KR20150019086A - Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof - Google Patents

Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof Download PDF

Info

Publication number
KR20150019086A
KR20150019086A KR1020130095476A KR20130095476A KR20150019086A KR 20150019086 A KR20150019086 A KR 20150019086A KR 1020130095476 A KR1020130095476 A KR 1020130095476A KR 20130095476 A KR20130095476 A KR 20130095476A KR 20150019086 A KR20150019086 A KR 20150019086A
Authority
KR
South Korea
Prior art keywords
butanediol
bacillus
brc1
strain
producing
Prior art date
Application number
KR1020130095476A
Other languages
Korean (ko)
Other versions
KR101651484B1 (en
Inventor
김철호
서정우
김윤석
강인영
이성목
허선연
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020130095476A priority Critical patent/KR101651484B1/en
Publication of KR20150019086A publication Critical patent/KR20150019086A/en
Application granted granted Critical
Publication of KR101651484B1 publication Critical patent/KR101651484B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P9/00Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/832Bacillus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a novel butanediol producing microorganism. More specifically, the present invention relates to: a novel bacillus genus butandediol producing microorganism; and a method for producing 2,3-butanediol from a fiber carbon source. When the method of the present invention is used, 2,3-butanediol can be produced by using a wood-based biomass.

Description

신규 부탄디올 생성 미생물 및 이를 이용한 부탄디올의 제조방법{Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof}[0001] The present invention relates to a novel butanediol-producing microorganism and a method for producing butanediol using the same,

본 발명은 신규 부탄디올 생성 미생물에 관한 것으로, 더욱 자세하게는 신규 바실러스 속 부탄디올 생성미생물 및 상기 신규미생물을 이용한 섬유질 탄소원으로부터 2,3-부탄디올을 제조하는 방법에 관한 것이다.
The present invention relates to a novel butanediol-producing microorganism, and more particularly, to a novel microorganism producing Bacillus butanediol and a method for producing 2,3-butanediol from a fibrous carbon source using the novel microorganism.

2,3-부탄디올(2,3-Butanediol; 2,3-BDO)은 프린터 잉크, 향수, 보습제, 연화제, 가소제, 식의약소재 등으로 다양하게 이용되는 화학원료로서, 특히 부타디엔으로 화학전환하여 합성고무의 원료로 이용될 수 있기 때문에 석유화학원료를 대체할 수 있는 대표적인 바이오화학원료로 최근 주목을 받고 있다. 또한 작물생장 촉진 등의 생리활성 기능으로 인해 농업분야에서도 2,3-부탄디올의 활용도는 증대할 것으로 예상된다.2,3-Butanediol (2,3-BDO) is a chemical raw material that is widely used in printer ink, perfume, moisturizer, softener, plasticizer, and medicinal materials. In particular, 2,3-butanediol It can be used as a raw material for rubber, so it is attracting attention as a representative biochemical raw material that can replace petrochemical raw materials. In addition, the utilization of 2,3-butanediol is expected to increase in the field of agriculture due to the physiological activity functions such as promoting crop growth.

미생물에 의한 2,3-부탄디올 생산 기술은 부타디엔 원료의 수요가 급증함에 따라 20세기 초반부터 활발하게 이루어졌다. 석유화학 산업의 발전에 따라 미생물 발효 기술이 다소 주춤하는 경향을 보였으나, 최근 고유가 상황과 석유화학 산업의 환경오염 문제의 심각성이 대두되면서 미생물에 의한 2,3-부탄디올 생산 기술이 새롭게 주목을 받고 있다. 2,3-부탄디올의 생성 능력이 우수한 대표적인 미생물은 Klebsiella pneumoniae이다. 통성 혐기성 미생물인 K. pneumoniae는 글리세롤을 비롯한 다양한 탄소원을 활용할 수 있으며, 균체 생장이 우수한 장점을 지니고 있다. 현재까지 가장 높은 수준의 2,3-부탄디올 생산 수율이 K. pneumoniae에 의해 보고되었으며, 주로 광학비활성형의 meso-형과 광학활성형의 L-(+)-형의 2,3-부탄디올을 생성하는 것으로 밝혀졌다. 하지만 K. pneumoniae는 미미하기는 하나 병원성인 단점이 있어 이를 극복하고자 하는 노력이 이루어 지고 있다.The technology for the production of 2,3-butanediol by microorganisms has been active since the early 20th century as the demand for butadiene raw material increased sharply. As the petrochemical industry developed, microbial fermentation technology tended to decline somewhat. However, due to the recent high oil price situation and the seriousness of the environmental pollution problem in the petrochemical industry, the technology of 2,3-butanediol production by microorganisms has attracted new attention have. A representative microorganism having an excellent ability to produce 2,3-butanediol is Klebsiella pneumoniae . K. pneumoniae , a thermophilic anaerobic microorganism, is able to utilize various carbon sources including glycerol, and has excellent advantages of cell growth. The highest yields of 2,3-butanediol production to date have been reported by K. pneumoniae , producing optically inactive meso-type and optically active L- (+) - type 2,3-butanediol . However, K. pneumoniae is a mild disease, but there are disadvantages to the hospital and efforts are being made to overcome it.

이에따라 안전한 미생물에 의한 2,3-부탄디올 생산 기술의 개발이 동시에 이루어지고있는데, 대표적으로 주로 토양에 서식하는 Bacillus속 몇몇 미생물들이 2,3-부탄디올을 생성하는 것으로 알려져있다. K. pneumoniae와 달리 Bacillus속 미생물들은 주로 D-(-)-형의 광학활성형과 meso-형의 2,3-부탄디올을 생성하는 것으로 보고되어 졌다. 특히 Bacillus속 미생물들은 섬유질 탄소원을 분해하는 당화효소 활성을 보유하고, 당화효소의 활성에 적합한 고온에서 생장이 가능한 장점을 지닌다.As a result, 2,3-butanediol production technology by safe microorganisms is being developed at the same time. It is known that some microorganisms of the genus Bacillus , which mainly live in the soil, produce 2,3-butanediol. Unlike K. pneumoniae , microorganisms of the genus Bacillus have been reported to produce D - (-) - type optically active and meso-type 2,3-butanediol. In particular, microorganisms of the genus Bacillus have a saccharogenic enzyme activity which decomposes a fibrous carbon source and have the advantage of being able to grow at a high temperature suitable for the activity of a saccharifying enzyme.

이에, 본 발명자들은 비병원성이면서, 섬유질 탄소원을 이용하여 2,3-부탄디올을 생산할 수 있는 미생물 균주를 찾고자 예의 노력한 결과, 신규 Bacillus속 미생물을 분리하고, 상기 바실러스속 미생물이 섬유질 탄소원으로부터 2,3-부탄디올을 생성하는 능력이 우수한 것을 확인하고 본 발명을 완성하게 되었다.
The present inventors have made efforts to find a microorganism strain capable of producing 2,3-butanediol using a non-pathogenic and fibrous carbon source. As a result, it has been found that a new Bacillus genus microorganism is isolated, Butanediol is superior in the ability to produce butanediol, thus completing the present invention.

본 발명의 목적은 2,3-부탄디올을 생성하는 새로운 Bacillus속 균주를 제공하는 데 있다.It is an object of the present invention to provide a novel strain of Bacillus that produces 2,3-butanediol.

본 발명의 다른 목적은 상기 Bacillus속 균주를 이용하여 목질계 바이오매스로부터 2,3-부탄디올을 제조하는 방법을 제공하는 데 있다.
Another object of the present invention is to provide a method for producing 2,3-butanediol from woody biomass using the Bacillus sp . Strain.

상기 목적을 달성하기 위하여, 본 발명은 2,3-부탄디올 생성능을 가지는 Bacillus속 BRC1 균주 (KCTC 12428BP)를 제공한다.In order to achieve the above object, the present invention provides a Bacillus genus BRC1 strain (KCTC 12428BP) having 2,3-butanediol producing ability.

본 발명은 또한, (a) Bacillus속 BRC1 균주를 배양하여 2,3-부탄디올을 생성시키는 단계; 및 (b) 상기 생성된 2,3- 부탄디올을 수득하는 단계를 포함하는 2,3-부탄디올의 제조방법을 제공한다.
The present invention also provides a method for producing 2,3-butanediol, comprising: (a) culturing a Bacillus sp . BRC1 strain to produce 2,3-butanediol; And (b) obtaining 2,3-butanediol from the resulting 2,3-butanediol.

본 발명에 따른 신규 Bacillus속 미생물을 사용하면, 풍부한 목질계 바이오매스를 활용하여 2,3-부탄디올을 생성할 수 있다.
Using the novel Bacillus genus microorganisms according to the present invention, 2,3-butanediol can be produced using abundant woody biomass.

도 1은 포도당을 탄소원으로 이용한 Bacillus속 미생물의 배양에 의한 2,3-부탄디올의 생성을 확인한 결과를 나타낸 것이다.
도 2는 Bacillus속 미생물의 2,3-부탄디올 합성 효소의 아미노산 서열 상동성 분석을 실시한 결과를 나타낸 것이다.
도 3은 알칼리로 전처리된 EFB의 가수분해 당화액을 포함하는 배지에서 Bacillus속 미생물의 2,3-부탄디올의 생성능을 확인한 결과를 나타낸 것이다.
도 4는 알칼리로 전처리된 EFB 고형물을 포함하는 배지에서 Bacillus속 미생물을 동시당화배양하여, 2,3-부탄디올의 생성에 대한 당화효소 투입농도, 균주접종량 및 배양온도의 상관관계를 조사한 결과를 나타낸 것이다.
도 5는 알칼리로 전처리된 EFB 고형물을 포함하는 배지에서 Bacillus속 미생물의 최적조건 동시당화배양에 의한 2,3-부탄디올의 생성능을 조사한 결과를 나타낸 것이다.
도 6은 Cellobiose를 탄소원으로 포함하는 배지에서 배양한 Bacillus속 미생물의 당화효소 활성을 분석한 결과를 나타낸 것이다.
도 7은 Cellobiose를 탄소원으로 포함하는 배지에서 배양한 Bacillus속 미생물에 의한 2,3-부탄디올의 생성을 분석한 결과를 나타낸 것이다.
FIG. 1 shows the results of confirming the production of 2,3-butanediol by culturing a Bacillus sp . Microorganism using glucose as a carbon source.
Fig. 2 shows the amino acid sequence homology analysis of the 2,3-butanediol synthase of the genus Bacillus .
FIG. 3 shows the results of confirming the production ability of 2,3-butanediol of a microorganism of the genus Bacillus in a medium containing a hydrolyzate of an EFB pretreated with an alkali.
FIG. 4 shows the result of examining the correlation between saccharification enzyme concentration, strain inoculation amount and incubation temperature on the production of 2,3-butanediol by simultaneous saccharification culture of Bacillus sp . Microorganism in a medium containing EFB solids pre-treated with alkali will be.
FIG. 5 shows the results of investigation of 2,3-butanediol production ability by simultaneous saccharification culture of Bacillus sp . Microorganism in the medium containing the alkali-pretreated EFB solids.
Fig. 6 shows the results of analysis of saccharogenic activity of Bacillus sp . Microorganisms cultured in a medium containing Cellobiose as a carbon source.
FIG. 7 shows the results of analysis of the production of 2,3-butanediol by microorganisms of the genus Bacillus cultured in a medium containing Cellobiose as a carbon source.

일관점에서, 본 발명은 2,3-부탄디올 생성능을 가지는 신규 미생물 Bacillus속 BRC1 균주에 관한 것이다.In one aspect, the present invention relates to a novel microorganism Bacillus genus BRC1 having 2,3-butanediol producing ability.

본 발명의 Bacillus속 BRC1 균주는 토양에서 분리된 2,3-부탄디올 생성능을 가지는 균주로, 서열번호 1의 16S rDNA 서열을 가지며, 서열번호 2의 염기서열로 표시되는 2,3-부탄디올 합성효소 유전자를 가진다. The Bacillus genus BRC1 strain of the present invention is a strain having 2,3-butanediol-producing ability isolated from soil, and has a 16S rDNA sequence of SEQ ID NO: 1 and a 2,3-butanediol synthase gene represented by the nucleotide sequence of SEQ ID NO: .

상기 Bacillus속 BRC1 균주의 2,3-부탄디올 합성효소의 아미노산 서열은 기존에 알려진 D형 이성질체를 생성하는 Bacillus subtilisPanibacillus (Bacillus) polymyxa의 2,3-부탄디올 합성효소와 각각 93.6% 및 71.4%의 높은 상동성을 보인 반면, L형의 이성질체를 생성하는 Brevibacterium saccharolyticum의 2,3-부탄디올 합성효소 및, meso형 이성질체를 생성하는 Klebsiella pneumoniae , Klebsiella oxytoca의 2,3-부탄디올 합성효소와는 매우 낮은 상동성을 나타내는 것으로 확인되었다. The amino acid sequence of the 2,3-butanediol synthase of the Bacillus sp. Strain BRC1 is known to be Bacillus subtilis and Panibacillus (Bacillus), whereas the high homology of 2,3-butanediol synthase and 93.6% and 71.4% respectively of polymyxa, Brevibacterium generating a L-isomer of 2,3-butanediol synthase of saccharolyticum , and Klebsiella producing meso-type isomer pneumoniae , and 2,3-butanediol synthase of Klebsiella oxytoca .

본 발명의 Bacillus속 BRC1 균주는 뛰어난 엑소글루카네이즈(exoglucanase), β-글루코시데이즈 활성을 가지고 있어, 목질계 바이오매스를 당화하여 2,3-부탄디올을 생산할 수 있는 것으로 확인되었다(도 6). The Bacillus genus BRC1 of the present invention has excellent exoglucanase and? -Glucosidase activity, and it was confirmed that 2,3-butanediol can be produced by saccharifying woody biomass (FIG. 6) .

본 발명의 Bacillus속 BRC1 균주는 당화효소활성을 가지고 고온에서 생장이 가능하여, 2,3-부탄디올 제조에 적합한 균주이다.The BRC1 strain of the genus Bacillus of the present invention has a saccharifying enzyme activity and is capable of growing at a high temperature, and is a strain suitable for producing 2,3-butanediol.

다른 관점에서, 본 발명은 (a) Bacillus속 BRC1 균주를 배양하여 2,3-부탄디올을 생성시키는 단계; 및 (b) 상기 생성된 2,3- 부탄디올을 수득하는 단계를 포함하는 2,3-부탄디올의 제조방법에 관한 것이다.In another aspect, the present invention provides a method for producing 2,3-butanediol, comprising: (a) culturing a Bacillus sp . BRC1 strain to produce 2,3-butanediol; And (b) obtaining 2,3-butanediol from the resulting 2,3-butanediol.

본 발명의 Bacillus속 BRC1 균주는 글루코오스 함유배지에서, 2,3-부탄디올을 생성할 뿐만아니라, 목질계 바이오매스를 함유한 배지에서도 포도당과 거의 유사한 수준의 2, 3 부탄디올을 생성하는 것으로 확인되었다(도 7).The Bacillus genus BRC1 of the present invention was found to produce 2,3-butanediol in a glucose-containing medium, but also to produce a level of 2,3-butanediol in a medium containing woody biomass 7).

본 발명에 있어서, 상기 배양배지의 탄소원은 목질계 바이오매스를 사용하는 것이 바람직하고, 더욱 바람직하게는 팜열매껍질(EFB), 셀로비오스(cellobiose), CMC(carboxymethyl cellulose), 셀룰로오스, 아비셀(avicel), 자일란 등을 사용하는 것이 바람직하다.In the present invention, the carbon source of the culture medium is preferably woody biomass, more preferably palm kernel shell (EFB), cellobiose, carboxymethyl cellulose (CMC), cellulose, avicel ), Xylan, or the like is preferably used.

또한, 상기 EFB는 알칼리로 전처리한 후, 탄소원으로 사용하는 것이 바람직하다.It is preferable that the EFB is used as a carbon source after being pre-treated with an alkali.

본 발명의 일양태에서는 알칼리 전처리 EFB(10%, W/V)를 사용하여 최적조건에서 동시당화 발효를 수행한 결과, 27.42g/L의 부탄디올을 생성하였다(도 5). In one embodiment of the present invention, concurrent saccharification fermentation was carried out under optimum conditions using alkali pretreated EFB (10%, W / V), resulting in 27.42 g / L of butanediol (FIG.

본 발명에 따라 제조된 2,3-부탄디올은 화학원료 혹은 작물의 병원균 저항성 및 생장을 촉진하는 농업분야에 활용될 수 있다.
The 2,3-butanediol produced according to the present invention can be utilized in agricultural fields that promote the resistance and growth of pathogens of chemical raw materials or crops.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예Example 1. 2,3- 1. 2,3- 부탄디올Butanediol 생성능을Productive 가지는 신규  A new branch 바실러스Bacillus 균주의 분리  Isolation of strain

신규 2,3-부탄디올 생성 바실러스 균주를 분리하기 위해, 일차적으로 내장산 인근의 토양으로부터 얻은 샘플을 음지에서 3일간 건조 후 1 mm 체로 균질화 하였다. 건조시킨 토양 샘플을 단계희석법으로 10-5까지 희석하여 Tryptic Soy Agar(Diffco, Tryptone, 1.7%; Soytone, 0.3%; H2HPO4, 0.25%; NaCl, 0.5%; Dextrose, 0.25%; Agar 1.5%) 배지에 100㎕ 분주하여 도말하였다. 그 후 30℃에서 2일간 배양 한 후 형태학적 특징에 따라 바실러스 균주로 사료되는 미생물들의 16S rRNA 서열 분석 결과 (염기서열 1), 신규 바실러스속 균주를 확보하였으며, Bacillus 속 BRC1 균주라 명명하고 한국생명공학연구원에 기탁하였다 (기탁번호 KTCC12428BP).
In order to isolate the new 2,3-butanediol-producing Bacillus strains, a sample obtained from the soil around the innate acid was first dried on a shade for 3 days and then homogenized with a 1 mm sieve. The dried soil samples were diluted by step dilution to 10 < -5 > and diluted to 10 -5 with Tryptic Soy Agar (Diffco, Tryptone, 1.7%; Soytone, 0.3%; H 2 HPO 4 , 0.25%; NaCl, 0.5%; Dextrose, 0.25% %) Medium. After incubation at 30 ° C for 2 days, 16S rRNA sequence analysis (base sequence 1) of the microorganisms which are regarded as Bacillus strains according to the morphological characteristics, and a new strain of Bacillus genus were obtained. Named as Bacillus genus BRC1, (Accession No. KTCC12428BP).

실시예Example 2.  2. BacillusBacillus genus BRC1BRC1 균주에 의한 2,3- The 2,3- 부탄디올Butanediol 생성 produce

또한 분리한 미생물들이 2,3-부탄디올을 생산하는지 확인하기 위해 바실러스의 2,3-부탄디올 생성 배지(Yeast extract, 2%; Peptone, 1%; K2HPO4, 0.4%; Glucose, 2%)에 배양하여 2,3-부탄디올 생성을 분석하였다. 액체배양을 위해 포도당 10 g/L을 포함하는 LB 배지에서 37℃ 200 rpm으로 배양하면서, 2,3-부탄디올의 생성을 액체크로마토그래피법으로 분석하였다. 그 결과, 도 1에서 보인 바와 같이 배양 12시간째에 첨가해준 포도당을 대부분 소비하였으며, 2,3-부탄디올 최대 5.27 g/L까지 생성된 후 점차 감소하는 것으로 나타났다.
(2%; Peptone, 1%; K 2 HPO 4 , 0.4%; Glucose, 2%) to determine if the isolated microorganisms produce 2,3-butanediol. To analyze 2,3-butanediol production. For liquid culture, the production of 2,3-butanediol was analyzed by liquid chromatography while culturing at 37 ° C and 200 rpm in LB medium containing 10 g / L of glucose. As a result, as shown in FIG. 1, most of the glucose added at 12 hours of culture was consumed, and 2,3-butanediol was produced up to 5.27 g / L and then gradually decreased.

실시예Example 3.  3. BacillusBacillus genus BRC1BRC1 균주의 2,3- The 2,3- 부탄디올Butanediol 합성효소 유전자 분석 Synthetic enzyme gene analysis

Bacillus속 균주 유래의 2,3-부탄디올 합성효소 유전자의 비교를 통해 제조한 프라이머를 이용하여 Bacillus속 BRC1 균주의 염색체로부터 2,3-부탄디올 합성효소 유전자를 증폭하였다. The 2,3-butanediol synthase gene was amplified from the chromosome of Bacillus genus BRC1 using a primer prepared by comparing 2,3-butanediol synthase gene derived from Bacillus sp . Strain.

서열번호 3: 5'-ATGAAAGCTGCAAGATGG-3'SEQ ID NO: 3: 5'-ATGAAAGCTGCAAGATGG-3 '

서열번호 4: 5'-TTAATTCGGTTTTACTAAGAT-3SEQ ID NO: 4: 5'-TTAATTCGGTTTTACTAAGAT-3

증폭된 유전자의 서열 분석을 통해 서열번호 2의 염기서열을 얻었다(Genebank KF358987). Sequence analysis of the amplified gene resulted in the nucleotide sequence of SEQ ID NO: 2 (Genebank KF358987).

상기 신규 Bacillus속 균주유래의 2,3-부탄디올 합성효소의 아미노산 서열을 상동성 분석한 결과, 도 2에 나타난 바와 같이, Bacillus속 BRC1 균주의 2,3-부탄디올 합성효소는 주로 D형 이성질체를 생성하는 Bacillus subtilis (Genebank CAB12443)와 Panibacillus ( Bacillus ) polymyxa (Genebank HQ730089)의 2,3-부탄디올 합성효소와 각각 93.6% 및 71.4%의 높은 유사성을 보인 반면, L형의 이성질체를 생성하는 Brevibacterium saccharolyticum (Genebank AB009078)의 2,3-부탄디올 합성효소와는 8%, meso형 이성질체를 생성하는 Klebsiella pneumoniae (Genebank D86412)의 2,3-부탄디올 합성효소와는 각각 8.5%와 9.4%의 낮은 유사성을 보이는 것으로 나타났다.
As a result of the homology analysis of the amino acid sequence of the 2,3-butanediol synthase derived from the new Bacillus sp . Strain, the 2,3-butanediol synthase of Bacillus genus BRC1 mainly produced D-isomer Bacillus subtilis (Genebank CAB12443) and Panibacillus ( Bacillus ) polymyxa (Genebank HQ730089), 93.6% and 71.4%, respectively, compared with the 2,3-butanediol synthase of Brevibacterium saccharolyticum (Genebank AB009078), 8% for the 2,3-butanediol synthase, and Klebsiella pneumoniae (Genebank D86412) showed 8.5% and 9.4% similarity with 2,3-butanediol synthase, respectively.

실시예Example 4.  4. EFBEFB 당화액을The saccharified solution 이용한  Used BacillusBacillus genus BRC1BRC1 균주의 2,3- The 2,3- 부탄디올의Butanediol 생성 produce

EFB(Palm empty fruit bunch)를 1M NaOH 용액에서 121℃ 60분간 반응시킨 후 얻어진 고형물을 상용 당화효소를 이용하여 가수분해하였다. 실시예 1에서와 동일한 방법으로 다양한 포도당 농도의 EFB 당화액을 포함하는 배지에서 Bacillus속 BRC1 균주를 배양하여 2,3-부탄디올의 생성을 분석하였다. 그 결과, 도 3에 나타난 바와 같이, BRC1 균주는 EFB 당화액을 이용하여 원활한 균체성장이 가능하였으며, 이로부터 2,3-부탄디올을 생성하는 것으로 나타났다.
EFB (Palm empty fruit bunch) was reacted in 1M NaOH solution at 121 ° C for 60 minutes, and the resulting solid was hydrolyzed using a conventional saccharifying enzyme. The production of 2,3-butanediol was analyzed by culturing the Bacillus genus BRC1 in a medium containing EFB glycated solutions of various glucose concentrations in the same manner as in Example 1. [ As a result, as shown in FIG. 3, the strain BRC1 was able to grow smoothly using EFB saccharified liquid, and it was found that 2,3-butanediol was produced from this.

실시예Example 5.  5. EFBEFB 를 이용한 Using BacillusBacillus genus BRC1BRC1 균주의  Strain 동시당화발효Simultaneous saccharification fermentation 최적조건 확립 Establish optimal conditions

반응표면분석법중 중심합성계획법 (central composite design)을 이용하여 알칼리 전처리 EFB의 동시당화발효 과정에서 당화효소 투입량 (cellulase, FPU), 균주접종량(g DW), 당화발효 운전온도 (temperature)영향을 조사하였다 (표 1). The effect of saccharification enzyme loading (cellulase, FPU), strain inoculum (g DW) and saccharification fermentation temperature (temperature) in the simultaneous saccharification fermentation of alkaline pretreatment EFB was investigated using the central composite design (Table 1).

그 결과, 도 4에 나타난 바와 같이, 5% (w/v)의 EFB 고형물을 이용한 동시당화발효를 위한 최적조건은 당화효소 38.8 FPU/g 고형물, 균주접종량 2.6% (v/v), 반응온도는 44.8℃인 것으로 나타났으며, 이때 2,3-부탄디올 생성량은 27 g/L인 것으로 예측되었다 (R2=0.9671).
As a result, as shown in FIG. 4, the optimum condition for simultaneous saccharification fermentation using 5% (w / v) EFB solids was 38.8 FPU / g of glycated enzyme, 2.6% (v / v) Was 44.8 ° C, and the amount of 2,3-butanediol produced was estimated to be 27 g / L (R 2 = 0.9671).

중심합성계획법 (central composite design)을 통한 알칼리 전처리 EFB의 동시당화발효 조건Simultaneous Saccharification Fermentation Conditions of Alkali Pretreatment EFB by Central Composite Design RunsRuns Temperature
(℃)
Temperature
(° C)
Enzyme
(FPU/g)
Enzyme
(FPU / g)
Inoculation
(%, v/v)
Inoculation
(%, v / v)
2,3-BD
(g/L)
2,3-BD
(g / L)
1One 3232 2020 5.05.0 11.811.8 22 4242 2020 5.05.0 21.021.0 33 3232 4040 5.05.0 20.820.8 44 4242 4040 5.05.0 23.723.7 55 3232 2020 2.52.5 16.516.5 66 4242 2020 2.52.5 25.325.3 77 3232 4040 2.52.5 19.019.0 88 4242 4040 2.52.5 22.622.6 99 2727 3030 7.57.5 10.810.8 1010 4747 3030 7.57.5 23.723.7 1111 3737 1010 7.57.5 15.015.0 1212 3737 5050 7.57.5 22.022.0 1313 3737 3030 7.57.5 25.625.6 1414 3737 3030 12.512.5 22.622.6 1515 3737 3030 7.57.5 21.021.0 1616 3737 3030 7.57.5 21.021.0 1717 3737 3030 7.57.5 21.021.0 1818 3737 3030 7.57.5 21.021.0 1919 3737 3030 7.57.5 21.021.0 2020 3737 3030 7.57.5 21.021.0

실시예Example 6.  6. EFBEFB 를 이용한 Using BacillusBacillus genus BRC1BRC1 균주의  Strain 동시당화발효에At the simultaneous saccharification fermentation 의한 2,3- 2,3- 부탄디올Butanediol 생성 produce

실시예 5에서 도출된 최적조건에서 실제로 동시당화발효 실험을 수행한 결과, 도 5에 나타난 바와 같이, 알칼리 전처리 EFB (10%, w/v)로부터 예상치와 유사한 27.42 g/L 의 2,3-부탄디올이 생성되는 것을 확인하였다.
As a result of practicing the simultaneous saccharification fermentation experiment under the optimal conditions derived in Example 5, it was found that 27.42 g / L of 2,3-dichloro-2-propanol similar to the predicted from the alkali pretreatment EFB (10%, w / v) Butanediol was produced.

실시예Example 7.  7. BacillusBacillus genus BRC1BRC1 균주의  Strain 당화효소Saccharogenic enzyme 활성 분석 Activity analysis

Bacillus속 BRC1 균주를 탄소원으로 cellulose, CMC (carboxymethylcellulose), avicel, cellobiose이 각각 1% (w/v)로 함유된 배지에서 상기 실시예 1의 방법으로 배양하면서, 세포외로 분비된 당화효소의 활성을 조사하였다.The activity of the extracellularly secreted glycosyltransferase was determined by culturing the BRC1 strain of Bacillus genus in a medium containing 1% (w / v) of cellulose, CMC (carboxymethylcellulose), avicel, Respectively.

Endoglucanase의 활성은 CMC(carboxymethyl cellulose sodium salt)를 기질로 하여 효소와 반응시킨 후, 유리된 환원당을 3,5-dinitrosalicylic acid (DNS) 방법을 이용하여 다음과 같이 측정하였다. The activity of endoglucanase was measured by carboxymethyl cellulose sodium salt (CMC) as a substrate, reacted with enzyme, and the free reducing sugar was measured by 3,5-dinitrosalicylic acid (DNS) method as follows.

0.05 M sodium citrate buffer (pH 4.8)에 2%(w/v) CMC를 용해시킨 후, 배양상등액 0.05ml을 첨가하여 50℃ 항온조에서 30분간 반응시켰다. 30분 후 즉시 3,5-dinitrosalicylic acid (DNS) 시약 0.2 ml을 첨가하여 100℃에서 5분간 가열하여 반응을 정지시켰고, 생성된 환원당은 540nm에서 흡광도를 측정하였다. 1 unit는 ml 당, 1분당 1 μmol의 환원당을 생성하는 효소의 양으로 정의하였다.After 2% (w / v) CMC was dissolved in 0.05 M sodium citrate buffer (pH 4.8), 0.05 ml of culture supernatant was added and reacted in a 50 ° C thermostat for 30 minutes. Immediately after 30 minutes, 0.2 ml of 3,5-dinitrosalicylic acid (DNS) reagent was added and the reaction was stopped by heating at 100 ° C for 5 minutes. The absorbance of the resulting reducing sugar was measured at 540 nm. 1 unit was defined as the amount of enzyme producing 1 μmol of reducing sugar per minute per ml.

Exoglucanase의 활성은 0.05 M acetate buffer (pH4.8)에 0.25% Avicel을 용해시켜 기질로 사용하여 40 ㎕ 효소와 50℃ 항온조에서 2시간 반응시킨 후, 3,5-dinitrosalicylic acid (DNS) 시약 0.2 m을 첨가하여 반응을 정지시키고 5분간 끓인 물에 중탕시켜 발색시킨 다음 찬물에 10분간 냉각시킨 후, 분광광도계를 사용하여 540 nm에서 흡광도를 측정함으로써 효소활성을 활성을 분석하였다. The activity of exoglucanase was determined by dissolving 0.25% Avicel in 0.05 M acetate buffer (pH 4.8) and reacting with 40 μl of enzyme in a 50 ° C thermostat for 2 hours. Then, 3,5-dinitrosalicylic acid (DNS) , And the reaction was stopped. The reaction was stopped by boiling in boiling water for 5 minutes, followed by color development. The resultant was cooled for 10 minutes in cold water, and the enzyme activity was assayed by measuring the absorbance at 540 nm using a spectrophotometer.

DNS 시약은 3,5-dinitrosalicylic acid 10 g, Rochelle salt 300 g, NaOH 16 g을 1 L 증류수에 용해하여 제조하였다. 1 unit는 ml 당, 1분당 1 μmol의 환원당을 생성하는 효소의 양으로 정의하였다.The DNS reagent was prepared by dissolving 10 g of 3,5-dinitrosalicylic acid, 300 g of Rochelle salt and 16 g of NaOH in 1 L of distilled water. 1 unit was defined as the amount of enzyme producing 1 μmol of reducing sugar per minute per ml.

β-Glucosidase활성도를 측정은 0.05 M sodium citrate buffer (pH 4.8)에 15mM cellobiose를 용해시킨 후 기질용액 200㎕와 배양상등액 200㎕를 혼합한 후 50℃ 항온조에서 30분간 반응시켰다. 반응 후 5분간 끓인 물에 중탕시킨 다음 찬물에 10분간 냉각시킨 후, HPLC 분석을 통해 글루코오스(glucose) 생산량을 측정하였다. 1 unit의 효소 활성도는 분당 1 μmol의 글루코오스가 생산된 양으로 규정하였다. β- Glucosidase activity was measured by dissolving 15 mM cellobiose in 0.05 M sodium citrate buffer (pH 4.8), mixing 200 μl of the substrate solution and 200 μl of the culture supernatant, followed by reaction at 50 ° C in a thermostat for 30 minutes. After the reaction, the mixture was boiled in boiling water for 5 minutes, cooled in cold water for 10 minutes, and glucose production was measured by HPLC analysis. One unit of enzyme activity was defined as the amount of 1 μmol of glucose produced per minute.

환원당은 효소반응액 10 ㎕에 DNS (2,4-dinitrosalicylic acid) 용액 200 ㎕을 가하여 100℃ 항온수조에서 5분간 끓인 다음 얼음물에 냉각시켜 반응을 종결시킨 후 증류수 1 ml을 첨가하여 540 nm에서 흡광도를 측정하여 정량하였다.Reduced sugar was prepared by adding 200 μl of a solution of DNS (2,4-dinitrosalicylic acid) to 10 μl of enzyme reaction solution, boiling for 5 minutes in a constant temperature water bath at 100 ° C, cooling the reaction mixture by ice water to terminate the reaction, adding 1 ml of distilled water, Were measured and quantified.

그 결과, 도 6에 나타난 바와 같이, Bacillus속 BRC1 균주를 cellobiose를 함유하는 배지에서 배양하였을 때, 당화효소 활성이 검출되는 것으로 나타났다. 한편, cellulose, CMC, avicel 및 xylan을 함유하는 배지에서는 BRC1 균주의 균체 생장이 매우 미미한 것으로 나타났다.
As a result, as shown in FIG. 6, when the strain of Bacillus genus BRC1 was cultured in a culture medium containing cellobiose, the activity of glycated enzyme was detected. On the other hand, the medium containing cellulose, CMC, avicel and xylan showed very little cell growth of BRC1 strain.

실시예7Example 7 . . CellobioseCellobiose 를 이용한 Using BacillusBacillus genus BRC1BRC1 균주의 배양에 의한 2,3- The culture of 2,3- 부탄디올의Butanediol 생성 produce

상기 cellobiose를 함유하는 배지에서 Bacillus속 BRC1 균주에 의한 2,3-부탄디올의 생성을 분석하였다. 탄소원으로 cellobiose가 1% (w/v)로 함유된 배지에서 상기 실시예 1의 방법으로 배양하였을 때, 도 7에 나타난 바와 같이 포도당 함유 배지에서 비교해 거의 유사한 수준의 2,3-부탄디올이 생성되는 것을 확인하였다.The production of 2,3-butanediol by the Bacillus genus BRC1 was analyzed in the cellobiose-containing medium. When cultured in the medium containing 1% (w / v) of cellobiose as a carbon source in the same manner as in Example 1, 2,3-butanediol was produced in almost the same level as in the glucose-containing medium as shown in Fig. Respectively.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시의 일예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

한국생명공학연구원Korea Biotechnology Research Institute KCTC12428BPKCTC12428BP 2013062120130621

<110> Korea Reseach Institute of Biosience and Biotechnology <120> Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof <130> P13-B149 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 1250 <212> DNA <213> Bacillus sp. BRC1 <400> 1 ctgggataac tccgggaaac cggggctaat accggatggt tgtttgaacc gcatggttca 60 gacataaaag gtggcttcgg ctaccactta cagatggacc cgcggcgcat tagctagttg 120 gtgaggtaac ggctcaccaa ggcgacgatg cgtagccgac ctgagagggt gatcggccac 180 actgggactg agacacggcc cagactccta cgggaggcag cagtagggaa tcttccgcaa 240 tggacgaaag tctgacggag caacgccgcg tgagtgatga aggttttcgg atcgtaaagc 300 tctgttgtta gggaagaaca agtgccgttc aaatagggcg gcaccttgac ggtacctaac 360 cagaaagcca cggctaacta cgtgccagca gccgcggtaa tacgtaggtg gcaagcgttg 420 tccggaatta ttgggcgtaa agggctcgca ggcggtttct taagtctgat gtgaaagccc 480 ccggctcaac cggggagggt cattggaaac tggggaactt gagtgcagaa gaggagagtg 540 gaattccacg tgtagcggtg aaatgcgtag agatgtggag gaacaccagt ggcgaaggcg 600 actctctggt ctgtaactga cgctgaggag cgaaagcgtg gggagcgaac aggattagat 660 accctggtag tccacgccgt aaacgatgag tgctaagtgt tagggggttt ccgcccctta 720 gtgctgcagc taacgcatta agcactccgc ctggggagta cggtcgcaag actgaaactc 780 aaaggaattg acgggggccc gcacaagcgg tggagcatgt ggtttaattc gaagcaacgc 840 gaagaacctt accaggtctt gacatcctct gacaatccta gagataggac gtccccttcg 900 ggggcagagt gacaggtggt gcatggttgt cgtcagctcg tgtcgtgaga tgttgggtta 960 agtcccgcaa cgagcgcaac ccttgatctt agttgccagc attcagttgg gcactctaag 1020 gtgactgccg gtgacaaacc ggaggaaggt ggggatgacg tcaaatcatc atgcccctta 1080 tgacctgggc tacacacgtg ctacaatgga cagaacaaag ggcagcgaaa ccgcgaggtt 1140 aagccaatcc cacaaatctg ttctcagttc ggatcgcagt ctgcaactcg actgcgtgaa 1200 gctggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc 1250 <210> 2 <211> 1041 <212> DNA <213> Bacillus sp. BRC1 <400> 2 atgaaagcgg caagatggca caatcaaaaa gacattcgaa tcgaaaacat tgatgaacct 60 aaagcagaac cgggtaaagt caaaattaaa gtcaaatggt gcgggatttg cggaagcgac 120 cttcatgaat atttgggagg cccgatcttt attccggtcg gcaaacctca tccgttaaca 180 aacgaaatgg cgcccgtcac gatgggtcac gaattctcag gagaagtcgt tgaagtgggc 240 gaaggcgtca aaaattacag cgtcggcgac cgtgtcgtcg tggaaccgat ttttgccaca 300 cacggacatc agggagccta taaccttgat gaacaaatgg gattcttagg cttagccgga 360 ggcggcggcg gattttctga atatgtatcc gttgacgaag aattgctgtt taagcttcct 420 gaagagcttt cttacgaaca gggcgcgctt gttgagccgt cagcggtagc gctttacgcc 480 gtccgccaaa gcaaattaaa agcgggcgac aaggcggcag tttttggctg cggaccgatc 540 gggctgcttg tgattgaagc cctgaaagcg gccggcgcca cagatattta cgcggttgaa 600 ctttcaccgg aacgtcagga aaaagcgaaa gaactcggcg ctatcatcat tgatccgtca 660 aaaacggacg atgtcgttga agaaatcgct aaacgcacaa acggcggcgt tgatgtttct 720 tatgaagtaa caggcgttcc tgtcgttctc cgccaggcaa tccagtcaac aaacattgcc 780 ggtgaaacgg ttatcgtcag catctgggaa aaaggagcgg aaattcatcc gaacgatatc 840 gtcatcaaag aacggaccgt aaaaggcatt atcggatacc gtgacatctt cccttccgtt 900 cttgcactga tgaaagaggg ctacttctca gcagataagc tcgtcacgaa aaaaatcgtg 960 ctcgacgatc tgattgaaga aggctttggc gctttaatca aagagaaaaa ccaagtgaaa 1020 atcttagtaa aaccgaatta a 1041 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 atgaaagctg caagatgg 18 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ttaattcggt tttactaaga t 21 <110> Korea Reseach Institute of Bioscience and Biotechnology <120> Novel Butanediol Producing Microorganism and Method for Preparing          Butanediol Using <130> P13-B149 <160> 4 <170> Kopatentin 2.0 <210> 1 <211> 1250 <212> DNA <213> Bacillus sp. BRC1 <400> 1 ctgggataac tccgggaaac cggggctaat accggatggt tgtttgaacc gcatggttca 60 gacataaaag gtggcttcgg ctaccactta cagatggacc cgcggcgcat tagctagttg 120 gtgaggtaac ggctcaccaa ggcgacgatg cgtagccgac ctgagagggt gatcggccac 180 actgggactg agacacggcc cagactccta cgggaggcag cagtagggaa tcttccgcaa 240 tggacgaaag tctgacggag caacgccgcg tgagtgatga aggttttcgg atcgtaaagc 300 tctgttgtta gggaagaaca agtgccgttc aaatagggcg gcaccttgac ggtacctaac 360 cagaaagcca cggctaacta cgtgccagca gccgcggtaa tacgtaggtg gcaagcgttg 420 tccggaatta ttgggcgtaa agggctcgca ggcggtttct taagtctgat gtgaaagccc 480 ccggctcaac cggggagggt cattggaaac tggggaactt gagtgcagaa gaggagagtg 540 gaattccacg tgtagcggtg aaatgcgtag agatgtggag gaacaccagt ggcgaaggcg 600 actctctggt ctgtaactga cgctgaggag cgaaagcgtg gggagcgaac aggattagat 660 accctggtag tccacgccgt aaacgatgag tgctaagtgt tagggggttt ccgcccctta 720 gtgctgcagc taacgcatta agcactccgc ctggggagta cggtcgcaag actgaaactc 780 aaaggaattg acgggggccc gcacaagcgg tggagcatgt ggtttaattc gaagcaacgc 840 gaagaacctt accaggtctt gacatcctct gacaatccta gagataggac gtccccttcg 900 ggggcagagt gacaggtggt gcatggttgt cgtcagctcg tgtcgtgaga tgttgggtta 960 agtcccgcaa cgagcgcaac ccttgatctt agttgccagc attcagttgg gcactctaag 1020 gtgactgccg gtgacaaacc ggaggaaggt ggggatgacg tcaaatcatc atgcccctta 1080 tgacctgggc tacacacgtg ctacaatgga cagaacaaag ggcagcgaaa ccgcgaggtt 1140 aagccaatcc cacaaatctg ttctcagttc ggatcgcagt ctgcaactcg actgcgtgaa 1200 gctggaatcg ctagtaatcg cggatcagca tgccgcggtg aatacgttcc 1250 <210> 2 <211> 1041 <212> DNA <213> Bacillus sp. BRC1 <400> 2 atgaaagcgg caagatggca caatcaaaaa gacattcgaa tcgaaaacat tgatgaacct 60 aaagcagaac cgggtaaagt caaaattaaa gtcaaatggt gcgggatttg cggaagcgac 120 cttcatgaat atttgggagg cccgatcttt attccggtcg gcaaacctca tccgttaaca 180 aacgaaatgg cgcccgtcac gatgggtcac gaattctcag gagaagtcgt tgaagtgggc 240 gaaggcgtca aaaattacag cgtcggcgac cgtgtcgtcg tggaaccgat ttttgccaca 300 cacggacatc agggagccta taaccttgat gaacaaatgg gattcttagg cttagccgga 360 ggcggcggcg gattttctga atatgtatcc gttgacgaag aattgctgtt taagcttcct 420 gaagagcttt cttacgaaca gggcgcgctt gttgagccgt cagcggtagc gctttacgcc 480 gtccgccaaa gcaaattaaa agcgggcgac aaggcggcag tttttggctg cggaccgatc 540 gggctgcttg tgattgaagc cctgaaagcg gccggcgcca cagatattta cgcggttgaa 600 ctttcaccgg aacgtcagga aaaagcgaaa gaactcggcg ctatcatcat tgatccgtca 660 aaaacggacg atgtcgttga agaaatcgct aaacgcacaa acggcggcgt tgatgtttct 720 tatgaagtaa caggcgttcc tgtcgttctc cgccaggcaa tccagtcaac aaacattgcc 780 ggtgaaacgg ttatcgtcag catctgggaa aaaggagcgg aaattcatcc gaacgatatc 840 gtcatcaaag aacggaccgt aaaaggcatt atcggatacc gtgacatctt cccttccgtt 900 cttgcactga tgaaagaggg ctacttctca gcagataagc tcgtcacgaa aaaaatcgtg 960 ctcgacgatc tgattgaaga aggctttggc gctttaatca aagagaaaaa ccaagtgaaa 1020 atcttagtaa aaccgaatta a 1041 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 atgaaagctg caagatgg 18 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ttaattcggt tttactaaga t 21

Claims (6)

2,3-부탄디올 생성능을 가지는 Bacillus속 균주 BRC1 (KCTC 12428BP).
Bacillus sp . Strain BRC1 (KCTC 12428BP) having 2,3-butanediol producing ability.
제1항에 있어서, 서열번호 1의 16S rDNA 서열을 가지는 것을 특징으로 하는 Bacillus속 균주 BRC1.
The Bacillus sp . Strain BRC1 according to claim 1, which has the 16S rDNA sequence of SEQ ID NO: 1.
제1항에 있어서, 서열번호 2의 염기서열을 가지는 2,3-부탄디올 합성효소 유전자를 가지는 것을 특징으로 하는 Bacillus속 균주 BRC1.
2. The Bacillus sp . Strain BRC1 according to claim 1, which has a 2,3-butanediol synthase gene having the nucleotide sequence of SEQ ID NO: 2.
다음 단계를 포함하는 2,3-부탄디올의 제조방법;
(a) Bacillus속 균주 BRC1을 배양하여 2,3-부탄디올을 생성시키는 단계; 및
(b) 상기 생성된 2,3- 부탄디올을 수득하는 단계.
A process for producing 2,3-butanediol comprising the steps of:
(a) culturing a strain of Bacillus sp . BRC1 to produce 2,3-butanediol; And
(b) obtaining the resulting 2,3-butanediol.
제4항에 있어서, 배양 배지의 탄소원은 목질계 바이오매스인 것을 특징으로 하는 2,3-부탄디올의 제조방법.
The method for producing 2,3-butanediol according to claim 4, wherein the carbon source of the culture medium is woody biomass.
제5항에 있어서, 목질계 바이오매스는 팜열매껍질(EFB), 셀로비오스(cellobiose), CMC(carboxymethyl cellulose), 셀룰로오스, 아비셀(avicel) 및 자일란으로 구성된 군에서 선택되는 것을 특징으로 하는 2,3-부탄디올의 제조방법.6. The method of claim 5, wherein the woody biomass is selected from the group consisting of palm kernel shell (EFB), cellobiose, carboxymethyl cellulose (CMC), cellulose, avicel, and xylan. 3-butanediol.
KR1020130095476A 2013-08-12 2013-08-12 Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof KR101651484B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130095476A KR101651484B1 (en) 2013-08-12 2013-08-12 Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130095476A KR101651484B1 (en) 2013-08-12 2013-08-12 Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof

Publications (2)

Publication Number Publication Date
KR20150019086A true KR20150019086A (en) 2015-02-25
KR101651484B1 KR101651484B1 (en) 2016-08-29

Family

ID=52578299

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130095476A KR101651484B1 (en) 2013-08-12 2013-08-12 Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof

Country Status (1)

Country Link
KR (1) KR101651484B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245317A1 (en) * 2018-06-21 2019-12-26 지에스칼텍스 주식회사 Solvent composition for natural material extraction
KR102650067B1 (en) * 2023-11-16 2024-03-25 전남대학교 산학협력단 A composition for promoting plant growth comprising Bacillus velezensis BRC1 strain or culture medium thereof and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153291A (en) * 2006-09-26 2008-04-02 中国科学院过程工程研究所 Method for ferment production of 2.3-butanediol by directly enzymolysis of plants stalk
CN101967457A (en) * 2010-09-10 2011-02-09 中国科学院过程工程研究所 Screening and fermentation method for producing 2,3-butanediol strains by using straws
CN102041240B (en) * 2010-11-30 2012-07-04 山东大学 Bacillus pumilus and application thereof on producing 2,3-butanediol
KR20130127286A (en) * 2012-05-14 2013-11-22 지에스칼텍스 주식회사 Method of producing biochemicals using hydrolyzed fermentation waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153291A (en) * 2006-09-26 2008-04-02 中国科学院过程工程研究所 Method for ferment production of 2.3-butanediol by directly enzymolysis of plants stalk
CN101967457A (en) * 2010-09-10 2011-02-09 中国科学院过程工程研究所 Screening and fermentation method for producing 2,3-butanediol strains by using straws
CN102041240B (en) * 2010-11-30 2012-07-04 山东大学 Bacillus pumilus and application thereof on producing 2,3-butanediol
KR20130127286A (en) * 2012-05-14 2013-11-22 지에스칼텍스 주식회사 Method of producing biochemicals using hydrolyzed fermentation waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019245317A1 (en) * 2018-06-21 2019-12-26 지에스칼텍스 주식회사 Solvent composition for natural material extraction
JP2021528429A (en) * 2018-06-21 2021-10-21 ジーエス カルテックス コーポレイション Solvent composition for natural substance extraction
KR102650067B1 (en) * 2023-11-16 2024-03-25 전남대학교 산학협력단 A composition for promoting plant growth comprising Bacillus velezensis BRC1 strain or culture medium thereof and method for manufacturing the same

Also Published As

Publication number Publication date
KR101651484B1 (en) 2016-08-29

Similar Documents

Publication Publication Date Title
Ishihara et al. Utilization of D-xylose as carbon source for production of bacterial cellulose
EP2150615B1 (en) Method for producing cellulase and hemicellulase having high hydrolytic activity
CN106434417A (en) High-temperature-resistant cellulase producing bacterium and application thereof
Ye et al. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12
WO2011143800A1 (en) Bacillus coagulans strain used in producing l-lactic acid and use thereof
Sheng et al. Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32
CN103436569B (en) A kind of cassava wastes prepares the method for sugar and ethanol
WO2009108081A1 (en) Penicillium verruculosum filamentous fungus strain producer of a highly active complex of cellulases and accessory enzymes and a method of production of biocatalyst for cellulose and hemicellulose hydrolysis
KR101771960B1 (en) Paenibacillus jamilae BRC15-1 strain producing cellulase and use thereof
CN108728373A (en) A kind of compound bacteria of efficient degradation quinoa stalk and application
CN104630166A (en) Method for producing low-temperature glucose oxidase by virtue of microbial fermentation
CN104630167A (en) Method for producing low-temperature glucose oxidase by fermentation of marine microorganisms
KR101651484B1 (en) Novel Butanediol Producing Microorganism and Method for Preparing Butanediol Using thereof
US20020012980A1 (en) Method for simultaneous saccharification and fermentation of spent cellulose sausage casings
CN112725314B (en) Method for producing endoglucanase by fermenting coarse feed through natural symbiotic mixed culture
Fadel et al. Cellulases and animal feed production by solid-state fermentation by Aspergillus fumigatus NRCF-122 mutant
IL157826A (en) Method for the production of l(+)-lactate from fermentable sugars and their mixtures by means of microorganism bacillus coagulans strain sim-7 dsm 1404
JP5629876B2 (en) Lactic acid production method by non-sterile fermentation
Ong et al. Production of high concentration of L-lactic acid from cellobiose by thermophilic Bacillus coagulans WCP10-4
Chu et al. Hydrolysis of bamboo cellulose and cellulase characteristics by Streptomyces griseoaurantiacus ZQBC691
Rao et al. Production of single cell protein, essential amino acids, and xylanase by Penicillium janthinellum
AKINRULI et al. Isolation of microorganisms from cassava peels for the production of bioethanol
CN113122460A (en) Rice straw degrading bacterium and screening method and application thereof
Liu et al. Analysis of cellulolytic bacterial flora in the rumen of inner mongolian sheep.
CN115305212B (en) Bacillus subtilis and culture method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant