KR20150073532A - Manufacturing method of bimetallic transition metal doped titanium dioxide - Google Patents

Manufacturing method of bimetallic transition metal doped titanium dioxide Download PDF

Info

Publication number
KR20150073532A
KR20150073532A KR1020130161326A KR20130161326A KR20150073532A KR 20150073532 A KR20150073532 A KR 20150073532A KR 1020130161326 A KR1020130161326 A KR 1020130161326A KR 20130161326 A KR20130161326 A KR 20130161326A KR 20150073532 A KR20150073532 A KR 20150073532A
Authority
KR
South Korea
Prior art keywords
transition metal
tio
doped
titanium dioxide
precursor
Prior art date
Application number
KR1020130161326A
Other languages
Korean (ko)
Other versions
KR101548296B1 (en
Inventor
박수진
이민상
이슬이
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020130161326A priority Critical patent/KR101548296B1/en
Publication of KR20150073532A publication Critical patent/KR20150073532A/en
Application granted granted Critical
Publication of KR101548296B1 publication Critical patent/KR101548296B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36

Abstract

The present invention relates to a manufacturing method of TiO_2 doped with a bimetallic transition metal and, more specifically, to a manufacturing method of a TiO_2 photocatalyst co-doped with a bimetallic transition metal for water treatment. According to the present invention, a bimetallic transition metal and an oxide nanocomposite of titanium dioxide is manufactured through a plasticizing process by depositing a bimetallic transition metal in a titanium dioxide nanopowder, thereby having a lower band gap due to an energy level newly revealed than conventional titanium dioxide and representing photoactivation and high photocatalyst efficiency in the visible light range. In addition, the method represents effects of high resolving power regarding treating pollutants in aqueous solutions, with a reduced recombination rate of electro-hole pairs in comparison with titanium dioxide doped with one kind of the conventional transition metal.

Description

이종 전이금속으로 도핑된 이산화티타늄의 제조방법{MANUFACTURING METHOD OF BIMETALLIC TRANSITION METAL DOPED TITANIUM DIOXIDE}TECHNICAL FIELD [0001] The present invention relates to a method of manufacturing a titanium dioxide doped with a hetero-transition metal,

본 발명은 이종 전이금속으로 도핑된 TiO2의 제조방법에 관한 것으로서, 더욱 상세하게는 이종 전이금속으로 코-도핑된 수처리용 TiO2 광촉매를 제조하는 방법에 관한 것이다. The present invention relates to a process for preparing TiO 2 doped with a hetero-transition metal, and more particularly to a process for preparing a co-doped TiO 2 photocatalyst for a water-treatment with a hetero-transition metal.

최근 이산화티타늄(TiO2)은 자외선 영역에서의 우수한 광촉매 활성으로 인해 다양한 분야에 사용되고 있다. 특히, 높은 에너지 효율과 친환경적인 소재로의 이용 가능성으로 인해 수처리 분야에서 주목받는 소재이다. Recently, titanium dioxide (TiO 2 ) has been used in various fields due to its excellent photocatalytic activity in the ultraviolet region. Particularly, it is attracting attention in water treatment field because of its high energy efficiency and possibility of being used as an environmentally friendly material.

TiO2에 UV 영역에 해당하는 빛을 조사하면 Valence band에 있는 전자가 Conduction band로 들뜨게 되어 전자-정공 쌍을 생성하게 된다. 전자-정공 쌍은 물, 산소 등과 반응하여 라디칼을 생성하며 생성된 라디칼은 유기물 분해 반응에 참여하게 된다. TiO2은 널리 사용되고 있지만 자외선보다 긴 파장영역인 가시광선 영역에서 광활성을 보이지 못한다는 단점으로 인해 실용적인 측면에서 어려움을 겪고 있다. 따라서, TiO2의 광활성 영역을 자외선 영역에서 가시광선 영역으로 이동시키는 방법에 대한 연구의 필요성이 대두되고 있다. When the light corresponding to the UV region is irradiated to TiO 2 , the electrons in the valence band are excited to the conduction band to generate electron-hole pairs. The electron-hole pair reacts with water, oxygen and the like to generate radicals, and the generated radicals participate in the organic decomposition reaction. TiO 2 is widely used but has practical difficulties due to its disadvantage that it does not show optical activity in the visible light region, which is a longer wavelength region than ultraviolet light. Therefore, there is a need for research on a method of moving the photoactive region of TiO 2 from the ultraviolet region to the visible region.

관련 선행기술로는 한국 등록특허 10-1307647(전이금속 도핑 이산화티탄 광촉매의 제조방법), 한국 등록특허 10-0401763(광촉매 특성을 가진 전이금속첨가 비정량 이산화티탄 및그 제조방법) 등이 있다.Related prior arts include Korean Patent No. 10-1307647 (a method for producing a transition metal doped titanium dioxide photocatalyst) and Korean Patent No. 10-0401763 (a method for preparing a titanium dioxide and a non-quantified transition metal having a photocatalytic property).

한편, 최근 이에 대한 연구로서 광촉매에 전이금속을 도핑하는 다양한 연구들이 확인되고 있다. 니켈, 구리, 망간, 철 등 다양한 전이금속을 도핑한 광촉매의 연구가 보고되고 있으며, 전이금속의 도입방법도 수열합성, 담지법, 졸겔법 등 다양한 방법들이 보고되고 있다. 대부분의 전이금속으로 도핑된 TiO2 광촉매는 기존 TiO2보다 줄어든 Band gap으로 인해 가시광선 영역에서도 광활성을 보이지만, 전자-정공쌍의 재결합률은 효과적으로 감소시키지 못한다는 단점이 있다.In recent years, various studies have been carried out on doping of photocatalyst with transition metal. Research on photocatalysts doped with various transition metals such as nickel, copper, manganese and iron has been reported. Various methods such as hydrothermal synthesis, supporting method, sol-gel method and the like have been reported as methods for introducing transition metals. Most TiO 2 photocatalysts doped with transition metal exhibit optical activity even in the visible region due to the band gap which is smaller than that of conventional TiO 2 , but the recombination rate of electron-hole pairs can not be effectively reduced.

본 발명의 목적은 가시광선 영역에서의 광활성과 낮은 전자-정공쌍의 재결합률을 갖는 이종의 전이금속이 도핑된 고효율의 새로운 이산화티타늄 광촉매 소재를 제공함에 있다.It is an object of the present invention to provide a novel titanium dioxide photocatalytic material with high efficiency, doped with a heterogeneous transition metal having a photoactivity in the visible light region and a low electron-hole pair recombination ratio.

상기 목적을 달성하기 위하여, 본 발명은 (1) TiO2 나노분말이 분산된 용액에 전이금속 전구체인 이종의 전이금속 수화물을 투입하고 전이금속 전구체 및 TiO2 혼합액을 제조하는 단계; (2) 상기 전이금속 전구체 및 TiO2 혼합액의 용매를 증발시켜 슬러리 상태의 전이금속 전구체 및 TiO2 혼합액을 제조하는 단계; 및 (3) 상기 슬러리 상태의 전이금속 전구체 및 TiO2 혼합액을 건조시킨 다음, 공기 분위기 하의 300 내지 950 ℃에서 소성공정을 통해 이종 전이금속이 도핑된 TiO2을 제조하는 단계;를 포함하는 이종 전이금속으로 도핑된 TiO2의 제조방법을 제공한다.(1) preparing a transition metal precursor and a TiO 2 mixed solution by introducing a heterogeneous transition metal hydrate, which is a transition metal precursor, into a solution in which TiO 2 nano powder is dispersed; (2) the transition to prepare a transition metal precursor and the mixture of TiO 2 slurry by evaporating the solvent of the metal precursors and TiO 2 mixture; And (3) drying the slurry-state transition metal precursor and the TiO 2 mixed solution, and then producing TiO 2 doped with the hetero-transition metal through a firing process at 300 to 950 ° C. in an air atmosphere, There is provided a method for producing TiO 2 doped with a metal.

상기 (1)단계에서 전이금속 전구체는 도핑할 전이금속 두 가지를 선택하여 각 전이금속에 해당하는 전구체를 질산염(nitrate), 염화물(chloride) 또는 황산염(sulfate)의 수화물 형태로 투입하되, 전이금속의 담지량이 최종 이종 전이금속으로 도핑된 TiO2 복합체의 0.01 내지 30 wt.%가 되도록 전이금속 수화물을 첨가하는 것을 특징으로 한다.In the step (1), the transition metal precursor is selected by selecting two transition metals to be doped, and the precursor corresponding to each transition metal is added in the form of a hydrate of nitrate, chloride or sulfate, Of the transition metal hydrate is 0.01 to 30 wt.% Of the TiO 2 complex doped with the final hetero-transition metal.

상기 전이금속은 V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, W, Re Os, Ir, Pt, Au, Ce, Gd인 것을 특징으로 한다.The transition metal is selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, , Pt, Au, Ce, and Gd.

상기 (2)단계는 전이금속 전구체 및 TiO2 혼합액을 물중탕하여 반응 온도 40 내지 90 ℃가 되도록 가열 및 교반하여 용매를 증발시키는 것을 특징으로 한다.In the step (2), the transition metal precursor and the TiO 2 mixed solution are boiled in water, heated and stirred at a reaction temperature of 40 to 90 ° C to evaporate the solvent.

상기 (3)단계에서 건조 온도 및 시간은 40 내지 120 ℃ 및 12 내지 36 시간인 것을 특징으로 한다.In the step (3), the drying temperature and time are 40 to 120 ° C and 12 to 36 hours.

상기와 같은 본 발명에 따르면, 이산화티타늄 나노분말에 이종의 전이금속을 담지시키고 소성과정을 통해 이종 전이금속 및 이산화티타늄의 산화물나노복합체를 제조함으로써, 종래 이산화티타늄보다 새롭게 발현되는 에너지 준위로 인한 낮은 밴드갭을 갖고 가시광선 영역에서의 광활성, 높은 광촉매 효율을 나타내며 종래 한 가지의 전이금속으로 도핑된 이산화티타늄에 비하여 정공-전자쌍의 재결합률이 감소되어 수용액 상의 오염물 처리에 있어 높은 광분해능을 나타내는 효과가 있다. According to the present invention, a transition metal of a different kind is supported on a titanium dioxide nano powder and an oxide nanocomposite of a hetero-transition metal and titanium dioxide is produced through a sintering process. As a result, Exhibits high photo-activity and high photocatalytic efficiency in the visible light region with a bandgap and has a higher recombination rate of hole-electron pairs than titanium dioxide doped with one kind of transition metal, .

따라서, 본 발명에 따른 이종 전이금속 및 이산화티타늄의 산화물나노복합체는 수처리 분야에서 난분해성 유기물의 처리, 화장품, 태양전지, 반도체 등에 적용하여 고부가가치를 창출하는 효과가 있다.Therefore, the oxide nanocomposite of titanium oxide and the hetero-transition metal according to the present invention has a high added value by being applied to the treatment of refractory organic matter, cosmetics, solar cell, semiconductor and the like in the water treatment field.

도 1은 이종 전이금속과 TiO2의 복합화를 통해 제조된 새로운 산화물나노복합체의 SEM 사진.
도 2는 이종 전이금속과 TiO2의 복합화를 통해 제조된 새로운 산화물나노복합체의 광 조사시간에 따른 메틸렌블루 분해 곡선.
FIG. 1 is a SEM photograph of a novel oxide nanocomposite prepared by the combination of a hetero-transition metal and TiO 2 .
FIG. 2 is a graph showing the methylene blue decomposition curve of a novel oxide nanocomposite prepared by the combination of a hetero-transition metal and TiO 2 according to irradiation time.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 (1) TiO2 나노분말이 분산된 용액에 전이금속 전구체인 이종의 전이금속 수화물을 투입하고 전이금속 전구체 및 TiO2 혼합액을 제조하는 단계; (2) 상기 전이금속 전구체 및 TiO2 혼합액의 용매를 증발시켜 슬러리 상태의 전이금속 전구체 및 TiO2 혼합액을 제조하는 단계; 및 (3) 상기 슬러리 상태의 전이금속 전구체 및 TiO2 혼합액을 건조시킨 다음, 공기 분위기 하의 300 내지 950 ℃에서 소성공정을 통해 이종 전이금속이 도핑된 TiO2을 제조하는 단계;를 포함하는 이종 전이금속으로 도핑된 TiO2의 제조방법을 제공한다.(1) preparing a transition metal precursor and a TiO 2 mixed solution by injecting a different transition metal hydrate, which is a transition metal precursor, into a solution in which TiO 2 nanoparticles are dispersed; (2) the transition to prepare a transition metal precursor and the mixture of TiO 2 slurry by evaporating the solvent of the metal precursors and TiO 2 mixture; And (3) drying the slurry-state transition metal precursor and the TiO 2 mixed solution, and then producing TiO 2 doped with the hetero-transition metal through a firing process at 300 to 950 ° C. in an air atmosphere, There is provided a method for producing TiO 2 doped with a metal.

상기 (1)단계에서 전이금속 전구체는 도핑할 전이금속 두 가지를 선택하여 각 전이금속에 해당하는 전구체를 질산염(nitrate), 염화물(chloride) 또는 황산염(sulfate)의 수화물 형태로 투입하되, 전이금속의 담지량이 최종 이종 전이금속으로 도핑된 TiO2 복합체의 0.01 내지 30 wt.%가 되도록 전이금속 수화물을 첨가하며, 바람직하게는 0.01 내지 10 wt.%, 더욱 바람직하게는 0.05 내지 3 wt.%에 해당하는 조성을 갖도록 전이금속 수화물을 첨가하는 것이 최적의 효과를 나타낸다.In the step (1), the transition metal precursor is selected by selecting two transition metals to be doped, and the precursor corresponding to each transition metal is added in the form of a hydrate of nitrate, chloride or sulfate, , Preferably 0.01 to 10 wt.%, More preferably 0.05 to 3 wt.%, Of the transition metal hydrate is added so that the supported amount of the transition metal hydride is 0.01 to 30 wt.% Of the TiO 2 complex doped with the final heteroatom. The addition of the transition metal hydrate to have the corresponding composition exhibits the optimum effect.

상기 전이금속으로는 주기율표 3 내지 12족의 d-구역 원소에 해당하는 V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, W, Re Os, Ir, Pt, Au, Ce, Gd가 있다.The transition metal may be at least one element selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, W, Re Os, Ir, Pt, Au, Ce and Gd.

상기 (2)단계에서 혼합액은 물중탕하여 반응 온도 40 내지 90 ℃가 되도록 조절하고, 가열로 인한 용매의 증발로 혼합액이 슬러리 상태가 될 때까지 교반과 가열을 진행시키는 것이 바람직하다. 또한, 교반시킬 때의 온도는 용매의 증발이 어느 정도 일어나면서 너무 빠르게 슬러리 상태가 되지 않도록 60 내지 80 ℃의 온도로 하는 것이 가장 바람직하며, 주위 온도는 상온이고 밀폐되지 않은 반응기에서 이루어지는 것이 바람직하다.In the step (2), it is preferable that the mixed solution is adjusted to have a reaction temperature of 40 to 90 ° C by water-bathing, and stirring and heating are continued until the mixed solution becomes a slurry state by evaporation of the solvent by heating. It is most preferable to set the temperature at 60 to 80 ° C so that the slurry does not go into the slurry state too quickly while the evaporation of the solvent occurs to some extent, and the ambient temperature is preferably room temperature and in an unsealed reactor .

상기와 같은 함침법을 통해 이종 전이금속을 TiO2 나노분말에 담지시키며, 함침법을 통해 전이금속의 함량과 종류를 쉽고 정밀하게 제어하여 담지량의 제어가 가능하다.The heterogeneous transition metal is supported on the TiO 2 nano powder by the impregnation method as described above, and the loading amount can be controlled by easily and precisely controlling the content and type of transition metal through the impregnation method.

상기 (3)단계에서 건조 온도 및 시간은 40 내지 120 ℃ 및 12 내지 36 시간인 것을 특징으로 한다.In the step (3), the drying temperature and time are 40 to 120 ° C and 12 to 36 hours.

상기 (3)단계의 소성공정을 통해 anatase상과 rutile상 구조 비율의 제어가 가능하며 이산화티타늄 격자 내에 이종 전이금속이 도입되어 새로운 구조와 특성을 갖는 수처리용 이종 전이금속으로 도핑된 TiO2 광촉매가 제조된다. 또한, 좋은 광활성을 나타내기 위한 소성온도는 400 내지 600 ℃가 바람직하다.In the step (3), the anatase phase and rutile phase ratio can be controlled, and a heterogeneous transition metal is introduced into the titanium dioxide lattice to form a TiO 2 photocatalyst doped with a water- . The firing temperature for exhibiting good optical activity is preferably 400 to 600 ° C.

상기와 같이 제조된 이종 전이금속 및 이산화티타늄 산화물나노복합체를 솔라시뮬레이터와 교반기를 이용하여 유기물을 광분해하고 향상된 광촉매 특성을 확인하였다. 더욱 구체적으로, 솔라시뮬레이터와 교반기를 반응기가 교반되면서 태양광에 조사될 수 있도록 설치하고, 직경이 5 내지 20 cm인 petri dish에 1 내지 1000 ppm의 메틸렌블루와 제조된 광촉매 0.01 내지 10 g을 넣은 다음, 50 내지 500 rpm 교반과 50 내지 1000 W m-2의 태양광 조사로 광분해시켜 이종 전이금속으로 도핑된 TiO2 광촉매 활성을 측정하였다.The heterogeneous transition metal and titanium oxide nanocomposite thus prepared were photolyzed by using a solar simulator and a stirrer, and the photocatalyst properties were confirmed. More specifically, a solar simulator and a stirrer were installed so that the reactor could be irradiated with sunlight, and 1 to 1000 ppm of methylene blue and 0.01 to 10 g of the photocatalyst were added to a petri dish having a diameter of 5 to 20 cm next, from 50 to 500 rpm stirring and 50 to 1000 W m -2 of the sun by photolysis by light irradiation photocatalytic activity heterologous TiO 2 doped with transition metals were measured.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

실시예 1.Example 1.

TiO2 나노분말 (P25, Degussa Co.) 2 g을 100 mL 증류수에 넣고, Ni과 Cu의 전구체에 해당하는 Ni(NO3)2와 Cu(NO3)2의 수화물을 Ni, Cu의 담지량이 최종 TiO2 복합체의 함량대비 각각 0.01 wt.%가 되도록 상기 TiO2 나노분말이 분산된 용액에 첨가하였다. 이렇게 제조된 전이금속 전구체 및 TiO2 혼합액을 물중탕하여 40 ℃의 온도로 가열과 함께 교반시켰다. 함침(impregnation) 과정은 용매로 사용된 물이 교반과 가열에 의해 증발하여 전이금속 전구체/TiO2 혼합액이 슬리러 상태가 될 때까지 실시하였다. 이후, 슬러리 상태가 된 혼합액을 오븐에 40 ℃의 온도로 약 12 시간 이상 건조시킨 다음, 완전히 건조되면 막자사발을 이용해 시료를 곱게 갈아주었다. 최종적으로 Ni, Cu와 TiO2 나노분말의 복합화로 제조된 수처리용 산화물나노복합체는 Air 분위기에서 2 ℃/분의 속도로 승온시켜 300 ℃에서 3 시간 동안 소성시켜 제조되었다. 2 g of TiO 2 nano powder (P25, Degussa Co.) was placed in 100 mL of distilled water, and Ni (NO 3 ) 2 and Cu (NO 3 ) 2 hydrates corresponding to the precursors of Ni and Cu, Was added to a solution in which the TiO 2 nano powder was dispersed so as to have a concentration of 0.01 wt.% Relative to the content of the final TiO 2 composite. The transition metal precursor and the TiO 2 mixed solution thus prepared were stirred in a water bath and heated to 40 ° C. The impregnation process was carried out until the water used as the solvent evaporated by stirring and heating until the transition metal precursor / TiO 2 mixture became a sludge state. Thereafter, the mixed solution in the slurry state was dried in an oven at a temperature of 40 DEG C for about 12 hours or more, and then, when completely dried, the sample was finely ground using a mortar bowl. Finally, the water-based oxide nanocomposite prepared by the combination of Ni, Cu and TiO 2 nanoparticles was prepared by heating at 300 ° C for 3 hours at a rate of 2 ° C / min in an air atmosphere.

실시예 2.Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, Ni, Cu의 담지량을 최종 TiO2 복합체의 함량대비 각각 0.05, 1 wt.%가 되도록 하고, 함침온도는 50 ℃, 건조온도는 60 ℃로 하여 이종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.The same procedure as in Example 1 was carried out except that the loading amounts of Ni and Cu were 0.05 and 1 wt.%, Respectively, with respect to the final TiO 2 composite content, and the impregnation temperature was 50 ° C. and the drying temperature was 60 ° C. The oxide nanocomposites prepared by the complexation of transition metal and TiO 2 were prepared.

실시예 3.Example 3.

상기 실시예 2와 동일하게 과정을 실시하되, Ni, Cu의 담지량을 최종 TiO2 복합체의 함량대비 각각 1, 0.05 wt.%가 되도록 하고, 소성온도는 450 ℃로 하여 이종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.The synthesis was carried out the same process as Example 2, Ni, and so that the contrast respectively 1, 0.05 wt.% Content of the final TiO 2 complex the amount of Cu, the firing temperature to a 450 ℃ a heterogeneous transition metal and TiO 2 To prepare a composite oxide nanocomposite for water treatment.

실시예 4.Example 4.

상기 실시예 3과 동일하게 과정을 실시하되, Ni, Cu의 담지량을 최종 TiO2 복합체의 함량대비 각각 0.3 wt.%가 되도록 하고, 함침온도는 70 ℃, 건조온도는 80 ℃로 하여 이종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.The procedure of Example 3 was repeated except that the amounts of Ni and Cu loaded were 0.3 wt.% Relative to the final TiO 2 composite, the impregnation temperature was 70 ° C and the drying temperature was 80 ° C. And TiO 2 were synthesized.

실시예 5.Example 5.

상기 실시예 4와 동일하게 과정을 실시하되, Ni, Cu의 전구체를 각각 NiCl2, CuCl2의 수화물로 하여 이종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.The process was carried out in the same manner as in Example 4, except that the precursors of Ni and Cu were used as hydrates of NiCl 2 and CuCl 2 , respectively, to prepare an oxide nanocomposite for water treatment prepared by complexing a heteroatom transition metal and TiO 2 .

실시예 6.Example 6.

상기 실시예 5와 동일하게 과정을 실시하되, Ni, Cu의 담지량을 최종 TiO2 복합체의 함량대비 각각 5, 3 wt.%가 되도록 하여 이종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.Example The synthesis was carried out the same procedure as 5, Ni, a water treatment oxide nano for manufacture by a composite of a heterogeneous transition metal and TiO 2 so that the contrast, respectively 5, 3 wt.% Content of the final TiO 2 complex the amount of Cu Complex.

실시예 7.Example 7.

상기 실시예 5와 동일하게 과정을 실시하되, Ni, Cu의 전구체를 각각 NiSO4, CuSO4의 수화물로 하고, 함침온도는 80 ℃, 건조온도는 90 ℃, 소성온도는 700 ℃로 하여 이종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.The procedure of Example 5 was repeated except that the precursors of Ni and Cu were hydrates of NiSO 4 and CuSO 4 and the impregnation temperature was 80 ° C., the drying temperature was 90 ° C. and the calcination temperature was 700 ° C., A water - based oxide nanocomposite prepared by the composite of metal and TiO 2 was prepared.

실시예 8.Example 8.

상기 실시예 7과 동일하게 과정을 실시하되, Ni, Cu의 담지량을 최종 TiO2 복합체의 함량대비 각각 15, 1 wt.%로 하고, 소성온도를 950 ℃로 하여 이종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.Example The synthesis was carried out the same processes and 7, Ni, compounding of the amount of Cu to prepare each of 15, 1 wt.% Content of the final TiO 2 composite and to the firing temperature to 950 ℃ two kinds of transition metal and TiO 2 To prepare a water-treating oxide nanocomposite.

실시예 9.Example 9.

상기 실시예 8과 동일하게 과정을 실시하되, Ni, Cu의 담지량을 최종 TiO2 복합체의 함량대비 각각 1, 15 wt.%가 되도록 하고, 함침온도를 90 ℃로 하여 이종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.The synthesis was carried out the same procedure as in Example 8, Ni, respectively, compared to content of the final TiO 2 complex the amount of supported Cu 1, and such that 15 wt.%, And the impregnation temperature to 90 ℃ a heterogeneous transition metal and TiO 2 To prepare a composite oxide nanocomposite for water treatment.

비교예 1.Comparative Example 1

상기 실시예 4와 동일하게 과정을 실시하되, 전이금속 전구체를 담지시키지 않고 전이금속이 도핑되지 않은 TiO2 나노분말을 제조하였다.The procedure of Example 4 was repeated except that the transition metal precursor was not supported and TiO 2 nanoparticles without doping the transition metal were prepared.

비교예 2.Comparative Example 2

상기 실시예 4와 동일하게 과정을 실시하되, 오직 Ni(NO3)2의 수화물만 담지시켜 단일종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.The process was carried out in the same manner as in Example 4, except that only a hydrate of Ni (NO 3 ) 2 was supported to prepare an oxide nanocomposite for water treatment prepared by complexing a single species transition metal with TiO 2 .

비교예 3.Comparative Example 3

상기 실시예 4와 동일하게 과정을 실시하되, 오직 Cu(NO3)2의 수화물만 담지시켜 단일종 전이금속과 TiO2의 복합화로 제조된 수처리용 산화물나노복합체를 제조하였다.The process was carried out in the same manner as in Example 4, except that only the hydrate of Cu (NO 3 ) 2 was supported to prepare an oxide nanocomposite for water treatment prepared by complexing a single species transition metal with TiO 2 .

측정예 1. 이종 전이금속/TiOMeasurement example 1. Transition metal / TiO 22 나노분말의 복합화로 제조된 고효율 수처리용 산화물나노복합체의 격자구조 관찰 Observation of lattice structure of oxide nanocomposite for high-efficiency water treatment prepared by complexation of nano powder

X-ray diffraction (D2 PHASER, Bruker AXS, USA)을 통해 본 발명에서 제조한 이종 전이금속과 TiO2의 복합화로 제조된 고효율 수처리용 산화물나노복합체의 격자구조를 관찰하였다.The lattice structure of the oxide nanocomposite for high-efficiency water treatment prepared by the complexation of the hetero-transition metal and TiO 2 prepared in the present invention through X-ray diffraction (D2 PHASER, Bruker AXS, USA) was observed.

측정예 2. 이종 전이금속/TiOMeasurement example 2. Transition metal / TiO 22 의 복합화로 제조된 고효율 수처리용 산화물나노복합체의 광흡수 효율 분석Analysis of Optical Absorption Efficiency of Oxide Nanocomposites for High Efficiency Water Treatment

UV-vis diffuse reflectance spectroscopy (S-3100, SCINCO, Korea)를 통해 본 발명에서 제조한 이종 전이금속으로 도핑된 TiO2의 190 ~ 1100 nm 범위 파장의 빛에 해당하는 광흡수 영역을 관찰하였다. The light absorption region corresponding to the light in the wavelength range of 190 to 1100 nm of the TiO 2 doped with the hetero-transition metal prepared in the present invention was observed through UV-vis diffuse reflectance spectroscopy (S-3100, SCINCO,

측정예 3. 이종 전이금속과 TiOMeasurement Example 3: Preparation of hetero-transition metal and TiO 22 의 복합화로 제조된 고효율 수처리용 산화물나노복합체의 광분해 능력 측정The photodegradation ability of the oxide nanocomposite for high-efficiency water treatment prepared by the complexation of

이종 전이금속과 TiO2의 복합화로 제조된 고효율 수처리용 산화물나노복합체의 광분해 능력 측정을 위해, Solar simulator (Model 11000, Abet Technologies, USA)를 태양광 조사와 함께 교반이 될 수 있도록 설치하고, 외부의 빛이 들어오지 않는 암실 조건에서 메틸렌 블루와 제조된 시료를 광반응시켰다. 반응기는 직경이 9 cm인 petri dish를 사용했고 메틸렌 블루는 50 mL를 가했고 제조된 시료 0.03 g 만큼 넣어 태양광과 함께 교반시켜 메틸렌 블루를 광분해시켰다. 광분해율 측정을 위해 UV-Vis spectrophotometer (S-3100, SCINCO, Korea)를 사용하였고, 일정 시간마다 시료를 채취해 흡광도를 측정하였다.Two kinds of transition for photodegradation ability measurement of the high efficiency water oxides nanocomposite for manufacturing a composite of metal and TiO 2, and install the Solar simulator (Model 11000, Abet Technologies, USA) to be stirred with the solar irradiation, the outer The photocatalytic reaction of methylene blue and the prepared sample was carried out under the dark room condition where the light of the light source did not enter. The reactor was a petri dish with a diameter of 9 cm, and 50 ml of methylene blue was added, and 0.03 g of the prepared sample was added thereto. The mixture was stirred with sunlight to photolyze methylene blue. UV-Vis spectrophotometer (S-3100, SCINCO, Korea) was used to measure photodegradation rate, and the absorbance was measured by taking samples at regular intervals.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.
Having described specific portions of the present invention in detail, it will be apparent to those skilled in the art that this specific description is only a preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (5)

(1) TiO2 나노분말이 분산된 용액에 전이금속 전구체인 이종의 전이금속 수화물을 투입하고 전이금속 전구체 및 TiO2 혼합액을 제조하는 단계;
(2) 상기 전이금속 전구체 및 TiO2 혼합액의 용매를 증발시켜 슬러리 상태의 전이금속 전구체 및 TiO2 혼합액을 제조하는 단계; 및
(3) 상기 슬러리 상태의 전이금속 전구체 및 TiO2 혼합액을 건조시킨 다음, 공기 분위기 하의 300 내지 950 ℃에서 소성공정을 통해 이종 전이금속이 도핑된 TiO2을 제조하는 단계;를 포함하는 이종 전이금속으로 도핑된 TiO2의 제조방법.
(1) preparing a transition metal precursor and a TiO 2 mixed solution by injecting a transition metal hydride of a different kind, which is a transition metal precursor, into a solution of TiO 2 nanoparticles dispersed therein;
(2) the transition to prepare a transition metal precursor and the mixture of TiO 2 slurry by evaporating the solvent of the metal precursors and TiO 2 mixture; And
(3) drying the slurry-state transition metal precursor and the TiO 2 mixed solution, and then preparing a TiO 2 doped with a hetero-transition metal through a firing process at 300 to 950 ° C. in an air atmosphere, Lt; RTI ID = 0.0 > TiO2 < / RTI >
제 1항에 있어서,
상기 (1)단계에서 전이금속 전구체는 도핑할 전이금속 두 가지를 선택하여 각 전이금속에 해당하는 전구체를 질산염(nitrate), 염화물(chloride) 또는 황산염(sulfate)의 수화물 형태로 투입하되, 전이금속의 담지량이 최종 이종 전이금속으로 도핑된 TiO2의 0.01 내지 30 wt.%가 되도록 전이금속 수화물을 첨가하는 것을 특징으로 하는 이종 전이금속으로 도핑된 TiO2의 제조방법.
The method according to claim 1,
In the step (1), the transition metal precursor is selected by selecting two transition metals to be doped, and the precursor corresponding to each transition metal is added in the form of a hydrate of nitrate, chloride or sulfate, the amount of the method of preparing the TiO 2 doped with two kinds of transition metal, characterized in that the addition of the transition metal hydrate such that 0.01 to 30 wt.% of the final two kinds of transition metal doped TiO 2.
제 2항에 있어서,
상기 전이금속은 V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, W, Re Os, Ir, Pt, Au, Ce, Gd인 것을 특징으로 하는 이종 전이금속으로 도핑된 TiO2의 제조방법.
3. The method of claim 2,
The transition metal is selected from the group consisting of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Hf, Ta, , Pt, Au, Ce, method of preparing the TiO 2 doped with two kinds of transition metal, characterized in that Gd.
제 1항에 있어서,
상기 (2)단계는 전이금속 전구체 및 TiO2 혼합액을 물중탕하여 반응 온도 40 내지 90 ℃가 되도록 가열 및 교반하여 용매를 증발시키는 것을 특징으로 하는 이종 전이금속으로 도핑된 TiO2의 제조방법.
The method according to claim 1,
The (2) The method for producing the transition metal precursor and the heating and stirring is doped with two kinds of transition metals, comprising a step of evaporating the solvent so that the TiO 2 the reaction temperature from 40 to 90 ℃ in a water bath a mixture of TiO 2.
제 1항에 있어서,
상기 (3)단계에서 건조 온도 및 시간은 40 내지 120 ℃ 및 12 내지 36 시간인 것을 특징으로 하는 이종 전이금속으로 도핑된 TiO2의 제조방법.


The method according to claim 1,
(3) above the drying temperature and time in Step A method of manufacturing of the TiO 2 doped with two kinds of transition metal, characterized in that 40 to 120 ℃ and 12 to 36 hours.


KR1020130161326A 2013-12-23 2013-12-23 Manufacturing method of bimetallic transition metal doped titanium dioxide KR101548296B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130161326A KR101548296B1 (en) 2013-12-23 2013-12-23 Manufacturing method of bimetallic transition metal doped titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130161326A KR101548296B1 (en) 2013-12-23 2013-12-23 Manufacturing method of bimetallic transition metal doped titanium dioxide

Publications (2)

Publication Number Publication Date
KR20150073532A true KR20150073532A (en) 2015-07-01
KR101548296B1 KR101548296B1 (en) 2015-08-28

Family

ID=53787038

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130161326A KR101548296B1 (en) 2013-12-23 2013-12-23 Manufacturing method of bimetallic transition metal doped titanium dioxide

Country Status (1)

Country Link
KR (1) KR101548296B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180057323A (en) * 2016-11-22 2018-05-30 재단법인 한국탄소융합기술원 Method of manufacturing metal-loaded TiO2/graphene composites through one-pot hydrothermal synthesis and the TiO2/graphene composites manufactured by the same
KR20190072974A (en) * 2017-12-18 2019-06-26 광주여자대학교 산학협력단 Method for Preparating phosphorescent phosphor paint conjugated with photocatalyst reacting in visible light
KR102222666B1 (en) * 2020-09-18 2021-03-05 (주)젠텍 titanium dioxide composite pigments with lower whiteness and applicability fuction for cosmetic composition and manufacturing method of it, cosmetic composition using that composite pigments
CN115779881A (en) * 2022-12-12 2023-03-14 昆明理工大学 Preparation method and application of photocatalyst capable of controllably synthesizing nano titanium dioxide with different shapes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618044B (en) * 2015-12-29 2018-04-27 长沙理工大学 A kind of silver-based Gd2 O3 three-dimensional sea urchin type titanium dioxide nano material and its preparation method and application

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691585B1 (en) * 2005-12-16 2007-03-12 (재)대구경북과학기술연구원 Method of manufacturing tio2 photocatalyst doped pt ion sensitive to visible ray
KR101002929B1 (en) 2008-12-09 2010-12-21 전남대학교산학협력단 Photocatalyst making method using transition metal, and the dye sensitized solar cells including photocatalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180057323A (en) * 2016-11-22 2018-05-30 재단법인 한국탄소융합기술원 Method of manufacturing metal-loaded TiO2/graphene composites through one-pot hydrothermal synthesis and the TiO2/graphene composites manufactured by the same
KR20190072974A (en) * 2017-12-18 2019-06-26 광주여자대학교 산학협력단 Method for Preparating phosphorescent phosphor paint conjugated with photocatalyst reacting in visible light
KR102222666B1 (en) * 2020-09-18 2021-03-05 (주)젠텍 titanium dioxide composite pigments with lower whiteness and applicability fuction for cosmetic composition and manufacturing method of it, cosmetic composition using that composite pigments
CN115779881A (en) * 2022-12-12 2023-03-14 昆明理工大学 Preparation method and application of photocatalyst capable of controllably synthesizing nano titanium dioxide with different shapes

Also Published As

Publication number Publication date
KR101548296B1 (en) 2015-08-28

Similar Documents

Publication Publication Date Title
Zaleska Doped-TiO2: a review
Hezam et al. Synthesis of heterostructured Bi2O3–CeO2–ZnO photocatalyst with enhanced sunlight photocatalytic activity
Yadav et al. Review on undoped/doped TiO2 nanomaterial; synthesis and photocatalytic and antimicrobial activity
Zheng et al. Metallic zinc-assisted synthesis of Ti 3+ self-doped TiO 2 with tunable phase composition and visible-light photocatalytic activity
Xie et al. Enhanced photocatalytic degradation of RhB driven by visible light-induced MMCT of Ti (IV)− O− Fe (II) formed in Fe-doped SrTiO3
Li et al. Photocatalytic degradation of rhodamine B over Pb3Nb4O13/fumed SiO2 composite under visible light irradiation
Zhang et al. Non-uniform doping outperforms uniform doping for enhancing the photocatalytic efficiency of Au-doped TiO2 nanotubes in organic dye degradation
Jaramillo-Páez et al. Silver-modified ZnO highly UV-photoactive
Fang et al. Enhanced photocatalytic characteristics and low selectivity of a novel Z-scheme TiO2/g-C3N4/Bi2WO6 heterojunction under visible light
Sun et al. Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity
Singh et al. Efficient photocatalytic degradation of organic compounds by ilmenite AgSbO3 under visible and UV light irradiation
Pany et al. Sulfate-anchored hierarchical meso–macroporous N-doped TiO2: a novel photocatalyst for visible light H2 evolution
Quan et al. Simple preparation of Mn-N-codoped TiO2 photocatalyst and the enhanced photocatalytic activity under visible light irradiation
Li et al. Facile tailoring of anatase TiO2 morphology by use of H2O2: From microflowers with dominant {101} facets to microspheres with exposed {001} facets
KR101548296B1 (en) Manufacturing method of bimetallic transition metal doped titanium dioxide
Wang et al. One-pot hydrothermal route to synthesize the Bi-doped anatase TiO2 hollow thin sheets with prior facet exposed for enhanced visible-light-driven photocatalytic activity
Znad et al. Ta/Ti O 2-and Nb/Ti O 2-Mixed Oxides as Efficient Solar Photocatalysts: Preparation, Characterization, and Photocatalytic Activity
Singh et al. Photocatalytic properties of microwave-synthesized TiO2 and ZnO nanoparticles using malachite green dye
Othman et al. Fe-doped TiO2 nanoparticles produced via MOCVD: synthesis, characterization, and photocatalytic activity
Mioduska et al. The Effect of Calcination Temperature on Structure and Photocatalytic Properties of WO 3/TiO 2 Nanocomposites
EP3166724A1 (en) Photocatalytic hydrogen production from water over mixed phase titanium dioxide nanoparticles
KR20150108504A (en) Photocatalytic composition comprising Ag-titanium dioxide wrapped with carbone nanotubes and preparation method thereof
Nguyen-Le et al. Effective photodegradation of dyes using in-situ N-Ti3+ co-doped porous titanate-TiO2 rod-like heterojunctions
Nasr-Esfahani et al. Silver Doped T i O 2 Nanostructure Composite Photocatalyst Film Synthesized by Sol-Gel Spin and Dip Coating Technique on Glass
Huang et al. Synthesis of three‐dimensionally ordered macroporous TiO2 and TiO2/WO3 composites and their photocatalytic performance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180816

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190717

Year of fee payment: 5