KR20150022372A - Transparent Electrode and Fabrication Method for the Same - Google Patents

Transparent Electrode and Fabrication Method for the Same Download PDF

Info

Publication number
KR20150022372A
KR20150022372A KR20130100109A KR20130100109A KR20150022372A KR 20150022372 A KR20150022372 A KR 20150022372A KR 20130100109 A KR20130100109 A KR 20130100109A KR 20130100109 A KR20130100109 A KR 20130100109A KR 20150022372 A KR20150022372 A KR 20150022372A
Authority
KR
South Korea
Prior art keywords
doped
transparent electrode
ion beam
conductive film
substrate
Prior art date
Application number
KR20130100109A
Other languages
Korean (ko)
Other versions
KR102109344B1 (en
Inventor
홍기일
정학기
김한기
신용희
조다영
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020130100109A priority Critical patent/KR102109344B1/en
Publication of KR20150022372A publication Critical patent/KR20150022372A/en
Application granted granted Critical
Publication of KR102109344B1 publication Critical patent/KR102109344B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a transparent electrode and a fabrication method thereof. More particularly, the present invention relates to a transparent electrode capable of improving the performance of a transparent electrode by performing a post process using ion beam irradiation after a transparent conductive layer is formed on a substrate, and a fabrication method thereof.

Description

투명전극 및 그 제조방법 {Transparent Electrode and Fabrication Method for the Same}Transparent Electrode and Fabrication Method for the Same < RTI ID = 0.0 >

본 발명은 투명전극 및 그 제조방법에 관한 것이다.
The present invention relates to a transparent electrode and a manufacturing method thereof.

일반적으로 투명 전자소자란, Si, GaAs 등과 같은 불투명 반도체 화합물로 이루어진 일반적인 전자소자와는 달리 투명산화물 반도체막을 기반으로 구성된 광학적 투명한 전자소자를 통칭하고 있다. In general, a transparent electronic element is generally referred to as an optically transparent electronic element based on a transparent oxide semiconductor film, unlike a general electronic element made of an opaque semiconductor compound such as Si, GaAs or the like.

상기 투명 전자소자는 투명반도체, 투명전극, 투명유전체를 기판으로 제조된 전자소자로 정보 인식, 정보 처리, 정보 표시의 기능을 투명한 전자기기로 구현함으로써 기존 전자기기의 공간적, 시각적 제약을 해소할 수 있다. 이러한, 투명 전자소자는 투명센서, 투명 RFID 태그, 투명 보안전 자기기 등 정보 인식용 부품, 투명 디지털/아날로그 IC 등의 정보처리용 부품, 스마트 창, 투명 정보표시기의 정보표시용 부품 등 투명한 특성이 요구되는 다양한 투명 전자부품으로 응용가능한 미래형 IT 소자이다.The transparent electronic device is an electronic device made of a transparent semiconductor, a transparent electrode, and a transparent dielectric substrate, and can realize the functions of information recognition, information processing, and information display in a transparent electronic device, have. Such transparent electronic devices are classified into transparent sensors, transparent RFID tags, information recognition parts such as transparent security electronic parts, information processing parts such as transparent digital / analog IC, transparent parts such as smart windows, It is a future IT device that can be applied to various transparent electronic parts required.

특히, 투명 전자소자의 투명전극은 디스플레이나 태양광 분야에 많이 사용되고 있으며, 특히 스마트폰이나 테블렛 PC가 빠른 속도로 확산됨에 따라 터치스크린의 터치패널 분야에서 대면적 스크린의 적용을 위한 저 저항과 고 투과율을 가지는 투명전극의 확보가 필수적이다. 상기 터치스크린의 터치패널 구현방법은 저항막 방법, 정전용량 방법, SAW 방법, IR 방법 등으로 구분되며, 이 중에서 현재 상기 정전용량 방법이 주로 사용되고 있다. 상기 정전용량 방법은 사람의 몸에서 발생하는 정전기를 감지해 구동하는 방법으로, 내구성이 강하고 반응시간이 짧으며 투과성이 좋아서 일부 산업용, 카지노 게임기로부터 최근 휴대폰으로 적용범위가 확대되고 있다. 반면, 펜을 이용하거나 장갑 낀 손으로는 작동되지 않고 비교적 고가인 단점을 지니고 있다.In particular, transparent electrodes of transparent electronic devices are widely used in displays and photovoltaic fields. In particular, as smart phones and tablet PCs are rapidly spreading, a low resistance It is essential to secure a transparent electrode having a high transmittance. The method of implementing the touch panel of the touch screen is classified into a resistance film method, a capacitance method, a SAW method, an IR method, and the like. Currently, the capacitance method is mainly used. The electrostatic capacity method is a method for sensing and driving static electricity generated in a human body. Since it has a strong durability, a short reaction time, and excellent permeability, the range of application from some industrial and casino game machines to recent mobile phones is expanding. On the other hand, it has disadvantages that it is not operated by using a pen or gloved hands and is relatively expensive.

상기 정전용량 방법에서 터치패널의 투명 전극으로 사용되는 투명전도막은 전도성과 투명성을 나타내기 위해 저 저항값과 고 가시광선 투과율을 갖는 것이 바람직하다. 대체로, 전기적으로 전도체이면서 동시에 가시광선에서 투명한 성질을 갖는 ITO(indium Tin Oxide) 물질을 투명전극 물질로 널리 사용하고 있다. 상기 ITO 물질로 이루어진 투명전극은 주로 CVD(Chemical Vapor Deposition), 스프레이(spray pyrolysis), 진공증착, 스퍼터링(sputtering) 방법으로 형성한다.The transparent conductive film used as the transparent electrode of the touch panel in the capacitance method preferably has a low resistance value and a high visible light transmittance in order to exhibit conductivity and transparency. In general, indium tin oxide (ITO) materials, which are both electrically conductive and transparent at visible light, are widely used as transparent electrode materials. The transparent electrode made of the ITO material is formed mainly by CVD (Chemical Vapor Deposition), spray pyrolysis, vacuum deposition, or sputtering.

상기 스프레이나 CVD 방법과 같은 화학적 방법으로 투명전극을 형성하는 경우에는, 진공증착법이나 스퍼터링 방법에 비해 간단한 공정을 갖게 되고, 굴곡이 있는 기판에 대한 증착이 우수하며, 증착온도가 350∼500℃로서 기판상에 직접 투명전도막을 증착시키기에 적합하다. 그리고, 상기 진공증착이나 스퍼터링과 같은 물리적 방법으로 투명전극을 형성하는 경우에는, 150∼300℃ 저온의 증착온도로 기판상에 직접 전극물질을 증착하는 것은 물론 기판상에 증착된 다른 박막 상에 투명전도막을 증착하는 것도 가능하다.When a transparent electrode is formed by a chemical method such as the spray or CVD method, a transparent electrode is formed by a simple process as compared with a vacuum deposition method or a sputtering method, and the vapor deposition is excellent over a flexible substrate. And is suitable for depositing a transparent conductive film directly on a substrate. When a transparent electrode is formed by a physical method such as vacuum deposition or sputtering, the electrode material is directly deposited on the substrate at a deposition temperature of 150 to 300 DEG C at a low temperature, and the transparent material is deposited on another thin film deposited on the substrate It is also possible to deposit a conductive film.

한편, 대면적 스크린 터치패널 디스플레이의 적용에 부응하기 위하여 투명전극의 전도도를 향상시키고, 광 투과도와 전기 전도성을 향상시키기 위해서 투명전극을 형성한 후에, 후공정으로 고온의 열처리 공정을 수행하게 된다. 그러나, 이러한 열처리 공정은 기판이 유리인 경우에는 열 불균형에 의한 기판의 파괴를 가져올 뿐만 아니라 기판이 PET(polyethylence terephthalate), 폴리카보네이트(polycarbonate)와 같이 열에 약한 경우에는 고온 열처리에 의하여 기판 자체가 열적 손상이 발생하거나 기판 온도가 상승함에 따라 폴리머 재료와 ITO 물질과의 높은 열팽창계수의 차이에 의하여 응력이 발생하여 박막의 박리(peeling)가 발생하는 문제가 나타날 수 있다.
Meanwhile, in order to meet the application of a large-area screen touch panel display, a transparent electrode is formed in order to improve the conductivity of the transparent electrode and to improve the light transmittance and the electric conductivity, and then a high-temperature heat treatment process is performed in a post-process. However, when the substrate is made of glass, such a heat treatment process not only causes destruction of the substrate due to thermal imbalance but also causes the substrate itself to be thermally (thermally) treated by high-temperature heat treatment such as PET (polyethylene terephthalate) and polycarbonate Stress may be generated due to a difference in thermal expansion coefficient between the polymer material and the ITO material as the substrate is damaged or the substrate temperature rises and peeling of the thin film may occur.

본 발명의 주된 목적은 고온의 열처리 공정 없이, 투명전극의 전기적, 광학적 특성을 용이하게 향상시킬 수 있는 인시튜(in-situ) 이온빔 처리를 이용한 투명전극의 제조방법 및 상기 제조방법에 의해 제조되는 투명전극을 제공하는데 있다.The main object of the present invention is to provide a method of manufacturing a transparent electrode using an in-situ ion beam treatment capable of easily improving the electrical and optical characteristics of a transparent electrode without a high temperature heat treatment process, And a transparent electrode.

본 발명은 또한, 상기 투명전극을 포함하는 태양 전지, 터치패널 및 유기발광다이오드를 제공하는데 있다.
The present invention also provides a solar cell, a touch panel, and an organic light emitting diode including the transparent electrode.

상기의 목적을 달성하기 위하여, 본 발명의 일 구현예는 기판; 및 상기 기판상에 증착 공정으로 형성된 투명전도막을 포함하고, 상기 투명전도막은 증착 공정 후에 이온빔 처리공정에 의해 형성되는 것을 특징으로 하는 투명전극을 제공한다. According to an aspect of the present invention, And a transparent conductive film formed on the substrate by a deposition process, wherein the transparent conductive film is formed by an ion beam treatment process after the deposition process.

본 발명의 바람직한 일 구현예에서, 상기 투명전도막은 IZTO(InZnSnO), ITO(Sn doped In2O3), IZrO(Zr doped In2O3), IWO(W doped In2O3), IMO(Mo doped In2O3), INbO(Nb doped In2O3), IGO(Ge doped In2O3), ISO(Si doped In2O3), GZO(Ga doped ZnO), AZO(Al doped ZnO), AGZO(Al and Ga doped ZnO), NbTiO2(Nb doped TiO2), FTO(F doped SnO2), ATO(Al doped SnO2) 및 BZO(B doped ZnO)로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다.In one preferred embodiment of the present invention, the transparent conductive film is made of a material selected from the group consisting of IZTO (InZnSnO), ITO (Sn doped In 2 O 3 ), IZrO (Zr doped In 2 O 3 ), IWO (W doped In 2 O 3 ) Mo doped In 2 O 3 ), INbO (Nb doped In 2 O 3 ), IGO (Ge doped In 2 O 3 ), ISO (Si doped In 2 O 3 ), GZO (Ga doped ZnO) ), AGO (Al and Ga doped ZnO), NbTiO 2 (Nb doped TiO 2 ), FTO (F doped SnO 2 ), ATO (Al doped SnO 2 ) and BZO Or more.

본 발명의 바람직한 일 구현예에서, 상기 증착 공정은 RF/DC 스퍼터링, 이온빔 스퍼터링, 화학기상증착(CVD), 저압 화학기상증착(LPCVD), 플라즈마 화학기상증착(PECVD), 전자빔 증착(Electron-beam Evaporation) 및 이온 플레이팅(ion plating) 방법으로 구성된 군에서 선택될 수 있다.In one preferred embodiment of the present invention, the deposition process may be performed by RF / DC sputtering, ion beam sputtering, chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), plasma chemical vapor deposition (PECVD), electron beam Evaporation and ion plating methods.

본 발명의 바람직한 일 구현예에서, 상기 이온빔 처리공정은 아르곤(Ar), 질소(N2), 산소(O2), 테트라플루오로메탄(CF4), 수소(H2) 및 헬륨(He)으로 구성된 군에서 선택되는 1종 이상 물질의 이온빔일 수 있다.In an exemplary embodiment of the present invention, the ion beam treatment process may be performed using argon (Ar), nitrogen (N 2 ), oxygen (O 2 ), tetrafluoromethane (CF 4 ), hydrogen (H 2 ) And an ion beam of at least one material selected from the group consisting of:

본 발명의 바람직한 일 구현예에서, 상기 이온빔 처리공정은 파워 1W ~ 1,000W로 수행할 수 있다. In one preferred embodiment of the present invention, the ion beam treatment process can be performed at a power of 1 W to 1,000 W.

본 발명의 바람직한 일 구현예에서, 상기 기판은 유리, 파이렉스, 석영, 폴리머, 실리콘, 사파이어를 포함한 산화물, 질화물 및 화합물 반도체로 구성된 군에서 선택될 수 있다.In a preferred embodiment of the present invention, the substrate may be selected from the group consisting of glass, pyrex, quartz, polymer, silicon, sapphire, oxides, nitrides and compound semiconductors.

본 발명의 바람직한 일 구현예에서, 상기 폴리머는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PES(polyethersulfone), PI(Polyimide), PC(Polycarbonate) 및 PTFE(polytetrafluoroethylene)로 구성된 군에서 선택되는 1종 이상일 수 있다. In a preferred embodiment of the present invention, the polymer is selected from the group consisting of polyethylene terephthalate (PEN), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide (PI), polycarbonate (PC), and polytetrafluoroethylene It can be more than a species.

본 발명의 바람직한 일 구현예에서, 상기 이온빔 처리공정은 증착 공정 후에 동일한 챔버 내에서 순차적으로 이루어지거나, 연속적으로 이어지는 챔버내에서 기판을 이동시키며 수행되는 인시튜(in-situ)로 수행할 수 있다.In one preferred embodiment of the present invention, the ion beam treatment process can be performed in-situ after the deposition process, either sequentially in the same chamber, or carried out by moving the substrate in successive chambers .

본 발명은 다른 구현예는 (a) 기판상에 증착 공정으로 투명전도막을 형성하는 단계; 및 (b) 상기 형성된 투명전도막 표면에 이온빔을 조사하는 단계를 포함하는 투명전극의 제조방법을 제공한다.Another embodiment of the present invention is directed to a method of forming a transparent conductive film, comprising: (a) forming a transparent conductive film on a substrate by a deposition process; And (b) irradiating the surface of the formed transparent conductive film with an ion beam.

본 발명은 바람직한 다른 구현예에서, 상기 증착 공정은 RF/DC 스퍼터링, 이온빔 스퍼터링, 화학기상증착(CVD), 저압 화학기상증착(LPCVD), 플라즈마 화학기상증착(PECVD), 전자빔 증착(Electron-beam Evaporation) 및 이온 플레이팅(ion plating) 방법으로 구성된 군에서 선택될 수 있다.In another preferred embodiment of the present invention, the deposition process is performed by RF / DC sputtering, ion beam sputtering, chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), plasma chemical vapor deposition (PECVD), electron beam Evaporation and ion plating methods.

본 발명의 바람직한 다른 구현예에서, 상기 투명전도막은 IZTO(InZnSnO), ITO(Sn doped In2O3), IZrO(Zr doped In2O3), IWO(W doped In2O3), IMO(Mo doped In2O3), INbO(Nb doped In2O3), IGO(Ge doped In2O3), ISO(Si doped In2O3), GZO(Ga doped ZnO), AZO(Al doped ZnO), AGZO(Al and Ga doped ZnO), NbTiO2(Nb doped TiO2), FTO(F doped SnO2), ATO(Al doped SnO2) 및 BZO(B doped ZnO)로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다.In another preferred embodiment of the present invention, the transparent conductive film includes at least one of IZTO (InZnSnO), ITO (Sn doped In 2 O 3 ), IZrO (Zr doped In 2 O 3 ), IWO (W doped In 2 O 3 ) Mo doped In 2 O 3 ), INbO (Nb doped In 2 O 3 ), IGO (Ge doped In 2 O 3 ), ISO (Si doped In 2 O 3 ), GZO (Ga doped ZnO) ), AGO (Al and Ga doped ZnO), NbTiO 2 (Nb doped TiO 2 ), FTO (F doped SnO 2 ), ATO (Al doped SnO 2 ) and BZO Or more.

본 발명의 바람직한 다른 구현예에서, 상기 이온빔 처리공정은 아르곤(Ar), 질소(N2), 산소(O2), 테트라플루오로메탄(CF4), 수소(H2) 및 헬륨(He)으로 구성된 군에서 선택되는 1종 이상 물질의 이온빔일 수 있다.In another preferred embodiment of the present invention, the ion beam treatment process is carried out by using argon (Ar), nitrogen (N 2 ), oxygen (O 2 ), tetrafluoromethane (CF 4 ), hydrogen (H 2 ) And an ion beam of at least one material selected from the group consisting of:

본 발명은 바람직한 다른 구현예에서, 상기 이온빔 처리공정은 파워 1W ~ 1,000W로 수행할 수 있다.In another preferred embodiment of the present invention, the ion beam treatment process can be performed at a power of 1 W to 1,000 W.

본 발명은 바람직한 다른 구현예에서, 상기 기판은 유리, 파이렉스, 석영, 폴리머, 실리콘, 사파이어를 포함한 산화물, 질화물 및 화합물 반도체로 구성된 군에서 선택될 수 있다.In another preferred embodiment of the present invention, the substrate may be selected from the group consisting of glass, pyrex, quartz, polymer, silicon, oxides including sapphire, nitrides and compound semiconductors.

본 발명은 바람직한 다른 구현예에서, 상기 폴리머는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PES(polyethersulfone), PI(Polyimide), PC(Polycarbonate) 및 PTFE(polytetrafluoroethylene)로 구성된 군에서 선택되는 1종 이상일 수 있다.In another preferred embodiment, the polymer is selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide (PI), polycarbonate (PC), and polytetrafluoroethylene It can be more than a species.

본 발명은 바람직한 다른 구현예에서, 상기 이온빔 처리공정은 증착 공정 후에 동일한 챔버 내에서 순차적으로 이루어지거나, 연속적으로 이어지는 챔버내에서 기판을 이동시키며 수행되는 인시튜(in-situ)로 수행하는 것을 특징으로 할 수 있다.In another preferred embodiment of the present invention, the ion beam treatment process is performed in-situ after the deposition process, either sequentially in the same chamber, or carried out while moving the substrate in successive chambers. .

본 발명은 또 다른 구현예는 상기 투명전극을 포함하는 태양전지, 터치패널 및 유기발광다이오드를 제공한다.
Another embodiment of the present invention provides a solar cell, a touch panel, and an organic light emitting diode including the transparent electrode.

본 발명에 따른 투명전극은 열처리 공정 없이 인시튜 이온빔 처리공정을 포함한 증착 공정으로 전기전도성과 광학특성이 향상된 투명전도막을 형성함으로써, 종래 열로 인한 고분자 기판에 발생하는 문제점을 방지할 수 있고, 한 챔버 내에서 증착 공정과 이온빔 처리공정을 수행할 수 있어 시간과 공간적인 제약을 해결할 수 있어 종래 롤투롤(Roll-to-Roll) 공정에서보다 생산단가를 획기적으로 낮출 수 있다.
The transparent electrode according to the present invention can prevent a problem caused in a polymer substrate due to conventional heat by forming a transparent conductive film having improved electrical conductivity and optical characteristics by a deposition process including an in-situ ion beam treatment process without a heat treatment process, The deposition process and the ion beam treatment process can be performed within the process chamber, thereby making it possible to solve the time and space limitation, and thus the production cost can be drastically lowered than in the conventional roll-to-roll process.

도 1은 본 발명에 따른 투명전극의 제조방법을 나타낸 개략도이다.
도 2는 본 발명에 따른 투명전극을 형성하는 과정을 보여주는 롤투롤 공정 모식도이다.
도 3은 본 발명에 따른 실시예 2 및 비교예 1에서 제조된 투명전도막의 결정구조를 X-Ray Synchrotron을 이용하여 측정한 결과 그래프이다.
도 4는 본 발명에 따른 투명전극의 광투과율을 측정한 결과 그래프이다.
1 is a schematic view showing a method of manufacturing a transparent electrode according to the present invention.
2 is a schematic view of a roll-to-roll process showing the process of forming a transparent electrode according to the present invention.
FIG. 3 is a graph showing the crystal structure of the transparent conductive film prepared in Example 2 and Comparative Example 1 using the X-ray synchrotron according to the present invention. FIG.
4 is a graph showing a result of measuring a light transmittance of a transparent electrode according to the present invention.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when an element is referred to as "including " an element, it is understood that the element may include other elements as well, without departing from the other elements unless specifically stated otherwise.

본 발명은 일 관점에서, 기판; 및 상기 기판상에 증착 공정으로 형성된 투명전도막을 포함하고, 상기 투명전도막은 증착 공정 후에 이온빔 처리공정에 의해 형성되는 것을 특징으로 하는 투명전극에 관한 것이다.In one aspect, the present invention provides a semiconductor device comprising: a substrate; And a transparent conductive film formed on the substrate by a deposition process, wherein the transparent conductive film is formed by an ion beam treatment process after the evaporation process.

본 발명은 다른 관점에서, (a) 기판상에 증착 공정으로 투명전도막을 형성하는 단계; 및 (b) 상기 형성된 투명전도막 표면에 이온빔을 조사하는 단계를 포함하는 투명전극의 제조방법에 관한 것이다.
According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: (a) forming a transparent conductive film on a substrate by a deposition process; And (b) irradiating the surface of the formed transparent conductive film with an ion beam.

이하, 첨부된 도면을 참조하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

본 발명은 전기전도성과 광학특성이 향상된 투명전극을 제공하기 위해, 기판(10)상에 상온에서 200℃ 이하의 증착 공정으로 투명전도막(20)을 형성하고, 상기 형성된 투명전도막(20)에 인시튜(in-situ)로 이온빔(ion beam)을 조사하여 투명전극(1)을 제조하는 것을 특징으로 한다(도 1).In order to provide a transparent electrode having improved electrical conductivity and optical characteristics, a transparent conductive film (20) is formed on a substrate (10) by a deposition process at room temperature or below 200 ° C, and the transparent conductive film (20) The transparent electrode 1 is manufactured by irradiating an ion beam in-situ on the transparent electrode 1 (FIG. 1).

여기서, 상기 증착 공정은 투명전도막을 형성시킬 수 있는 증착 공정이면 제한 없이 사용할 수 있고, 바람직하게는 RF/DC 스퍼터링, 이온빔 스퍼터링, 화학기상증착(CVD), 저압 화학기상증착(LPCVD), 플라즈마 화학기상증착(PECVD), 전자빔 증착(Electron-beam Evaporation) 및 이온 플레이팅(ion plating) 방법으로 구성된 군에서 선택될 수 있다.The deposition process may be any deposition process capable of forming a transparent conductive film. The deposition process may be any one of RF / DC sputtering, ion beam sputtering, chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD) (PECVD), electron-beam evaporation (IEC), and ion plating methods.

상기 투명전도막(20)은 IZTO(InZnSnO), ITO(Sn doped In2O3), IZrO(Zr doped In2O3), IWO(W doped In2O3), IMO(Mo doped In2O3), INbO(Nb doped In2O3), IGO(Ge doped In2O3), ISO(Si doped In2O3), GZO(Ga doped ZnO), AZO(Al doped ZnO), AGZO(Al and Ga doped ZnO), NbTiO2(Nb doped TiO2), FTO(F doped SnO2), ATO(Al doped SnO2) 및 BZO(B doped ZnO)로 구성된 군에서 선택되는 1종 이상을 포함한다 . The transparent conductive film 20 is IZTO (InZnSnO), ITO (Sn doped In 2 O 3), IZrO (Zr doped In 2 O 3), IWO (W doped In 2 O 3), IMO (Mo doped In 2 O 3 ), INbO (Nb doped In 2 O 3 ), Ge doped In 2 O 3 , ISO (Si doped In 2 O 3 ), GZO (Ga doped ZnO), AZO and Ga doped ZnO), NbTiO 2 (Nb doped TiO 2 ), FTO (F doped SnO 2 ), ATO (Al doped SnO 2 ), and BZO (B doped ZnO) .

상기 투명 전도막(20)은 0 ~ 100℃에서 10nm ~ 1㎛의 두께를 갖도록 형성하는 것이 바람직하다. 상기 두께 범위보다 얇게 되면, 이온빔에 의해 기판에 에너지가 가해지게 되어 기판에 손상을 줄 수 있고, 상기 두께 범위보다 두꺼운 경우에는 적정 투과율을 달성하는 것이 어려워질 수 있다.The transparent conductive film 20 is preferably formed to have a thickness of 10 nm to 1 탆 at 0 to 100 캜. If it is thinner than the above-mentioned thickness range, energy may be applied to the substrate by the ion beam to damage the substrate, and when it is thicker than the above-mentioned thickness range, it may become difficult to achieve an appropriate transmittance.

본 발명의 투명전극은 기판상에 전술된 증착 공정으로 투명전도막(20)을 형성함으로써, 고품질의 얇은 박막을 갖는 투명전도막을 형성할 수 있고, 이를 통해, 투과도와 전도도 특성이 향상된 투명전극을 제공할 수 있다.The transparent electrode of the present invention can form a transparent conductive film having a thin and thin film of high quality by forming the transparent conductive film 20 on the substrate by the above-described vapor deposition process, thereby improving the transparency and conductivity .

상기 기판(10)은 유리, 석영, 파이렉스, 실리콘, 폴리머 중 어느 하나로 사용할 수 있고, 특히, 상기 폴리머는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PES(polyethersulfone), PI(Polyimide), PC(Polycarbonate) 및 PTFE(polytetrafluoroethylene)로 구성된 군에서 선택되는 1종 이상일 수 있다.The substrate 10 may be made of any one of glass, quartz, pyrex, silicon and polymer. Particularly, the polymer may be selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES) (Polycarbonate), and PTFE (polytetrafluoroethylene).

또한, 상기 기판은 기계적 물성 및 광학특성 측면에서 두께가 1~ 200㎛일 수 있다.In addition, the substrate may have a thickness of 1 to 200 mu m in terms of mechanical properties and optical characteristics.

전술된 바와 같이, 기판(10)상에 투명전도막(20)이 형성되면, 상기 형성된 투명전도막(20)에 인시튜로 이온빔을 조사하여 이온빔 처리공정을 수행한다. 이때, 상기 이온빔 조사는 증착 공정과 동일한 챔버 내에서 순차적으로 이루어지거나, 연속적으로 이어지는 챔버내에서 기판을 이동시키며 이루어질 수 있고, 그 일 예로 이온빔 장치가 장착된 롤투롤(Roll-to-Roll) 증착 시스템에서 성막 과정 이후 이온빔을 조사하여 본 발명의 투명전극을 제조할 수 있다(도 2).As described above, when the transparent conductive film 20 is formed on the substrate 10, the ion beam treatment process is performed by irradiating the formed transparent conductive film 20 with an in situ ion beam. At this time, the ion beam irradiation may be performed sequentially in the same chamber as the deposition process, or may be performed by moving the substrate in the succeeding chamber. For example, a roll-to-roll deposition The transparent electrode of the present invention can be manufactured by irradiating the ion beam after the film forming process in the system (FIG. 2).

종래에서는 투명전도막의 박막 개선을 위하여 전자빔 조사 공정을 수행하는 방법에 대해 개시하고 있지만, 상기 전자빔 조사 공정은 장시간 전자빔 조사가 필수적으로, 이로 인한 온도 상승으로 저온 공정이 불가능하다는 문제점이 있다. 이러한 문제점은 소자의 데미지나 패턴 공정을 하기 위해 감광액 사용시 그을림이나 타버리는 현상을 발생시킬 수 있고, PET 또는 PI와 같은 플렉시블 기판에 사용할 수 없게 된다.In the related art, a method of performing an electron beam irradiation process for improving a thin film of a transparent conductive film has been disclosed. However, the electron beam irradiation process is required to irradiate an electron beam for a long time. Such a problem may cause a burning or burning phenomenon when the photosensitive liquid is used to damage the device or perform a patterning process, and it can not be used for a flexible substrate such as PET or PI.

그러나, 본 발명은 투명전도막의 증착 공정 후에 인시튜로 이온빔 조사가 이루어지기 때문에, 후처리 공정으로 사용되어지는 전자빔 조사 공정이나 열처리 공정으로 투명전도막을 형성하는 경우보다, 장시간 동안 전자빔 조사나 열처리가 이루어지지 않게 되므로, 단시간 내에 투명전도막을 형성할 수 있고, 챔버내에서 증착과 이온빔 조사가 모두 이루어질 수 있어 공간적인 문제점도 해결할 수 있다.However, since the in-tube ion beam irradiation is performed after the transparent conductive film is deposited, the present invention is advantageous in that the electron beam irradiation or the heat treatment is performed for a long period of time in comparison with the case where the transparent conductive film is formed by the electron beam irradiation step or the heat treatment step, The transparent conductive film can be formed within a short time, and the deposition and the ion beam irradiation can be both performed in the chamber, thereby solving the spatial problem.

상기 이온빔 처리공정에서 이온빔 생성방법은 이온건에 DC/RF 파워를 인가하여 이온빔을 생성시켜 공정에 사용될 수 있다. The ion beam generating method in the ion beam processing step can be used in the process by generating DC ion beam by applying DC / RF power to the ion gun.

또한, 상기 이온빔 처리공정은 별도의 가스 주입 없이 이온빔만을 조사하거나, 또는 아르곤(Ar), 질소(N2), 산소(O2), 테트라플루오로메탄(CF4), 수소(H2) 및 헬륨(He)으로 구성된 군에서 선택되는 1종 이상 물질의 분위기하에서 이온빔을 조사하도록 할 수 있고, 효율 측면에서 바람직하게는 아르곤 또는 질소일 수 있다.Further, the ion beam treatment process or irradiation only ion beams without the gas injection, or argon (Ar), nitrogen (N 2), oxygen (O 2), tetrafluoromethane (CF 4), hydrogen (H 2) and And helium (He). In terms of efficiency, the ion beam may be preferably argon or nitrogen.

상기 이온빔 처리공정의 파워는 이온 건의 크기에 따라 이온빔 파워가 상이하나, 투명전도막 표면의 손상 없이 결정성장을 촉진시키기 위해 적절하게 조절할 수 있고, 통상의 이온빔 처리장치에서의 이온빔 파워는 대략 1W 내지 1,000W로 사용할 수 있다. 만일, 이온 건 파워가 1W 미만일 경우에는 투명전도막의 결정성장이 미비하고, 1,000W를 초과하는 경우에는 투명전도막 표면에 손상을 줄뿐만 아니라, 기판에까지 손상을 줄 수 있다. 또한, 본 발명에서 일 실시예로 사용된 265mm(가로) × 90mm(세로) 크기의 이온 건에서는 파워가 20 내지 200W인 것이 투명전도막 표면의 손상 없이 결정성장을 촉진시킨다는 측면에서 바람직하다.The power of the ion beam treatment process can be appropriately adjusted to promote crystal growth without damaging the surface of the transparent conductive film, although the ion beam power is different depending on the size of the ion gun. The ion beam power in a conventional ion beam treatment apparatus is about 1 W 1,000 W can be used. If the ion gun power is less than 1 W, the crystal growth of the transparent conductive film is insufficient. If the ion gun power exceeds 1,000 W, the surface of the transparent conductive film may be damaged, and the substrate may be damaged. In an ion gun having a size of 265 mm (width) × 90 mm (length) used as an embodiment of the present invention, a power of 20 to 200 W is preferable from the viewpoint of promoting crystal growth without damaging the surface of the transparent conductive film.

한편, 이온빔 처리공정은 1×10-7 Torr 내지 760 Torr 압력하에서 상온 내지 고온(약 1,000℃)에서도 수행할 수 있다.On the other hand, the ion beam treatment process can be performed at a room temperature to a high temperature (about 1,000 ° C) under a pressure of 1 × 10 -7 Torr to 760 Torr.

이처럼, 본 발명은 기판상에 증착된 투명전도막을 이온빔 처리함으로써, 이온빔이 투명전도막에 에너지를 공급하여 투명전도막 입자들 간의 반응성 및 유동도를 증가시킬 수 있으며, 박막 표면과 박막 내부에서 원자들 간의 확산을 일으켜 홀 모빌리티(hole mobility)를 증가시킴과 동시에 치밀한 박막을 형성시키고, 투명전도막의 결정성이 향상되어 투명전도막의 전기 전도도, 박막 평활도, 광투과도 등을 향상시킬 수 있다.As described above, according to the present invention, by ion-beam processing the transparent conductive film deposited on a substrate, the ion beam can supply energy to the transparent conductive film to increase reactivity and fluidity between the transparent conductive film particles, The hole mobility is increased and a dense thin film is formed and the crystallinity of the transparent conductive film is improved to improve the electrical conductivity, thin film smoothness and light transmittance of the transparent conductive film.

본 발명은 또 다른 관점에서, 상기 투명전극을 포함하는 태양전지, 터치패널 및 유기발광다이오드에 관한 것이다. 상기 태양전지, 터치패널 및 유기발광다이오드는 본 발명이 속한 분야에서 널리 알려진 제조방법으로 제조될 수 있어 구체적인 설명은 생략하기로 한다.In another aspect, the present invention relates to a solar cell, a touch panel, and an organic light emitting diode including the transparent electrode. The solar cell, the touch panel, and the organic light emitting diode may be fabricated by a manufacturing method well known in the art, and a detailed description thereof will be omitted.

본 발명은 후처리로서 고온의 열처리 공정을 수행하지 않고 저온의 이온빔 처리공정을 수행함으로써, 기판이 열에 약한 폴리머 재질인 경우에도 전기 전도성과 광학특성이 우수한 투명전극을 제조할 수 있어, 플렉시블 전자기기, 태양전지, 터치패널, 유기발광다이오드 등에 유용하게 사용할 수 있다.
The present invention can produce a transparent electrode having excellent electrical conductivity and optical characteristics even when the substrate is a polymer material weak to heat by performing a low temperature ion beam treatment process without performing a high temperature heat treatment process as a post treatment, , Solar cells, touch panels, organic light emitting diodes and the like.

이하, 본 발명을 실시예에 상세히 설명하면, 다음과 같은 바, 본 발명이 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by these Examples.

<< 제조예Manufacturing example 1> 1>

1-1: 폴리이미드 분말 제조1-1: Preparation of polyimide powder

반응기로써 교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 N,N-디메틸아세타아미드(DMAc) 832g을 채운후, 반응기의 온도를 25℃로 맞춘 후 비스트리플루오로메틸벤지딘(TFDB) 64.046g(0.2mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA) 31.09g(0.07mol)과 비페닐 테트라카르복실릭 디안하이드라이드(BPDA) 8.83g(0.03mol)을 투입 후 일정 시간 동안 교반하여 용해 및 반응시켰다. 이때 용액의 온도는 25℃로 유지하였다. 그리고 테레프탈로일 클로라이드(TPC) 20.302g(0.1mol)을 첨가하여 고형분의 농도는 13중량%인 폴리아믹산 용액을 얻었다. 832 g of N, N-dimethylacetamide (DMAc) was charged into a 1 L reactor equipped with a stirrer, a nitrogen injector, a dropping funnel, a temperature controller and a condenser while nitrogen was passed through the reactor. 64.046 g (0.2 mol) of bistrifluoromethylbenzidine (TFDB) was dissolved and the solution was maintained at 25 占 폚. Thereto were added 31.09 g (0.07 mol) of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanedioanhydride (6FDA) and 8.83 g (0.03 mol) of biphenyltetracarboxylic dianhydride (BPDA) ) Was added and stirred for a certain period of time to dissolve and react. The temperature of the solution was maintained at 25 占 폚. Then, 20.302 g (0.1 mol) of terephthaloyl chloride (TPC) was added to obtain a polyamic acid solution having a solid content of 13 wt%.

상기 폴리아믹산 용액에 피리딘 25.6g, 아세틱 안하이드라이드 33.1g 을 투입하여 30분 교반 후 다시 70℃에서 1시간 교반하여 상온으로 식히고, 이를 메탄올20L로 침전시키고, 침전된 고형분을 여과하여 분쇄한 후 100℃에서 진공으로 6시간 건조하여 111g의 고형분 분말의 폴리이미드를 얻었다.
25.6 g of pyridine and 33.1 g of acetic anhydride were added to the polyamic acid solution, stirred for 30 minutes, and further stirred at 70 ° C for 1 hour. The mixture was cooled to room temperature and precipitated with 20 L of methanol. The precipitated solid was filtered and pulverized And then dried at 100 DEG C under vacuum for 6 hours to obtain 111 g of a solid powdery polyimide.

1-2: 폴리이미드 필름 제조1-2: Production of polyimide film

표면에 OH기가 결합된 비결정질 실리카 입자 0.03g (0.03wt%)를 N,N-디메틸아세타아미드(DMAc)에 분산농도 0.1%로 투입하고 용매가 투명해 질 때까지 초음파처리를 하고, 이후에 제조예 1-1의 고형분 분말의 폴리이미드 100g를 N,N-디메틸아세타아미드(DMAc) 670g에 녹여서 13wt%의 용액을 얻고, 이렇게 수득된 용액을 스테인레스판에 도포한 후 340㎛로 캐스팅하고 130℃의 열풍으로 30분 건조한 후 필름을 스테인레스판에서 박리하여 프레임에 핀으로 고정하였다. 필름이 고정된 프레임을 진공오븐에 넣고 100℃부터 300℃까지 2시간 동안 천천히 가열한 후 서서히 냉각해 프레임으로부터 분리하여 폴리이미드 필름을 수득하였다. 0.03 g (0.03 wt%) of amorphous silica particles having an OH group bonded to its surface was added to N, N-dimethylacetamide (DMAc) at a dispersion concentration of 0.1%, and ultrasonic treatment was performed until the solvent became transparent. 100 g of the polyimide of the solid powder of Production Example 1-1 was dissolved in 670 g of N, N-dimethylacetamide (DMAc) to obtain a 13 wt% solution. The thus obtained solution was coated on a stainless plate and cast to 340 탆 After drying for 30 minutes with hot air at 130 캜, the film was peeled off from the stainless steel plate and fixed to the frame with a pin. The frame with the film fixed therein was placed in a vacuum oven, slowly heated from 100 ° C to 300 ° C for 2 hours, cooled gradually and separated from the frame to obtain a polyimide film.

이후 최종 열처리공정으로서 다시 300℃에서 30분 동안 열처리하였다. 이때 제조된 폴리이미드 필름은 두께가 78㎛이고, 평균 광투과도가 89.5%이며, 황색도가 2.4이고, TMA-Method에 따라 50 내지 250℃에서 측정한 평균 선팽창계수(CTE)가 20ppm/℃ 이였다.
Thereafter, the substrate was subjected to heat treatment at 300 ° C for 30 minutes as a final heat treatment process. The prepared polyimide film had a thickness of 78 占 퐉, an average light transmittance of 89.5%, a yellowness of 2.4, and an average coefficient of linear thermal expansion (CTE) of 20 ppm / 占 폚 measured at 50 to 250 占 폚 according to the TMA- .

<< 실시예Example 1> 1>

롤투롤 스퍼터링 장치((주) 에스엔텍사 제조)를 사용하였다. 상기 롤투롤 스퍼터링 장치에 제조예 1에서 수득된 폴리이미드 필름(기판)을 넣고, 450W DC 전력을 인가하여 스퍼터건을 작동시킨 다음, ITO(10wt% Sn doped In2O3) 타겟에 플라즈마를 유도하여 투명전도막(90nm)이 형성시켰다. 상기 형성된 투명전도막에 50W DC 파워로 이온건을 작동시켜 이온 처리하였다. 이때 상기 롤투롤 공정은 상온에서 압력을 3mTorr로 유지하고, 아르곤 가스 및 산소 가스를 30sccm 및 1sccm로 각각 공급하면서 롤링 스피드(rolling speed) 1cm/sec로 수행하였다.
A roll-to-roll sputtering apparatus (manufactured by S-ENTEC Co., Ltd.) was used. The polyimide film (substrate) obtained in Production Example 1 was placed in the roll-to-roll sputtering apparatus, 450 W DC electric power was applied to operate the sputter gun, and plasma was induced to the ITO (10 wt% Sn doped In 2 O 3 ) To form a transparent conductive film (90 nm). The thus formed transparent conductive film was subjected to ion treatment by operating the ion gun with 50 W DC power. At this time, the roll-to-roll process was carried out at a rolling speed of 1 cm / sec while maintaining the pressure at 3 mTorr at room temperature and supplying argon gas and oxygen gas at 30 sccm and 1 sccm, respectively.

<< 실시예Example 2> 2>

실시예 1과 동일한 방법으로 투명전극을 제조하되, 투명전도막의 이온처리에 사용된 파워를 100W의 DC 파워로 수행하였다.
A transparent electrode was prepared in the same manner as in Example 1 except that the power used for the ion treatment of the transparent conductive film was 100 W DC power.

<< 실시예Example 3> 3>

실시예 1과 동일한 방법으로 투명전극을 제조하되, 투명전도막의 이온처리에 사용된 파워를 150W의 DC 파워로 수행하였다.
A transparent electrode was prepared in the same manner as in Example 1 except that the power used in the ion treatment of the transparent conductive film was performed at a DC power of 150 W.

<< 비교예Comparative Example 1> 1>

실시예 1의 동일한 방법으로 투명전도막을 기판상에 형성하되, 이온처리 공정을 수행하지 않았다.
A transparent conductive film was formed on the substrate in the same manner as in Example 1, but no ion treatment was performed.

실시예 1 내지 3과 비교예 1에서 제조된 투명전극의 광투과율, 면저항, 비저항, 이동도 및 캐리어 농도를 하기 방법으로 측정하여 그 결과를 도표에 나타내었다. The light transmittance, sheet resistance, resistivity, mobility and carrier concentration of the transparent electrode prepared in Examples 1 to 3 and Comparative Example 1 were measured by the following methods, and the results are shown in the table.

(1) 결정구조 분석: 포항가속기 연구소의 6+2 Kappa-type 회절기와 MAR345 image plate으로 구성된 X-Ray Synchrotron를 이용하여 샘플에 입사되는 빛의 각도(2theta)를 20 ~ 80˚로 조절하면서 분석하였다(도 3).(1) Crystal structure analysis: Using an X-Ray Synchrotron consisting of a 6 + 2 Kappa-type diffractometer of Pohang Accelerator Laboratory and a MAR345 image plate, the angle (2theta) (Fig. 3).

(2) 광투과율 측정: UV-Vis Spectroscope(Jasco V-570)를 이용하여 air 상태를 baseline으로 잡고, 시료를 로딩하여 200~1200nm wavelength의 빛을 수직 방향으로 조사하여 샘플의 투과율을 측정하였다(도 4).(2) Measurement of light transmittance: Using a UV-Vis Spectroscope (Jasco V-570), the sample was loaded on the baseline in an air state, and light of 200 to 1200 nm wavelength was irradiated in the vertical direction to measure the transmittance of the sample 4).

(3) 두께 측정: HTSKorea사 NANOMAP-LS의 Surface profilometer를 이용하여 두께를 측정하였다.(3) Thickness measurement: The thickness was measured using a surface profilometer of NANOMAP-LS manufactured by HTSKorea.

(4) 면저항(sheet resistance), 비저항(resistivity) 이동도(mobility) 및 캐리어 농도(carrier concentration) 측정: Accent Optical Technology사 HL5500PC 의 홀 측정기(Hall measurement system)를 사용하여 측정하였다.
(4) Measurement of sheet resistance, resistivity mobility and carrier concentration: Measured using a Hall measurement system of HL5500PC manufactured by Accent Optical Technology.

구분division 투명전도막(ITO) 두께
(nm)
Transparent Conductive Film (ITO) Thickness
(nm)
면저항
(ohm/sq.)
Sheet resistance
(ohm / sq.)
비저항
(ohm·cm)
Resistivity
(ohm · cm)
이동도
(cm2/V·S)
Mobility
(cm 2 / V · S)
캐리어 농도
(cm3)
Carrier concentration
(cm 3 )
비교예 1Comparative Example 1 9090 114.2114.2 1.028 × 10-3 1.028 × 10 -3 30.830.8 -1.975 × 1020 -1.975 × 10 20 실시예 1Example 1 9090 106.6106.6 9.594 ×10-4 9.594 × 10 -4 35.235.2 -1.851 ×1020 -1.851 × 10 20 실시예 2Example 2 9090 58.1358.13 5.232 ×10-4 5.232 × 10 -4 37.937.9 -3.153 ×1020 -3.153 × 10 20 실시예 3Example 3 9090 73.3673.36 6.602 ×10-4 6.602 × 10 -4 35.135.1 -2.697 ×1020 -2.697 × 10 20

상기 표 1에 나타난 바와 같이, 이온처리를 하지 않은 비교예 1의 투명전극에 비해 이온처리를 수행한 실시예 1 내지 3의 투명전극의 경우, 전기 이동도 값이 증가된 반면, 면저항과 비저항이 감소된 것으로 나타나, 전기적 전도 특성이 현저히 향상됨을 확인할 수 있었다.As shown in Table 1, in the case of the transparent electrodes of Examples 1 to 3 in which the ion treatment was performed as compared with the transparent electrode of Comparative Example 1 in which ion treatment was not performed, the value of electric mobility was increased while the sheet resistance and resistivity And the electrical conduction characteristics were remarkably improved.

한편, 도 1에 나타난 바와 같이, 비교예 1의 투명전도막에 비해 이온 처리된 실시예 2의 투명전도막의 결정성이 향상된 것을 알 수 있었고, 도 2에 나타난 바와 같이, 이온처리를 하지 않은 비교예 1의 투명전극에 비해 이온처리를 수행한 실시예 1 내지 3의 투명전극의 광투과율이 향상됨을 알 수 있었다.On the other hand, as shown in Fig. 1, it was found that the crystallinity of the transparent conductive film of Example 2 which was ion-treated as compared with that of the transparent conductive film of Comparative Example 1 was improved. As shown in Fig. 2, It was found that the light transmittance of the transparent electrode of Examples 1 to 3 in which the ion treatment was performed was improved as compared with the transparent electrode of Example 1. [

따라서, 본 발명에 따르면, 열처리 공정 없이 인시튜 이온빔 처리공정을 포함한 증착 공정으로 전기전도성과 광학특성이 향상된 투명전극을 제조할 수 있음을 확인할 수 있었다.
Therefore, according to the present invention, a transparent electrode having improved electrical conductivity and optical characteristics can be manufactured by a deposition process including an in-situ ion beam treatment process without a heat treatment process.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
Having described specific portions of the invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the invention is not limited thereby will be. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

1 : 투명전극 10: 기판
20: 투명전도막
1: transparent electrode 10: substrate
20: transparent conductive film

Claims (19)

기판; 및 상기 기판상에 증착 공정으로 형성된 투명전도막을 포함하고,
상기 투명전도막은 증착 공정 후에 이온빔 처리공정에 의해 형성되는 것을 특징으로 하는 투명전극.
Board; And a transparent conductive film formed on the substrate by a deposition process,
Wherein the transparent conductive film is formed by an ion beam treatment process after the vapor deposition process.
제1항에 있어서, 상기 투명전도막은 IZTO(InZnSnO), ITO(Sn doped In2O3), IZrO(Zr doped In2O3), IWO(W doped In2O3), IMO(Mo doped In2O3), INbO(Nb doped In2O3), IGO(Ge doped In2O3), ISO(Si doped In2O3), GZO(Ga doped ZnO), AZO(Al doped ZnO), AGZO(Al and Ga doped ZnO), NbTiO2(Nb doped TiO2), FTO(F doped SnO2), ATO(Al doped SnO2) 및 BZO(B doped ZnO)로 구성된 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 투명전극.
The method of claim 1, wherein the transparent conductive film comprises at least one of IZTO (InZnSnO), ITO (Sn doped In 2 O 3 ), IZrO (Zr doped In 2 O 3 ), IWO (W doped In 2 O 3 ) 2 O 3 ), INbO (Nb doped In 2 O 3 ), IGO (Ge doped In 2 O 3 ), ISO (Si doped In 2 O 3 ), GZO (Ga doped ZnO) (Al and Ga doped ZnO), NbTiO 2 (Nb doped TiO 2 ), FTO (F doped SnO 2 ), ATO (Al doped SnO 2 ) and BZO And the transparent electrode.
제1항에 있어서, 상기 증착 공정은 RF/DC 스퍼터링, 이온빔 스퍼터링, 화학기상증착(CVD), 저압 화학기상증착(LPCVD), 플라즈마 화학기상증착(PECVD), 전자빔 증착(Electron-beam Evaporation) 및 이온 플레이팅(ion plating) 방법으로 구성된 군에서 선택되는 것을 특징으로 하는 투명전극.
The method of claim 1, wherein the deposition process is performed by RF / DC sputtering, ion beam sputtering, chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), plasma chemical vapor deposition (PECVD), electron- Wherein the transparent electrode is selected from the group consisting of an ion plating method and an ion plating method.
제1항에 있어서, 상기 이온빔 처리공정은 아르곤(Ar), 질소(N2), 산소(O2), 테트라플루오로메탄(CF4), 수소(H2) 및 헬륨(He)으로 구성된 군에서 선택되는 1종 이상 물질의 이온빔인 것을 특징으로 하는 투명전극.
The method of claim 1, wherein the ion beam treatment step is argon (Ar), nitrogen (N 2), oxygen (O 2), tetrafluoromethane (CF 4), the group consisting of hydrogen (H 2) and helium (He) Wherein the transparent electrode is an ion beam of at least one material selected from the group consisting of silver, gold and silver.
제1항에 있어서, 상기 이온빔 처리공정은 파워 1W ~ 1000W로 수행하는 것을 특징으로 하는 투명전극.
The transparent electrode according to claim 1, wherein the ion beam treatment is performed at a power of 1 W to 1000 W.
제1항에 있어서, 상기 기판은 유리, 파이렉스, 석영, 폴리머, 실리콘, 사파이어를 포함한 산화물, 질화물 및 화합물 반도체로 구성된 군에서 선택되는 것을 특징으로 하는 투명전극.
The transparent electrode according to claim 1, wherein the substrate is selected from the group consisting of glass, pyrex, quartz, polymer, silicon, sapphire, oxides, nitrides and compound semiconductors.
제6항에 있어서, 상기 폴리머는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PES(polyethersulfone), PI(Polyimide), PC(Polycarbonate) 및 PTFE(polytetrafluoroethylene)로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 투명전극.
The method of claim 6, wherein the polymer is at least one selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide (PI), polycarbonate (PC), and polytetrafluoroethylene Characterized by a transparent electrode.
제1항에 있어서, 상기 이온빔 처리공정은 증착 공정 후에 동일한 챔버 내에서 순차적으로 이루어지거나, 연속적으로 이어지는 챔버내에서 기판을 이동시키며 수행되는 인시튜(in-situ)로 수행하는 것을 특징으로 하는 투명전극.
2. The method of claim 1, wherein the ion beam treatment process is performed in-situ after the deposition process, either sequentially in the same chamber, or carried out by moving the substrate in successive chambers. electrode.
(a) 기판상에 증착 공정으로 투명전도막을 형성하는 단계; 및
(b) 상기 형성된 투명전도막 표면에 이온빔을 조사하는 단계를 포함하는 투명전극의 제조방법.
(a) forming a transparent conductive film on a substrate by a deposition process; And
(b) irradiating the surface of the formed transparent conductive film with an ion beam.
제9항에 있어서, 상기 증착 공정은 RF/DC 스퍼터링, 이온빔 스퍼터링, 화학기상증착(CVD), 저압 화학기상증착(LPCVD), 플라즈마 화학기상증착(PECVD), 전자빔 증착(Electron-beam Evaporation) 및 이온 플레이팅(ion plating) 방법으로 구성된 군에서 선택되는 것을 특징으로 하는 투명전극의 제조방법.
10. The method of claim 9, wherein the deposition process is performed by RF / DC sputtering, ion beam sputtering, chemical vapor deposition (CVD), low pressure chemical vapor deposition (LPCVD), plasma chemical vapor deposition (PECVD), electron beam evaporation Wherein the first electrode is selected from the group consisting of an ion plating method and an ion plating method.
제9항에 있어서, 상기 투명전도막은 IZTO(InZnSnO), ITO(Sn doped In2O3), IZrO(Zr doped In2O3), IWO(W doped In2O3), IMO(Mo doped In2O3), INbO(Nb doped In2O3), IGO(Ge doped In2O3), ISO(Si doped In2O3), GZO(Ga doped ZnO), AZO(Al doped ZnO), AGZO(Al and Ga doped ZnO), NbTiO2(Nb doped TiO2), FTO(F doped SnO2), ATO(Al doped SnO2) 및 BZO(B doped ZnO)로 구성된 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 투명전극의 제조방법.
The method of claim 9, wherein the transparent conductive film is formed of one of IZTO (InZnSnO), ITO (Sn doped In 2 O 3 ), IZrO (Zr doped In 2 O 3 ), IWO (W doped In 2 O 3 ) 2 O 3 ), INbO (Nb doped In 2 O 3 ), IGO (Ge doped In 2 O 3 ), ISO (Si doped In 2 O 3 ), GZO (Ga doped ZnO) (Al and Ga doped ZnO), NbTiO 2 (Nb doped TiO 2 ), FTO (F doped SnO 2 ), ATO (Al doped SnO 2 ) and BZO Wherein the transparent electrode is formed of a transparent electrode .
제9항에 있어서, 상기 이온빔 처리공정은 아르곤(Ar), 질소(N2), 산소(O2), 테트라플루오로메탄(CF4), 수소(H2) 및 헬륨(He)으로 구성된 군에서 선택되는 1종 이상 물질의 이온빔인 것을 특징으로 하는 투명전극의 제조방법.
10. The method of claim 9, wherein the ion beam treatment step is argon (Ar), nitrogen (N 2), oxygen (O 2), tetrafluoromethane (CF 4), the group consisting of hydrogen (H 2) and helium (He) And the second electrode is an ion beam of at least one material selected from the group consisting of the first electrode and the second electrode.
제9항에 있어서, 상기 이온빔 처리공정은 파워 1W ~ 1000W로 수행하는 것을 특징으로 하는 투명전극의 제조방법.
10. The method of claim 9, wherein the ion beam treatment is performed at a power of 1W to 1000W.
제9항에 있어서, 상기 기판은 유리, 파이렉스, 석영, 폴리머, 실리콘, 사파이어를 포함한 산화물, 질화물 및 화합물 반도체로 구성된 군에서 선택되는 것을 특징으로 하는 투명전극의 제조방법.
10. The method of claim 9, wherein the substrate is selected from the group consisting of glass, pyrex, quartz, polymer, silicon, sapphire, oxides, nitrides and compound semiconductors.
제14항에 있어서, 상기 폴리머는 PET(polyethylene terephthalate), PEN(polyethylene naphthalate), PES(polyethersulfone), PI(Polyimide), PC(Polycarbonate) 및 PTFE(polytetrafluoroethylene)로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 투명전극의 제조방법.
15. The method of claim 14, wherein the polymer is at least one selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyimide (PI), polycarbonate (PC), and polytetrafluoroethylene Wherein the transparent electrode is formed on the transparent electrode.
제9항에 있어서, 상기 이온빔 처리공정은 증착 공정 후에 동일한 챔버 내에서 순차적으로 이루어지거나, 연속적으로 이어지는 챔버내에서 기판을 이동시키며 수행되는 인시튜(in-situ)로 수행하는 것을 특징으로 하는 투명전극의 제조방법.
10. The method of claim 9, wherein the ion beam treatment process is performed in-situ after the deposition process, either sequentially in the same chamber, or carried out by moving the substrate in successive chambers. Gt;
제1항 내지 제9항 중 어느 한 항의 투명전극을 포함하는 태양전지.
A solar cell comprising the transparent electrode according to any one of claims 1 to 9.
제1항 내지 제9항 중 어느 한 항의 투명전극을 포함하는 터치패널.
A touch panel comprising the transparent electrode of any one of claims 1 to 9.
제1항 내지 제9항 중 어느 한 항의 투명전극을 포함하는 유기발광다이오드.



An organic light emitting diode comprising a transparent electrode according to any one of claims 1 to 9.



KR1020130100109A 2013-08-23 2013-08-23 Transparent Electrode and Fabrication Method for the Same KR102109344B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130100109A KR102109344B1 (en) 2013-08-23 2013-08-23 Transparent Electrode and Fabrication Method for the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130100109A KR102109344B1 (en) 2013-08-23 2013-08-23 Transparent Electrode and Fabrication Method for the Same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190061938A Division KR102118859B1 (en) 2019-05-27 2019-05-27 Transparent Electrode and Fabrication Method for the Same

Publications (2)

Publication Number Publication Date
KR20150022372A true KR20150022372A (en) 2015-03-04
KR102109344B1 KR102109344B1 (en) 2020-05-12

Family

ID=53020387

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130100109A KR102109344B1 (en) 2013-08-23 2013-08-23 Transparent Electrode and Fabrication Method for the Same

Country Status (1)

Country Link
KR (1) KR102109344B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034078A1 (en) * 2015-08-26 2017-03-02 고려대학교 산학협력단 Flexible transparent electrode having tio2/ag/tio2 multi-layered thin film structure, and method for manufacturing same
US10453983B2 (en) 2015-12-18 2019-10-22 Lg Electronics Inc. Solar cell and method of manufacturing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070050143A (en) * 2005-11-10 2007-05-15 주식회사 인포비온 Methods for fabricating transparent conductive oxide electrode
KR20130074167A (en) * 2011-12-26 2013-07-04 코오롱인더스트리 주식회사 Plastic substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070050143A (en) * 2005-11-10 2007-05-15 주식회사 인포비온 Methods for fabricating transparent conductive oxide electrode
KR20130074167A (en) * 2011-12-26 2013-07-04 코오롱인더스트리 주식회사 Plastic substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034078A1 (en) * 2015-08-26 2017-03-02 고려대학교 산학협력단 Flexible transparent electrode having tio2/ag/tio2 multi-layered thin film structure, and method for manufacturing same
US10453983B2 (en) 2015-12-18 2019-10-22 Lg Electronics Inc. Solar cell and method of manufacturing

Also Published As

Publication number Publication date
KR102109344B1 (en) 2020-05-12

Similar Documents

Publication Publication Date Title
Lan et al. Durability under mechanical bending of the indium tin oxide films deposited on polymer substrate by thermionically enhanced sputtering
TWI621724B (en) Transparent conductive film and method of producing the same
CN107254664B (en) A kind of ultra-thin silver-based film, MULTILAYER COMPOSITE transparent conductive film and the preparation method and application thereof
KR20100007605A (en) Conductive laminate and manufacturing method thereof
WO2014112534A1 (en) Transparent conductive film and production method therefor
JP4896854B2 (en) Method for producing transparent conductive film
Lee et al. Effects of ZnO: Al films on CIGS PV modules degraded under accelerated damp heat
KR101145916B1 (en) Method for manufacturing flexible multilayer transparent eletrode
US9330811B2 (en) Transparent electrode and method for manufacturing the same
JP2014157816A (en) Manufacturing method of transparent conductive film
CN104810114B (en) High transmission rate flexible polyimide substrate ITO conductive film and preparation method and application
KR102109344B1 (en) Transparent Electrode and Fabrication Method for the Same
Zhinong et al. Properties of indium tin oxide films deposited on unheated polymer substrates by ion beam assisted deposition
KR102118859B1 (en) Transparent Electrode and Fabrication Method for the Same
Kim et al. Preparation of ITO and IZO thin films by using the facing targets sputtering (FTS) method
KR20200041228A (en) A method for depositing Indium Tin Oxide(ITO) based on sol-gel using PDMS coated substrate
JP5468801B2 (en) Substrate with transparent electrode and manufacturing method thereof
CN107195389B (en) The preparation method of metal oxynitride transparent conductive film
CN103952678A (en) Preparation method of fluorine-doped zinc oxide-based transparent conducting thin film with high mobility
KR101252127B1 (en) Transparent conductive layer and method of forming the same
ÀÜÜ Design of antireflective coatings for AZO low infrared emissivity layer
CN106548929B (en) A kind of preparation method of ITO base transparent conducting film near infrared band transmission enhancing
KR101297432B1 (en) A transparent flexible board having layer for high flexible layer and transparency conductive layer and Manufacturing method of the same
TWI420542B (en) A surface treatment method and structure of a transparent conductive film
KR101188967B1 (en) Display substrate, method of manufacturing same and display device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant