KR20150080718A - Epoxy composites - Google Patents

Epoxy composites Download PDF

Info

Publication number
KR20150080718A
KR20150080718A KR1020140000141A KR20140000141A KR20150080718A KR 20150080718 A KR20150080718 A KR 20150080718A KR 1020140000141 A KR1020140000141 A KR 1020140000141A KR 20140000141 A KR20140000141 A KR 20140000141A KR 20150080718 A KR20150080718 A KR 20150080718A
Authority
KR
South Korea
Prior art keywords
mwcnts
electroless nickel
thermal conductivity
composite material
carbon nanotubes
Prior art date
Application number
KR1020140000141A
Other languages
Korean (ko)
Inventor
박수진
최정란
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020140000141A priority Critical patent/KR20150080718A/en
Publication of KR20150080718A publication Critical patent/KR20150080718A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemically Coating (AREA)

Abstract

The present invention relates to an epoxy composite material and a preparing method thereof. According to the present invention as described above, the invention provides an epoxy composite material having an improved thermal conductivity by using electroless nickel-boron coated multi-walled carbon nanotubes (MWCNTs) as a filler, and a preparing method thereof. Accordingly, the invention provides a reinforced epoxy composite material which contains an electroless nickel-boron coated multi-walled carbon nanotubes (MWCNTs) and which has an improved thermal conductivity in an economical and simple method by a mechanical mixing method. Further, there is an effect in that the epoxy composite material can be effectively used as a heat dissipation material such as a heat pad, a heat substrate, and the like with an improved thermal conductivity.

Description

에폭시 복합재{EPOXY COMPOSITES}EPOXY COMPOSITES < RTI ID = 0.0 >

본 발명은 에폭시 복합재 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 무전해 니켈-붕소 도금된 다중벽탄소나노튜브(multi walled carbon nanotubes, MWCNTs)를 충전재로 사용하여 열전도도가 향상된 에폭시 복합재 및 이의 제조방법에 관한 것이다.The present invention relates to an epoxy composite material and a method of manufacturing the same. More particularly, the present invention relates to an epoxy composite material having improved thermal conductivity using electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs) And a manufacturing method thereof.

최근 반도체 소자는 소형, 경량화 및 다기능성의 요구에 따라 고집적화가 요구된다. 시스템의 성능이 높아진 것은 사실이지만, 아직 반도체 칩의 발열량이 상당한 수준이기 때문에, 방열대책을 마련하지 않으면 반도체 칩의 온도가 너무 높아져 칩 자체 또는 패키징 수지에 열화가 발생할 수 있다. 따라서 열의 발산에 대응하는 것이 최우선 과제 중의 하나이며 제품의 효율 및 안정성 향상을 위하여 방열성능은 반드시 필요하다.In recent years, semiconductor devices are required to have high integration in accordance with the demand for small size, light weight, and versatility. The performance of the system has been increased, but since the amount of heat generated by the semiconductor chip is still considerable, if the heat dissipation measures are not provided, the temperature of the semiconductor chip may become too high and deterioration may occur in the chip itself or in the packaging resin. Therefore, it is one of the top priorities to cope with the divergence of heat, and heat dissipation performance is essential to improve the efficiency and stability of the product.

재료의 열전도도를 높이기 위하여 기지재료(matrix)내에 충전재(filler)를 첨가하여 열전도도를 향상시키는 연구가 계속 되어왔다. 고분자와 같은 비금속재료에서의 열전도는 포논의 진동에 의해 이루어지고, 결정 속의 어떤 격자점을 중심으로 하여 발생하는 원자의 진동은 원자 간의 상호작용에 의하여 서로 힘을 미쳐 진동하는 것이므로 한 원자에 머무르지 않고 파로서 재료 내부를 이동하는 것으로 알려져 있다. 이때 재료내부에서 열전달을 방해하는 주요한 인자로는 포논-포논 산란, 경계면 산란, 고분자와 필러 사이의 계면결함에 의한 산란 등이 주요한 저해요인으로 알려져 있다. 이러한 포논의 산란은 열전도도를 저하시키므로 높은 열전도도 특성의 고분자 복합재료를 만들기 위해서는 포논 산란을 최소화해야 한다. 고분자 내부에서 포논이 쉽게 이동되기 위해서는 열전달 경로가 중요한데 강화재의 부피비, 종횡비, 정렬형태, 입자크기 뿐 아니라 고분자 기지재료 내의 분산력 등이 중요한 인자로 알려져 있다.Studies have been carried out to improve the thermal conductivity by adding a filler in the matrix to increase the thermal conductivity of the material. Thermal conduction in non-metallic materials such as polymers is caused by the vibration of phonons, and vibrations of atoms generated around a certain lattice point in the crystal oscillate due to mutual interaction between atoms, It is known to move inside the material as waves. Phonon-phonon scattering, interfacial scattering, and scattering due to interface defects between polymer and filler are known to be the major inhibitors of heat transfer in the material. Since scattering of phonons lowers the thermal conductivity, phonon scattering should be minimized in order to produce a polymer composite having high thermal conductivity characteristics. The heat transfer path is important for the phonon to move easily within the polymer. It is known that the volume ratio, aspect ratio, alignment type, particle size of the reinforcement as well as dispersibility in the polymer matrix material are important factors.

탄소나노튜브(carbon nanotubes, CNTs)는 1991년 Iijima에 의해 발견되어 다양한 분야에서 연구되어 왔고, 특히 고분자 나노복합재료의 필러로서 사용되어 왔다. CNTs는 전기전도도가 구리와 비슷하며 열전도율의 경우 다이아몬드와 같다. 강도는 철강보다 100배 가량 뛰어나다. 또한 우수한 유연성, 낮은 벌크도, 큰 종횡비(300~1000) 등의 특성으로 높은 전기전도도와 열전도도를 가지고 있어 고분자 방열 복합재료의 충전재로도 각광을 받고 있다. 이같은 CNTs의 우수한 특성을 활용하면 반도체, 평판디스플레이, 배터리, 초강력섬유, 생체센서 등과 같은 다양한 장치에 접목할 수 있다. 그러나 CNTs의 배열조작 및 유기/무기물 기재에서 분자간력(van der Waals force)으로 인한 군집현상 (agglomeration)이 발생하면, 분산이 어렵기 때문에 CNTs의 상용화를 위해서는 더 세밀한 연구가 요망된다.Carbon nanotubes (CNTs) were discovered by Iijima in 1991 and have been studied in various fields and have been used as fillers in polymer nanocomposites. CNTs have a similar electrical conductivity to copper and are similar to diamonds in thermal conductivity. Strength is 100 times better than steel. In addition, it has high electric conductivity and thermal conductivity due to its excellent flexibility, low bulk, and large aspect ratio (300 ~ 1000), and is attracting attention as a filler for polymer heat dissipation composite materials. Utilizing the superior properties of these CNTs, it can be applied to a variety of devices such as semiconductors, flat panel displays, batteries, super fibers, and biosensors. However, when CNTs are arranged and agglomeration due to van der Waals force occurs on the organic / inorganic substrate, it is difficult to disperse CNTs. Therefore, more detailed studies are required to commercialize CNTs.

이에 따라 본 발명자들은 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)로 강화된 에폭시 복합재를 제조하고 본 발명을 완성하였다Accordingly, the present inventors have made an epoxy composite reinforced with electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs) and completed the present invention

한편, 관련 종래기술로는 한국공개특허 제10-2011-0010517호(기계적강도와 광 투과성이 향상된 탄소나노튜브 에폭시 복합재 제조방법) 등이 있다.On the other hand, Korean Patent Laid-Open No. 10-2011-0010517 (a method of manufacturing a carbon nanotube epoxy composite material having improved mechanical strength and light transmittance) is known as a related art.

본 발명의 목적은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로서 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)를 충전재로 사용함으로써 열전도도가 향상된 에폭시 복합재를 제공하는데 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide an epoxy composite material having improved thermal conductivity by using electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs) as a filler .

또한, 본 발명의 다른 목적은 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)를 충전재로 사용하여 에폭시 복합재를 제조하는 방법을 제공하는데 있다.Another object of the present invention is to provide a method of manufacturing an epoxy composite material using electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs) as a filler.

상기 목적을 달성하기 위하여, 본 발명은 에폭시 수지, 경화제 및 무전해 니켈-붕소 도금된 다중벽탄소나노튜브(multi walled carbon nanotubes, MWCNTs)를 포함하는 에폭시 복합재를 제공한다.In order to achieve the above object, the present invention provides an epoxy composite material comprising an epoxy resin, a curing agent, and electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs).

상기 에폭시 수지와 경화제는 당량비 1:1 비율로 포함되는 것을 특징으로 한다.
The epoxy resin and the curing agent are contained in an equivalent ratio of 1: 1.

또한, 본 발명은 (1) 에폭시 수지, 경화제 및 무전해 니켈-붕소 도금된 다중벽탄노나노튜브(MWCNTs)를 혼합하는 단계;와 (2) 상기 (1)단계에 의해 제조된 혼합물을 40 내지 100℃에서 1 내지 60분간 열처리 하는 단계; 및 (3) 상기 (2)단계에 의해 열처리된 혼합물을 열경화시키는 단계;를 포함하는 에폭시 복합재 제조방법을 제공한다.(1) mixing the epoxy resin, the curing agent and electroless nickel-boron plated multi-walled carbon nanotubes (MWCNTs) and (2) mixing the mixture prepared by the step (1) Lt; 0 > C for 1 to 60 minutes; And (3) thermally curing the mixture heat-treated by the step (2).

상기 (1)단계에서 에폭시 수지와 경화제는 1:1:의 당량비로 혼합되는 것을 특징으로 한다.In the step (1), the epoxy resin and the curing agent are mixed at an equivalent ratio of 1: 1.

상기 (3)단계에서 10 내지 20MPa의 압력으로 130 내지 170℃ 온도범위에서 10 내지 60분 동안 열경화시키는 것을 특징으로 한다.In the step (3), the thermosetting is performed at a temperature of 130 to 170 캜 for 10 to 60 minutes at a pressure of 10 to 20 MPa.

상기와 같은 본 발명에 따르면, 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)를 충전재로 사용함으로써 열전도도가 향상된 에폭시 복합재 및 이의 제조방법을 제공함으로써, 기계적인 혼합법에 의해 경제적인 방법으로 열전도도가 향상된 에폭시 복합재를 제공할 수 있을 뿐만 아니라, 열전도도의 향상으로 방열패드, 방열기판 등의 방열소재에 유용하게 사용할 수 있는 효과가 있다.According to the present invention, there is provided an epoxy composite material having improved thermal conductivity by using electroless nickel-boron-plated multiwalled carbon nanotubes (MWCNTs) as a filler, and a method for producing the same, It is possible to provide an epoxy composite material having an improved thermal conductivity by an economical method, and also has an effect of being usefully used for a heat-radiating material such as a heat-radiating pad and a radiator plate owing to an improvement in thermal conductivity.

도 1 은 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)로 강화된 에폭시 복합재의 열전도도를 나타낸 그래프.1 is a graph showing the thermal conductivity of an epoxy composite reinforced with electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 에폭시 수지의 열전도도 향상을 위해 충전재로 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)를 사용하여 기계적 혼합법에 의해 간단하게 제조할 수 있는 에폭시 수지, 경화제 및 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)를 포함하는 에폭시 복합재를 제공한다.The present invention relates to an epoxy resin which can be easily prepared by mechanical mixing using electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs) as a filler for improving the thermal conductivity of epoxy resin, An epoxy composite comprising a curing agent and electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs).

상기 경화제는 에폭시 수지와 당량비 1:1 비율로 넣을 수 있고, 상기 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)의 평균직경은 2 내지 100㎚이고, 길이는 100 내지 200㎛인 것을 사용하는 것이 바람직하다.The curing agent may be contained in an equivalent ratio of 1: 1 with an epoxy resin. The electroless nickel-boron coated multiwalled carbon nanotubes (MWCNTs) have an average diameter of 2 to 100 nm and a length of 100 Mu] m to 200 [mu] m.

또한, 본 발명은 (1) 에폭시 수지, 경화제 및 무전해 니켈-붕소 도금된 다중벽탄노나노튜브(MWCNTs)를 혼합하는 단계;와 (2) 상기 (1)단계에 의해 제조된 혼합물을 50 내지 90℃에서 10 내지 30분간 열처리 하는 단계; 및 (3) 상기 (2)단계에 의해 열처리된 혼합물을 열경화시키는 단계;를 포함하는 에폭시 복합재 제조방법을 제공한다.(1) mixing the epoxy resin, the curing agent and electroless nickel-boron plated multi-walled carbon nanotubes (MWCNTs) and (2) mixing the mixture prepared by the step (1) Lt; 0 > C for 10 to 30 minutes; And (3) thermally curing the mixture heat-treated by the step (2).

상기 (1)단계에서 상기 경화제는 에폭시 수지와 당량비 1:1 비율로 넣을 수 있고, 상기 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)의 평균직경은 2 내지 100㎚이고, 길이는 100 내지 200㎛인 것을 사용하는 것이 바람직하며, 에폭시는 상기 충전재와 효과적으로 패킹될 수 있을 정도의 점도를 갖는 것이 바람직하다. 한편, 에폭시 수지 100 phr, 경화제는 에폭시와 당량비 1:1 비율로 넣고, 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(MWCNTs)는 1 내지 50 phr로 하며, 3롤밀을 이용하여 1시간 이상 밀링혼합할 수 있다.In the step (1), the curing agent may be mixed with the epoxy resin in an equivalent ratio of 1: 1, and the average diameter of the electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs) Nm and a length of 100 to 200 mu m is preferably used, and the epoxy preferably has a viscosity such that it can be effectively packed with the filler. On the other hand, 100 phr of epoxy resin and 1 to 1 equivalent ratio of curing agent were mixed with epoxy, electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs) were added in an amount of 1 to 50 phr, Milling can be mixed.

상기 (2)단계에서 혼합물을 40 내지 100℃의 온도범위로 1 내지 60분 동안 핫플레이트(hot plate)에서 선 열처리 한다. 다만, 50 내지 90℃의 온도범위에서 10 내지 30분 동안 선 열처리 하는 것이 바람직하다. In the step (2), the mixture is subjected to a linear heat treatment in a hot plate at a temperature ranging from 40 to 100 ° C for 1 to 60 minutes. However, it is preferable to perform the linear heat treatment at a temperature range of 50 to 90 占 폚 for 10 to 30 minutes.

상기 (3)단계에서 열처리된 혼합물을 성형몰드에 주입하여 10 내지 20 MPa의 압력으로 130 내지 170℃에서 10 내지 60분 동안 경화시켜 무전해 니켈-붕소 도금된 다중벽 탄소나노튜브(multi walled carbon nanotubes, MWCNTs)로 강화된 에폭시 복합재를 제조할 수 있다. 한편, 성형시 발생하는 기포는 열전도도 및 파괴인성을 저하시키기 때문에 진공 백 몰딩(vacuum bag molding)을 만들어 공기흡입장치를 이용해 제거할 수 있다.
The mixture heat-treated in the step (3) is injected into a molding mold and cured at a pressure of 10 to 20 MPa at 130 to 170 ° C for 10 to 60 minutes to form an electroless nickel-boron-plated multiwalled carbon nanotube nanotubes, MWCNTs). < / RTI > On the other hand, since the bubbles generated during molding lower the thermal conductivity and the fracture toughness, they can be formed by vacuum bag molding and can be removed by using the air suction device.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1.Example 1.

용기에 에폭시 수지(국도화학) 100 phr, 경화제는 에폭시와 당량비 1:1 비율로 넣고, 무전해 니켈-붕소 도금된 MWCNTs를 5 phr 첨가한 후 충분히 섞일 수 있도록 3롤밀을 이용하여 1시간 이상 밀링하여 혼합하였다.100 phr of epoxy resin (Kukdo Chemical Co., Ltd.) and 1: 1 ratio of epoxy to curing agent were added to the vessel, and 5 phr of electroless nickel-boron plated MWCNTs was added and milled for more than 1 hour using a 3-roll mill And mixed.

이 혼합물은 50 내지 90℃의 온도범위로 10 내지 30분 동안 핫플레이트(hot plate)에서 선 열처리 한다. 상기 열처리된 혼합물을 성형몰드에 주입하여 10 내지 20 MPa의 압력으로 130 내지 170℃에서 10 내지 60분 동안 경화시켜 무전해 니켈-붕소 도금된 MWCNTs로 강화된 에폭시 복합재를 제조하였다. The mixture is subjected to a linear heat treatment in a hot plate for 10 to 30 minutes at a temperature range of 50 to 90 占 폚. The heat-treated mixture was injected into a molding mold and cured at a pressure of 10 to 20 MPa at 130 to 170 DEG C for 10 to 60 minutes to prepare an epoxy composite material reinforced with electroless nickel-boron plated MWCNTs.

실시예 2.Example 2.

상기 실시예 1과 동일한 과정을 실시하되 무전해 니켈-붕소 도금된 MWCNTs를 10 phr 첨가하여 복합재를 제조하였다.The same procedure as in Example 1 was carried out except that 10 phr of electroless nickel-boron plated MWCNTs was added to prepare a composite material.

실시예 3.Example 3.

상기 실시예 1과 동일한 과정을 실시하되 무전해 니켈-붕소 도금된 MWCNTs를 15 phr 첨가하여 복합재를 제조하였다.The same procedure as in Example 1 was carried out except that 15 phr of electroless nickel-boron plated MWCNTs was added to prepare a composite material.

실시예 4.Example 4.

상기 실시예 1과 동일한 과정을 실시하되 무전해 니켈-붕소 도금된 MWCNTs를 20 phr 첨가하여 복합재를 제조하였다.The same procedure as in Example 1 was carried out except that 20 phr of electroless nickel-boron plated MWCNTs was added to prepare a composite material.

비교예 1.Comparative Example 1

상기 실시예 1과 동일한 과정을 실시하되, 무전해 니켈-붕소 도금된 MWCNTs를 첨가하지 않은 에폭시 복합재를 제조하였다.The same procedure as in Example 1 was performed except that an epoxy composite without electroless nickel-boron plated MWCNTs was prepared.

실험예 1.Experimental Example 1

상기 실시예 1 내지 4 및 비교예 1에서 제조한 복합재료의 열전도도를 관찰하기 위하여, 열전도도 분석을 실시하였다. 복합재의 열전도도는 열전도율 측정기 (ThermoCon Tester M100, Metrotech Co., Ltd., Korea)를 사용하여 측정하였다. 동일한 시편으로 두께를 달리하여 2회 측정을 하여 열전도도를 구하였고, 그 결과는 도 1.에 나타내었다. In order to observe the thermal conductivity of the composite material prepared in Examples 1 to 4 and Comparative Example 1, thermal conductivity analysis was performed. The thermal conductivity of the composite was measured using a thermal conductivity meter (ThermoCon Tester M100, Metrotech Co., Ltd., Korea). The thermal conductivity was measured by two measurements with different thicknesses in the same specimen. The results are shown in FIG.

상기 도 1.에 나타낸 실험예 1의 결과에서 알 수 있듯이 복합재의 열전도도는 0.1 내지 5.0 W/mK를 나타내었으며, 무전해 니켈-붕소 도금된 MWCNTs로 강화된 복합재의 열전도도는 무전해 니켈-붕소 도금된 MWCNTs의 함량이 증가함에 따라 증가하는 것을 나타내었다.As can be seen from the results of Experimental Example 1 shown in FIG. 1, the thermal conductivity of the composite material was 0.1 to 5.0 W / mK, and the thermal conductivity of the composite material reinforced with the electroless nickel-boron plated MWCNTs was an electroless nickel- And increased as the content of boron plated MWCNTs increased.

따라서, 본 발명에 따른 무전해 니켈-붕소 도금된 MWCNTs로 강화된 복합재는 제조 공정도 비교적 간단하고, 열전도도가 향상되어 무전해 니켈-붕소 도금된 MWCNTs로 강화된 복합재를 이용한 방열 소재 분야에 매우 효율적으로 사용될 수 있을 것으로 판단하였다.
Therefore, the composite material reinforced with the electroless nickel-boron plated MWCNTs according to the present invention is relatively simple in the manufacturing process and has a high thermal conductivity, so that the composite material reinforced with the electroless nickel-boron plated MWCNTs It could be used efficiently.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

에폭시 수지, 경화제 및 무전해 니켈-붕소 도금된 다중벽탄소나노튜브(multi walled carbon nanotubes, MWCNTs)를 포함하는 에폭시 복합재.
Epoxy composites comprising epoxy resins, curing agents and electroless nickel-boron plated multiwalled carbon nanotubes (MWCNTs).
제 1 항에 있어서,
상기 에폭시 수지와 경화제는 당량비 1:1 비율로 포함되는 것을 특징으로 하는 에폭시 복합재.
The method according to claim 1,
Wherein the epoxy resin and the curing agent are contained in an equivalent ratio of 1: 1.
(1) 에폭시 수지, 경화제 및 무전해 니켈-붕소 도금된 다중벽탄노나노튜브(MWCNTs)를 혼합하는 단계;
(2) 상기 (1)단계에 의해 제조된 혼합물을 40 내지 100℃에서 1 내지 60분간 열처리 하는 단계; 및
(3) 상기 (2)단계에 의해 열처리된 혼합물을 열경화시키는 단계;를 포함하는 에폭시 복합재 제조방법.
(1) mixing epoxy resin, curing agent and electroless nickel-boron plated multi-wall carbon nanotube (MWCNTs);
(2) heat-treating the mixture prepared in the step (1) at 40 to 100 ° C for 1 to 60 minutes; And
(3) thermosetting the mixture heat-treated by the step (2).
제 3 항에 있어서,
상기 (1)단계에서 에폭시 수지와 경화제는 1:1:의 당량비로 혼합되는 것을 특징으로 하는 에폭시 복합재 제조방법.
The method of claim 3,
Wherein the epoxy resin and the curing agent are mixed at an equivalent ratio of 1: 1 in the step (1).
제 3 항에 있어서,
상기 (3)단계에서 10 내지 20MPa의 압력으로 130 내지 170℃ 온도범위에서 10 내지 60분 동안 열경화시키는 것을 특징으로 하는 에폭시 복합재 제조방법.












The method of claim 3,
Wherein the thermosetting is performed at a temperature of 130 to 170 DEG C for 10 to 60 minutes at a pressure of 10 to 20 MPa in the step (3).












KR1020140000141A 2014-01-02 2014-01-02 Epoxy composites KR20150080718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140000141A KR20150080718A (en) 2014-01-02 2014-01-02 Epoxy composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140000141A KR20150080718A (en) 2014-01-02 2014-01-02 Epoxy composites

Publications (1)

Publication Number Publication Date
KR20150080718A true KR20150080718A (en) 2015-07-10

Family

ID=53792551

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140000141A KR20150080718A (en) 2014-01-02 2014-01-02 Epoxy composites

Country Status (1)

Country Link
KR (1) KR20150080718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633632A (en) * 2016-10-19 2017-05-10 黑龙江大学 Preparation method of epoxy resin/carbon nano-tube/nano nickel composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633632A (en) * 2016-10-19 2017-05-10 黑龙江大学 Preparation method of epoxy resin/carbon nano-tube/nano nickel composite material

Similar Documents

Publication Publication Date Title
Ulus et al. Boron nitride-MWCNT/epoxy hybrid nanocomposites: Preparation and mechanical properties
Ouyang et al. Design of network Al2O3 spheres for significantly enhanced thermal conductivity of polymer composites
Chen et al. Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites
Wang et al. Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets
Lee et al. Novel dielectric BN/epoxy nanocomposites with enhanced heat dissipation performance for electronic packaging
Yu et al. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites
Aradhana et al. Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives
Kim et al. Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles
Hou et al. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity
Zhang et al. MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite
Tang et al. Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles
Permal et al. Thermal and mechanical properties of epoxy composite filled with binary particle system of polygonal aluminum oxide and boron nitride platelets
Varenik et al. Breaking through the solid/liquid processability barrier: Thermal conductivity and rheology in hybrid graphene–graphite polymer composites
Fu et al. Highly multifunctional and thermoconductive performances of densely filled boron nitride nanosheets/epoxy resin bulk composites
Huang et al. Spherical and flake-like BN filled epoxy composites: Morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties
Lee et al. Surface functionalization of boron nitride platelets via a catalytic oxidation/silanization process and thermomechanical properties of boron nitride-epoxy composites
Mazov et al. Anisotropic thermal conductivity of polypropylene composites filled with carbon fibers and multiwall carbon nanotubes
Nayak et al. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application
Yan et al. Thermally conductive phenol formaldehyde composites filled with carbon fillers
Hong et al. Thermal and electrical conduction behavior of alumina and multiwalled carbon nanotube incorporated poly (dimethyl siloxane)
Kim et al. Melt-processable aggregated boron nitride particle via polysilazane coating for thermal conductive composite
He et al. Designing poly (vinylidene fluoride)-silicon carbide nanowire composite structures to achieve high thermal conductivity
Pilawka et al. Epoxy composites with carbon nanotubes
Chen et al. A facile method to prepare oriented boron nitride-based polymer composite with enhanced thermal conductivity and mechanical properties
George et al. Investigation of mechanical properties of graphene decorated with graphene quantum dot‐reinforced epoxy nanocomposite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment