KR20150067975A - Manufacturing method of cathode of microbial fuel cell and cathode of microbial fuel cell manufactured by the same - Google Patents

Manufacturing method of cathode of microbial fuel cell and cathode of microbial fuel cell manufactured by the same Download PDF

Info

Publication number
KR20150067975A
KR20150067975A KR1020130153637A KR20130153637A KR20150067975A KR 20150067975 A KR20150067975 A KR 20150067975A KR 1020130153637 A KR1020130153637 A KR 1020130153637A KR 20130153637 A KR20130153637 A KR 20130153637A KR 20150067975 A KR20150067975 A KR 20150067975A
Authority
KR
South Korea
Prior art keywords
catalyst
cathode
fuel cell
microbial fuel
electrode
Prior art date
Application number
KR1020130153637A
Other languages
Korean (ko)
Inventor
김병군
서인석
김홍석
김연권
김지연
김대현
최한나
장훈
신정훈
박승국
신경숙
차재환
이태호
송영채
민부기
김중래
Original Assignee
한국수자원공사
한국해양대학교 산학협력단
주식회사 태영건설
주식회사 한화건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사, 한국해양대학교 산학협력단, 주식회사 태영건설, 주식회사 한화건설 filed Critical 한국수자원공사
Priority to KR1020130153637A priority Critical patent/KR20150067975A/en
Publication of KR20150067975A publication Critical patent/KR20150067975A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

The present invention relates to a cathode of a microbial fuel cell (MFC) and a method for manufacturing the same, wherein the method for manufacturing a cathode of an MFC comprises the steps of: mixing sodium dodecyl sulfate (SDS), multi walled carbon nanotube (MWCNT), FePC and CuPc with distilled water to prepare a mixed solution (Step 1); stirring the mixed solution (Step 2); performing microwave processing to the stirred mixed solution (Step 3); separating the mixed solution processed with microwaves by a centrifuge and then removing a supernatant to obtain a catalyst (Step 4); adding an ethanol to the catalyst to wash SDS (Step 5); separating the washed catalyst and the ethanol by a centrifuge and removing a supernatant to obtain the washed catalyst (Step 6); adding a nafion solution to the washed catalyst and stirring the mixture to prepare a catalyst for a cathode (Step 7); and screen printing the catalyst for a cathode on the surface of a cathode to prepare an MFC cathode (Step 8), wherein the maximum power density of an MFC using an MFC cathode including a Cu-Fe catalyst is very higher than the maximum power density of an MFC using an MFC cathode including a platinum catalyst. Therefore, the MFC cathode of the present invention is advantageously moderate in price and has excellent performance, compared with a conventional MFC cathode using a platinum catalyst.

Description

미생물연료전지 환원전극의 제조방법 및 이에 의해 제조된 미생물연료전지 환원전극{Manufacturing method of cathode of microbial fuel cell and cathode of microbial fuel cell manufactured by the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a microbial fuel cell,

본 발명은 미생물연료전지 환원전극의 제조방법 및 이에 의해 제조된 미생물연료전지 환원전극에 관한 것으로서, 더욱 상세하게는 백금(Pt) 대신 Cu-Fe를 촉매로 사용하므로 인해 비용을 낮추면서도 효율을 향상시킬 수 있는 미생물연료전지 환원전극의 제조방법 및 이에 의해 제조된 미생물연료전지 환원전극에 관한 것이다.
The present invention relates to a method for producing a microbial fuel cell reductive electrode and a microbial fuel cell reductive electrode manufactured thereby, and more particularly, to a method for producing a reductive electrode using a Cu-Fe catalyst instead of platinum (Pt) The present invention relates to a method for producing a microbial fuel cell reductive electrode capable of producing a microbial fuel cell,

미생물연료전지(microbial fuel cell, MFC)는 박테리아의 대사에너지를 이용하여 전기를 생성하는데, 폐기물을 포함한 모든 유기물질은 박테리아의 먹이가 될 수 있기 때문에 연료전지의 동력에 이용될 수 있다. 대체에너지 기술의 하나로 주목받고 있는 MFC는 하폐수 중의 오염물질을 미생물의 먹이로서 제거하면서 연료로써 에너지 이용을 동시에 할 수 있을 뿐만 아니라 오염물질에서 직접 전기를 회수할 수 있는 고효율의 에너지 변환장치이다. 따라서 MFC를 하폐수처리에 적용한다면 청정에너지를 제공할 수 있고, 더불어 하폐수의 효과적인 처리도 가능하다.
Microbial fuel cells (MFCs) generate electricity using the metabolic energy of bacteria, which can be used to power fuel cells because all organic matter, including wastes, can feed on bacteria. MFC, which is attracting attention as an alternative energy technology, is a highly efficient energy conversion device that can simultaneously recover energy from pollutants as well as simultaneously use energy as a fuel while removing pollutants in wastewater as food of microorganisms. Therefore, if MFC is applied to wastewater treatment, clean energy can be provided and effective treatment of wastewater is possible.

미생물연료전지는 산화전극부(Anode chamber)와 환원전극부(Cathode chamber)으로 구성되어 있으며, 분리막(Separator)으로 구분되어 있다. 혐기성 조건 또는 무산소조건의 산화전극부에서는 박테리아에 의해 유기물질이 분해되고, 수소이온과 전자가 발생한다. 전자는 외부도선을 따라 선화전극(anode)에서 환원전극(cathode)으로 이동하게 되고, 수소이온은 분리막을 통과하여 환원전극으로 이동한다. 환원전극부로 이동한 전자와 수소이온은 환원전극부에 공급되는 산소와 질산염과 같은 전자수용체와 최종 환원반응을 하게 되고, 위와 같은 일련의 과정을 통해서 전기에너지를 회수할 수 있다. 최근에는 환원전극부가 외부에 노출되어 대기 중의 산소를 직접 환원반응에 이용하는 단일 반응조 형태의 미생물연료전지가 많이 이용되고 있다.
The microbial fuel cell is composed of an anode chamber and a cathode electrode, and is divided into a separator. In the oxidizing electrode part under anaerobic condition or oxygen-free condition, organic substances are decomposed by bacteria, and hydrogen ions and electrons are generated. The electrons move from the anode to the cathode along the outer conductor, and the hydrogen ions pass through the separation membrane and move to the reduction electrode. The electrons and hydrogen ions migrating to the reduction electrode part are subjected to a final reduction reaction with an electron acceptor such as oxygen and nitrate that is supplied to the reduction electrode part, and the electric energy can be recovered through the above-described series of processes. In recent years, a microbial fuel cell in the form of a single reaction tank in which the reducing electrode portion is exposed to the outside and oxygen in the atmosphere is directly used for the reduction reaction is widely used.

최근에 미생물연료전지의 상용화를 위한 연구가 활발히 진행되고 있다.
Recently, researches for the commercialization of microbial fuel cells are being actively carried out.

대한민국공개특허공보 제10-2012-0137641호(2012.12.24.)에는 전기적으로 직접 연결된 복수 개의 단위 셀들이 산화전극부 용액을 공유하지 않도록 구성된 미생물연료전지 모듈 시스템이 개시되어 있다.
Korean Patent Laid-Open Publication No. 10-2012-0137641 (2012.12.24) discloses a microbial fuel cell module system in which a plurality of unit cells directly electrically connected do not share an oxidizing electrode solution.

상기 미생물 연료전지는 환원전극으로 백금(Pt), 루테늄(Ru), 오스뮴(Os) 및 팔라듐(Pd)으로 이루어진 군에서 선택되는 어느 하나의 금속으로 처리된 탄소전극을 사용하는데, 상기 백금(Pt) 촉매는 비용이 비싼 문제가 있다.
The microbial fuel cell uses a carbon electrode treated with any one metal selected from the group consisting of platinum (Pt), ruthenium (Ru), osmium (Os) and palladium (Pd) ) Catalysts have costly problems.

KR 10-2012-0137641 A 2012.12.24.KR 10-2012-0137641 A 2012.12.24.

본 발명은 백금(Pt) 대신 Cu-Fe를 촉매로 사용하므로 인해 비용을 낮추면서도 효율을 향상시킬 수 있는 미생물연료전지 환원전극의 제조방법 및 이에 의해 제조된 미생물연료전지 환원전극을 제공하는데 그 목적이 있다.
The present invention provides a method for manufacturing a microbial fuel cell reductive electrode capable of improving the efficiency while lowering the cost because Cu-Fe is used as a catalyst instead of platinum (Pt), and a microbial fuel cell reductive electrode manufactured thereby .

상기 목적을 달성하기 위하여 본 발명은 다음과 같은 수단을 제공한다.In order to achieve the above object, the present invention provides the following means.

본 발명은 SDS(Sodium dodecyl sulfate), MWCNT(Multi walled carbon nanotube), FePc 및 CuPc를 증류수에 혼합하여 혼합액을 만드는 단계(단계 1); 상기 혼합액을 교반하는 단계(단계 2); 상기 교반한 혼합액을 마이크로파 처리하는 단계(단계 3); 상기 마이크로파 처리된 혼합액을 원심분리한 후 상등액을 제거하고 촉매를 수득하는 단계(단계 4); 상기 촉매에 에탄올을 넣어 SDS(Sodium dodecyl sulfate)를 세척하는 단계(단계 5); 상기 세척된 촉매와 에탄올을 원심분리한 후 상등액을 제거하고 세척된 촉매를 수득하는 단계(단계 6); 상기 세척된 촉매에 nafion 용액을 넣고 교반하여 환원전극용 촉매를 제조하는 단계(단계 7); 및 상기 환원전극용 촉매를 환원전극 표면에 스크린 프린팅하여 미생물연료전지 환원전극을 제조하는 단계(단계 8); 를 포함하는 미생물연료전지 환원전극의 제조방법을 제공한다.The present invention relates to a method of preparing a mixed solution by mixing SDS (sodium dodecyl sulfate), MWCNT (Multi Walled Carbon Nanotube), FePc and CuPc in distilled water (Step 1); Stirring the mixed liquid (step 2); A step (3) of subjecting the mixed solution to microwave treatment; Centrifuging the microwaved mixed liquor, removing the supernatant, and obtaining a catalyst (step 4); Washing the sodium dodecyl sulfate (SDS) by adding ethanol to the catalyst (step 5); Centrifuging the washed catalyst and ethanol, removing the supernatant and obtaining a washed catalyst (step 6); Adding a naphion solution to the washed catalyst and stirring to prepare a catalyst for a reducing electrode (Step 7); And (8) preparing a microbial fuel cell reductive electrode by screen printing the reducing electrode catalyst onto the surface of the reducing electrode. The present invention also provides a method for producing a microbial fuel cell reductive electrode.

상기 단계 1은 SDS(Sodium dodecyl sulfate) 12~13g, MWCNT(Multi walled carbon nanotube) 3~5g, FePc(Fe-Phthalocyanines) 0.5~0.6g 및 CuPc(Cu-Phthalocyanines) 0.5~0.6g 을 증류수 1ℓ에 혼합하여 혼합액을 만든다.In Step 1, 12 to 13 g of SDS (sodium dodecyl sulfate), 3 to 5 g of MWCNT (Multi Walled Carbon Nanotube), 0.5 to 0.6 g of FePc (Fe-Phthalocyanines) and 0.5 to 0.6 g of CuPc Mixture to make mixture.

상기 단계 7은 상기 세척된 촉매 3~5g에 20%(w/w) 나피온(Nafion) 용액 8~9g을 넣고 9~11분 동안 급속교반한다.In step 7, 8 to 9 g of a 20% (w / w) Nafion solution is added to 3 to 5 g of the washed catalyst, followed by rapid stirring for 9 to 11 minutes.

또한, 본 발명은 상기 제조방법으로 제조되는 미생물연료전지 환원전극을 제공한다.
The present invention also provides a microbial fuel cell reductive electrode produced by the above-described method.

본 발명에 따른 Cu-Fe 촉매를 포함한 미생물연료전지 환원전극을 사용한 MFC의 최대전력밀도는 백금촉매를 포함한 미생물연료전지 환원전극을 사용한 MFC의 최대전력밀도 보다 매우 높은 전력밀도를 나타내므로, 본 발명의 미생물연료전지 환원전극은 백금촉매를 사용하는 종래의 미생물연료전지 환원전극에 비해 가격도 저렴하면서 성능도 우수한 장점이 있다.
Since the maximum power density of the MFC using the microbial fuel cell reductive electrode including the Cu-Fe catalyst according to the present invention is much higher than the maximum power density of the MFC using the microbial fuel cell reductive electrode containing the platinum catalyst, The microbial fuel cell reductive electrode of the present invention is advantageous in cost and in performance compared to a conventional microbial fuel cell reductive electrode using a platinum catalyst.

도 1 은 미생물연료전지 환원전극의 촉매별 전류-전압 그래프.
도 2 는 미생물연료전지 환원전극의 촉매별 전류-전력밀도 그래프.
도 3은 촉매별 내부저항(활성화 저항) 그래프.
도 4는 촉매별 내부저항(옴저항) 그래프.
도 5는 촉매별 내부저항(농도저항) 그래프.
1 is a graph of current-voltage for each catalyst of a microbial fuel cell reductive electrode.
FIG. 2 is a graph of the current-power density of each electrode of the microbial fuel cell reduction electrode.
3 is a graph of internal resistance (activation resistance) for each catalyst.
4 is a graph showing the internal resistance (ohmic resistance) of each catalyst.
5 is a graph showing the internal resistance (concentration resistance) of each catalyst.

이하, 본 발명을 상세히 설명하면 다음과 같다.
Hereinafter, the present invention will be described in detail.

미생물연료전지 환원전극은 산화전극에서 전달되어온 전자와 양성자(H+) 그리고 공기가 만나 환원반응이 진행되어야 하므로 활성화에너지를 낮춰줄 수 있는 촉매가 필요하다. 촉매는 가장 우수한 것이 백금(Pt)이나 백금은 귀금속으로 매우 고가이기 때문에 상용화에 걸림돌이 되고 있다.
In the microbial fuel cell reductive electrode, a catalyst capable of lowering the activation energy is required because the electrons transferred from the oxidation electrode, the proton (H + ), and the air meet and the reduction reaction proceeds. The most excellent catalyst is platinum (Pt) and platinum is a precious metal, which is very expensive, which is a hindrance to commercialization.

본 발명의 특징은 고가의 백금(Pt) 대신에 Cu-Fe를 촉매로 사용함으로 인해 비용을 낮추면서도 효율을 향상시킬 수 있는 미생물연료전지 환원전극을 제공하는 것이다.
A feature of the present invention is to provide a microbial fuel cell reductive electrode capable of improving the efficiency while lowering the cost by using Cu-Fe as a catalyst instead of expensive platinum (Pt).

먼저, 본 발명에 따른 미생물연료전지 환원전극의 제조방법을 설명하면 다음과 같다.
First, a method for manufacturing a microbial fuel cell reductive electrode according to the present invention will be described.

본 발명의 미생물연료전지 환원전극의 제조방법은,A method of manufacturing a microbial fuel cell reductive electrode of the present invention comprises:

SDS(Sodium dodecyl sulfate), MWCNT(Multi walled carbon nanotube), FePc 및 CuPc를 증류수에 혼합하여 혼합액을 만드는 단계(단계 1);SDS (sodium dodecyl sulfate), MWCNT (Multi Walled Carbon Nanotube), FePc and CuPc in distilled water to prepare a mixed solution (Step 1);

상기 혼합액을 교반하는 단계(단계 2);Stirring the mixed liquid (step 2);

상기 교반한 혼합액을 마이크로파 처리하는 단계(단계 3);A step (3) of subjecting the mixed solution to microwave treatment;

상기 마이크로파 처리된 혼합액을 원심분리한 후 상등액을 제거하고 촉매를 수득하는 단계(단계 4);Centrifuging the microwaved mixed liquor, removing the supernatant, and obtaining a catalyst (step 4);

상기 촉매에 에탄올을 넣어 SDS(Sodium dodecyl sulfate)를 세척하는 단계(단계 5);Washing the sodium dodecyl sulfate (SDS) by adding ethanol to the catalyst (step 5);

상기 세척된 촉매와 에탄올을 원심분리한 후 상등액을 제거하고 세척된 촉매를 수득하는 단계(단계 6);Centrifuging the washed catalyst and ethanol, removing the supernatant and obtaining a washed catalyst (step 6);

상기 세척된 촉매에 nafion 용액을 넣고 교반하여 환원전극용 촉매를 제조하는 단계(단계 7); 및Adding a naphion solution to the washed catalyst and stirring to prepare a catalyst for a reducing electrode (Step 7); And

상기 환원전극용 촉매를 환원전극 표면에 스크린 프린팅하여 미생물연료전지 환원전극을 제조하는 단계(단계 8);Forming a microbial fuel cell reductive electrode by screen printing the reducing electrode catalyst onto the surface of the reducing electrode (step 8);

를 포함한다.
.

상기 단계 1은 SDS(Sodium dodecyl sulfate) 12~13g, MWCNT(Multi walled carbon nanotube) 3~5g, FePc(Fe-Phthalocyanines) 0.5~0.6g 및 CuPc(Cu-Phthalocyanines) 0.5~0.6g 을 증류수 1ℓ에 혼합하여 혼합액을 만드는 것이 바람직하다. 상기 FePc(Fe-Phthalocyanine) 및 CuPc(Cu-Phthalocyanine)는 백금(Pt)촉매를 대체하기 위해 포함된다. 상기 MWCNT(Multi walled carbon nanotube)은 다중벽 탄소나노튜브를 의미하며, 질산용액에 5~7시간 동안 침지시켜 표면을 활성시킨 후에 사용하는 것이 바람직하다.
In Step 1, 12 to 13 g of SDS (sodium dodecyl sulfate), 3 to 5 g of MWCNT (Multi Walled Carbon Nanotube), 0.5 to 0.6 g of FePc (Fe-Phthalocyanines) and 0.5 to 0.6 g of CuPc It is preferable to mix them to prepare a mixed solution. The FePc (Fe-Phthalocyanine) and CuPc (Cu-Phthalocyanine) are included to replace the Pt catalyst. The multi walled carbon nanotube (MWCNT) refers to a multi-walled carbon nanotube, and is preferably used after being immersed in a nitric acid solution for 5 to 7 hours to activate the surface.

상기 단계 2는 상기 혼합액을 1~2시간 동안 급속 교반하는 것이 바람직하다.
In the step 2, it is preferable that the mixed solution is rapidly stirred for 1 to 2 hours.

상기 단계 3은 상기 교반한 혼합액을 1~2시간 동안 마이크로파 처리하는 것이 바람직하다. 상기 마이크로파 처리하는 이유는 MWCNT에 FePc 및 CuPc의 결합을 촉진시키기 때문이다.
In the step 3, it is preferable that the stirred mixture is subjected to microwave treatment for 1 to 2 hours. The reason for the microwave treatment is to accelerate the binding of FePc and CuPc to MWCNT.

상기 단계 4는 상기 마이크로파 처리된 혼합액을 원심분리한 후 상등액을 제거하고 촉매를 수득하는 단계이다.
The step 4 is a step of centrifuging the microwave-treated mixed solution, removing the supernatant, and obtaining a catalyst.

상기 단계 5는 상기 촉매에 에탄올 1ℓ을 넣어 SDS(Sodium dodecyl sulfate)를 세척하는 단계이다.
Step 5 is a step of washing SDS (sodium dodecyl sulfate) by adding 1 L of ethanol to the catalyst.

상기 단계 6은 상기 세척된 촉매와 에탄올을 원심분리한 후 상등액을 제거하고 세척된 촉매를 수득하는 단계이다. 상기 단계 5와 단계 6을 3회 반복하는 것이 바람직하다.
Step 6 is a step of centrifuging the washed catalyst and ethanol, removing the supernatant, and obtaining a washed catalyst. It is preferable to repeat step 5 and step 6 three times.

상기 단계 7은 상기 세척된 촉매 3~5g에 20%(w/w) 나피온(Nafion) 용액 8~9g을 넣고 9~11분 동안 급속교반하여 환원전극용 촉매를 제조하는 단계이다.
In step 7, 8 to 9 g of a 20% (w / w) Nafion solution is added to 3 to 5 g of the washed catalyst, and rapidly stirred for 9 to 11 minutes to prepare a catalyst for a reducing electrode.

상기 단계 8은 상기 환원전극용 촉매를 환원전극 표면에 스크린 프린팅하여 미생물연료전지 환원전극을 제조하는 단계이다.
Step 8 is a step of screen printing the reducing electrode catalyst on the surface of the reducing electrode to produce the microbial fuel cell reducing electrode.

또한, 본 발명은 상기 제조방법으로 제조되는 미생물연료전지 환원전극을 제공한다.
The present invention also provides a microbial fuel cell reductive electrode produced by the above-described method.

이하, 실시 예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들 실시 예에 의해 제한되는 것은 아니다.
Hereinafter, the constitution and effects of the present invention will be described in more detail through examples. These embodiments are only for illustrating the present invention, and the scope of the present invention is not limited by these embodiments.

SDS(Sodium dodecyl sulfate) 12.5g, MWCNT(Multi walled carbon nanotube) 4g, FePc(Fe-Phthalocyanine) 0.5684g 및 CuPc(Cu-Phthalocyanine) 0.5761g 을 증류수 1ℓ에 혼합하여 혼합액을 만들었다. 상기 MWCNT는 질산용액에 6시간 동안 침지시켜 표면을 활성시킨 후에 사용하였다. 상기 혼합액을 1시간 동안 급속 교반하였다. 상기 교반한 혼합액을 1시간 동안 마이크로파 처리하였다. 상기 마이크로파 처리된 혼합액을 원심분리한 후 상등액을 제거하고 촉매를 수득하였다. 상기 촉매에 에탄올 1ℓ을 넣어 SDS(Sodium dodecyl sulfate)를 세척하였다. 상기 세척된 촉매와 에탄올을 원심분리한 후 상등액을 제거하고 세척된 촉매를 수득하였다. 상기 에탄올을 넣어 세척하고 원심분리하여 상등액을 제거하는 것을 3회 반복하였다. 상기 세척된 촉매 3g에 20%(w/w) 나피온(Nafion) 용액 8.92g을 넣고 10분 동안 급속교반하여 환원전극용 촉매를 제조하였다.12.5 g of sodium dodecyl sulfate (SDS), 4 g of MWCNT (Multi Walled Carbon Nanotube), 0.5684 g of FePc (Fe-Phthalocyanine) and 0.5761 g of CuPc (Cu-Phthalocyanine) were mixed with 1 L of distilled water. The MWCNT was immersed in a nitric acid solution for 6 hours to activate the surface and then used. The mixed solution was rapidly stirred for 1 hour. The stirred mixture was subjected to microwave treatment for 1 hour. After the microwave-treated mixed solution was centrifuged, the supernatant was removed and a catalyst was obtained. SDS (sodium dodecyl sulfate) was washed by adding 1 L of ethanol to the catalyst. After centrifuging the washed catalyst and ethanol, the supernatant was removed and a washed catalyst was obtained. The ethanol was washed, centrifuged and the supernatant was removed three times. After adding 8.92 g of a 20% (w / w) Nafion solution to 3 g of the washed catalyst, the catalyst was rapidly stirred for 10 minutes to prepare a catalyst for a reducing electrode.

결합제 PTFE(polytetrafluoroethylene) 30중량%를 MWCNT 70중량%와 혼합한 후, 30mesh 스테인리스 망에 스크린 프린팅하여 막을 형성시킨 후, 한면에 PTFE를 3~4회 바르고 370℃에서 20분간 열압착(hot pressing)함으로서 공기확산층을 형성시킨 다음, 다른 한면에는 질산용액에서 6시간 처리한 MWCNT 70중량%를 결합제 Nafion 용액 30중량%에 혼합한 후 상기 환원전극용 촉매를 고정시킨 산소환원 촉매막을 형성시켜 미생물연료전지 환원전극을 제조하였다. 상기 환원전극의 면적은 16㎠(4㎝ × 4㎝)이다.
30 wt% of a binder PTFE (polytetrafluoroethylene) was mixed with 70 wt% of MWCNT, screen-printed on a 30 mesh stainless steel screen to form a film, PTFE was applied to the surface 3 to 4 times, and hot- Then, an air diffusion layer was formed, and on the other side, 70 wt% of MWCNT treated with a nitric acid solution for 6 hours was mixed with 30 wt% of a binder Nafion solution, and then an oxygen reduction catalyst membrane having the reduction electrode catalyst fixed was formed, A reducing electrode was prepared. The area of the reducing electrode is 16 cm 2 (4 cm x 4 cm).

[비교예 1][Comparative Example 1]

실시예 1에서, MnOx 19.75g 을 추가한 것을 제외하고 나머지는 동일하게 하여 미생물연료전지 환원전극을 제조하였다.
A microbial fuel cell reduction electrode was prepared in the same manner as in Example 1 except that 19.75 g of MnOx was added.

[비교예 2][Comparative Example 2]

실시예 1에서, CuPc(Cu-Phthalocyanine) 대신에 MnOx 19.75g 을 사용한 것을 제외하고 나머지는 동일하게 하여 미생물연료전지 환원전극을 제조하였다.
In Example 1, except for using 19.75 g of MnOx in place of CuPc (Cu-Phthalocyanine), the remainder was the same to produce a microbial fuel cell reductive electrode.

[비교예 3][Comparative Example 3]

실시예 1에서, FePC(Fe-Phthalocyanine) 대신에 MnOx 19.75g 을 사용한 것을 제외하고 나머지는 동일하게 하여 미생물연료전지 환원전극을 제조하였다.
In Example 1, except for using 19.75 g of MnOx in place of FePC (Fe-Phthalocyanine), the remainder was the same to prepare a microbial fuel cell reduction electrode.

[실험예 1][Experimental Example 1]

실시예 1 및 비교예 1 내지 비교예 3에서 제조한 미생물연료전지 환원전극의 성능을 평가하는 실험을 실시하였다.Experiments were conducted to evaluate the performance of the microbial fuel cell reductant electrode prepared in Example 1 and Comparative Examples 1 to 3. [

반응조는 아크릴로 유효부피는 972㎖(9㎝ × 9㎝ × 12㎝)인 미생물연료전지(MFC)를 제작하여 실험에 사용하였다. 각 사면에는 4가지 서로 다른 혼합촉매가 들어 있는 환원전극을 설치하였으며, 분리막으로는 폴리프로필렌 부직포를 사용하였고, 산화전극은 흑연분말을 하이드라진(hydrazine) 처리 및 음이온계면활성제 처리를 한 산화전극을 사용하였다. 외부저항은 30Ω을 사용하였으며, 동일한 조건에서 정확한 전극의 평가를 하기 위해서 항온수조에 수온은 30℃로 설정하여 실시하였으며, 식종은 혐기성 소화조에서 채취한 슬러지를 활용하였으며, 인공하폐수 70%에 혐기성 소화조 슬러지 30%를 혼합하여 MFC에 공급하였다. 이때 인공하폐수는 아세트산(acetic acid, 1000㎎/ℓ), PBS(Phosphate Buffer Solution, 50mM), 미네날(Mineral, 12.5㎖/ℓ) 및 비타민(Vitamin, 12.5㎖/ℓ)으로 구성된 인공하폐수를 사용하였다. 발생된 전압의 측정을 위하여 디지털 멀티미터(digital multimeter, Keithley 2700)을 사용하였다. 환원전극 성능평가를 위한 환원전위의 측정은 Cyclic Voltametry(순환 전압전류법) 측정법으로 측정하였으며, 이때 사용한 장치는 Compactstat(IVIUM Technologies 사) 이었으며, 분극곡선(polarization curve)은 디지털 저항기의 저항을 1,000 Ω에서 1 Ω 까지 낮추면서 측정하였다.The reaction tank was made of microbial fuel cells (MFC) having an effective volume of 972 ml (9 cm × 9 cm × 12 cm) and used in the experiment. On each slope, a reducing electrode containing four different mixed catalysts was installed. A polypropylene nonwoven fabric was used as a separator. The oxidizing electrode was formed by using an oxidation electrode treated with hydrazine and an anionic surfactant, Respectively. The external resistance was 30 Ω. In order to evaluate the electrode accurately under the same condition, the water temperature was set to 30 ℃ in the constant temperature water tank. The sludge collected from the anaerobic digestion tank was used as the petroleum oil, and the anaerobic digester 30% of sludge were mixed and supplied to MFC. At this time, an artificial wastewater composed of acetic acid (1000 mg / L), PBS (Phosphate Buffer Solution, 50 mM), Mineral (12.5 mL / L) and vitamin (12.5 mL / L) . A digital multimeter (Keithley 2700) was used to measure the generated voltage. The reduction potential for the reduction electrode performance was measured by a cyclic voltammetry method. The device used was Compactstat (IVIUM Technologies), and the polarization curve showed a resistance of a digital resistor of 1,000 Ω To 1 Ω.

열린회로전압(OCV; Open Circuit Voltage)의 측정을 통해 저항이 무한대인 열린 회로상태에서 전압을 측정함으로써 MFC에서 얻을 수 있는 최대 전압을 확인하고자 하였다. 또한 회로내의 다른 여러 저항을 연속적으로 변화시키며 각 전압을 측정하고, 이에 다른 전류를 옴의 법칙으로 계산하여 전력밀도와 전류의 그래프인 분극곡선을 그려 전류에 따른 전력밀도의 특성을 분석하였다.
By measuring the open circuit voltage (OCV), we tried to determine the maximum voltage that can be obtained from the MFC by measuring the voltage in the open circuit state where the resistance is infinite. We also analyzed the characteristics of the power density by plotting the polarization curves, which are graphs of power density and current, by calculating the different currents by continuously varying the various resistances in the circuit and calculating the other currents by the Ohm 's law.

실시예 1 및 비교예 1 내지 비교예 3에서 제조한 미생물연료전지 환원전극의 촉매별 전류-전압 그래프를 도 1에 나타내었고 촉매별 전류-전력밀도 그래프를 도 2에 나타내었다.
FIG. 1 shows a graph of current-voltage for each catalyst of the microbial fuel cell reduction electrode prepared in Example 1 and Comparative Examples 1 to 3, and FIG. 2 shows a graph of current-power density for each catalyst.

MFC의 OCV는 실시예 1에서 제조한 환원전극(Cu-Fe)이 505 mV로 측정되어 가장 높은 OCV를 나타내었고, 비교예 1에서 제조한 환원전극(Mn-Cu-Fe)이 482 mV, 비교예 2에서 제조한 환원전극(Mn-Fe)이 382 mV, 비교예 3에서 제조한 환원전극(Mn-Cu)이 438 mV로 측정되었다.
The OCV of the MFC showed the highest OCV as measured by the reducing electrode (Cu-Fe) prepared in Example 1 at 505 mV. The OCV of the reducing electrode (Mn-Cu-Fe) prepared in Comparative Example 1 was 482 mV, The reducing electrode (Mn-Fe) prepared in Example 2 was measured to be 382 mV, and the reducing electrode (Mn-Cu) prepared in Comparative Example 3 was measured to be 438 mV.

또한, 최대전력밀도는 실시예 1에서 제조한 환원전극(Cu-Fe)이 1,620 mW/㎡로 측정되어 가장 높은 최대전력밀도를 나타내었고, 비교예 1에서 제조한 환원전극(Mn-Cu-Fe)이 1,220 mW/㎡, 비교에 2에서 제조한 환원전극(Mn-Fe)이 1,220 mW/㎡, 비교예 3에서 제조한 환원전극(Mn-Cu)이 1,164 mW/㎡로 측정되었다.
The maximum power density was measured at 1,620 mW / m 2 of the reducing electrode (Cu-Fe) prepared in Example 1. The highest power density was obtained when the reducing electrode (Mn-Cu-Fe (Mn-Fe) was 1,220 mW / m < 2 >, and the reducing electrode (Mn-Cu) prepared in Comparative Example 3 was 1,164 mW / m < 2 >

상기 실시예 1에서 제조한 Cu-Fe 촉매 환원전극을 사용한 MFC의 최대전력밀도는 백금촉매 환원전극 MFC의 최대전력밀도인 800 mW/㎡ 보다 매우 높은 전력밀도를 보여주어 Fe-Cu 촉매가 가격도 저렴하면서 성능은 백금촉매와 유사한 우수한 환원촉매인 것을 확인하였다.
The maximum power density of the MFC using the Cu-Fe catalytic reduction electrode prepared in Example 1 was much higher than the maximum power density of the platinum-catalyzed reduction electrode MFC of 800 mW / m < 2 > It was confirmed that the catalyst was a good reducing catalyst similar to the platinum catalyst.

[실험예 2][Experimental Example 2]

실시예 1 및 비교예 1 내지 비교예 3에서 제조한 미생물연료전지 환원전극의 내부저항 특성평가를 위해 전류-전압 data를 비선형회귀분석을 하여 촉매별 내부저항(활성화 저항) 그래프를 도 3에 나타내었고, 촉매별 내부저항(옴저항) 그래프를 도 4에 나타내었고, 촉매별 내부저항(농도저항) 그래프를 도 5에 나타내었다.
In order to evaluate the internal resistance characteristics of the microbial fuel cell reductive electrode prepared in Example 1 and Comparative Examples 1 to 3, current-voltage data was subjected to nonlinear regression analysis, and a graph of internal resistance (activation resistance) FIG. 4 is a graph showing the internal resistance (ohm resistance) of each catalyst, and FIG. 5 is a graph showing the internal resistance (concentration resistance) of each catalyst.

도 3을 보면 Fe 촉매가 들어간 환원전극의 활성화 저항(activation resistance)이 낮게 나왔고, Fe 촉매가 활성화 저항을 낮추어 주는 효과를 가지고 있는 것으로 확인하였다.
FIG. 3 shows that the activation resistance of the reducing electrode containing the Fe catalyst is low, and that the Fe catalyst has an effect of lowering the activation resistance.

도 4를 보면 Cu 촉매가 들어간 환원전극의 옴저항(ohmic resistance)이 낮게 나타나, Cu 촉매는 옴저항을 낮추어 주는 효과를 가지고 있는 것으로 확인하였다.
FIG. 4 shows that the ohmic resistance of the reducing electrode containing the Cu catalyst is low, and that the Cu catalyst has the effect of lowering the ohmic resistance.

도 5를 보면 Cu-Fe 혼합촉매의 사용으로 높은 전류에서도 낮은 농도저항을 보여 Cu-Fe 촉매가 백금촉매를 대체할 수 있는 촉매로 사용가능함을 확인하였다.FIG. 5 shows that Cu-Fe catalysts can be used as a catalyst capable of replacing platinum catalysts.

Claims (4)

SDS(Sodium dodecyl sulfate), MWCNT(Multi walled carbon nanotube), FePC 및 CuPc를 증류수에 혼합하여 혼합액을 만드는 단계(단계 1);
상기 혼합액을 교반하는 단계(단계 2);
상기 교반한 혼합액을 마이크로파 처리하는 단계(단계 3);
상기 마이크로파 처리된 혼합액을 원심분리한 후 상등액을 제거하고 촉매를 수득하는 단계(단계 4);
상기 촉매에 에탄올을 넣어 SDS(Sodium dodecyl sulfate)를 세척하는 단계(단계 5);
상기 세척된 촉매와 에탄올을 원심분리한 후 상등액을 제거하고 세척된 촉매를 수득하는 단계(단계 6);
상기 세척된 촉매에 nafion 용액을 넣고 교반하여 환원전극용 촉매를 제조하는 단계(단계 7); 및
상기 환원전극용 촉매를 환원전극 표면에 스크린 프린팅하여 미생물연료전지 환원전극을 제조하는 단계(단계 8);
를 포함하는 미생물연료전지 환원전극의 제조방법.
SDS (sodium dodecyl sulfate), MWCNT (Multi walled carbon nanotube), FePC and CuPc in distilled water to prepare a mixed solution (step 1);
Stirring the mixed liquid (step 2);
A step (3) of subjecting the mixed solution to microwave treatment;
Centrifuging the microwaved mixed liquor, removing the supernatant, and obtaining a catalyst (step 4);
Washing the sodium dodecyl sulfate (SDS) by adding ethanol to the catalyst (step 5);
Centrifuging the washed catalyst and ethanol, removing the supernatant and obtaining a washed catalyst (step 6);
Adding a naphion solution to the washed catalyst and stirring to prepare a catalyst for a reducing electrode (Step 7); And
Forming a microbial fuel cell reductive electrode by screen printing the reducing electrode catalyst onto the surface of the reducing electrode (step 8);
Wherein the microbial fuel cell is a fuel cell.
제 1항에 있어서,
상기 단계 1은 SDS(Sodium dodecyl sulfate) 12~13g, MWCNT(Multi walled carbon nanotube) 3~5g, FePC(Fe-Phthalocyanines) 0.5~0.6g 및 CuPc(Cu-Phthalocyanines) 0.5~0.6g 을 증류수 1ℓ에 혼합하여 혼합액을 만드는 미생물연료전지 환원전극의 제조방법.
The method according to claim 1,
In Step 1, 12 to 13 g of sodium dodecyl sulfate (SDS), 3 to 5 g of MWCNT (Multi Walled Carbon Nanotube), 0.5 to 0.6 g of FePC (Fe-Phthalocyanines) and 0.5 to 0.6 g of CuPc A method for producing a microbial fuel cell reductive electrode which comprises mixing and mixing a solution.
제 1항에 있어서,
상기 단계 7은 상기 세척된 촉매 3~5g에 20%(w/w) 나피온(Nafion) 용액 8~9g을 넣고 9~11분 동안 급속교반하는 미생물연료전지 환원전극의 제조방법.
The method according to claim 1,
The method of claim 7, wherein 8 to 9 g of a 20% (w / w) Nafion solution is added to 3 to 5 g of the washed catalyst, followed by rapid stirring for 9 to 11 minutes.
제 1항 내지 제 3항 중 어느 한 항의 제조방법으로 제조되는 미생물연료전지 환원전극.A microbial fuel cell reductive electrode produced by the method of any one of claims 1 to 3.
KR1020130153637A 2013-12-11 2013-12-11 Manufacturing method of cathode of microbial fuel cell and cathode of microbial fuel cell manufactured by the same KR20150067975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130153637A KR20150067975A (en) 2013-12-11 2013-12-11 Manufacturing method of cathode of microbial fuel cell and cathode of microbial fuel cell manufactured by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130153637A KR20150067975A (en) 2013-12-11 2013-12-11 Manufacturing method of cathode of microbial fuel cell and cathode of microbial fuel cell manufactured by the same

Publications (1)

Publication Number Publication Date
KR20150067975A true KR20150067975A (en) 2015-06-19

Family

ID=53515638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130153637A KR20150067975A (en) 2013-12-11 2013-12-11 Manufacturing method of cathode of microbial fuel cell and cathode of microbial fuel cell manufactured by the same

Country Status (1)

Country Link
KR (1) KR20150067975A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946623A (en) * 2017-10-31 2018-04-20 江苏理工学院 A kind of method of the microbiological fuel cell for handling Copper-Containing Mine Acid Water and copper recycling
CN111644168A (en) * 2020-04-20 2020-09-11 北京邮电大学 Method for preparing atomic-scale catalyst by slowly raising temperature to greatly improve yield of hydrogen peroxide
CN111721812A (en) * 2019-12-18 2020-09-29 中国科学院上海微系统与信息技术研究所 Sensor material, preparation method thereof, sensor and application of sensor in CO detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946623A (en) * 2017-10-31 2018-04-20 江苏理工学院 A kind of method of the microbiological fuel cell for handling Copper-Containing Mine Acid Water and copper recycling
CN111721812A (en) * 2019-12-18 2020-09-29 中国科学院上海微系统与信息技术研究所 Sensor material, preparation method thereof, sensor and application of sensor in CO detection
CN111644168A (en) * 2020-04-20 2020-09-11 北京邮电大学 Method for preparing atomic-scale catalyst by slowly raising temperature to greatly improve yield of hydrogen peroxide

Similar Documents

Publication Publication Date Title
Mansoorian et al. Evaluation of dairy industry wastewater treatment and simultaneous bioelectricity generation in a catalyst-less and mediator-less membrane microbial fuel cell
Fang et al. A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products
Chen et al. A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells
Fadzli et al. Electricity generation and heavy metal remediation by utilizing yam (Dioscorea alata) waste in benthic microbial fuel cells (BMFCs)
Mathuriya Novel microbial fuel cell design to operate with different wastewaters simultaneously
Durruty et al. Evaluation of potato-processing wastewater treatment in a microbial fuel cell
Tatinclaux et al. Electricity generation from wastewater using a floating air cathode microbial fuel cell
Touach et al. Influence of the preparation method of MnO2-based cathodes on the performance of single-chamber MFCs using wastewater
Vázquez-Larios et al. Bioelectricity production from municipal leachate in a microbial fuel cell: effect of two cathodic catalysts
CN102655235B (en) Microbial fuel cell air cathode and preparation method thereof
Rajeswari et al. Utilization of soak liquor in microbial fuel cell
Elawwad et al. Enhancing the performance of microbial desalination cells using δ MnO2/graphene nanocomposite as a cathode catalyst
Garcia et al. Iron-streptomycin derived catalyst for efficient oxygen reduction reaction in ceramic microbial fuel cells operating with urine
Sonu et al. Up-scaling microbial fuel cell systems for the treatment of real textile dye wastewater and bioelectricity recovery
Masoudi et al. Enhancing operating capacity of microbial fuel cells by using low-cost electrodes and multi anode-cathode connections in a membrane-less configuration
Halim et al. Effect of Anolyte pH on the Performance of a Dual‐Chambered Microbial Fuel Cell Operated with Different Biomass Feed
Cetinkaya et al. Electricity production and characterization of high-strength industrial wastewaters in microbial fuel cell
Gautam et al. Assessment of different organic substrates for bio-electricity and bio-hydrogen generation in an integrated bio-electrochemical system
Kumar et al. Bioelectricity generation and treatment of sugar mill effluent using a microbial fuel cell
Wang et al. Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1
Sevda et al. Shift to continuous operation of an air-cathode microbial fuel cell long-running in fed-batch mode boosts power generation
Noori et al. Enhanced power generation in annular single‐chamber microbial fuel cell via optimization of electrode spacing using chocolate industry wastewater
Das et al. Concomitant production of bioelectricity and hydrogen peroxide leading to the holistic treatment of wastewater in microbial fuel cell
KR20150067975A (en) Manufacturing method of cathode of microbial fuel cell and cathode of microbial fuel cell manufactured by the same
Babanova et al. Practical demonstration of applicability and efficiency of platinum group metal-free based catalysts in microbial fuel cells for wastewater treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application