KR20150086146A - Manufacturing method of silicon oxide carbon composite for anode of rechareable batteries of reducing hydrochloric acid gas generation, and silicon oxide carbon composite made by the same - Google Patents

Manufacturing method of silicon oxide carbon composite for anode of rechareable batteries of reducing hydrochloric acid gas generation, and silicon oxide carbon composite made by the same Download PDF

Info

Publication number
KR20150086146A
KR20150086146A KR1020140006349A KR20140006349A KR20150086146A KR 20150086146 A KR20150086146 A KR 20150086146A KR 1020140006349 A KR1020140006349 A KR 1020140006349A KR 20140006349 A KR20140006349 A KR 20140006349A KR 20150086146 A KR20150086146 A KR 20150086146A
Authority
KR
South Korea
Prior art keywords
silicon oxide
carbon composite
negative electrode
silicon
secondary battery
Prior art date
Application number
KR1020140006349A
Other languages
Korean (ko)
Other versions
KR101598168B1 (en
Inventor
김선재
이대걸
노경종
Original Assignee
주식회사 예일전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 예일전자 filed Critical 주식회사 예일전자
Priority to KR1020140006349A priority Critical patent/KR101598168B1/en
Publication of KR20150086146A publication Critical patent/KR20150086146A/en
Application granted granted Critical
Publication of KR101598168B1 publication Critical patent/KR101598168B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to an eco-friendly manufacturing method of a silicon oxide carbon composite for secondary battery negative electrode materials with reduced generation of hydrochloric acid gas and a silicon oxide carbon composite for a secondary battery negative electrode material manufactured thereby and, more specifically, a novel manufacturing method of a silicon oxide carbon composite for secondary battery negative electrode materials, which improves the energy storage property of middle-and-large-sized lithium secondary battery which needs high power source and high voltage while efficiently reducing a huge amount of hydrochloric acid gas generated in a manufacturing process wherein the hydrochloric acid gas corrodes a manufacturing apparatus, and a silicon oxide carbon composite for a secondary battery negative electrode material manufactured thereby.

Description

염산 기체 발생이 감소된 이차전지 음극재용 실리콘산화물 탄소 복합체의 친환경 제조 방법 및 이에 의하여 제조된 이차전지 음극재용 실리콘산화물 탄소 복합체{MANUFACTURING METHOD OF SILICON OXIDE CARBON COMPOSITE FOR ANODE OF RECHAREABLE BATTERIES OF REDUCING HYDROCHLORIC ACID GAS GENERATION, AND SILICON OXIDE CARBON COMPOSITE MADE BY THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an eco-friendly method for producing a silicon oxide carbon composite material for a cathode material for a secondary battery having reduced hydrochloric acid gas generation and a silicon oxide carbon composite material for a secondary battery anode material produced thereby. , AND SILICON OXIDE CARBON COMPOSITE MADE BY THE SAME}

본 발명은 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법 및 이에 의하여 제조된 이차전지 음극재용 실리콘산화물 탄소 복합체에 관한 것으로서, 더욱 상세하게는 고출력 및 고전압을 필요로 하는 중대형 리튬 이차 전지의 에너지 저장 특성을 향상시키면서도 제조 과정 중 다량 발생되어 제조 장치를 부식시키는 문제를 일으키는 염산 기체의 발생을 효율적으로 감소시킬 수 있는 이차전지 음극재용 실리콘산화물 탄소 복합체의 신규한 제조 방법 및 이에 의하여 제조된 이차전지 음극재용 실리콘산화물 탄소 복합체에 관한 것이다.
The present invention relates to a method for producing a silicon oxide carbon composite material for an environmentally friendly secondary battery anode material having reduced hydrochloric acid gas generation, and a silicon oxide carbon composite material for a secondary battery anode material produced thereby, and more particularly, The present invention relates to a novel method for manufacturing a silicon oxide carbon composite material for a cathode material for a secondary battery, which can efficiently reduce the generation of hydrochloric acid gas which causes a problem of corrosion of a manufacturing apparatus due to a large amount during manufacturing process while improving energy storage characteristics of the lithium secondary battery. To a silicon oxide-carbon composite material for a secondary battery negative electrode material.

리튬 이차 전지는 리튬 이온의 삽입 및 탈리가 가능한 활물질을 포함한 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리될 때의 산화, 환원 반응에 의해 전기 에너지를 생산한다.In the lithium secondary battery, an organic electrolyte or a polymer electrolyte is filled between a positive electrode and a negative electrode containing an active material capable of inserting and desorbing lithium ions, and an oxidation / reduction reaction occurs when lithium ions are inserted / It produces energy.

종래 리튬 이차전지의 음극활물질로는 리튬 금속을 사용하였으나 현재에는 리튬 금속 대신 탄소계 음극활물질이 많이 사용되고 있다. 탄소계 음극활물질로는 결정질계 탄소 중 그래파이트가 대표적으로 사용되고 있는데 그래파이트와 같은 탄소계 음극활물질은 이론용량의 상한이 약 372 mAh/g로 제한되어 있어, 고용량을 요구하는 모바일 디지털융합기기에 부응하는 음극소재로는 미흡하다.Conventionally, lithium metal is used as an anode active material of a lithium secondary battery, but carbon based anode active material is used instead of lithium metal. As the carbonaceous anode active material, graphite among crystalline carbon is typically used. Since the upper limit of the theoretical capacity of the carbonaceous anode active material such as graphite is limited to about 372 mAh / g, It is not enough for cathode material.

따라서 최근에 상용 흑연전극을 대체하기 위한 새로운 고용량 소재들이 많이 등장하고 있는데 그 중에서 실리콘(Si)계 음극소재가 이론적인 용량이 약 4,200 mAh/g으로 흑연소재에 비해 10배 이상 크기 때문에 가장 유망한 소재로 대두되고 있다. 그러나, 실리콘 음극소재는 리튬을 흡수 저장할 때에 결정구조의 변화를 야기 시켜 300% 이상의 큰 부피변화가 발생하는 문제점이 있다. 현재 음극재료로 사용되고 있는 흑연은 리튬 충전에 의한 부피 팽창율이 약 1.2배 정도인데 반해, 실리콘의 경우 리튬을 최대량 흡수 저장하면, Li4 .4Si로 전환되어 부피 팽창 전 실리콘의 부피에 비해 약 4.12배까지 팽창하기 때문에 이러한 부피 팽창으로 인해 전극의 구조가 붕괴되어 쿨롱효율이 낮아져 계속 사용이 어렵게 된다.Recently, a number of new high-capacity materials have been introduced to replace commercial graphite electrodes. Among them, the silicon-based anode material has a theoretical capacity of about 4,200 mAh / g, which is more than 10 times larger than the graphite material. . However, the silicon negative electrode material causes a crystal structure change when lithium is absorbed and stored, resulting in a large volume change of 300% or more. Inde volume expansion by about 1.2 times due to the graphite charge is lithium which is used to present a cathode material, whereas, if the case of the maximum amount of silicon lithium absorbing, Li is converted to 4 .4 Si of about 4.12 as compared to the volume of the entire volume expansion of silicon The volume expansion causes collapse of the structure of the electrode due to the volume expansion, resulting in lower Coulomb efficiency, making it difficult to continue use.

이와 같은 실리콘의 문제를 보완하기 위하여 실리콘의 합금화, 실리콘의 표면개질, 실리콘 복합체 등의 방법이 연구되고 있다. 예를 들어, SiO를 흑연과 기계적인 합금 후 탄화 처리하는 방법(예를 들면, 일본 특허공개 2000-243396호 ), 규소 입자 표면에 화학 증착법에 의해 탄소층을 피복하는 방법(일본 특허공개 2000-215887호 공보 참조), 산화규소 입자 표면에 화학 증착법에 의해 탄소층을 피복하는 방법(일본 특허공개 2002-42806호 공보 참조)이 있다.In order to overcome the problem of silicon, alloying of silicon, surface modification of silicon, and silicon composite have been studied. For example, a method of carbonizing SiO with graphite after mechanical alloying (for example, Japanese Patent Application Laid-Open No. 2000-243396), a method of coating a carbon layer on the surface of silicon particles by chemical vapor deposition (Japanese Patent Laid- 215887), and a method of coating a surface of a silicon oxide particle with a carbon layer by a chemical vapor deposition method (see Japanese Patent Laid-Open No. 2002-42806).

그러나, 상기 종래 실리콘 탄소 복합체의 제조 방법에 의해 얻어지는 실리콘 탄소 복합체는 충/방전 중에 발생하는 과도한 부피변화를 감소시킬 수는 있으나, 제조공정에서 발생하는 염화수소 등에 의해 아직까지 상용화를 위한 연구는 부족한 실정이다.
However, although the silicon carbon composite obtained by the conventional method of producing a silicon carbon composite can reduce an excessive volume change occurring during charging / discharging, research for commercialization is still insufficient due to hydrogen chloride generated in the manufacturing process to be.

일본 특허공개 2000-243396 호Japanese Patent Application Laid-Open No. 2000-243396 일본 특허공개 2000-215887 호Japanese Patent Application Laid-Open No. 2000-215887 일본 특허공개 2002-42806 호Japanese Patent Laid-Open No. 2002-42806

본 발명은, 상기와 같은 과제를 해결하기 위하여 기존의 흑연 음극재를 대체하기 위한 고용량의 음극활물질로서 실리콘산화물 탄소 복합체의 새로운 제조 방법을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a novel method for producing a silicon oxide carbon composite as a high capacity negative electrode active material for replacing existing graphite anode materials.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 실리콘산화물 탄소 복합체를 제공하는 것을 목적으로 한다.
The present invention also aims to provide a silicon oxide carbon composite produced by the production method of the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

염화실리콘을 비극성 유기 용매에 혼합하고 교반하는 제 1 단계; A first step of mixing and stirring the silicon chloride into the nonpolar organic solvent;

상기 염화실리콘과 비극성 유기 용매의 혼합물에 2가 알코올을 서서히 투여하면서 교반하여 슬러리를 제조하는 제 2 단계; A second step of slowly adding a dihydric alcohol to the mixture of the silicon chloride and the nonpolar organic solvent while stirring to prepare a slurry;

상기 슬러리를 건조시키는 제 3 단계; 및 A third step of drying the slurry; And

상기 건조된 슬러리를 열처리하는 제 4 단계; 를 포함하는 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법을 제공한다. A fourth step of heat-treating the dried slurry; The present invention also provides a method for producing a silicon oxide carbon composite material for an anode for an environmentally friendly secondary battery having reduced hydrochloric acid gas generation.

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법은 염화실리콘을 비극성 유기 용매와 혼합, 교반하여 염화실리콘을 비극성 유기 용매에 분산시킨 상태에서 R(OH)2로 표시되는 2가 알코올을 적하시켜 상기 2가 알코올과 상기 염화실리콘과의 반응 속도를 조절함으로써 염화실리콘과 2가 알코올과의 반응에 의해 발생하는 염산의 발생 속도를 조절할 수 있게 된다. The method for producing a silicon oxide carbon composite material for a secondary battery anode material according to the present invention comprises mixing a silicon chloride with a nonpolar organic solvent and stirring the silicon chloride in a nonpolar organic solvent to prepare a divalent alcohol represented by R (OH) 2 The reaction rate of the dihydric alcohol and the silicon chloride is controlled to control the rate of generation of the hydrochloric acid generated by the reaction between the silicon chloride and the divalent alcohol.

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법에 있어서, 상기 2가 알코올은 상기 염화실리콘과 반응하여 실리콘산화물을 생성하고, 상기 실리콘산화물 내에 잔류된 2가 알코올은 이후 열처리에 의해 탄화되어 상기 실리콘산화물과 탄소 복합체를 형성하여 실리콘의 부피 팽창을 감소시킴으로써 전기 화학 특성을 향상시킬 수 있다. In the method for producing a silicon oxide carbon composite material for a secondary battery negative electrode material according to the present invention, the bivalent alcohol reacts with the silicon chloride to produce silicon oxide, and the bivalent alcohol remaining in the silicon oxide is then carbonized Thereby forming a carbon composite with the silicon oxide to reduce the volume expansion of the silicon, thereby improving the electrochemical characteristics.

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법에 있어서, 상기 염화실리콘은 실리콘테트라클로라이드(SiCl4) 또는 디알킬디클로로실란(RR'SiCl2)인 것을 특징으로 한다. 디알킬디클로로실란(RR'SiCl2)은 구체적으로 n-데실메틸디클로로실란, 디-n-부틸디클로로실란, 디에틸디클로로실란, 디-n-헥실디클로로실란, 디-이소프로필디클로로실란, 디메틸디클로로실란(DMDCS), 디-n-옥틸디클로로실란, 도코실메틸디클로로실란, 도데실메틸디클로로실란, 에틸메틸디클로로실란, n-헵틸메틸디클로로실란, 헥실메틸디클로로실란, 이소프로필메틸디클로로실란, n-옥타데실메틸디클로로실란, n-옥틸메틸디클로로실란 및 n-프로필메틸디클로로실란 등이 있다. In the method for producing a silicon oxide carbon composite material for a secondary battery negative electrode material according to the present invention, the silicon chloride is characterized by being silicon tetrachloride (SiCl 4 ) or dialkyldichlorosilane (RR'SiCl 2 ). Dialkyl dichlorosilane (RR'SiCl 2) is specifically n- decyl methyl dichlorosilane, di -n- butyl dichlorosilane, diethyl dichlorosilane, di -n- hexyl dichlorosilane, di-iso-propyl dichlorosilane, dimethyldichlorosilane But are not limited to, silane (DMDCS), di-n-octyldichlorosilane, docosylmethyldichlorosilane, dodecylmethyldichlorosilane, ethylmethyldichlorosilane, n-heptylmethyldichlorosilane, hexylmethyldichlorosilane, Octadecylmethyldichlorosilane, n-octylmethyldichlorosilane and n-propylmethyldichlorosilane.

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법에 있어서, 상기 2가 알코올은 일반식 R(OH)2로 표시되고, 에틸렌글리콜, 프로필렌글리콜 및 피나콜 중 어느 하나인 것을 특징으로 한다. In the method for producing a silicon oxide carbon composite material for a secondary battery negative electrode material according to the present invention, the divalent alcohol is represented by the general formula R (OH) 2 and is any one of ethylene glycol, propylene glycol and pinacol .

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법에 있어서, 상기 비극성 유기 용매는 벤젠, 에테르, 클로로포름 및 톨루엔 중 어느 하나인 것을 특징으로 한다. In the method for producing a silicon oxide carbon composite material for a secondary battery anode material according to the present invention, the nonpolar organic solvent is any one of benzene, ether, chloroform and toluene.

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법에 있어서, 상기 제 1 단계에서는 상기 비극성 유기 용매 100 중량부당 상기 염화실리콘을 30 내지 60 중량부의 비율로 혼합하는 것을 특징으로 한다. 상기 염화실리콘이 30 중량부 이하로 혼합될 경우 실리콘 탄소 복합체에 함유된 실리콘 양이 적어 전극 제조시 에너지 밀도가 감소할 수 있으며, 60 중량부를 초과하여 혼합될 경우 실리콘산화물 탄소 복합체 내에 실리콘 입자들이 서로 뭉쳐 탄소가 부피 팽창을 효과적으로 막을 수 없게 된다. In the first step, the silicon chloride is mixed in an amount of 30 to 60 parts by weight per 100 parts by weight of the non-polar organic solvent. When the silicon chloride is mixed in an amount of 30 parts by weight or less, the amount of silicon contained in the silicon carbon composite may be small and the energy density may be reduced in the production of the electrode. When the silicon chloride is mixed in an amount exceeding 60 parts by weight, So that the carbon becomes unable to effectively prevent the volume expansion.

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법에 있어서, 비극성 유기 용매에 분산된 염화실리콘 내의 염소와 2가 알코올의 수소반응을 통해 HCl을 생성하여 실리콘산화물이 원할하게 제조될 수 있도록 하기 위해, 상기 염화실리콘과 비극성 용매의 혼합물 100 중량부당 상기 2가 알코올은 30 중량부 내지 40 중량부의 비율로 혼합한다. 여기서, 상기 염화실리콘과 비극성 유기 용매 혼합물 100 중량부당 상기 2가 알코올의 중량비가 30 중량부 미만일 경우, 실리콘 내의 산화반응이 원활하게 이루어지지 않아 실리콘산화물을 형성할 수 없다. 또한, 상기 2가 알코올의 중량비가 40 중량부를 초과하는 경우에는, 글리콜 내의 염소 반응이 폭발적으로 증가하여 실리콘산화물이 용해될 수 있다.In the method for producing a silicon oxide carbon composite material for a secondary battery negative electrode material according to the present invention, HCl is produced through hydrogen reaction between chlorine in a silicon chloride dispersed in a nonpolar organic solvent and a dihydric alcohol, , The divalent alcohol is mixed at a ratio of 30 parts by weight to 40 parts by weight per 100 parts by weight of the mixture of the silicon chloride and the non-polar solvent. When the weight ratio of the dihydric alcohol per 100 parts by weight of the mixture of the silicon chloride and the nonpolar organic solvent is less than 30 parts by weight, the oxidation reaction in the silicon is not smoothly performed and the silicon oxide can not be formed. Further, when the weight ratio of the dihydric alcohol is more than 40 parts by weight, the chlorine reaction in the glycol explosively increases and the silicon oxide may be dissolved.

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법에 있어서, 상기 제 4 단계에서, 상기 열처리는 600℃ 이상 및 900℃ 이하의 온도에서 행해지는 것을 특징으로 한다. 본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법에 있어서 열처리시, 염화실리콘 내의 염소와 2가 알코올 내의 탄소의 반응에 의해 염소가스는 증발하게 되고, 염화실리콘 내의 실리콘 클러스터와 글리콜 내의 산소의 반응에 의해 산소수가 2가 미만인 실리콘산화물이 제조된다. 한편, 열처리 온도가 600℃ 미만일 경우, 염소와 수소의 반응 속도가 저하되어 염소 가스가 원활하게 제거가 되지 않아 실리콘산화물이 용이하게 형성되지 않게 된다. 또한, 900℃를 초과하는 경우, 생성된 실리콘산화물의 입도 크기가 성장하여 최종적으로 이차전지의 활성이 저하되는 문제를 야기할 수 있으며, 또한 염소가스의 폭발적 생성으로 인해 실리콘산화물 형성시 산소함량이 2가 이상인 산화물이 생성될 수 있다. 또한, 열처리 시간은 15분 내지 6시간이 바람직하며, 열처리 시간이 15분 미만일 경우 실리콘산화물 형성이 용이하지 않고, 6시간을 초과하는 경우 입자 성장 문제를 야기할 수 있다. 열처리 후의 냉각시에는 공냉 혹은 분당 20 ℃ 이하로 서냉하는 것이 바람직한데, 왜냐하면 지나치게 급냉하게 되면 입자 크기 성장에 의해 전기화학특성이 저하되는 문제점이 야기 될 수 있기 때문이다.In the method of manufacturing a silicon oxide carbon composite material for a secondary battery negative electrode material according to the present invention, in the fourth step, the heat treatment is performed at a temperature of 600 ° C or more and 900 ° C or less. In the method for producing a silicon oxide carbon composite material for a secondary battery negative electrode material according to the present invention, chlorine gas evaporates due to reaction of chlorine in silicon chloride and carbon in dihydric alcohol during heat treatment, and silicon cluster in silicon chloride and oxygen A silicon oxide having an oxygen number of less than 2 is produced. On the other hand, when the heat treatment temperature is lower than 600 ° C, the reaction rate of chlorine and hydrogen is lowered, so that the chlorine gas is not removed smoothly and silicon oxide is not easily formed. On the other hand, if the temperature exceeds 900 ° C., the particle size of the generated silicon oxide may grow and eventually the activity of the secondary battery may deteriorate. Also, due to the explosive generation of chlorine gas, An oxide having a valence of 2 or more may be produced. The heat treatment time is preferably 15 minutes to 6 hours, and if the heat treatment time is less than 15 minutes, silicon oxide formation is not easy, and if it exceeds 6 hours, particle growth may be caused. During the cooling after the heat treatment, it is preferable to perform air cooling or slow cooling to 20 DEG C or less per minute because excessive quenching may cause a problem of degradation of electrochemical characteristics due to grain size growth.

제조된 실리콘산화물 탄소 복합체는 다공성 물질로서 벌크 상태의 덩어리로 구성되어 있다. 이 벌크상태의 덩어리는 나노입자가 뭉쳐있는 상태로서, 이차전지에의 적용 및 입자 크기의 제어를 위하여 분말 형태로 형성하여야 한다. 이를 위하여, 제조된 실리콘산화물 벌크 덩어리를 볼밀을 통해 입자크기를 제어하는 것이 바람직하다. 볼밀시에는 입자크기가 극미세화되면 전기화학적 특성을 저하할 수 있기 때문에, 회전속도는 300rpm 이하로 제어하고 볼밀 시간은 12시간 이하로 제어하는 것이 바람직하다.The prepared silicon oxide-carbon composite material is a porous material and is composed of a bulk body. The bulk of the bulk state is a state in which nanoparticles are aggregated and must be formed in powder form for application to a secondary cell and control of particle size. For this purpose, it is desirable to control the particle size of the bulk silicon oxide mass produced through the ball mill. In the case of a ball mill, it is preferable to control the rotation speed to 300 rpm or less and the ball mill time to 12 hours or less since the electrochemical characteristics may deteriorate when the particle size is extremely fine.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조되는 이차전지 음극재용 실리콘산화물과 탄소 복합체를 제공한다. The present invention also provides a silicon oxide and carbon composite for a secondary battery anode material produced by the production method of the present invention.

본 발명에 있어서, 상기 실리콘산화물은 SiOx(0.1<x<2.0) 으로 표시되는 것을 특징으로 한다. In the present invention, the silicon oxide is characterized by being represented by SiO x (0.1 < x < 2.0).

본 발명은 또한, The present invention also relates to

양극 집전체 및 상기 양극 집전체 상에 도포되는 양극 활물질을 포함하는 양극;A positive electrode including a positive electrode current collector and a positive electrode active material coated on the positive electrode current collector;

음극 집전체 및 상기 음극 집전체 상에 도포되는 음극 활물질을 포함하는 음극; 및A negative electrode including a negative electrode current collector and a negative electrode active material coated on the negative electrode current collector; And

상기 양극 및 음극 사이에 개재되는 분리막을 포함하되, 상기 음극 활물질은 본 발명에 의한 실리콘산화물 탄소 복합체를 포함하는 이차전지를 제공한다. And a separator interposed between the anode and the cathode, wherein the anode active material comprises the silicon oxide carbon composite according to the present invention.

본 발명에 의한 이차전지에 있어서, 상기 음극활물질은 리튬 또는 탄소를 추가로 포함하는 것이 가능하다.
In the secondary battery according to the present invention, the negative electrode active material may further include lithium or carbon.

본 발명에 의한 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법은 반응물인 염화 실리콘을 비극성 유기 용매 중에 분산시킨 상태에서 2가 알코올과 반응시켜 염화수소 발생 속도를 조절하면서 염화실리콘과 반응하고 남은 잔류 2가 알코올을 실리콘산화물 내부에서 탄화하여 탄소가 균일하게 분산된 실리콘산화물 탄소 복합체를 제조할 수 있다.
A method for producing a silicon oxide carbon composite material for a secondary battery anode material according to the present invention comprises reacting a reaction product of silicon chloride with a dihydric alcohol in a nonpolar organic solvent to react with the silicon chloride while controlling the rate of hydrogen chloride generation, It is possible to produce a silicon oxide carbon composite in which carbon is homogeneously dispersed by carbonizing alcohol in silicon oxide.

이하에서는, 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<< 실시예Example >>

먼저, 벤젠 100 ㎖ 에 사염화실리콘[SiCl4, 98%] 40 ㎖를 혼합하고 교반하였다. 에틸렌글리콜 26 ㎖을 피펫을 이용하여 적하하면서 교반하여 에틸렌글리콜이 비극성 용매인 벤젠과 사염화실리콘 혼합물에 서서히 혼합되도록 하여 슬러리를 얻었다. 얻어진 슬러리를 상온에서 건조시킨 후 불활성 가스인 질소가스로 유지시킨 수직 관상로에 장입하여, 750 ℃에서 2시간 동안 열처리하여 다공성 미세 분말 형태의 실리콘 탄소 복합체를 얻었다.
First, 100 ml of benzene was mixed with 40 ml of silicon tetrachloride (SiCl 4 , 98%) and stirred. 26 ml of ethylene glycol was added dropwise using a pipette while stirring, so that ethylene glycol was gradually mixed with a non-polar solvent benzene and a mixture of silicon tetrachloride to obtain a slurry. The obtained slurry was dried at room temperature and charged into a vertical tubular furnace maintained with nitrogen gas as an inert gas. The slurry was heat-treated at 750 ° C for 2 hours to obtain a porous carbon powder-like silicon carbon composite.

지금까지 본 발명의 바람직한 실시예에 대해 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성을 벗어나지 않는 범위 내에서 변형된 형태로 구현할 수 있을 것이다. 그러므로 여기서 설명한 본 발명의 실시예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 상술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함되는 것으로 해석되어야 한다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. It is therefore to be understood that the embodiments of the invention described herein are to be considered in all respects as illustrative and not restrictive, and the scope of the invention is indicated by the appended claims rather than by the foregoing description, Should be interpreted as being included in.

Claims (10)

염화실리콘을 비극성 유기 용매에 혼합하고 교반하는 제 1 단계;
상기 염화실리콘과 비극성 유기 용매의 혼합물에 2가 알코올을 서서히 투여하면서 교반하여 슬러리를 제조하는 제 2 단계;
상기 슬러리를 건조시키는 제 3 단계; 및
상기 건조된 슬러리를 열처리하는 제 4 단계; 를 포함하는 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법.
A first step of mixing and stirring the silicon chloride into the nonpolar organic solvent;
A second step of slowly adding a dihydric alcohol to the mixture of the silicon chloride and the nonpolar organic solvent while stirring to prepare a slurry;
A third step of drying the slurry; And
A fourth step of heat-treating the dried slurry; Wherein the production of hydrochloric acid gas is reduced.
제 1 항에 있어서,
상기 염화실리콘은 실리콘테트라클로라이드(SiCl4) 또는 디알킬디클로로실란(RR'SiCl2) 인 것을 특징으로 하는 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법.
The method according to claim 1,
Wherein the silicon chloride is silicon tetrachloride (SiCl 4 ) or dialkyldichlorosilane (RR'SiCl 2 ). 6. The method of claim 1 , wherein the silicon chloride is silicon tetrachloride (SiCl 4 ) or dialkyldichlorosilane (RR'SiCl 2 ).
제 1 항에 있어서,
상기 2가 알코올은 에틸렌글리콜, 프로필렌글리콜 및 피나콜 중 어느 하나인 것을 특징으로 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법.
The method according to claim 1,
Wherein the dihydric alcohol is any one of ethylene glycol, propylene glycol, and pinacol. 2. The method of claim 1, wherein the dihydric alcohol is ethylene glycol, propylene glycol, and pinacol.
제 1 항에 있어서,
상기 비극성 유기 용매는 벤젠, 에테르, 클로로포름 및 톨루엔 중 어느 하나인 것을 특징으로 하는 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법.
The method according to claim 1,
Wherein the nonpolar organic solvent is any one of benzene, ether, chloroform, and toluene. 6. The method of claim 1, wherein the non-polar organic solvent is benzene, ether, chloroform and toluene.
제 1 항에 있어서,
상기 제 1 단계에서는 상기 비극성 유기 용매 100 중량부당 상기 염화실리콘을 30 중량부 내지 60 중량부의 비율로 혼합하는 것을 특징으로 하는 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법.
The method according to claim 1,
Wherein the silicon chloride is mixed in an amount of 30 parts by weight to 60 parts by weight per 100 parts by weight of the nonpolar organic solvent in the first step.
제 1 항에 있어서,
상기 제 2 단계에서는 상기 염화실리콘과 비극성 유기 용매 혼합물 100 중량부당 상기 2가 알코올은 30 내지 40 중량부의 비율로 혼합하는 것을 특징으로 하는 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법.
The method according to claim 1,
Wherein the amount of the divalent alcohol is in the range of 30 to 40 parts by weight per 100 parts by weight of the mixture of the silicon chloride and the nonpolar organic solvent in the second step. Gt;
제 1 항에 있어서,
상기 제 4 단계에서, 상기 열처리는 600℃ 이상 및 900℃ 이하의 온도에서 행해지는 것을 특징으로 하는 염산 기체 발생이 감소된 친환경 이차전지 음극재용 실리콘산화물 탄소 복합체의 제조 방법.
The method according to claim 1,
Wherein the heat treatment is performed at a temperature of 600 ° C or more and 900 ° C or less in the fourth step, wherein the production of hydrochloric acid gas is reduced.
제 1 항 내지 제 7 항 중 어느 하나의 제조 방법에 의하여 제조되는 이차전지 음극재용 실리콘산화물 탄소 복합체.
A silicon oxide carbon composite material for a secondary battery negative electrode material produced by the production method according to any one of claims 1 to 7.
양극 집전체 및 상기 양극 집전체 상에 도포되는 양극 활물질을 포함하는 양극;
음극 집전체 및 상기 음극 집전체 상에 도포되는 음극 활물질을 포함하는 음극; 및
상기 양극 및 음극 사이에 개재되는 분리막을 포함하되,
상기 음극 활물질은 제 8 항의 이차전지 음극재용 실리콘산화물 탄소 복합체를 포함하는 이차전지.
A positive electrode including a positive electrode current collector and a positive electrode active material coated on the positive electrode current collector;
A negative electrode including a negative electrode current collector and a negative electrode active material coated on the negative electrode current collector; And
And a separator interposed between the anode and the cathode,
Wherein the negative electrode active material comprises the silicon oxide-carbon composite material for a negative electrode material for a secondary battery of claim 8.
제 9 항에 있어서,
상기 음극 활물질은 리튬 또는 탄소를 추가로 포함하는 것을 특징으로 하는 이차전지.
10. The method of claim 9,
Wherein the negative electrode active material further comprises lithium or carbon.
KR1020140006349A 2014-01-17 2014-01-17 Manufacturing method of silicon oxide carbon composite for anode of rechareable batteries of reducing hydrochloric acid gas generation, and silicon oxide carbon composite made by the same KR101598168B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140006349A KR101598168B1 (en) 2014-01-17 2014-01-17 Manufacturing method of silicon oxide carbon composite for anode of rechareable batteries of reducing hydrochloric acid gas generation, and silicon oxide carbon composite made by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140006349A KR101598168B1 (en) 2014-01-17 2014-01-17 Manufacturing method of silicon oxide carbon composite for anode of rechareable batteries of reducing hydrochloric acid gas generation, and silicon oxide carbon composite made by the same

Publications (2)

Publication Number Publication Date
KR20150086146A true KR20150086146A (en) 2015-07-27
KR101598168B1 KR101598168B1 (en) 2016-02-26

Family

ID=53875065

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140006349A KR101598168B1 (en) 2014-01-17 2014-01-17 Manufacturing method of silicon oxide carbon composite for anode of rechareable batteries of reducing hydrochloric acid gas generation, and silicon oxide carbon composite made by the same

Country Status (1)

Country Link
KR (1) KR101598168B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170027934A (en) * 2015-09-02 2017-03-13 주식회사 익성 Method for manufacturing anode material based on silicon oxide for secondary battery
WO2019050100A1 (en) * 2017-09-05 2019-03-14 주식회사 익성 Lithium secondary battery anode active material and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230033517A (en) 2021-09-01 2023-03-08 경희대학교 산학협력단 Anode for lithium secondary battery using pore-structured ceramic nanoparticles-carbon allotrope composite, and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215887A (en) 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2000243396A (en) 1999-02-23 2000-09-08 Hitachi Ltd Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus
JP2002042806A (en) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
KR20130139554A (en) * 2012-06-13 2013-12-23 주식회사 예일전자 Manufacturing method of silicon oxide, and anode material for secondary battery, including silicon oxide manufactured by the same
KR101345708B1 (en) * 2013-07-19 2013-12-27 주식회사 드림그리너스 Silicon anode active material for secondary battery and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215887A (en) 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2000243396A (en) 1999-02-23 2000-09-08 Hitachi Ltd Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus
JP2002042806A (en) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
KR20130139554A (en) * 2012-06-13 2013-12-23 주식회사 예일전자 Manufacturing method of silicon oxide, and anode material for secondary battery, including silicon oxide manufactured by the same
KR101345708B1 (en) * 2013-07-19 2013-12-27 주식회사 드림그리너스 Silicon anode active material for secondary battery and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170027934A (en) * 2015-09-02 2017-03-13 주식회사 익성 Method for manufacturing anode material based on silicon oxide for secondary battery
WO2019050100A1 (en) * 2017-09-05 2019-03-14 주식회사 익성 Lithium secondary battery anode active material and manufacturing method therefor

Also Published As

Publication number Publication date
KR101598168B1 (en) 2016-02-26

Similar Documents

Publication Publication Date Title
KR101363549B1 (en) Manufacturing method of silicon oxide, in use of anode material for secondary battery
CN108428876B (en) High-performance silicon/carbon nano composite negative electrode material and preparation method thereof
KR101866004B1 (en) Nano-silicon composite negative electrode material used for lithium ion battery, process for preparing the same and lithium ion battery
KR101586816B1 (en) Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same
KR100788487B1 (en) Method for preparing black phosphorus and black phosphorus-carbon composites, the prepared black phosphorus and black phosphorus-carbon composites and lithium rechargeable battery comprising the same and method for using the rechargeable battery
EP2768051B1 (en) Silicon-based composite and method for manufacturing same
KR102452874B1 (en) Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
KR101399042B1 (en) Method for manufacturing silicon-graphene based complex composite in use of anode material for secondary battery
KR20190030676A (en) Silicon oxide composite for anode material of secondary battery and method for preparing the same
KR20180106485A (en) Silicon oxide composite for anode material of secondary battery and method for preparing the same
KR101399041B1 (en) Method for manufacturing silicon-based complex composite in use of anode material for secondary battery
KR20150006703A (en) Negative active material for rechargeabl lithium battery, composition for negative electrode including the same, and rechargeabl lithium battery
KR101345708B1 (en) Silicon anode active material for secondary battery and manufacturing method thereof
JP7455425B2 (en) Silicon/silicon oxide-carbon composite material, its preparation method, and negative electrode active material for lithium secondary batteries containing the same
KR20200058972A (en) Silicon composite materials for anode active material of lithium secondary battery, and manufacturing method of the composite material
KR101598168B1 (en) Manufacturing method of silicon oxide carbon composite for anode of rechareable batteries of reducing hydrochloric acid gas generation, and silicon oxide carbon composite made by the same
KR101446617B1 (en) Manufacturing method of silicon-based anode material with high capacity
KR101427743B1 (en) Metal-doped silicon oxide, anode material for secondary battery including the samme, and manufacturing method thereof
KR20170027934A (en) Method for manufacturing anode material based on silicon oxide for secondary battery
KR101430640B1 (en) Manufacturing method for composite powder including silicon oxide and metal silicon in use of anode material for secondary battery
KR101905703B1 (en) Anode materials with high rate-capability and preparation method thereof and lithium secondary battery using the same
KR101787837B1 (en) Germanium-carbon composite electrode for lithium ion batteries and manufacturing method thereof
CN111082005A (en) Negative electrode material, composite material and preparation method thereof
KR20170059535A (en) Porous Silicon Or Silicon Alloy Anode With Coating For Intercalation/ De-intercalation Of Lithium Ions And Manufacturing Methods Thereof
KR101463171B1 (en) Manufacturing method of carbon-coated silicon oxide in use of anode material for secondary battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant