KR20150100079A - Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same - Google Patents

Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR20150100079A
KR20150100079A KR1020140021427A KR20140021427A KR20150100079A KR 20150100079 A KR20150100079 A KR 20150100079A KR 1020140021427 A KR1020140021427 A KR 1020140021427A KR 20140021427 A KR20140021427 A KR 20140021427A KR 20150100079 A KR20150100079 A KR 20150100079A
Authority
KR
South Korea
Prior art keywords
nitrate
secondary battery
lithium secondary
electrolyte
carbonate
Prior art date
Application number
KR1020140021427A
Other languages
Korean (ko)
Other versions
KR102195735B1 (en
Inventor
전종호
고주환
서진아
김진희
조성님
유태환
조정주
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Priority to KR1020140021427A priority Critical patent/KR102195735B1/en
Priority to PCT/KR2015/001206 priority patent/WO2015126082A1/en
Publication of KR20150100079A publication Critical patent/KR20150100079A/en
Application granted granted Critical
Publication of KR102195735B1 publication Critical patent/KR102195735B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to an electrolyte for a lithium secondary battery, and a lithium secondary battery including the same and, more specifically, to an electrolyte for a lithium secondary battery, capable of reducing the interfacial resistance of an electrode by including ammonium nitrate as an electrolyte addition agent, and a lithium secondary battery including the same. According to the present invention, the electrolyte can control a change in average voltage during charging and discharging, occurring due to the increased interfacial resistance of the electrode, thus a lithium secondary battery with enhanced charging and discharging efficiency and high rate characteristics can be provided.

Description

리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지{NON-AQUEOUS ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME} BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a lithium secondary battery, and a lithium secondary battery having the same. 2. Description of the Related Art [0002]

본 발명은 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지에 관한 것으로, 더욱 상세하게는 암모늄계 질산염을 전해액 첨가제로 포함함으로써 전극의 계면저항을 감소시킬 수 있는 리튬 이차전지용 전해액 및 이를 구비한 리튬 이차전지에 관한 것이다.
The present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery having the same, and more particularly, to an electrolyte for a lithium secondary battery capable of reducing the interfacial resistance of an electrode by including ammonium nitrate as an electrolyte additive, Battery.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices have increased, there has been a rapid increase in demand for secondary batteries as energy sources. Among such secondary batteries, lithium secondary batteries, which exhibit high energy density and operational potential, long cycle life, Batteries have been commercialized and widely used.

이러한, 리튬 이차전지는 전극 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 전해액이 함침되어 있는 구조로 이루어져 있다. 충전 시에는 양극 활물질의 리튬 이온이 방출되어 음극의 활물질 층으로 삽입되고, 방전시에는 활물질 층의 리튬 이온이 방출되어 양극 활물질로 삽입되며, 전해액은 음극과 양극 사이에서 리튬 이온을 이동시키는 매질역할을 한다.The lithium secondary battery has a structure in which an electrolyte solution containing a lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode coated with an active material on an electrode current collector. At the time of charging, the lithium ions of the positive electrode active material are discharged and inserted into the active material layer of the negative electrode. At the time of discharging, the lithium ions of the active material layer are released to be inserted into the positive electrode active material, and the electrolyte serves as a medium for transferring lithium ions between the negative electrode and the positive electrode .

상기 전해액은 일반적으로 유기용매와 전해질염을 포함하는데, 예를 들면, 프로필렌카보네이트, 에틸렌카보네이트 등의 고유전성 환상 카보네이트와 디에틸카보네이트, 에틸메틸카보네이트, 디메틸카보네이트 등의 저점성 쇄상 카보네이트의 혼합 용매에, LiPF6, LiBF4, LiClO4 등의 리튬염을 첨가한 것이 범용되고 있다.The electrolytic solution generally includes an organic solvent and an electrolyte salt. For example, the electrolytic solution is mixed with a mixed solvent of a high-molecular cyclic carbonate such as propylene carbonate, ethylene carbonate and the like and a low viscosity chain carbonate such as diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, etc. , LiPF 6 , LiBF 4 , LiClO 4 Or the like is generally used.

상기 전해질 염으로 주로 사용되는 리튬 함유 불화염, 리튬 함유 염화염 등의 리튬 함유 할로겐염은 수분에 매우 민감하게 반응하기 때문에 전지의 제조 과정 중 또는 전지 내에 존재하는 수분과 반응하여 강산의 일종인 HX(X=F, Cl, Br, I)를 생성하게 된다. 특히, LiPF6 리튬염은 고온에서 불안정하므로 음이온이 열 분해되어 불산(HF)과 같은 산성 물질을 생성할 수 있다. 이러한 산성 물질이 전지 내에 존재시 바람직하지 못한 부반응을 필수적으로 동반하게 된다. Since the lithium-containing halogen salt such as lithium-containing flame retardant and lithium-containing chloride salt, which are mainly used as the electrolyte salt, reacts very sensitively to water, it reacts with moisture present in the battery or during the manufacturing process of the battery, (X = F, Cl, Br, I). In particular, LiPF 6 lithium salts are unstable at high temperatures, so anions can be thermally decomposed to produce acidic substances such as hydrofluoric acid (HF). Such acidic substances are essentially accompanied by undesirable side reactions when they are present in the cell.

예컨대, 음극 표면에 존재하는 고체 전해질 계면(solid electrolyte interface: SEI)막이 상기 HX(X=F, Cl, Br, I)의 강한 반응성으로 인해 쉽게 파괴될 수 있으며, 이로 인해 SEI막의 계속적인 재생성이 유도되어 음극의 피막량 증가로 인한 음극의 계면 저항증가가 초래될 수 있다. 또한, 상기 불산(HF) 형성시의 부산물인 불화 리튬(LiF)의 양극 표면 흡착으로 인해 양극 계면저항이 증가될 수 있다. 이 밖에도, 상기 HX는 전지 내에서 급격한 산화 반응을 일으켜 양(兩) 전극 활물질을 용출(dissolution) 및 퇴화시킬 수 있고, 특히 양극 활물질로 사용되는 리튬 금속 산화물에 포함되어 있던 전이금속 양이온이 용출될 경우, 이들 양이온이 음극에 전착되면서 부가적인 음극 피막을 형성하여 음극저항을 더욱 증가시키게 된다.For example, a solid electrolyte interface (SEI) film present on the cathode surface can easily be destroyed due to the strong reactivity of HX (X = F, Cl, Br, I) And the increase in the coating amount of the negative electrode may lead to an increase in the interfacial resistance of the negative electrode. In addition, the anode interface resistance can be increased due to adsorption of lithium fluoride (LiF) on the anode surface, which is a by-product at the time of forming the hydrofluoric acid (HF). In addition, the HX causes a rapid oxidation reaction in the battery, dissolving and degenerating both electrode active materials, and in particular, the transition metal cations contained in the lithium metal oxide used as the cathode active material are eluted , These cations are electrodeposited to the negative electrode to form additional negative electrode coating, thereby further increasing the negative electrode resistance.

한편, 상기 SEI막은 리튬 이차 전지의 초기 충전시 카보네이트 계통의 극성 비수계 용매가 전해액 내의 리튬 이온과 반응하여 음극 표면상에 형성된 것으로, 음극 표면에서 카보네이트 계열 전해액의 분해를 억제하여 전지를 안정화시키는 보호막으로서의 역할을 한다. 그러나, 유기 용매와 리튬염에 의해서만 생성되는 SEI막은 지속적인 보호막으로서의 역할을 수행하기에 다소 불충분하여, 전지의 충방전이 지속적으로 진행되거나, 특히 만충전 상태에서의 고온 저장시, 증가된 전기 화학적 에너지와 열 에너지에 의해 서서히 붕괴될 수 있다. 이러한 SEI막의 붕괴로 인해 노출된 음극활물질 표면과 전해액 용매가 반응하여 분해되는 부반응이 지속적으로 발생하게 되며, 이로 인해 음극의 저항 증가가 야기될 수 있다.On the other hand, the SEI film is formed by a reaction between a polar non-aqueous solvent of a carbonate-based polar non-aqueous solvent at the time of initial charging of the lithium secondary battery and a protective film formed on the surface of the negative electrode to suppress the decomposition of the carbonate- . However, the SEI film produced only by the organic solvent and the lithium salt is somewhat insufficient to serve as a continuous protective film, so that the charge and discharge of the battery are continuously carried out, and in particular, when stored at a high temperature in a fully charged state, And can be gradually collapsed by thermal energy. Due to the collapse of the SEI film, a side reaction in which the surface of the exposed negative electrode active material is reacted with the electrolyte solvent is continuously generated, which may cause an increase in resistance of the negative electrode.

상기한 원인 이외에도, 전극-전해질 간의 계면저항은 다양한 원인에 의해서 증가될 수 있고, 이렇게 계면저항이 증가될 경우 출력특성 등의 전지의 제반 성능 저하가 발생하게 된다. 예컨대, 전지의 저항 증가는 충방전시 평균전압 변화를 발생시킬 수 있고, 즉 충전시 평균전압이 상승하고 방전시 평균전압이 하락하는 현상을 발생시킬 수 있고, 결과적으로 일정 전류로 충방전시 충전용량에 대한 방전용량을 나타내는 충방전 효율이 저하될 수 있다.In addition to the above-described causes, the interface resistance between the electrode and the electrolyte can be increased by various causes, and when the interfacial resistance is increased, all the performance of the battery such as the output characteristics is deteriorated. For example, an increase in the resistance of the battery can cause an average voltage change during charging and discharging, that is, a phenomenon in which the average voltage increases during charging and the average voltage decreases during discharging. As a result, The charge / discharge efficiency indicating the discharge capacity with respect to the capacity may be lowered.

이러한 문제를 해결하기 위하여, 특허문헌 1(일본 특허공개공보 평5-13088호)은 전해액에 비닐렌카보네이트(VC)를 함유시켜 리튬 이차전지의 저항을 개선하는 방법에 대해 기재하고 있다. 그러나, 이 방법에 의해 형성된 피막은 여전히 높은 저항을 나타내므로, 전지의 저항 상승을 억제하는 점에 있어서 충분한 효과를 나타내지는 않았다.In order to solve such a problem, Patent Document 1 (Japanese Patent Laid-Open No. 5-13088) discloses a method of improving the resistance of a lithium secondary battery by adding vinylene carbonate (VC) to the electrolyte solution. However, since the coating formed by this method still shows a high resistance, it did not show sufficient effect in suppressing the increase in resistance of the battery.

또한, 특허문헌 2(국내 특허공개공보 제2012-0011209호)는 특정 구조의 알킬렌 설페이트, 특정 구조의 암모늄 화합물 및 비닐렌 카보네이트를 포함하는 리튬 이차전지용 전해액에 대해 개시하고 있다. 그러나, 상기 설페이트계 화합물에 의해 생성된 SEI막은 저항이 적게 걸리는 장점이 있으므로 전지의 저온 출력 특성을 향상시킬 수 있으나, 초기효율이나 고율특성 면에서 개선을 나타내지 못하고 있는바, 더욱 더 개량이 필요하다.Also, Patent Document 2 (Japanese Patent Laid-Open Publication No. 2012-0011209) discloses an electrolyte for a lithium secondary battery comprising an alkylene sulfate having a specific structure, an ammonium compound having a specific structure, and vinylene carbonate. However, since the SEI film produced by the sulfate compound has an advantage of low resistance, it can improve the low-temperature output characteristics of the battery, but does not exhibit improvement in terms of initial efficiency and high-rate characteristics, and further improvement is required .

이와 같이, 종래에 전지 저항 상승 억제를 위하여 특정 화합물을 전해액에 첨가할 경우, 일부 항목의 성능은 향상되지만 다른 항목의 성능은 감소되거나, 일부 항목만의 향상만 있는 경우가 많았다.
As described above, when a specific compound is added to an electrolytic solution to suppress the increase in battery resistance, the performance of some items is improved but the performance of other items is reduced or only some items are improved.

일본 특허공개공보 평5-13088호Japanese Patent Application Laid-Open No. 5-13088 KRKR 2012-00112092012-0011209 AA

본 발명이 해결하고자 하는 과제는, 전극의 계면저항을 감소시켜 충방전시 발생되는 평균전압의 변화를 억제시킬 수 있으며, 충방전 효율 및 고율특성을 개선시킬 수 있는 리튬 이차전지용 전해액을 제공하는 것이다.Disclosure of Invention Technical Problem [8] Accordingly, an object of the present invention is to provide an electrolyte solution for a lithium secondary battery, which can reduce the interfacial resistance of the electrode to suppress the change in the average voltage generated during charging and discharging, and improve the charging / discharging efficiency and the high- .

본 발명이 해결하고자 하는 또 다른 과제는, 상기 전해액을 포함하는 리튬 이차전지를 제공하는 것이다.
Another object of the present invention is to provide a lithium secondary battery comprising the electrolyte solution.

이러한 과제를 해결하기 위하여, 본 발명은 리튬염 및 유기용매를 포함하는 리튬 이차전지용 전해액에 있어서, 상기 전해액은 하기 화학식 1로 표시되는 질산염을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액을 제공한다.In order to solve these problems, the present invention provides an electrolyte for a lithium secondary battery comprising a lithium salt and an organic solvent, wherein the electrolyte further comprises a nitrate salt represented by the following formula (1) .

[화학식 1][Chemical Formula 1]

상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 수소 또는 탄소수 1 내지 8의 알킬기이다. In Formula 1, R 1 to R 4 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms.

바람직하게, 상기 질산염의 함량은 상기 리튬염 및 유기 용매의 총합 100 중량부 대비 0.01 내지 5 중량부일 수 있다.Preferably, the content of the nitrate may be 0.01 to 5 parts by weight based on 100 parts by weight of the total amount of the lithium salt and the organic solvent.

본 발명에 따른 상기 화학식 1로 표시되는 화합물은 암모늄 나이트레이트 (Ammonium nitrate), 테트라메틸암모늄 나이트레이트 (Tetramethylammonium nitrate), 테트라에틸암모늄 나이트레이트 (Tetraethylammonium nitrate), 테트라부틸암모늄 나이트레이트 (Tetrabutylammonium nitrate), 모노에틸트리메틸암모늄 나이트레이트 (Monoethyltrimethylammonium nitrate), 모노부틸트리메틸암모늄 나이트레이트 (Monobutyltrimethylammonium nitrate), 디에틸디메틸암모늄 나이트레이트(Diethyldimethylammonium nitrate) 및 디부틸디메틸암모늄 나이트레이트(Dibutyldimethylammonium nitrate)로 이루어진 군에서 선택된 1종 이상일 수 있다.The compound represented by Formula 1 according to the present invention may be a compound selected from the group consisting of ammonium nitrate, tetramethylammonium nitrate, tetraethylammonium nitrate, tetrabutylammonium nitrate, One selected from the group consisting of monoethyltrimethylammonium nitrate, monobutyltrimethylammonium nitrate, diethyldimethylammonium nitrate, and dibutyldimethylammonium nitrate. Or more.

또한, 본 발명은 상기 전해액을 포함하는 리튬 이차전지를 제공한다.
The present invention also provides a lithium secondary battery comprising the electrolyte solution.

본 발명에 따르면, 상기 질산염을 첨가제로 포함시킨 리튬 이차전지용 전해액을 제공함으로써 전극의 계면저항을 감소시킬 수 있다.According to the present invention, it is possible to reduce the interfacial resistance of the electrode by providing the electrolyte for a lithium secondary battery containing the nitrate as an additive.

따라서, 전극의 계면저항 증가로 인해 발생하는 충방전시 평균전압 변화를 억제할 수 있고, 즉 충전시의 평균전압과 방전시의 평균전압의 차이를 감소시킬 수 있고, 이로 인해 일정전류로 충방전 하였을 때의 충방전 효율 및 고율특성이 개선된 리튬 이차전지를 제공할 수 있다.
Therefore, it is possible to suppress the change in the average voltage during charging and discharging caused by the increase in the interface resistance of the electrode, that is, to reduce the difference between the average voltage during charging and the average voltage during discharging, A lithium secondary battery improved in charging / discharging efficiency and high-rate characteristics can be provided.

도 1은 실시예 및 비교예에 따라 제조된 코인셀의 0.5C-rate 방전용량 대비 0.5C, 1.0C. 1.5C 및 2.0C rate 방전용량의 비를 비교하여 나타낸 그래프이다.FIG. 1 is a graph showing the relationship between the discharge capacity of a coin cell manufactured according to Examples and Comparative Example at 0.5 C, 1.0 C. 1.5C and 2.0C rate discharge capacity.

본 발명은 리튬염 및 유기용매를 포함하는 리튬 이차전지용 전해액에 있어서, 상기 전해액은 하기 화학식 1로 표시되는 질산염을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액에 관한 것이다. The present invention relates to an electrolyte solution for a lithium secondary battery comprising a lithium salt and an organic solvent, wherein the electrolyte solution further comprises a nitrate salt represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00002
Figure pat00002

상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 수소 또는 탄소수 1 내지 8의 알킬기이다. In Formula 1, R 1 to R 4 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms.

전술한 바와 같이, 현재까지 알려진 유기 용매나 첨가제로 형성된 SEI막은 지속적인 성능 유지가 어렵고, 특히 전극과 전해질의 계면반응으로 전극의 저항이 증가하여 출력특성 등의 제반 성능을 유효한 수준으로 동시에 달성하기에는 부족한 점이 있었다.As described above, it is difficult to maintain the performance of the SEI film formed with known organic solvents or additives until now, and in particular, the resistance of the electrode increases due to the interfacial reaction between the electrode and the electrolyte, There was a dot.

그러나, 본 발명에 따라 상기 질산염이 전해액 첨가제로 사용되는 경우, 전극의 계면저항을 저하시켜 충방전시 발생하는 평균전압의 변화량을 감소시키고, 충방전 효율을 향상시킴과 동시에 고율특성도 현저하게 개선할 수 있다. However, according to the present invention, when the nitrate salt is used as an electrolyte additive, the interface resistance of the electrode is lowered to reduce the amount of change in the average voltage generated during charging and discharging, to improve the charging and discharging efficiency, can do.

상기 질산염의 함량은 상기 리튬염 및 유기 용매의 총합 100 중량부 대비 0.01 내지 5.0중량부인 것이 바람직하며, 0.1 내지 3.0중량부인 것이 더욱 바람직하다. 상기 함량이 0.01중량부를 미만일 경우 전극의 계면저항이 저하되는 효과를 얻기에 어려움이 있을 수 있고, 반면 5.0 중량부를 초과할 경우 충방전 효율의 저하를 초래하는 경우가 있다.The content of the nitrate is preferably 0.01 to 5.0 parts by weight, more preferably 0.1 to 3.0 parts by weight based on 100 parts by weight of the total amount of the lithium salt and the organic solvent. If the content is less than 0.01 parts by weight, it may be difficult to obtain an effect of lowering the interface resistance of the electrode. On the other hand, when the content exceeds 5.0 parts by weight, the charge and discharge efficiency may be lowered.

본 발명에 따른 상기 화학식 1로 표시되는 화합물의 바람직한 예로서는 암모늄 나이트레이트 (Ammonium nitrate), 테트라메틸암모늄 나이트레이트 (Tetramethylammonium nitrate), 테트라에틸암모늄 나이트레이트 (Tetraethylammonium nitrate), 테트라부틸암모늄 나이트레이트 (Tetrabutylammonium nitrate), 모노에틸트리메틸암모늄 나이트레이트 (Monoethyltrimethylammonium nitrate), 모노부틸트리메틸암모늄 나이트레이트 (Monobutyltrimethylammonium nitrate), 디에틸디메틸암모늄 나이트레이트(Diethyldimethylammonium nitrate), 디부틸디메틸암모늄 나이트레이트(Dibutyldimethylammonium nitrate)로 이루어진 군에서 선택된 1종 이상을 들 수 있으며, 이에 한정되는 것은 아니다.Preferred examples of the compound represented by Formula 1 according to the present invention include ammonium nitrate, tetramethylammonium nitrate, tetraethylammonium nitrate, tetrabutylammonium nitrate Selected from the group consisting of monoethyltrimethylammonium nitrate, monobutyltrimethylammonium nitrate, diethyldimethylammonium nitrate, and dibutyldimethylammonium nitrate. But is not limited thereto.

전지의 성능은 기본 전해액 구성과 상기 전해액과 전극이 반응하여 형성하는 고체 전해질 계면(solid electrolyte interface: SEI)막에 의해 많이 좌우된다.The performance of the cell is largely determined by the basic electrolyte composition and the solid electrolyte interface (SEI) film formed by the reaction between the electrolyte and the electrode.

리튬 이차 전지는 첫번째 충전 과정시 전지의 음극에서 음극활물질인 탄소 입자의 표면과 전해액이 반응하여 SEI막을 형성한다. 이렇게 형성된 SEI막은 카본재와 전해액 용매와의 부반응 및 전해액 용매의 음극재로의 삽입(co-intercalation)으로 인한 음극재의 붕괴 등을 방지할 뿐만 아니라 종래 리튬 이온 터널로서의 역할을 충실히 수행함으로써 전지의 성능 저하를 최소화한다. 그러나, 종래 카보네이트계 유기용매, 불소염 또는 기타 무기염에 의해 형성된 SEI 막은 약하며 다공성(porous)이고 조밀하지 못하여, 리튬 이온의 이동이 원활히 이루어지지 않기 때문에, 가역성 리튬 양의 감소를 야기한다. 이로 인해 충방전 진행에 따른 비가역 반응이 증가되었고, 결과적으로 전지의 용량 및 충방전 효율 저하가 초래되었다.In the first rechargeable lithium battery, the surface of the carbon particles, which are the negative electrode active material, reacts with the electrolyte at the negative electrode of the battery to form an SEI film. The thus formed SEI membrane prevents the side reaction between the carbon material and the electrolyte solvent and the collapse of the negative electrode material due to the co-intercalation of the electrolyte solvent into the negative electrode material, and also fulfills the role as a conventional lithium ion tunnel. Minimize degradation. However, the SEI film formed by the conventional carbonate-based organic solvent, incombustible salt or other inorganic salt is weak, porous and dense, resulting in a reduction of the amount of reversible lithium since migration of lithium ions is not performed smoothly. As a result, the irreversible reaction due to the progress of charging / discharging was increased, resulting in a decrease in capacity and charge / discharge efficiency of the battery.

이에 비해, 본 발명의 전해액 중에 첨가제로서 포함되는 상기 화학식 1로 표시되는 암모늄계 질산염은 전지의 초기 충전시 다른 성분 보다 먼저 음극재 표면상에 환원되어, 견고하고 조밀할 뿐만 아니라 안정성이 우수한 SEI 막을 형성하게 된다. 따라서, 종래 카보네이트 용매가 층상 구조의 활물질층 내 삽입(co-intercalation)되거나 또는 용매가 분해되는 부반응을 막아 전지의 초기 효율 증대를 도모할 뿐만 아니라, SEI막의 붕괴 및 재생성을 억제하여 전극의 계면저항을 증가를 억제할 수 있다.On the other hand, the ammonium-based nitrate salt represented by Formula 1 contained as an additive in the electrolytic solution of the present invention is reduced on the surface of the negative electrode material prior to other components at the time of initial charging of the battery, Respectively. Therefore, not only the conventional carbonate solvent is co-intercalated into the active material layer of the layered structure or the side reaction in which the solvent is decomposed is prevented to increase the initial efficiency of the battery, and the breakdown and regeneration of the SEI film is suppressed, Can be suppressed.

한편, 본 발명의 전해액에 전해질로서 포함되는 리튬염은 0.6 내지 2.0M의 농도 범위 내에서 사용될 수 있으며, 더욱 바람직하게는 0.7 내지 1.6M 범위로 사용될 수 있다. 리튬염의 농도가 0.6M미만이면 전해액의 전도가 낮아져 전해액 성능이 떨어질 수 있고, 반면 2.0M을 초과하는 경우에는 전해액의 점도가 증가하여 리튬 이온의 이동성이 감소되는 문제점이 발생할 수 있다. 상기 리튬염으로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 음이온은 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.On the other hand, the lithium salt contained as an electrolyte in the electrolytic solution of the present invention can be used in a concentration range of 0.6 to 2.0M, more preferably in a range of 0.7 to 1.6M. If the concentration of the lithium salt is less than 0.6M, the conductivity of the electrolyte may be lowered and the performance of the electrolyte may be deteriorated. On the other hand, when the concentration exceeds 2.0M, the viscosity of the electrolyte may increase and the lithium ion mobility may decrease. The anion of the lithium salt may be, for example, F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, ( CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO - , (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 - , SCN -, and (CF 3 CF 2 SO 2 ) 2 N - .

상기 전해액에 포함되는 유기용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.The organic solvent contained in the electrolytic solution may be any of those conventionally used in an electrolyte for a lithium secondary battery. Examples of the organic solvent include ether, ester, amide, linear carbonate, cyclic carbonate, etc., Can be used.

그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다. 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.Among them, a carbonate compound which is typically a cyclic carbonate, a linear carbonate, or a mixture thereof may be included. Specific examples of the cyclic carbonate compound include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and halides thereof, or a mixture of two or more thereof. Specific examples of the linear carbonate compound include a group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl propyl carbonate and ethyl propyl carbonate Any one selected, or a mixture of two or more thereof may be used as typical examples, but the present invention is not limited thereto.

특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해액을 만들 수 있어 더욱 바람직하게 사용될 수 있다.In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates in the carbonate-based organic solvent, can be preferably used because they have high permittivity as a high viscosity organic solvent and dissociate the lithium salt in the electrolyte well, and dimethyl carbonate and diethyl carbonate When a low viscosity and a low dielectric constant linear carbonate are mixed in an appropriate ratio, an electrolyte having a high electric conductivity can be prepared, and thus it can be more preferably used.

또한, 상기 유기용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.As the ether in the organic solvent, any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether or a mixture of two or more thereof may be used , But is not limited thereto.

그리고 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.Examples of the ester in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate,? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone and? -Caprolactone, or a mixture of two or more thereof, but the present invention is not limited thereto.

본 발명의 리튬 이차전지용 전해액은 종래 알려진 SEI막 형성용 첨가제를 본 발명의 목적을 벗어나지 않는 범위에서 더 포함할 수 있다. 본 발명에서 사용 가능한 SEI막 형성용 첨가제로는 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 환형 설파이트, 포화설톤, 불포화 설톤, 비환형 설폰 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다.The electrolyte solution for a lithium secondary battery of the present invention may further contain an additive for forming a known SEI film within the scope of the present invention. Examples of the additive for forming the SEI film that can be used in the present invention include vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, cyclic sulfite, saturated sulphone, unsaturated sulphone and non-cyclic sulphone, But is not limited thereto.

상기 환형 설파이트로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 포화 설톤으로는 1,3-프로판 설톤, 1,4-부탄 설톤 등을 들 수 있으며, 불포화 설톤으로는 에텐설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 등을 들 수 있으며, 비환형 설폰으로는 디비닐설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 메틸비닐 설폰 등을 들 수 있다.Examples of the cyclic sulfite include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethylethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, Diethyl propyl sulfite, 4,6-diethyl propyl sulfite, and 1,3-butylene glycol sulfite. The saturated sulphone includes, for example, 1,3-propane sultone, and 1,4-butane sultone. Examples of the unsaturated sultone include ethene sultone, 1,3-propene sultone, 1,4-butene sultone, Phenolsaltone, and the like. Examples of the non-cyclic sulfone include divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, and methyl vinyl sulfone.

상기 SEI막 형성용 첨가제는 첨가제의 구체적인 종류에 따라 적절한 함량으로 포함될 수 있으며, 예를 들면 전해액 100 중량부 대비 0.01 중량부 내지 10 중량부로 포함될 수 있다.The additive for forming the SEI film may be contained in an appropriate amount depending on the specific kind of the additive, for example, 0.01 to 10 parts by weight based on 100 parts by weight of the electrolytic solution.

한편, 본 발명은 상기 비수전해액을 포함하는 리튬이차전지를 제공한다.On the other hand, the present invention provides a lithium secondary battery comprising the nonaqueous electrolyte solution.

상기 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 본 발명에 따라 제조된 전해액을 주입하여 제조된다. 그리고, 상기 양극 및 음극은 활물질, 바인더, 및 도전제를 용매와 혼합하여 슬러리를 제조하고, 슬러리를 알루미늄 등의 집전체에 도포한 후 건조 및 압착하여 제조될 수 있다.The lithium secondary battery is manufactured by injecting an electrolyte prepared according to the present invention into an electrode structure composed of a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The positive electrode and the negative electrode may be prepared by mixing the active material, the binder, and the conductive agent with a solvent to prepare a slurry, applying the slurry to a current collector such as aluminum, followed by drying and pressing.

상기 양극 활물질로는 리튬 함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1 -yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1 -yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2 -zNizO4(0.5<x<1.3, 0<z<2), LixMn2 -zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며, 상기 리튬함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬함유 전이금속 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.As the cathode active material, a lithium-containing transition metal oxide may be preferably used. For example, Li x CoO 2 (0.5 <x <1.3), Li x NiO 2 (0.5 <x <1.3), Li x MnO 2 <x <1.3, 0 <a <1, 0 <b <1), Li x Mn 2 O 4 (0.5 <x <1.3), Li x (Ni a Co b Mn c ) O 2 , 0 <c <1, a + b + c = 1), Li x Ni 1-y Co y O 2 (0.5 <x <1.3, 0 <y <1), Li x Co 1 -y Mn y O 2 (0.5 <x <1.3, 0≤y <1), Li x Ni 1 -y Mn y O 2 (0.5 <x <1.3, O≤y <1), Li x (Ni a Co b Mn c) O 4 (0.5 <x <1.3, 0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), Li x Mn 2 -z Ni z O 4 , 0 <z <2), Li x Mn 2 -z Co z O 4 (0.5 <x <1.3, 0 <z <2), Li x CoPO 4 (0.5 <x <1.3) and Li x FePO 4 (0.5 <x <1.3), or a mixture of two or more thereof. The lithium-containing transition metal oxide may be coated with a metal such as aluminum (Al) or a metal oxide. In addition to the lithium-containing transition metal oxide, sulfide, selenide and halide may also be used.

음극 활물질로는 통상적으로 리튬이온이 흡장 및 방출될 수 있는 탄소재, 리튬금속, 규소 또는 주석 등을 사용할 수 있으며, 리튬에 대한 전위가 2V 미만인 TiO2, SnO2와 같은 금속 산화물도 가능하다. 바람직하게는 탄소재를 사용할 수 있는데, 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연흑연, 인조흑연, 키시흑연(Kishgraphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the anode active material, a carbon material, lithium metal, silicon or tin, which lithium ions can be occluded and released, can be used, and metal oxides such as TiO 2 and SnO 2 having a potential with respect to lithium of less than 2 V are also possible. Preferably, carbon materials can be used, and carbon materials such as low-crystalline carbon and highly-crystalline carbon can be used. Examples of low crystalline carbon include soft carbon and hard carbon. Examples of highly crystalline carbon include natural graphite, artificial graphite, Kishgraphite, pyrolytic carbon, High-temperature sintered carbon such as mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches and petroleum or coal tar pitch derived cokes are representative.

바인더는 활물질과 도전제를 결착시켜서 집전체에 고정시키는 역할을 하며, 폴리비닐리덴플로라이드, 폴리프로필렌, 카르복시메틸셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리비닐알코올, 스티렌부타디엔 고무 등 리튬이온 이차전지에서 통상적으로 사용되는 것들을 사용할 수 있다.The binder serves to bind the active material and the conductive agent to bind to the current collector. The binder binds the active material and the conductive agent and binds the active material to the current collector. The binder includes a binder such as polyvinylidene fluoride, polypropylene, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polyvinyl alcohol, Rubber and the like which are conventionally used in a lithium ion secondary battery can be used.

도전제로는 인조 흑연, 천연 흑연, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 램프 블랙, 써멀 블랙, 탄소 섬유나 금속 섬유 등의 도전성 섬유, 산화 티탄 등의 도전성 금속산화물, 알루미늄, 니켈 등의 금속 분말 등이 사용될 수 있다.Conductive agents such as artificial graphite, natural graphite, acetylene black, ketjen black, channel black, lamp black, thermal black, conductive fibers such as carbon fiber and metal fiber, conductive metal oxides such as titanium oxide, metal powders such as aluminum and nickel Can be used.

또한, 분리막으로는 폴리에틸렌(PE)과 폴리프로필렌(PP)과 같은 단일 올레핀이나올레핀의 복합체, 폴리아미드(PA), 폴리아크릴로니트릴(PAN), 폴리에틸렌옥사이드(PEO), 폴리프로필렌옥사이드(PPO), 폴리에틸렌글리콜디아크릴레이트(PEGA), 폴리테트라플루오로에틸렌(PTFE), 폴리비닐리덴플루오라이드(PVdF), 폴리비닐클로라이드(PVC) 등을 사용할 수 있다.As the separator, a single olefin or olefin complex such as polyethylene (PE) and polypropylene (PP), polyamide (PA), polyacrylonitrile (PAN), polyethylene oxide (PEO), polypropylene oxide , Polyethyleneglycol diacrylate (PEGA), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyvinyl chloride (PVC), and the like.

본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples.

실시예Example 1 One

<전해액의 제조><Preparation of electrolytic solution>

에틸렌카보네이트(ethylene carbonate) 및 에틸메틸카보네이트(ethylmethyl carbonate)를 3:7의 중량비로 혼합하여 유기용매를 준비하였다. 다음으로, 상기 유기용매에 리튬염인 LiPF6을 용해시켜 리튬염 농도가 1M인 LiPF6 혼합용액을 제조하였다. 다음으로 상기 혼합용액에 암모늄 나이트레이트(ammonium nitrate)를 상기 혼합용액 100 중량부 대비 0.5중량부로 첨가하여 전해액을 제조하였다.
Ethylene carbonate and ethylmethyl carbonate were mixed at a weight ratio of 3: 7 to prepare an organic solvent. Next, LiPF 6 , which is a lithium salt, was dissolved in the organic solvent to prepare a LiPF 6 mixed solution having a lithium salt concentration of 1M. Next, ammonium nitrate was added to the mixed solution in an amount of 0.5 part by weight based on 100 parts by weight of the mixed solution to prepare an electrolytic solution.

실시예Example 2 2

상기 실시예 1에서 암모늄 나이트레이트(ammonium nitrate) 대신에 테트라메틸암모늄 나이트레이트(tetramethylammonium nitrate)를 혼합용액 100 중량부 대비 0.5 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
An electrolytic solution was prepared in the same manner as in Example 1, except that tetramethylammonium nitrate was added in an amount of 0.5 part by weight based on 100 parts by weight of the mixed solution instead of ammonium nitrate.

실시예Example 3 3

상기 실시예 1에서 암모늄 나이트레이트(ammonium nitrate) 대신에 테트라에틸암모늄 나이트레이트(tetraethylammonium nitrate)를 혼합용액 100 중량부 대비 0.5 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
An electrolytic solution was prepared in the same manner as in Example 1, except that tetraethylammonium nitrate was added in an amount of 0.5 part by weight based on 100 parts by weight of the mixed solution instead of ammonium nitrate.

실시예Example 4 4

상기 실시예 1에서 암모늄 나이트레이트(ammonium nitrate) 대신에 테트라부틸암모늄 나이트레이트(tetrabutylammonium nitrate)를 혼합용액 100 중량부 대비 0.5 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
An electrolytic solution was prepared in the same manner as in Example 1, except that tetrabutylammonium nitrate was added in an amount of 0.5 part by weight based on 100 parts by weight of the mixed solution instead of ammonium nitrate.

실시예Example 5 5

상기 실시예 1에서 암모늄 나이트레이트(ammonium nitrate) 대신에 테트라에틸암모늄 나이트레이트(tetraethylammonium nitrate)를 혼합용액 100 중량부 대비 0.1 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
An electrolytic solution was prepared in the same manner as in Example 1, except that tetraethylammonium nitrate was added in an amount of 0.1 part by weight based on 100 parts by weight of the mixed solution instead of ammonium nitrate.

실시예Example 6 6

상기 실시예 1에서 암모늄 나이트레이트 (ammonium nitrate)대신에 테트라에틸암모늄 나이트레이트(tetraethylammonium nitrate)를 혼합용액 100 중량부 대비 1.0 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
An electrolytic solution was prepared in the same manner as in Example 1, except that tetraethylammonium nitrate was added in an amount of 1.0 part by weight based on 100 parts by weight of the mixed solution instead of ammonium nitrate.

실시예Example 7 7

상기 실시예 1에서 암모늄 나이트레이트(ammonium nitrate) 대신에 테트라에틸암모늄 나이트레이트 (tetraethylammonium nitrate)를 혼합용액 100 중량부 대비 2.0 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
An electrolytic solution was prepared in the same manner as in Example 1, except that tetraethylammonium nitrate was added in an amount of 2.0 parts by weight based on 100 parts by weight of the mixed solution instead of ammonium nitrate.

실시예Example 8 8

상기 실시예 1에서 암모늄 나이트레이트(ammonium nitrate) 대신에 테트라에틸암모늄 나이트레이트 (tetraethylammonium nitrate)를 혼합용액 100 중량부 대비 3.0 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
An electrolytic solution was prepared in the same manner as in Example 1, except that tetraethylammonium nitrate was added in an amount of 3.0 parts by weight based on 100 parts by weight of the mixed solution instead of ammonium nitrate.

비교예Comparative Example 1 One

상기 실시예 1에서 암모늄 나이트레이트 (ammonium nitrate)를 첨가하지 않고, 나머지는 동일한 방법으로 전해액을 제조하였다.
An electrolyte was prepared in the same manner as in Example 1, except that ammonium nitrate was not added.

비교예Comparative Example 2 2

상기 실시예 1에서 암모늄 나이트레이트(ammonium nitrate) 대신에 리튬 디플루오로포스페이트(lithium difluorophosphate)를 혼합용액 100 중량부 대비 0.5 중량부로 첨가하는 것을 제외하고 동일한 방법으로 전해액을 제조하였다.
An electrolytic solution was prepared in the same manner as in Example 1, except that lithium difluorophosphate was added in an amount of 0.5 part by weight based on 100 parts by weight of the mixed solution instead of ammonium nitrate.

<전지의 제조><Manufacture of Battery>

양극 활물질로 LiNi0 .5Co0 .2Mn0 .3O2, 바인더로서 폴리비닐리덴 플루오라이드(PVdF) 및 도전재로 카본블랙을 91.5:4.4:4.1의 중량비로 혼합한 후, N-메틸-2-피롤리돈에 분산시켜 양극 슬러리를 제조하고, 상기 슬러리를 알루미늄 집전체에 코팅한 후 건조 및 압연하여 양극을 제조하였다.As a cathode active material LiNi 0 .5 Co 0 .2 Mn 0 .3 O 2, the carbon black, polyvinylidene fluoride (PVdF) as a binder and a conductive material 91.5: 4.4: 4.1 were mixed in a weight ratio of, N- methyl Pyrrolidone to prepare a positive electrode slurry. The slurry was coated on an aluminum current collector, followed by drying and rolling to prepare a positive electrode.

또한, 음극으로 두께가 1mm인 리튬메탈(CHEM METAl사 제조)을 사용하였다. Lithium metal (CHEM METAL) having a thickness of 1 mm was used as a cathode.

이후, 상기 제조된 양극 및 음극과 함께 분리막으로 다공성 폴리에틸렌막(Tonen사 제조)을 사용하고, 상기 제조된 전해액을 주액하여 코인셀을 제조하였다.Then, a coin cell was prepared by using a porous polyethylene membrane (manufactured by Tonen Co., Ltd.) as a separator together with the prepared positive electrode and negative electrode, and injecting the prepared electrolyte solution.

<평가 방법><Evaluation method>

(1) 충방전효율(1) Charging / discharging efficiency

상기 제조된 코인셀을 25℃ 항온에 24시간 방치한 후, 리튬 이차전지 충방전기(Toyo-System Co., LTD, TOSCAT-3600)를 사용하여, 0.1C로 4.2V까지 정전류로 하는 조건 및 0.05C를 종료전류로 한 정전압 조건으로 충전하고, 0.1C로 3.0V까지 정전류 조건으로 방전하여 첫번째 사이클의 충방전 용량을 측정하였으며, 하기의 식에 따라 충방전효율을 계산하여 표 1에 충방전 용량과 효율을 나타내었다. The prepared coin cell was allowed to stand at a constant temperature of 25 DEG C for 24 hours and then subjected to a constant current of 0.1 C at a constant current of 4.2 V using a lithium secondary battery charge / discharge device (Toyo-System Co., LTD, TOSCAT- C was charged under a constant voltage condition with a termination current and discharged at 0.1 C under a constant current condition to 3.0 V to measure the charging and discharging capacity of the first cycle and the charging and discharging efficiency was calculated according to the following equation, And efficiency.

충방전 효율 (%) = 방전 용량/ 충전 용량
Charge / discharge efficiency (%) = discharge capacity / charge capacity

(2) 평균전압(2) Average voltage

제조된 코인셀에 대하여 0.2C rate로 3.0~4.2V 영역에서 충방전을 실시하고, 50% 충전상태(depth of discharge, DOC)에서의 전압(충전 평균전압) 및 50% 방전상태(depth of discharge, DOD)에서의 전압(방전 평균전압)를 측정하여 하기의 표 1에 나타내었다. 그리고 상기 충전 평균전압과 방전 평균전압의 차이를 계산하여 전압차이로 표기하였다.
The prepared coin cell was charged and discharged in the region of 3.0 to 4.2 V at a rate of 0.2 C, and a voltage (charge average voltage) and a discharge voltage of 50% in the depth of discharge (DOC) (DOD) (discharge average voltage) were measured, and the results are shown in Table 1 below. The difference between the charge average voltage and the discharge average voltage was calculated and expressed as a voltage difference.

(3) 율특성(3) Rate characteristics

제조된 코인셀에 대하여 0.5C, 1.0C, 1.5C 및 2.0C로 3.0~4.2V 영역에서 충방전을 실시한 후 각각의 c-rate에 따른 방전용량을 표 1에 나타내었다. 또한, c-rate가 0.5C일 때의 방전용량 대비 0.5C, 1.0C, 1.5C 및 2.0C일 때의 방전용량의 비를 도 1에 나타내었다.
Table 1 shows discharge capacities of the prepared coin cells according to their respective c-rates after charging and discharging in the region of 3.0 to 4.2 V at 0.5 C, 1.0 C, 1.5 C and 2.0 C, respectively. The ratio of the discharge capacity at 0.5 C, 1.0 C, 1.5 C, and 2.0 C versus the discharge capacity at the c-rate of 0.5 C is shown in FIG.

  0.1C/0.1C (0.1C / 0.1C ( mAhmAh )) 0.2C/0.2C (V)0.2C / 0.2C (V) 율특성Rate characteristic ( ( mAhmAh )) 충전용량Charging capacity 방전용량Discharge capacity 충방전Charging and discharging 효율 efficiency 충전평균전압Charge average voltage 방전평균전압Discharge average voltage 전압차이Voltage difference 0.5C방전0.5C discharge 1.0C방전1.0C discharge 1.5C방전1.5 C discharge 2.0C방전2.0C discharge 실시예 1Example 1 4.8444.844 4.2614.261 87.96%87.96% 3.802 3.802 3.772 3.772 0.030 0.030 4.1204.120 3.9893.989 3.0173.017 1.3201.320 실시예 2Example 2 4.8494.849 4.2634.263 87.92%87.92% 3.794 3.794 3.769 3.769 0.025 0.025 4.1264.126 3.9943.994 3.0533.053 1.2461.246 실시예 3Example 3 4.8444.844 4.2594.259 87.92%87.92% 3.793 3.793 3.770 3.770 0.023 0.023 4.1264.126 3.9753.975 3.0623.062 1.2211.221 실시예 4Example 4 4.8514.851 4.2644.264 87.90%87.90% 3.791 3.791 3.769 3.769 0.022 0.022 4.1274.127 3.9953.995 3.0753.075 1.2361.236 실시예 5Example 5 4.8664.866 4.2634.263 87.61%87.61% 3.799 3.799 3.769 3.769 0.030 0.030 4.1314.131 4.0024.002 3.0113.011 1.2021.202 실시예 6Example 6 4.8364.836 4.2534.253 87.94%87.94% 3.793 3.793 3.769 3.769 0.024 0.024 4.1254.125 4.0014.001 3.0893.089 1.2331.233 실시예 7Example 7 4.8384.838 4.2504.250 87.85%87.85% 3.797 3.797 3.770 3.770 0.027 0.027 4.1094.109 3.9743.974 3.0453.045 1.1341.134 실시예 8Example 8 4.8414.841 4.2504.250 87.79%87.79% 3.799 3.799 3.771 3.771 0.028 0.028 4.1064.106 3.9653.965 2.9272.927 1.0321.032 비교예 1Comparative Example 1 4.8834.883 4.2414.241 86.86%86.86% 3.811 3.811 3.746 3.746 0.065 0.065 4.1144.114 3.6693.669 1.5021.502 0.4990.499 비교예 2Comparative Example 2 5.5965.596 4.3014.301 76.86%76.86% 3.800 3.800 3.723 3.723 0.077 0.077 4.1194.119 2.8632.863 0.4820.482 0.1940.194

* 0.1C/0.1C, 0.2C/0.2C: 0.1C/0.1C는 0.1C로 충전 및 방전한 것을 의미하고, 0.2 C/0.2C은 0.2C로 충전 및 방전한 것을 의미한다.* 0.1C / 0.1C, 0.2C / 0.2C: 0.1C / 0.1C means charging and discharging at 0.1C, and 0.2C / 0.2C means charging and discharging at 0.2C.

상기 표 1을 살펴보면, 본 발명에 따른 첨가제를 전해액에 사용한 실시예 1 내지 8의 코인셀의 경우, 비교예 1 내지 2에 비해 충방전시의 발생하는 평균전압의 차이가 현저하게 줄어든 것을 확인할 수 있고, 이로써 전지 내 저항이 감소되었음을 알 수 있다. 이렇게 저항이 감소됨에 따라, 일정한 전류로 충방전시 충방전 효율이 개선되었음도 확인할 수 있다.As shown in Table 1, the coin cells of Examples 1 to 8, in which the additive according to the present invention was used as an electrolytic solution, showed that the difference in average voltage generated during charging and discharging was remarkably reduced as compared with Comparative Examples 1 and 2 And it can be seen that the resistance in the cell is reduced. As the resistance decreases, it can be seen that the charging / discharging efficiency is improved when charging / discharging is performed with a constant current.

또한, 실시예 1 내지 8, 비교예 1 내지 2에 따라 제조된 전해액을 적용한 코인셀의 고율방전특성 실험결과를 나타내는 표 1 및 도 1을 살펴보면, 본 발명에 따라 제조된 실시예 1 내지 8의 코인셀의 경우 비교예 1 내지 2의 코인셀에 비해 고율특성이 개선되었음을 확인할 수 있다.1 and FIG. 1 showing the results of the high-rate discharge characteristics of the coin cell using the electrolytic solution prepared according to Examples 1 to 8 and Comparative Examples 1 and 2, It can be confirmed that the coin cell has improved high-rate characteristics as compared with the coin cells of the comparative examples 1 and 2.

이상, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the scope of the present invention is not limited to the disclosed exemplary embodiments but is to be construed as being limited only by the appended claims. Should be construed as being included in the scope of the present invention.

Claims (7)

리튬염 및 유기용매를 포함하는 리튬 이차전지용 전해액에 있어서,
상기 전해액은 하기 화학식 1로 표시되는 질산염을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액:
[화학식 1]
Figure pat00003

상기 화학식 1에서, R1 내지 R4는 각각 독립적으로 수소 또는 탄소수 1 내지 8의 알킬기이다.
1. An electrolyte for a lithium secondary battery comprising a lithium salt and an organic solvent,
Wherein the electrolytic solution further comprises a nitrate salt represented by the following formula (1): &lt; EMI ID =
[Chemical Formula 1]
Figure pat00003

In Formula 1, R 1 to R 4 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms.
제 1 항에 있어서,
상기 화학식 1로 표시되는 화합물은 암모늄 나이트레이트 (Ammonium nitrate), 테트라메틸암모늄 나이트레이트 (Tetramethylammonium nitrate), 테트라에틸암모늄 나이트레이트 (Tetraethylammonium nitrate), 테트라부틸암모늄 나이트레이트 (Tetrabutylammonium nitrate), 모노에틸트리메틸암모늄 나이트레이트 (Monoethyltrimethylammonium nitrate), 모노부틸트리메틸암모늄 나이트레이트 (Monobutyltrimethylammonium nitrate), 디에틸디메틸암모늄 나이트레이트(Diethyldimethylammonium nitrate) 및 디부틸디메틸암모늄 나이트레이트(Dibutyldimethylammonium nitrate)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 리튬 이차전지용 비수전해액.
The method according to claim 1,
The compound represented by the above formula (1) may be at least one selected from the group consisting of ammonium nitrate, tetramethylammonium nitrate, tetraethylammonium nitrate, tetrabutylammonium nitrate, monoethyltrimethylammonium And at least one selected from the group consisting of monoethyltrimethylammonium nitrate, monobutyltrimethylammonium nitrate, diethyldimethylammonium nitrate and dibutyldimethylammonium nitrate. A non-aqueous electrolyte for a lithium secondary battery.
제 1 항에 있어서,
상기 질산염의 함량이 상기 리튬염 및 유기 용매의 총합 100 중량부 대비 0.01 내지 5중량부인 것을 특징으로 하는 리튬 이차전지용 전해액.
The method according to claim 1,
Wherein the amount of the nitrate is 0.01 to 5 parts by weight based on 100 parts by weight of the total amount of the lithium salt and the organic solvent.
제1항에 있어서,
상기 리튬염의 음이온은 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬 이차전지용 전해액.
The method according to claim 1,
The anion of the lithium salt is selected from the group consisting of F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, ( FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - And an electrolyte solution for a lithium secondary battery.
제1항에 있어서,
상기 유기 용매는 에테르, 에스테르, 아미드, 선형 카보네이트 및 환형 카보네이트로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 리튬 이차전지용 전해액.
The method according to claim 1,
Wherein the organic solvent is at least one selected from the group consisting of ether, ester, amide, linear carbonate and cyclic carbonate.
제1항에 있어서,
상기 전해액은 비닐렌 카보네이트, 비닐에틸렌 카보네이트, 플루오로에틸렌 카보네이트, 환형 설파이트, 포화 설톤, 불포화 설톤 및 비환형 설폰으로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 전해액.
The method according to claim 1,
Wherein the electrolytic solution further comprises at least one selected from the group consisting of vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate, cyclic sulfite, saturated sulphone, unsaturated sulphone, and acyclic sulphone.
제 1 항 내지 제 6 항 중 어느 한 항의 전해액을 포함하는 것을 특징으로 하는 리튬이차전지.

A lithium secondary battery comprising the electrolyte according to any one of claims 1 to 6.

KR1020140021427A 2014-02-24 2014-02-24 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same KR102195735B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140021427A KR102195735B1 (en) 2014-02-24 2014-02-24 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
PCT/KR2015/001206 WO2015126082A1 (en) 2014-02-24 2015-02-05 Electrolyte for lithium secondary battery and lithium secondary battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140021427A KR102195735B1 (en) 2014-02-24 2014-02-24 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20150100079A true KR20150100079A (en) 2015-09-02
KR102195735B1 KR102195735B1 (en) 2020-12-28

Family

ID=53878537

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140021427A KR102195735B1 (en) 2014-02-24 2014-02-24 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Country Status (2)

Country Link
KR (1) KR102195735B1 (en)
WO (1) WO2015126082A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020242015A1 (en) * 2019-05-31 2020-12-03 에스케이케미칼 주식회사 Electrolyte solution for secondary battery and secondary battery comprising same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128537B2 (en) * 2016-08-30 2018-11-13 Wildcat Discovery Technologies, Inc. Electrolyte formulations for electrochemical cells containing a silicon electrode
WO2021016515A1 (en) 2019-07-24 2021-01-28 Saudi Arabian Oil Company Oxidizing gasses for carbon dioxide-based fracturing fluids
US11492541B2 (en) 2019-07-24 2022-11-08 Saudi Arabian Oil Company Organic salts of oxidizing anions as energetic materials
WO2021138355A1 (en) 2019-12-31 2021-07-08 Saudi Arabian Oil Company Viscoelastic-surfactant fracturing fluids having oxidizer
US11339321B2 (en) 2019-12-31 2022-05-24 Saudi Arabian Oil Company Reactive hydraulic fracturing fluid
US11352548B2 (en) 2019-12-31 2022-06-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
US11268373B2 (en) 2020-01-17 2022-03-08 Saudi Arabian Oil Company Estimating natural fracture properties based on production from hydraulically fractured wells
US11473009B2 (en) 2020-01-17 2022-10-18 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11365344B2 (en) 2020-01-17 2022-06-21 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11473001B2 (en) 2020-01-17 2022-10-18 Saudi Arabian Oil Company Delivery of halogens to a subterranean formation
US11578263B2 (en) 2020-05-12 2023-02-14 Saudi Arabian Oil Company Ceramic-coated proppant
US11542815B2 (en) 2020-11-30 2023-01-03 Saudi Arabian Oil Company Determining effect of oxidative hydraulic fracturing
CN115215316B (en) * 2021-04-15 2023-09-15 浙江省化工研究院有限公司 Preparation method of lithium difluorophosphate
CN114188609A (en) * 2021-12-20 2022-03-15 河南大学 Quaternary ammonium nitrate electrolyte and lithium metal battery using same
US11905804B2 (en) 2022-06-01 2024-02-20 Saudi Arabian Oil Company Stimulating hydrocarbon reservoirs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513088A (en) 1990-12-12 1993-01-22 Sanyo Electric Co Ltd Nonaqueous electrolytic liquid battery
KR20060125853A (en) * 2004-01-06 2006-12-06 싸이언 파워 코포레이션 Electrolytes for lithium sulfur cells
KR20120011209A (en) 2010-07-28 2012-02-07 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20130054214A (en) * 2011-11-16 2013-05-24 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100614368B1 (en) * 2004-10-04 2006-08-21 삼성에스디아이 주식회사 Lithium secondary battery
JP5619412B2 (en) * 2009-09-04 2014-11-05 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513088A (en) 1990-12-12 1993-01-22 Sanyo Electric Co Ltd Nonaqueous electrolytic liquid battery
KR20060125853A (en) * 2004-01-06 2006-12-06 싸이언 파워 코포레이션 Electrolytes for lithium sulfur cells
KR20120011209A (en) 2010-07-28 2012-02-07 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20130054214A (en) * 2011-11-16 2013-05-24 주식회사 엘지화학 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020242015A1 (en) * 2019-05-31 2020-12-03 에스케이케미칼 주식회사 Electrolyte solution for secondary battery and secondary battery comprising same

Also Published As

Publication number Publication date
WO2015126082A1 (en) 2015-08-27
WO2015126082A8 (en) 2016-08-25
KR102195735B1 (en) 2020-12-28

Similar Documents

Publication Publication Date Title
KR102195735B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101511733B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20160077266A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101437073B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR102425826B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery employing the same
KR20230077708A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery employing the same
KR20160077271A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR101195930B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR102307905B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR102425830B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery employing the same
KR20140038676A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
KR102343690B1 (en) Electrolyte solution for lithium secondary battery and lithium secondary battery employing the same
KR101565533B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR102234706B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR102402390B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
CN107431244B (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR102356937B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery employing the same
KR102425829B1 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery employing the same
KR20160077270A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
KR20170047659A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery employing the same
KR102490866B1 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery employing the same
KR20130090663A (en) Lithium secondary battery
KR20130137935A (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant