79.5% by weight, depending on the contents of other components.

2) 크롬(Cr) : 일반적으로 비정질 합금은 매우 빠른 냉각속도에 의하여 생성되지만 크롬은 Cr-Fe-B 화합물의 비정질 형성능을 향상시키면서 합금 표면에 Cr2O3와 FeOCr2O3등과 같은 내산화성인 크롬 화합물을 형성하여 높은 강도와 함께 Fe의 산화물 생성을 억제하여 변성합금의 내산화성을 확보하는 역할을 한다. 이러한 크롬은 본 발명에 따라 10 ~ 25 중량%의 함량비로 첨가되는 것이 바람직하고, 더 바람직하게는 10 ~ 17 중량%를 함유할 수 있다. 크롬이 10 중량% 미만으로 첨가될 경우, 크롬 첨가 효과를 충분히 발휘할 수 없으며, 크롬이 25 중량%를 초과할 경우 고 크롬강의 효과로 α-Fe상 생성을 촉진하여 비정질화에 방해가 되어 바람직하지 못하다.2) Chromium (Cr): Generally, amorphous alloys are produced at a very fast cooling rate, but chromium improves the amorphous formability of Cr-Fe-B compounds and has oxidation resistance such as Cr 2 O 3 and FeOCr 2 O 3 Chromium compounds are formed so as to inhibit the generation of oxides of Fe along with high strength, thereby securing the oxidation resistance of the modified alloy. According to the present invention, such chromium is preferably added at a content ratio of 10 to 25% by weight, more preferably 10 to 17% by weight. When chromium is added in an amount of less than 10% by weight, the effect of adding chromium can not be sufficiently exhibited. When chromium exceeds 25% by weight, the effect of high chromium steel promotes the formation of? -Fe phase, Can not do it.

3) 붕소(B) : 붕소는 본 발명에 따른 코어드 와이어의 코어용 분말에 첨가되어 내마모성을 증가시키고, 결정질-비정질 변태를 결정하는 역할을 한다. 상기 붕소는 1.0 ~ 5.0 중량%로 포함되는 것이 바람직하다. 붕소의 함량이 1.0 중량% 미만일 경우 상기의 첨가 효과를 얻을 수 없고, 5.0 중량%를 초과할 경우에는 붕화물이 다량 생성됨에 따라 내식성이 약화되고 취성이 증대되는 문제점이 있다.3) Boron (B): Boron is added to the core powder of the cored wire according to the present invention to increase the wear resistance and determine the crystalline-amorphous transformation. The boron is preferably contained in an amount of 1.0 to 5.0% by weight. If the content of boron is less than 1.0 wt%, the above-mentioned effect can not be obtained. If the boron content exceeds 5.0 wt%, a large amount of boride is produced, which results in weak corrosion resistance and increased brittleness.

4) 실리콘(Si) : 실리콘은 내산화성을 향상시키고, 비정질상 형성을 조장하는 역할을 한다. 상기 실리콘은 1.5 ~ 5.0 중량%로 첨가되는 것이 바람직하다. 실리콘이 1.5 중량% 미만으로 첨가될 경우 상기의 내산화성 향상 및 비정질상 형성 조장 효과를 기대하기 어렵고, 5.0 중량%를 초과할 경우에는 내산화성 수명이 더 이상 길어지지 않고, 오히려 Fe2Si, Fe3Si 등의 화합물을 형성하여 바람직하지 못한 문제점이 있다.4) Silicon (Si): Silicon improves oxidation resistance and promotes amorphous phase formation. The silicon is preferably added in an amount of 1.5 to 5.0% by weight. If when silicon is added in less than 1.5% by weight, it is difficult to expect the above-described oxidation resistance improved and the amorphous phase formation promoting effect, more than 5.0% by weight, but not the oxidation resistance life longer increases, rather Fe 2 Si, Fe 3 Si or the like is formed, which is an undesirable problem.

5) 니켈(Ni) : 니켈은 철이 α-Fe 형성하는 것을 방해하여 비정질상 형성을 도와주는 역할을 한다. 니켈은 합금용 조성물 전체 중량의 3.0 ~ 7.0 중량%로 첨가되는 것이 바람직하다. 이러한, 니켈은 적심성을 좋게 하여 부착성이 크게 개선되는 이점이 있다. 니켈이 3.0 중량% 미만으로 첨가될 경우 상기의 효과를 기대하기 힘들고, 7.0 중량%를 초과할 경우에는 철이 γ-Fe상이 형성되어 비정질상 형성을 기대하기 힘든 문제점이 있다.5) Nickel (Ni): Nickel interferes with the formation of α-Fe by iron, thus helping to form amorphous phase. Nickel is preferably added in an amount of 3.0 to 7.0% by weight based on the total weight of the alloy composition. Such nickel has an advantage of improving the wettability and greatly improving the adhesion. When nickel is added in an amount of less than 3.0 wt%, the above effect is difficult to be expected. When the nickel content is more than 7.0 wt%, iron is formed in a γ-Fe phase.

6) 니오븀(Nb) : 니오븀은 비정질상 형성을 확보하고 내산화성을 확보하는 역할을 한다. 이러한, 니오븀은 적심성을 좋게 하여 부착성이 크게 개선되는 이점이 있다. 니오븀은 철계 비정질 합금에서 산소와 쉽게 결합하여 NbO2, Nb2O5와 같은 산화물이 형성되는데 니오븀 산화물은 크롬산화물에 비하여 내산화성이 매우 우수하다. 니오븀은 4.0 ~ 8.0 중량% 첨가되는 것이 바람직하다. 니오븀이 4.0 중량% 미만으로 첨가될 경우 상기의 효과를 기대하기 힘들고, 8.0 중량%를 초과할 경우에는 비정질상 형성을 기대하기 힘들다.6) Niobium (Nb): Niobium plays a role in ensuring formation of amorphous phase and ensuring oxidation resistance. Such niobium has an advantage of improving the wettability and greatly improving the adhesion. Niobium is easily combined with oxygen in an iron-based amorphous alloy to form oxides such as NbO 2 and Nb 2 O 5. The niobium oxide is superior in oxidation resistance to chromium oxide. It is preferable that 4.0 to 8.0 wt% of niobium is added. When niobium is added in an amount of less than 4.0 wt%, the above effects are hardly expected. When it is more than 8.0 wt%, amorphous phase formation is difficult to expect.

7) 몰리브덴(Mo) : 몰리브덴은 경질입자를 구성하여 내마모성을 향상시키는 역할을 한다. 몰리브덴은 0.1 ~ 1.5 중량%로 첨가되는 것이 바람직하다. 몰리브덴(Mo)이 0.1 중량% 미만으로 첨가되면 몰리브덴(Mo) 첨가에 따른 내마모성 향상 효과가 불충분하며, 반대로 1.5 중량%를 초과하면 이형성이 좋아지나, 적심성이 나빠져 부착성 저하를 가져와 바람직하지 못하다.7) Molybdenum (Mo): Molybdenum constitutes hard particles and improves abrasion resistance. The molybdenum is preferably added in an amount of 0.1 to 1.5% by weight. If molybdenum (Mo) is added in an amount of less than 0.1% by weight, the effect of improving the wear resistance due to the addition of molybdenum (Mo) is insufficient. Conversely, if the Mo content exceeds 1.5% by weight, the releasability is improved but the wettability is deteriorated, .

8) 망간(Mn) : 망간(Mn)은 비정질상을 안정화시키는 역할을 한다. 상기 망간(Mn)은 0.5 ~ 2.0 중량%로 첨가되는 것이 바람직하다. 그 이유는 망간(Mn)이 0.5 중량% 미만으로 첨가되는 경우, 망간(Mn) 첨가 효과를 얻을 수 없으며, 2.0 중량%를 초과하여 첨가되는 경우, 내산화성이 저하되는 문제점이 있다.8) Manganese (Mn): Mn (Mn) serves to stabilize the amorphous phase. The manganese (Mn) is preferably added in an amount of 0.5 to 2.0 wt%. If manganese (Mn) is added in an amount of less than 0.5% by weight, the effect of adding manganese (Mn) can not be obtained, and if it exceeds 2.0% by weight, oxidation resistance is deteriorated.

9) 증발성분(Va) : 합금조성물, 코어드 와이어, 또는 분말에는 용융에서 응고되는 사이 산화를 방지하고는 증발되는 성분과, 상기 필수조성 중에도 일부는 용융시간 길이에 따라 증발되거나 반응하여 피막층 속에 잔류하지 못하여 소기 조성의 피막을 이루지 못하게 되는 경우가 많다. 그러므로 증발보전량을 전술한 합금조성물의 전체중량에 대하여 0~5중량부 범위로 제한하여 추가하는 것이 바람직하다. 이러한 증발보전분에는 크롬(Cr), 보론(B), 니오븀(Nb), 몰리브덴(Mo), 티타늄(Ti), 인(P), 탄소(C) 등을 포함한다. 이때, 티타늄, 인, 탄소는 증발보전분으로 혼합되는 원소들을 잡아두기 때문에 증발되는 것을 최소화되도록 사용된다. 이때, 분말을 용융시키지 않는 소결 등 증발손실이 없는 공정을 경유할 때는 증발보전량을 사용하지 않는다.9) Evaporation component (Va): In the alloy composition, cored wire, or powder, a component that evaporates and prevents oxidation during coagulation in the melt, and a part of the essential composition is evaporated or reacted according to the melting time length, It is not possible to form a film of a desired composition because it is not remained. Therefore, it is preferable to add the vaporization preservation amount in the range of 0 to 5 parts by weight based on the total weight of the above-described alloy composition. Such evaporation preservatives include chromium (Cr), boron (B), niobium (Nb), molybdenum (Mo), titanium (Ti), phosphorus (P), carbon (C) and the like. At this time, titanium, phosphorus, and carbon are used to minimize evaporation because they trap the elements that are mixed with the evaporation preservative. At this time, the evaporation preservation amount is not used when passing through a process without evaporation loss such as sintering which does not melt the powder.

본 발명의 코어드 와이어를 이용하여 아크용사 부착시키면 부착효율이 80%정도로 개선되고 부착피막층의 비커스 경도가 1,000~1,300Hv 되는 고경도 피막을 얻을 수 있다. When the cored wire of the present invention is used to apply arc spraying, it is possible to obtain a hard coating having an adhesion efficiency of about 80% and a Vickers hardness of 1,000 to 1,300 Hv in the adhesive coat layer.

이하에서는, 본 발명의 구체적인 실시예에 대해 설명한다.Hereinafter, a specific embodiment of the present invention will be described.

1. 시료의 제작1. Preparation of sample

본 발명의 특징을 설명하기 위하여, 아래 표 1에 기재한 바와 같이, 종래의 비정질 특성을 갖는 코어드 와이어, 즉 미국 특허 등록번호 제4725512호에 개시된 종래의 와이어(Wire 1), 및 국내 특허 등록번호 제10-0499820호에 개시된 종래의 와이어(Wire 2), 본 발명의 일 실시예에 따른 코어드 와이어(Wire 3), 및 이들을 이용하여 그 표면을 코팅 처리한 보일러 수관의 물리적 및 화학적 특성을 비교하여 설명한다. 아래 표 1에서 숫자는 각 성분의 함량비(중량%)를 나타낸다.In order to explain the characteristics of the present invention, as shown in the following Table 1, a core wire having a conventional amorphous characteristic, that is, a conventional wire (Wire 1) disclosed in U.S. Patent No. 4725512, No. 10-0499820, the cored wire (Wire 3) according to one embodiment of the present invention, and the physical and chemical properties of a boiler water tube coated with the surface thereof using these wires . The numbers in Table 1 below represent the content ratio (wt%) of each component.

시료명Name of sample FeFe CrCr SiSi BB CC NiNi NbNb MoMo MnMn 비고Remarks Wire 1Wire 1 6868 26.2126.21 1.381.38 3.373.37 0.0830.083 -- -- -- 1.151.15 종래Conventional Wire 2Wire 2 71.471.4 22.7722.77 1.281.28 1.871.87 1.021.02 -- -- 0.710.71 0.830.83 종래Conventional Wire 3Wire 3 67.2467.24 13.213.2 3.713.71 2.562.56 0.070.07 5.595.59 6.576.57 0.330.33 0.730.73 본발명Invention

2. 상분석2. Phase analysis

위 표 1에 나타나는 화학적 조성을 가지는 시료 Wire 1, Wire 2, Wire 3를 이용하여 보일러 수관의 표면에 코팅 처리를 하여, 비정질 합금층으로 이루어진 보일러 수관 보호 코팅층을 형성하였으며, 이 비정질 합금층에 대하여 X-선 회절 분석을 통해 상분석을 하였다. 그 결과가 도 1의 그래프로 나타나 있다.The surface of the boiler water tube was coated with the samples 1, 2, and 3 having the chemical composition shown in Table 1 above to form a protective coating layer for the boiler water pipe made of an amorphous alloy layer. In this amorphous alloy layer, X Ray diffraction analysis. The results are shown in the graph of FIG.

도 1을 참조하면 알 수 있는 바와 같이, 종래의 Wire 1의 경우 다른 제품 즉 Wire 2 및 Wire 3에 비하여 α-Fe상이 크게 관찰되었는데 이것은 크롬함량이 다른 제품에 비교하여 많이 함유되어 있는 것에 기인한다. 크롬 성분이 다량 함유 되면 상기와 같은 결과를 초래하여 비정질상 형성을 방해하게 된다. 또한 Wire 1의 경우 다른 제품에 비하여 붕화물상이 많이 검출되었는데 이것은 붕소(B) 함량이 다른 제품에 비하여 다량 함유 되어 있기 때문이다. 붕소(B)가 기준치 이상의 성분이 함유되면 붕화물이 형성되어 경도는 향상되나 취성이 증가하는 단점을 갖고 내산화성을 확보가 어려운 단점이 있다As can be seen from FIG. 1, in the case of the conventional wire 1, a larger amount of the? -Fe phase than the other products, that is, the wire 2 and the wire 3, is observed. This is because the chromium content is much contained . When the chromium component is contained in a large amount, the above-mentioned result is obtained and the formation of the amorphous phase is prevented. In addition, in the case of Wire 1, more boride phase was detected than in other products because the content of boron (B) is larger than that of other products. If the boron (B) content is higher than the reference value, a boride is formed to improve the hardness, but the brittleness is increased, and it is difficult to ensure oxidation resistance

한편 종래의 Wire 2의 경우 다른 제품에 비하여 탄화물이 다량 형성된 것을 알 수 있다. 이것은 탄소함량이 1.0 중량% 이상 함유되어 있기 때문이다. 탄소함량이 1.0 중량% 이상 함유되면 비정질상 형성을 확보할 수 있으나 탄화물이 형성되면 내산화성이 떨어지는 단점이 있다.On the other hand, in the case of the conventional wire 2, it can be seen that a large amount of carbide is formed as compared with other products. This is because the carbon content is 1.0 wt% or more. When the carbon content is 1.0 wt% or more, formation of amorphous phase can be ensured, but oxidation resistance is deteriorated when carbide is formed.

그러나 본 발명의 Wire 3의 경우 탄소함량이 1.0 중량% 이하로 제어함으로써 다른 제품에 비하여 인성, 부착율, 내식성이 향상되면서 비정질상이 많이 형성되었기 때문에 기계적 특성이 향상되고, 붕화물 및 탄화물 형성이 현저히 적게 이루어져 있기 때문에 내산화성이 우수하다는 것을 알 수 있다.However, in the case of Wire 3 of the present invention, by controlling the carbon content to 1.0 wt% or less, toughness, adhesion rate and corrosion resistance are improved as compared with other products, and a large amount of amorphous phase is formed. Thus, mechanical properties are improved, and boride and carbide formation It can be understood that the oxidation resistance is excellent.

3. 경도 특성3. Hardness characteristics

시료명Name of sample 1차 측정Primary measurement 2차 측정Secondary measurement 3차 측정Third measurement 4차 측정Fourth measurement 5차 측정5th measurement 평균Average Wire 1Wire 1 10021002 959959 10881088 966966 10321032 1009.41009.4 Wire 2Wire 2 10721072 11141114 11861186 11681168 12771277 1163.41163.4 Wire 3Wire 3 11821182 13551355 11831183 12531253 11131113 1217.21217.2

위의 표 2에는 위 표 1에 기재된 시료 Wire 1, Wire 2, Wire 3를 이용하여 보일러 수관의 표면에 코팅 처리를 하여, 비정질 합금층으로 이루어진 보일러 수관 보호 코팅층을 형성하였으며, 이 비정질 합금층에 대하여 비커스 경도를 측정한 결과가 나타나 있다. 표 2에서 숫자는 비커스 경도(Hv)를 나타낸다.In Table 2, the surface of the boiler water tube was coated with the samples Wire 1, Wire 2, and Wire 3 shown in Table 1 above to form a protective coating layer of a boiler water pipe made of an amorphous alloy layer. In this amorphous alloy layer The results of measuring the Vickers hardness are shown. The numbers in Table 2 represent Vickers hardness (Hv).

표 2에서 알 수 있는 바와 같이, 본 발명의 Wire 3의 경우 종래의 와이어들에 비하여 비정질상이 많이 형성되기 때문에 경도 특성이 향상되었음을 알 수 있다.As can be seen from Table 2, the wire 3 of the present invention shows much improved hardness characteristics because a larger amount of amorphous phase is formed than conventional wires.

4. 내식성(내산화성)4. Corrosion resistance (oxidation resistance)

도 2는, 위 표 1의 Wire 1, Wire 2, Wire 3를 이용하여 보일러 수관의 표면에 코팅 처리를 하여, 비정질 합금층으로 이루어진 보일러 수관 보호 코팅층을 형성하고, 이 코팅된 보일러 수관을 3.5% NaCl 수용액에 담가서 시간에 따라 그 표면 즉 비정질 합금층의 부식 정도를 관찰한 결과를 보여준다.FIG. 2 is a graph showing the results of coating a surface of a boiler water tube using Wire 1, Wire 2, and Wire 3 shown in Table 1 above to form a protective coating layer of a boiler water pipe made of an amorphous alloy layer, NaCl aqueous solution and the surface of the amorphous alloy layer was observed with time.

도 2에서 볼 수 있는 바와 같이, 약 72시간이 경과한 후에 본 발명의 Wire 3는 표면에 철산화물이 생성되지 않았음을 알 수 있었다. 이것은 본 발명의 Wire 3가 다른 제품들에 비하여 내식성이 우수한 것임을 알 수 있다.As can be seen in FIG. 2, after about 72 hours had elapsed, it was found that the wire 3 of the present invention did not produce iron oxide on the surface. This shows that Wire 3 of the present invention is superior in corrosion resistance to other products.

5. 부식거동(동전위 분극시험)5. Corrosion behavior (co-electrification test)

시료명Name of sample 부식 전위 (eV)Corrosion potential (eV) 부식 전류 (A/㎠)Corrosion current (A / cm2) Wire 1Wire 1 - 0.42- 0.42 2.78 ㅧ 10-6 2.78 ㅧ 10 -6 Wire 2Wire 2 - 0.55- 0.55 4.65 ㅧ 10-6 4.65 ㅧ 10 -6 Wire 3Wire 3 - 0.43- 0.43 1.34 ㅧ 10-6 1.34 ㅧ 10 -6

도 3은, 위 표 1의 Wire 1, Wire 2, Wire 3를 이용하여 보일러 수관의 표면에 코팅 처리를 하여, 비정질 합금층으로 이루어진 보일러 수관 보호 코팅층을 형성하고, 이 코팅된 보일러 수관을 3.5% NaCl 수용액에 담근 후 수용액 내에서 동전위 분극시험을 통해 부식거동을 관찰한 결과를 보여준다. 이 동전위 분극시험에서 측정된 부식 전위(eV) 및 부식 전류(A/㎠)는 위 표 3에 기재되어 있는 것과 같다.FIG. 3 is a graph showing the results of coating the surface of a boiler water tube using Wire 1, Wire 2, and Wire 3 of Table 1 above to form a protective coating layer of a boiler water pipe made of an amorphous alloy layer, NaCl solution, and then observed the corrosion behavior through the co-electromotive force test in aqueous solution. The corrosion potential (eV) and the corrosion current (A / cm 2) measured in the above-mentioned coercive electrification test are as shown in Table 3 above.

표 3 및 도 3에서 알 수 있는 바와 같이, 동전위 분극 시험 결과 본 발명의 Wire 3의 부식 속도는 1.34 ㅧ 10-6 으로 가장 낮았다. 종래의 Wire 2의 경우에 부식 속도는 4.65 ㅧ 10-6 으로 가장 높았다. 이에 따라 본 발명의 Wire 3는 종래의 Wire 2에 비하여 내식성이 약 3.7배 정도 우수한 것임을 알 수 있었다.As can be seen from Table 3 and FIG. 3, the corrosion rate of Wire 3 of the present invention was the lowest at 1.34 ㅧ 10 -6 as a result of the co-electrification test. In the case of conventional wire 2, the corrosion rate was the highest at 4.65 ㅧ 10 -6 . As a result, it was found that the wire 3 of the present invention was about 3.7 times better in corrosion resistance than the conventional wire 2.

6. 고온부식(고온산화) 특성6. High Temperature Corrosion (High Temperature Oxidation) Characteristics

도 4는 위 표 1의 시료 Wire 1, Wire 2, Wire 3를 이용하여 보일러 수관의 표면에 코팅 처리를 하여, 비정질 합금층으로 이루어진 보일러 수관 보호 코팅층을 형성하고, 이 코팅된 보일러 수관을 1,000℃의 고온에서 노출시킨 후 시간에 따른 중량을 측정한 결과를 보여준다. FIG. 4 is a graph showing the results of coating a surface of a boiler water tube using the samples Wire 1, Wire 2, and Wire 3 shown in Table 1 above to form a protective coating layer of a boiler water pipe made of an amorphous alloy layer, And then the weight was measured with time.

도 4에서 알 수 있는 바와 같이, 본 발명의 Wire 3은 종래의 Wire 1 및 Wire 2에 비하여, 1,000℃의 고온에서 약 2배 정도의 내산화성을 나타내었다.As can be seen from FIG. 4, the wire 3 of the present invention showed about twice the oxidation resistance at a high temperature of 1,000 ° C., compared with the conventional Wire 1 and Wire 2.

Claims (4)

크롬(Cr) 13.2 중량%, 붕소(B) 2.56 중량%, 실리콘(Si) 3.71 중량%, 니켈(Ni) 5.59 중량%, 니오븀(Nb) 6.57 중량%, 몰리브덴(Mo) 0.33 중량%, 망간(Mn) 0.73 중량%, 증발보전분(Va)으로 철(Fe) 0.07 중량%, 나머지 잔량으로 철(Fe)로 이루어진 것을 특징으로 하는 부착율과 내식성이 향상된 용사피막용 합금조성물.13.2 wt% of Cr, 2.56 wt% of boron, 3.71 wt% of silicon, 5.59 wt% of nickel, 6.57 wt% of niobium, 0.33 wt% of molybdenum, Mn of 0.73 wt%, iron (Fe) of 0.07 wt% as an evaporation preservative (Va), and iron (Fe) of the remaining balance as an evaporation preservative (Va). 청구항 1에 기재된 용사피막용 합금조성물로 제조된 것을 특징으로 하는 용사피막용 코어드 와이어.A cored wire for thermal spray coating, which is made of the alloy composition for thermal spraying according to claim 1. 청구항 1에 기재된 용사피막용 합금조성물로 제조된 것을 특징으로 하는 용사피막용 분말.A powder for thermal spray coating, which is made of the alloy composition for thermal spraying according to claim 1. 청구항 1에 기재된 용사피막용 합금조성물을 이용하여 용사피막 처리된 것을 특징으로 하는 보일러 수관.A boiler water tube characterized by being sprayed with the alloy composition for thermal spraying according to claim 1.
KR1020150125557A 2015-09-04 2015-09-04 Alloy compositions for improved adhesion and corrosion rate of the sprayed coating KR20150105284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150125557A KR20150105284A (en) 2015-09-04 2015-09-04 Alloy compositions for improved adhesion and corrosion rate of the sprayed coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150125557A KR20150105284A (en) 2015-09-04 2015-09-04 Alloy compositions for improved adhesion and corrosion rate of the sprayed coating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130040955A Division KR20140123743A (en) 2013-04-15 2013-04-15 Alloy composition to make amorphous deposition with improved corrosion resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160034999A Division KR101617180B1 (en) 2016-03-24 2016-03-24 Amorphous alloy compositions for improved adhesion and corrosion rate of the sprayed coating

Publications (1)

Publication Number Publication Date
KR20150105284A true KR20150105284A (en) 2015-09-16

Family

ID=54244683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150125557A KR20150105284A (en) 2015-09-04 2015-09-04 Alloy compositions for improved adhesion and corrosion rate of the sprayed coating

Country Status (1)

Country Link
KR (1) KR20150105284A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411240A (en) * 2018-04-27 2018-08-17 北京福锐克森热喷涂科技有限公司 A kind of powder cored filament material and preparation method thereof
CN108588620A (en) * 2018-04-27 2018-09-28 北京福锐克森热喷涂科技有限公司 A kind of iron-based amorphous coating and preparation method thereof
CN110004392A (en) * 2019-03-21 2019-07-12 珠海弘德表面技术有限公司 A kind of anti abrasive amorphous state thermal spraying material of high-temperature corrosion resistance
KR102305040B1 (en) * 2021-06-23 2021-09-24 주식회사 스카이에스티 Mixed powder containing enamel powder and Fe-based amorphous alloy powder and coating method using the same
KR102305041B1 (en) * 2021-06-23 2021-09-24 주식회사 스카이에스티 Coating method of white cast iron metal using mixed powder
WO2022031000A1 (en) * 2020-08-07 2022-02-10 코오롱인더스트리 주식회사 Fe-based alloy and alloy powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411240A (en) * 2018-04-27 2018-08-17 北京福锐克森热喷涂科技有限公司 A kind of powder cored filament material and preparation method thereof
CN108588620A (en) * 2018-04-27 2018-09-28 北京福锐克森热喷涂科技有限公司 A kind of iron-based amorphous coating and preparation method thereof
CN110004392A (en) * 2019-03-21 2019-07-12 珠海弘德表面技术有限公司 A kind of anti abrasive amorphous state thermal spraying material of high-temperature corrosion resistance
CN110004392B (en) * 2019-03-21 2021-05-11 珠海弘德表面技术有限公司 High-temperature corrosion-resistant wear-resistant amorphous thermal spraying material
WO2022031000A1 (en) * 2020-08-07 2022-02-10 코오롱인더스트리 주식회사 Fe-based alloy and alloy powder
KR102305040B1 (en) * 2021-06-23 2021-09-24 주식회사 스카이에스티 Mixed powder containing enamel powder and Fe-based amorphous alloy powder and coating method using the same
KR102305041B1 (en) * 2021-06-23 2021-09-24 주식회사 스카이에스티 Coating method of white cast iron metal using mixed powder

Similar Documents

Publication Publication Date Title
KR20150105284A (en) Alloy compositions for improved adhesion and corrosion rate of the sprayed coating
KR20140123743A (en) Alloy composition to make amorphous deposition with improved corrosion resistance
KR101617180B1 (en) Amorphous alloy compositions for improved adhesion and corrosion rate of the sprayed coating
US7256369B2 (en) Composite wires for coating substrates and methods of use
US3421890A (en) Fused corrosion resistant cobalt-chromium alloy
JP2004522861A (en) Coating material and products coated with this material
CA2297091A1 (en) Stainless steel having antibacterial properties and manufacturing method therefore
EP0701005B1 (en) Thermal spray powder
JP2008297572A (en) Highly corrosion-resistant powder for thermal spraying superior in exfoliation resistance
KR101821760B1 (en) Fe-Cr-Ni-B Based on the Wire for the Arc Thermal Spray with Ultra High Hardness Property
WO2014185181A1 (en) Powder for forming sprayed layer, thermite sprayed layer, thermite coating material, and method for producing thermite coating material
JP5693675B2 (en) Anti-corrosion pipe and manufacturing method thereof
KR101548553B1 (en) Chrome-free coating for substrate
JP2005061389A (en) Piston ring for internal combustion engine
JP5292007B2 (en) Thermal spray alloy, member provided with surface layer and method for manufacturing the same
JPH06116703A (en) Hearth roller having heat resistance and wear resistance
TWI472628B (en) A method for manufacturing an antiseptic nitrogen-contained stainless steel
JPS60221197A (en) Gas shielded flux-cored wire for hard overlay
JPH0386306A (en) Process roll for iron making machine having excellent wear resistance
JPH04335501A (en) Permanent magnet excellent in corrosion resistance
SU1754786A1 (en) Powdered composition for flame coating
WO2012023265A1 (en) Thermal neutron-blocking material and method for producing same
TW201631182A (en) Thermal spray powder, thermal spray coating, coating, and roll in molten metal bath
JPH0456745A (en) Double boride hard alloy source
JPH0387310A (en) Hearth roll having excellent build-up resistance

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration
A107 Divisional application of patent