KR20150098980A - Germanium (silicon), CNT graphene (CNT, graphene) airgel and electrode material - Google Patents

Germanium (silicon), CNT graphene (CNT, graphene) airgel and electrode material Download PDF

Info

Publication number
KR20150098980A
KR20150098980A KR1020140020411A KR20140020411A KR20150098980A KR 20150098980 A KR20150098980 A KR 20150098980A KR 1020140020411 A KR1020140020411 A KR 1020140020411A KR 20140020411 A KR20140020411 A KR 20140020411A KR 20150098980 A KR20150098980 A KR 20150098980A
Authority
KR
South Korea
Prior art keywords
cnt
graphene
germanium
silicon
gel
Prior art date
Application number
KR1020140020411A
Other languages
Korean (ko)
Inventor
이연수
Original Assignee
이연수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이연수 filed Critical 이연수
Priority to KR1020140020411A priority Critical patent/KR20150098980A/en
Publication of KR20150098980A publication Critical patent/KR20150098980A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/023Gel electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a germanium (silicone)·CNT graphene (CNT, graphene) aerogel (FIG. 3. B) produced as a lithium ion battery energy reservoir having high electricity charge storing capacity and excellent charging and discharging performance, wherein germanium (silicone) which is one of a germanium nanoparticle or silicone nanoparticle (FIG. 1. 1-a) or a germanium nanowire or a silicone nanowire (FIG. 1. 1-b) having excellent charging and discharging performance is included in a CNT graphene (CNT, graphene) aerogel (FIG. 3. 3) which is lightweight and porous and has a large surface area and a space needed for expansion and shrinkage when germanium or silicone is charged or discharged.

Description

게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔{omitted}Germanium (silicon) · CNT graphene (CNT, graphene) aerogels {omitted}

본 발명은 CNT 그래핀(CNT, 그래핀) 에어로겔 내에 게르마늄 나노(와이어)나 실리콘 나노(와이어)가 내재되도록 구성하여 전기 전하 저장 용량이 크면서, 또한 충·방전의 성능이 우수한 리튬 이온 전지의 에너지 저장체를 구성하고자 하는 것이다.The present invention relates to a lithium ion battery having a large electric charge storage capacity and excellent charge / discharge performance by constructing a germanium nano (wire) or a silicon nano (wire) in a CNT graphene (CNT) Thereby forming an energy storage body.

본 발명은 1. 충·방전의 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자 또는 게르마늄 나노 와이어나 실리콘 나노 와이어 중에서 하나를 선택하여 2. 가볍고, 다공성이며, 표면적이 넓고, 게르마늄이나 실리콘이 충·방전시 팽창 및 수축에 필요한 공간을 갖는 CNT 그래핀(CNT, 그래핀) 에어로겔 내에 내재되도록 구성하여, 전기 전하 저장 용량이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체로 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B)에 관한 것이다.The present invention is characterized by: 1. selecting one of germanium nanoparticles, silicon nanoparticles, germanium nanowires or silicon nanowires having excellent charge / discharge performance; 2. selecting a lightweight, porous, and large surface area; (CNT) graphene having a space required for expansion and contraction at the time of shrinkage, and a lithium ion battery energy storage body having a large electric charge storage capacity and excellent charge / discharge performance, Silicon) CNT graphene aerogels (Fig. 3. B).

본 발명은 충전 및 방전의 효능이 우수한 게르마늄이나 실리콘을, 가볍고 다공성이며, 표면적이 넓고, 온도나 화재에 대한 저항이 우수하며, 게르마늄이나 실리콘이 충·방전시 팽창 및 수축에 필요한 공간을 갖는 CNT 그래핀(CNT, 그래핀) 에어로겔 내에 내재되도록 구성하여, 보다 전기 전하 저장 용량이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체를 구성하는 것이 해결하고자 하는 과제이다.Disclosed is a germanium or silicon which is excellent in the effect of charge and discharge, is light, porous, has a large surface area, is excellent in resistance to temperature and fire, and has a space required for expansion and contraction of germanium or silicon when charging and discharging. (CNT) graphene airgel, thereby forming a lithium ion battery energy storage having a higher electric charge storage capacity and excellent charging / discharging performance.

따라서 본 발명은Therefore,

1단계 : CNT 그래핀(CNT, 그래핀) 겔 구성.(도1. 2)Step 1: CNT graphene (CNT, graphene) gel composition (Figure 1.2)

○ CNT와 그래핀을 1:1 중량비로 혼합하여 구성한 CNT 그래핀이나 CNT 또는 그래핀 중에서 하나를 선택하여 NMP나 DMF, 알콜, 물 중에서 선택한 용매에 첨가 교반하여 겔로 구성한 'CNT 그래핀(CNT, 그래핀) 겔'.(도1. 2)CNT graphene (CNT, CNT, or CNT) composed of a mixture of CNT and graphene in a weight ratio of 1: 1 is selected and added to a solvent selected from NMP, DMF, alcohol, Graphene) gel '(Figure 1.2)

2단계 : 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔 구성.(도2. A)Step 2: Germanium (silicon) · CNT graphene (CNT, graphene) gel composition (Figure 2. A)

○ 충·방전 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)을 CNT 그래핀(CNT, 그래핀) 겔(도1. 2)에 첨가 교반하여 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'(도2. A)Germanium (silicon) selected from germanium nanoparticles or silicon nanoparticles (FIG. 1. 1-a) or germanium nanowires or silicon nanowires (FIG. 1. 1-b) Germanium (CNT) graphene gel (CNT, graphene gel) '(FIG. 2. A)

○ CNT 그래핀(CNT, 그래핀) 겔 40∼60 : 게르마늄(실리콘) 나노 입자나 나노 와이어 60∼40 중량부로 구성.CNT Graphene (CNT, graphene) Gel 40 to 60: composed of germanium (silicon) nanoparticles and nanowires 60 to 40 parts by weight.

3단계 : 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔 구성.(도2. B)Step 3: Construction of germanium (silicon), CNT graphene (CNT, graphene) aerogels (Fig.

○ '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'(도2. A)를 성형틀(도2. C)에 채운 후, 냉동건조기에서 냉동 건조시키면 용매가 승화되어, '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'의 CNT 그래핀(CNT, 그래핀) 겔(도2. 2)은 다공성이며, 가볍고, 표면적이 넓으며, 온도나 화재에 대한 저항이 우수하고, 게르마늄이나 실리콘이 충·방전시 팽창 및 수축에 필요한 공간을 갖는 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3)로 구성되면서 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3) 내에, 충·방전 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)이 내재되어, 보다 전기 전하 저장 용량이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체로 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B)에 관한 것으로After filling the mold (Fig. 2. C) with 'germanium (silicon) · CNT graphene (CNT, graphene) gel' (Fig. 2. A) and freezing drying in a freeze drier, the solvent sublimes and 'germanium CNT Graphene (CNT, Graphene) gel (Fig. 2.2) of a silicon (silicon), CNT graphene (gelatin) gel is porous, lightweight, has a large surface area, (CNT) graphene (CNT) graphene (CNT) graphene (CNT) graphene (CNT) graphene (CNT) graphene 3), germanium nanoparticles or germanium nanoparticles (Fig. 1. 1-a) or germanium nanowires (Fig. 1. 1-b) ), And is constituted by a lithium ion battery energy storage material having a higher electric charge storage capacity and excellent charge / discharge performance Relates to 'germanium (silicon) · graphene CNT (CNT, graphene) airgel (Figure 3. B)

본 발명인 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B)은 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3)-(다공성이며, 가볍고, 표면적이 넓으며, 온도나 화재에 대한 저항이 우수하고, 게르마늄이나 실리콘이 충·방전시 팽창 및 수축에 필요한 공간을 갖는 에어로겔)-내에 충·방전 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)이 내재되어 구성되어져 보다 전기 전하 저장 용량이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체로 구성할 수 있어 과제를 해결하였다.(CNT) graphene (CNT) graphene (CNT) graphene (FIG. 3. 3) - (porous, lightweight, surface area Germanium nanoparticles or silicon nanoparticles (see FIG. 1 (a)), which are excellent in charge and discharge performance, are excellent in resistance against temperature and fire, and have space required for expansion and contraction of germanium or silicon during charging and discharging) (Silicon) selected from the group consisting of 1-a) or germanium nanowires or silicon nanowires (Fig. 1. 1-b) And a lithium ion battery energy storage body.

본 발명인 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B)은 다공성이며, 가볍고, 표면적이 넓으며, 온도나 화재에 대한 저항이 우수하고, 게르마늄이나 실리콘이 충·방전시 팽창 및 수축에 필요한 공간을 갖는 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3) 내에, 충·방전 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)이 내재되어, 보다 전기 전하 저장 용량이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체로 구성할 수 있어 효과적이다.The "germanium (CNT) graphene (CNT) graphene aerogels" (Fig. 3B) of the present invention are porous, lightweight, have a wide surface area, excellent resistance to temperature and fire, In the CNT graphene (CNT, graphene) aerogels (Fig. 3.3) with space required for expansion and contraction during charging and discharging, germanium nanoparticles or silicon nanoparticles (Fig. ) Or a germanium (silicon) selected from germanium nanowires or silicon nanowires (Fig. 1. 1-b) is embedded in a lithium ion battery having excellent charge / It is effective because it can be constituted by sieve.

도1. CNT 그래핀(CNT, 그래핀) 겔에 게르마늄 나노(와이어)나 실리콘 나노(와이어)를 첨가하는 구성도.
1-a 게르마늄 나노 입자나 실리콘 나노 입자.
1-b 게르마늄 나노 와이어나 실리콘 나노 와이어
2 CNT 그래핀(CNT, 그래핀) 겔 - CNT 그래핀 겔, CNT 겔, 그래핀 겔.
도2. 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔 구성도.
1-a 게르마늄 나노 입자나 실리콘 나노 입자
1-b 게르마늄 나노 와이어나 실리콘 나노 와이어
2 CNT 그래핀(CNT, 그래핀) 겔 - CNT 그래핀 겔, CNT 겔, 그래핀 겔.
A. 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔
CNT 그래핀(CNT, 그래핀) 겔에 게르마늄 나노 입자나 실리콘 나노 입자 또는 게르마늄 나노 와이어나 실리콘 나노 와이어 중에서 하나를 선택한 게르마늄(실리콘)이 내재되어 구성.
C. 성형틀
도3. 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔 구성도
1-a 게르마늄 나노 입자나 실리콘 나노 입자
1-b 게르마늄 나노 와이어나 실리콘 나노 와이어
3 CNT 그래핀(CNT, 그래핀) 에어로겔 - CNT 그래핀 에어로겔, CNT 에어로겔, 그래핀 에어로겔.
B 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔.
CNT 그래핀(CNT, 그래핀) 에어로겔에 게르마늄 나노 입자나 실리콘 나노 입자 또는 게르마늄 나노 와이어나 실리콘 나노 와이어 중에서 하나를 선택한 게르마늄(실리콘)이 내재되어 구성.
Fig. CNT graphene (CNT, graphene) A diagram showing the addition of germanium nano (wire) or silicon nano (wire) to a gel.
1-a germanium nanoparticles or silicon nanoparticles.
1-b germanium nanowires or silicon nanowires
2 CNT Graphene (CNT, graphene) gel - CNT graphene gel, CNT gel, graphene gel.
Fig. Germanium (silicon) · CNT graphene (CNT, graphene) gel composition diagram.
1-a germanium nanoparticles or silicon nanoparticles
1-b germanium nanowires or silicon nanowires
2 CNT Graphene (CNT, graphene) gel - CNT graphene gel, CNT gel, graphene gel.
A. Germanium (silicon) · CNT graphene (CNT, graphene) gel
CNT Graphene (CNT, Graphene) Germanium nanoparticles, silicon nanoparticles, germanium nanowires, or silicon nanowires have been selected for use in germanium (silicon).
C. Molding frame
3. Germanium (silicon) · CNT graphene (CNT, graphene) Airgel composition diagram
1-a germanium nanoparticles or silicon nanoparticles
1-b germanium nanowires or silicon nanowires
3 CNT Graphene (CNT, Graphene) Aerogels - CNT Graphene Aerogels, CNT Aerogels, Graphene Aerogels.
B germanium (silicon) · CNT graphene (CNT, graphene) aerogels.
CNT Graphene (CNT) Germanium (silicon), which is selected from germanium nanoparticles, silicon nanoparticles or germanium nanowires or silicon nanowires, is embedded in the airgel.

본 발명은 다공성이며, 가볍고, 표면적이 넓으며, 온도나 화재에 대한 저항이 우수하고, 게르마늄이나 실리콘이 충·방전시 팽창 및 수축에 필요한 공간을 갖는 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3) 내에, 충·방전 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)이 내재되도록 구성하여, 보다 전기 전하 저장 용량이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체를 구성하는 것이 목적인 바,The present invention relates to a CNT graphene (CNT) graphene (CNT) material having porosity, light weight, large surface area, excellent resistance to temperature and fire, and space required for expansion and contraction of germanium or silicon during charge and discharge Germanium nanoparticles or germanium nanoparticles (Fig. 1. 1-a) or germanium nanowires (Fig. 1. 1-b) Silicon) is built in. The lithium ion battery energy storage structure having a higher electric charge storage capacity and excellent charging / discharging performance is intended.

본 발명은The present invention

1단계 : CNT 그래핀(CNT, 그래핀) 겔 구성.(도1. 2)Step 1: CNT graphene (CNT, graphene) gel composition (Figure 1.2)

○ CNT와 그래핀을 1:1 중량비로 혼합하여 구성한 CNT 그래핀이나 CNT 또는 그래핀 중에서 하나를 선택하여 NMP나 DMF, 알콜, 물 중에서 선택한 용매에 첨가 교반하여 겔로 구성한 CNT 그래핀(CNT, 그래핀) 겔 구성.(도1. 2)CNT graphene mixed with CNT and graphene at a weight ratio of 1: 1, CNT or graphene was selected and added to a solvent selected from NMP, DMF, alcohol and water to prepare CNT graphene (CNT, Pin) gel composition (Figure 1.2)

2단계 : 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔 구성.(도2. A)Step 2: Germanium (silicon) · CNT graphene (CNT, graphene) gel composition (Figure 2. A)

○ 충·방전 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)을 CNT 그래핀(CNT, 그래핀) 겔(도1. 2)에 첨가 교반하여 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'(도2. A)Germanium (silicon) selected from germanium nanoparticles or silicon nanoparticles (FIG. 1. 1-a) or germanium nanowires or silicon nanowires (FIG. 1. 1-b) Germanium (CNT) graphene gel (CNT, graphene gel) '(FIG. 2. A)

○ CNT 그래핀(CNT, 그래핀) 겔 40∼60 : 게르마늄(실리콘) 나노 입자나 나노 와이어 60∼40 중량부로 구성.CNT Graphene (CNT, graphene) Gel 40 to 60: composed of germanium (silicon) nanoparticles and nanowires 60 to 40 parts by weight.

3단계 : 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔 구성.(도3. B)Step 3: Construction of germanium (silicon), CNT graphene (CNT, graphene) airgel. (Fig.

○ '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'(도2. A)를 성형틀(도2. C)에 채운 후, 냉동건조기에서 냉동 건조시키면 용매가 승화되어, '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'의 CNT 그래핀(CNT, 그래핀) 겔(도2. 2)은 다공성이며, 가볍고, 표면적이 넓으며, 온도나 화재에 대한 저항이 우수하고, 게르마늄이나 실리콘이 충·방전시 팽창 및 수축에 필요한 공간을 갖는 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3)로 구성되면서 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3) 내에, 충·방전 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)이 내재되어, 보다 전기 전하 저장 용량이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체로 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B)에 관한 것으로After filling the mold (Fig. 2. C) with 'germanium (silicon) · CNT graphene (CNT, graphene) gel' (Fig. 2. A) and freezing drying in a freeze drier, the solvent sublimes and 'germanium CNT Graphene (CNT, Graphene) gel (Fig. 2.2) of a silicon (silicon), CNT graphene (gelatin) gel is porous, lightweight, has a large surface area, (CNT) graphene (CNT) graphene (CNT) graphene (CNT) graphene (CNT) graphene (CNT) graphene 3), germanium nanoparticles or germanium nanoparticles (Fig. 1. 1-a) or germanium nanowires (Fig. 1. 1-b) ), And is constituted by a lithium ion battery energy storage material having a higher electric charge storage capacity and excellent charge / discharge performance Relates to 'germanium (silicon) · graphene CNT (CNT, graphene) airgel (Figure 3. B)

본 발명인 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B)은 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3) - (다공성이며, 가볍고, 표면적이 넓으며, 온도나 화재에 대한 저항이 우수하고, 게르마늄이나 실리콘이 충·방전시 팽창 및 수축에 필요한 공간을 갖는 에어로겔) - 내에, 충·방전 성능이 우수한 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)이 내재되어, 보다 전기 전하 저장 용량이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체로 구성할 수 있어 발명하였다.(CNT) graphene (CNT) graphene (CNT) graphene (FIG. 3. 3) - (porous, lightweight, surface area Germanium nanoparticles or silicon nanoparticles (which are excellent in resistance to temperature and fire, aerogels that have space required for expansion and contraction during charging and discharging of germanium or silicon) (Silicon) having one of 1-a) or germanium nanowire or silicon nanowire (Fig. 1. 1-b) And a lithium ion battery energy storage body.

Claims (4)

본 발명은 전기 전하 저장 성능이 크면서, 충·방전의 성능이 우수한 리튬 이온 전지 에너지 저장체를 구성하고자
1단계 : CNT 그래핀(CNT, 그래핀) 겔 구성.(도1. 2)
○ CNT와 그래핀을 1:1 중량부로 혼합하여 구성한 CNT 그래핀이나 CNT 또는 그래핀 중에서 하나를 선택하여 NMP, DMF, 알콜, 물 중에서 선택한 용매에 첨가 교반하여 겔로 구성한 'CNT 그래핀(CNT, 그래핀) 겔'(도1. 2)
2단계 : 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔 구성.(도2. A)
○ 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)을 CNT 그래핀(CNT, 그래핀) 겔(도1. 2)에 첨가 교반하여 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'.(도2. A)
3단계 : 게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔 구성.(도2. B)
○ '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'(도2. A)를 성형틀(도2. C)에 채운 후, 냉동건조기에서 냉동 건조시키면 용매가 승화되어, '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'의 CNT 그래핀(CNT, 그래핀) 겔(도2. 2)은 CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3)로 구성되면서, CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3) 내에, 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a)나 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)(도3. 1-a, 1-b)이 내재되어 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B)
DISCLOSURE OF THE INVENTION The present invention provides a lithium ion battery energy storage material having high electric charge storage performance and excellent charge / discharge performance
Step 1: CNT graphene (CNT, graphene) gel composition (Figure 1.2)
CNT graphene (CNT), which is composed of CNT graphene or CNT or graphene mixed with CNT and graphene in 1: 1 part by weight, is added to a solvent selected from NMP, DMF, alcohol, Gel pin) gel '(Fig. 1.2)
Step 2: Germanium (silicon) · CNT graphene (CNT, graphene) gel composition (Figure 2. A)
Germanium (silicon) selected from germanium nanoparticles, silicon nanoparticles (FIG. 1. 1-a) or germanium nanowires or silicon nanowires (FIG. Germanium (CNT) graphene (CNT, graphene) gel "(FIG. 2. A)
Step 3: Construction of germanium (silicon), CNT graphene (CNT, graphene) aerogels (Fig.
After filling the mold (Fig. 2. C) with 'germanium (silicon) · CNT graphene (CNT, graphene) gel' (Fig. 2. A) and freezing drying in a freeze drier, the solvent sublimes and 'germanium CNT graphene (CNT, graphene) gel (Fig. 2.2) of CNT (grafted silicon), CNT graphene (CNT) (Fig. 1. 1-a), germanium nanowires, or silicon nanowires (Fig. 1. 1-a) are formed in a CNT graphene (CNT, germanium (CNT) graphene (CNT, graphene) aerogels "(Fig. 3B), which is composed of germanium (silicon)
청구 1항 2단계에 있어서
○ 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)을 CNT 그래핀(CNT, 그래핀) 겔(도1. 2)에 첨가 교반하여 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'.(도2. A)
○ CNT 그래핀(CNT, 그래핀) 겔 40∼60 : 게르마늄(실리콘) 나노 입자나 나노 와이어 60∼40 중량부로 구성.
In claim 1, step 2
Germanium (silicon) selected from germanium nanoparticles, silicon nanoparticles (FIG. 1. 1-a) or germanium nanowires or silicon nanowires (FIG. Germanium (CNT) graphene (CNT, graphene) gel "(FIG. 2. A)
CNT Graphene (CNT, graphene) Gel 40 to 60: composed of germanium (silicon) nanoparticles and nanowires 60 to 40 parts by weight.
청구 2항에서 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔'(도2. A)을 성형틀(도2. C)에 채운 후, 냉동건조기에서 냉동 건조시키면 용매가 승화되어, '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 겔의 CNT 그래핀(CNT, 그래핀) 겔(도2. 2)은 'CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. 3)로 구성되면서, CNT 그래핀(CNT, 그래핀) 에어로겔(도3. 3) 내에, 게르마늄 나노 입자나 실리콘 나노 입자(도1. 1-a) 또는 게르마늄 나노 와이어나 실리콘 나노 와이어(도1. 1-b) 중에서 하나를 선택한 게르마늄(실리콘)(도3. 1-a, 1-b)이 내재되어 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B).When the "germanium (silicon) CNT graphene gel" (FIG. 2. A) constructed in claim 2 is filled in a mold (FIG. 2C) and freeze-dried in a freeze dryer, CNT graphene (CNT, graphene) gel (Fig. 2.2) of 'germanium (silicon) · CNT graphene (CNT) 3. 3), a germanium nanoparticle or a silicon nanoparticle (FIG. 1. 1-a) or a germanium nanowire or a silicon nanowire (FIG. 11) is formed in a CNT graphene (CNT, (Silicon) · CNT graphene (CNT, graphene) aerogels' (Fig. 3. 1-a and 1-b) with one of the germanium 3. B). 청구 3항에서 구성한 '게르마늄(실리콘)·CNT 그래핀(CNT, 그래핀) 에어로겔'(도3. B)로 구성한 리튬 이온 에너지 저장체.A lithium ion energy storage material composed of the 'germanium (silicon) · CNT graphene (CNT, graphene) airgel' (FIG.
KR1020140020411A 2014-02-21 2014-02-21 Germanium (silicon), CNT graphene (CNT, graphene) airgel and electrode material KR20150098980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140020411A KR20150098980A (en) 2014-02-21 2014-02-21 Germanium (silicon), CNT graphene (CNT, graphene) airgel and electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140020411A KR20150098980A (en) 2014-02-21 2014-02-21 Germanium (silicon), CNT graphene (CNT, graphene) airgel and electrode material

Publications (1)

Publication Number Publication Date
KR20150098980A true KR20150098980A (en) 2015-08-31

Family

ID=54060231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140020411A KR20150098980A (en) 2014-02-21 2014-02-21 Germanium (silicon), CNT graphene (CNT, graphene) airgel and electrode material

Country Status (1)

Country Link
KR (1) KR20150098980A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110902672A (en) * 2019-12-26 2020-03-24 北京化工大学 Photothermal effect multi-stage structure microspherical graphene aerogel and preparation method thereof
CN115849862A (en) * 2022-08-19 2023-03-28 希纳高科(江苏)有限公司 Preparation method of nanowire fiber reinforced silica aerogel composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110902672A (en) * 2019-12-26 2020-03-24 北京化工大学 Photothermal effect multi-stage structure microspherical graphene aerogel and preparation method thereof
CN115849862A (en) * 2022-08-19 2023-03-28 希纳高科(江苏)有限公司 Preparation method of nanowire fiber reinforced silica aerogel composite material
CN115849862B (en) * 2022-08-19 2024-01-30 希纳高科(江苏)有限公司 Preparation method of nanowire fiber reinforced silicon aerogel composite material

Similar Documents

Publication Publication Date Title
Shi et al. Flexible phase change materials for thermal energy storage
Li et al. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries
Wei et al. 3D direct writing fabrication of electrodes for electrochemical storage devices
Li et al. Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode
Yoon et al. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking
Li et al. High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery
ES2675870T3 (en) Lead and acid battery formulations containing discrete carbon nanotubes
Li et al. Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries
Jeong et al. Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: Advantageous effect of highly percolated, electrolyte-philic microporous architecture
JP2016511916A5 (en)
EP2803639A3 (en) Metal/non-metal co-doped lithium titanate spheres with hierarchical micro/nano architectures for high rate lithium ion batteries
JP2016506044A5 (en)
Lin et al. Embedding silicon nanoparticles in graphene based 3D framework by cross-linking reaction for high performance lithium ion batteries
JP2015508937A5 (en)
JP2016131123A5 (en)
KR20150098980A (en) Germanium (silicon), CNT graphene (CNT, graphene) airgel and electrode material
JP2013225501A5 (en)
Huang et al. High-performance Si flexible anode with rGO substrate and Ca2+ crosslinked sodium alginate binder for lithium ion battery
ES2885999T3 (en) Method to produce sulfur-charged carbon nanotubes and cathodes for lithium ion batteries
Sun et al. Enhanced 3D hierarchical double porous Co3O4/graphene architecture for superior rechargeable lithium ion battery
CN108493480A (en) A kind of compound individual particle layer solid electrolyte and preparation method thereof
KR20160044951A (en) A manufacturing process of a cathode powder for a lithium-sulfur all-solid-state battery, and the lithium-sulfur all-solid-state baterry therefrom
WO2017018132A8 (en) Redox flow battery electrode, redox flow battery, and method for evaluating electrode properties
KR101372990B1 (en) Method for preparing Positive electrode materials for Lithium-sulfur secondary battery
JP2015022923A5 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment