KR20150015226A - A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same - Google Patents

A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same Download PDF

Info

Publication number
KR20150015226A
KR20150015226A KR1020130091014A KR20130091014A KR20150015226A KR 20150015226 A KR20150015226 A KR 20150015226A KR 1020130091014 A KR1020130091014 A KR 1020130091014A KR 20130091014 A KR20130091014 A KR 20130091014A KR 20150015226 A KR20150015226 A KR 20150015226A
Authority
KR
South Korea
Prior art keywords
tdp
neurons
mismatch
disease
marker
Prior art date
Application number
KR1020130091014A
Other languages
Korean (ko)
Inventor
이진아
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020130091014A priority Critical patent/KR20150015226A/en
Publication of KR20150015226A publication Critical patent/KR20150015226A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2814Dementia; Cognitive disorders

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

In the present invention, provided are a diagnosis marker of neurodegenerative disease including at least one among TAR-binding protein of 43kDa (TDP-43) missense mutations whose sequence number is between 1 and 3, and a diagnosis method of neurodegenerative diseases, comprising the steps of i) obtaining samples from materials to be tested; and ii) checking whether the TDP-43 missense mutations are expressed or not wherein the sequence number of the TDP-43 missense mutations is between 1 and 3.

Description

퇴행성 신경계 질환 진단용 마커 및 이를 이용한 진단방법 {A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same}[0001] The present invention relates to a marker for diagnosing degenerative neurological diseases and a diagnostic method using the same. More particularly, the present invention relates to a marker for diagnosing a neurodegenerative disease,

본 발명은 퇴행성 신경계 질환 진단용 마커 및 이를 이용한 퇴행성 신경계 질환의 진단 방법에 관한 것이다. 더욱 구체적으로, 본 발명은 출원인들에 의해 구체적으로 밝혀진 TDP-43 (TAR-binding protein of 43kDa) 미스센스 돌연변이와 퇴행성 신경계 질환의 병리학적 메커니즘을 근거로 하여 발명된 특정 서열의 TDP-43 미스센스 돌연변이를 포함하는 신경계 질환 진단용 마커 및 이를 이용한 퇴행성 신경계 질환의 진단 방법에 관한 것이다.The present invention relates to a marker for diagnosing a degenerative neurological disease and a method for diagnosing a neurodegenerative disease using the same. More specifically, the present invention relates to a TDP-43 mismatch mutation of TDP-43 (TDP-43) and a TDP-43 mismatch mutation of a specific sequence invented on the basis of a pathological mechanism of a degenerative nervous system disease A marker for diagnosing a neurological disease including a mutation, and a method for diagnosing a neurodegenerative disease using the same.

TDP-43은 전사, RNA 스플라이싱, mRNA 안정성 및 mRNA의 세포질-핵 수송(nucleocytoplasmic shuttling)에 관여하는 RNA/DNA 결합 단백질이다. TDP-43은 최근 근위축성축삭경화증 (amyotrophic lateral sclerosis) 또는 전두측두엽변성증 (frontotemporal lobar degeneration)에서 유비퀴틴화 함입(ubiquitinated inclusion)의 주요 구성인 것으로 밝혀졌다. TDP-43 is an RNA / DNA binding protein that is involved in transcription, RNA splicing, mRNA stability, and nucleocytoplasmic shuttling of mRNA. TDP-43 has recently been found to be a major component of ubiquitinated inclusion in amyotrophic lateral sclerosis or frontotemporal lobar degeneration.

근위축성축삭경화증은 척수 및 대뇌피질에서 운동 뉴런의 퇴화 진행을 보이는 퇴행성 신경계 질환으로, 마비 및 사망에 이르게 된다. 전두측두엽변성증은 전두엽 및 측두엽의 퇴화를 유도하며, 이는 실행 기능, 사회적 기능 및 인지 기능 결여와 연관되어 있다. 임상적으로는 근위축성축삭경화증과 전두측두엽변성증이 구별될 수 있으나, 환자의 분자적 상태에서는 중첩되는 부분이 있다. 근위축성축삭경화증과 전두측두엽변성증을 가진 많은 환자군에서 중추신경계 중 TDP-43 양성 함입이 나타난다는 것이다. Amyotrophic Lateral Sclerosis is a degenerative nervous system disease that progresses to degeneration of motor neurons in the spinal cord and cerebral cortex, leading to paralysis and death. Frontal temporal lobe degeneration induces degeneration of the frontal and temporal lobes, which is associated with executive function, social function and lack of cognitive function. Clinically, it is possible to distinguish between amyotrophic axillary sclerosis and frontal lobe lobe degeneration, but there is overlap in the molecular state of the patient. A number of patients with amyotrophic axillary lesions and frontal lobe laceration show positive TDP-43 implants in the central nervous system.

TDP-43은 질환에 걸렸을 때 독성을 나타내는 특징들을 가지는데, 예를 들어 비정상적 과인산화, 유비퀴틴화(ubiquitination) 및 비정상적 C-말단 단편의 생산과 같은 것이다.TDP-43 has features that indicate toxicity when it is diseased, such as abnormal hyperphosphorylation, ubiquitination, and the production of abnormal C-terminal fragments.

TDP-43은 건강한 뉴런에서 핵에 주로 위치하고 있는데, 질환에 걸린 경우 세포질과 신경돌기에 비정상적으로 위치할 수 있고 응집이 나타남이 보고된 바 있으며, 이는 TDP-43의 손실 및/또는 기능 획득이 질환의 발병에 기여할 수 있음을 의미한다.
TDP-43 is located predominantly in the nucleus of healthy neurons, which can be abnormally located in the cytoplasm and neurites when it is diseased and has been reported to cause aggregation, suggesting that TDP-43 loss and / Which may contribute to the onset of the disease.

본 출원의 발명자들은 TDP-43미스센스 돌연변이가 분화된 배양 신경세포에 미치는 영향을 연구하여, 특정 서열을 가지는 TDP-43미스센스 돌연변이의 존재 여부가 퇴행성 신경계 질환을 진단할 수 있는 마커가 될 수 있음을 확인하고 본 발명을 완성하였다.The inventors of the present application studied the effect of the TDP-43 mismatch mutation on differentiated cultured neurons and found that the presence of the TDP-43 mismatch mutation having a specific sequence would be a marker for diagnosing degenerative neurological diseases And completed the present invention.

본 발명은 서열번호 1 내지 3으로 이루어진 TDP-43 (TAR-binding protein of 43kDa) 미스센스 돌연변이들 중 어느 하나 또는 그 이상을 포함하는 퇴행성 신경계 질환 진단용 마커를 제공한다.The present invention provides a marker for diagnosing degenerative neurological diseases comprising any one or more of the TSP-43 (TAR-binding protein of 43 kDa) mismatch mutations of SEQ ID NOS: 1 to 3.

또한, 본 발명은 In addition,

i) 검체로부터 시료를 얻는 단계;i) obtaining a sample from a specimen;

ii) 서열번호 1 내지 3으로 이루어진 TDP-43 (TAR-binding protein of 43kDa) 미스센스 돌연변이들 중 어느 하나 또는 그 이상의 발현 여부 확인하는 단계를 포함하는 퇴행성 신경계 질환의 진단 방법을 제공한다.ii) confirming whether one or more of the TSP-43 (TAR-binding protein of 43 kDa) mismatch mutations of SEQ ID NOS: 1 to 3 is expressed.

본 발명에 따른 퇴행성 신경계 질환 진단용 마커 및 이를 이용한 퇴행성 신경계 질환의 진단방법을 통해 퇴행성 신경계 질환 및 이의 발생 가능성을 정확하게 진단할 수 있다.
The marker for diagnosing degenerative neurological diseases according to the present invention and the method for diagnosing degenerative neurological diseases using the same can be accurately diagnosed.

도 1은 인간 TDP-43에 대한 개요를 나타낸 것으로, TDP-43은 핵 위치 신호(78-84번 아미노산), 2개의 RNA 인식 모티프, 핵 배출 신호 및 글리신 풍부한 도메인을 포함한다.
도 2는 HEK 293T 세포에서 TDP-43야생형 및 미스센스 돌연변이 발현량 웨스턴 블랏을 통해 분석한 결과이다.
도 3은 신경세포에 GFP가 트랜스펙션된 결과를 나타내는 사진이다.
도 4는 총 신경돌기 길이의 비율을 의미하는 그래프이다.
도 5는 항-flag 항체로 면역염색된 flag-TDP-43의 위치를 보여주는TDP-43 발현 신경세포의 이미지이다.
도 6은 신경세포의 형태 관찰 위해 GFP가 사용하여, mNLS 가진 TDP-43을 나타낸 이미지이다.
도 7은 신경돌기 총 길이 비율을 나타내는 그래프이다.
도 8은 flag로 태깅된 TDP-43 또는 내인성 TDP-43를 항-flag 항체 또는 항-TDP43 항체로 면역염색하여, mNLS 가진 TDP-43의 세포질 발현에 의해 핵에 존재하는 TDP-43 감소를 보여주는 이미지이다(원 표시 부분이 신경세포의 핵을 의미함).
Figure 1 shows an overview of human TDP-43, wherein TDP-43 contains a nuclear locus signal (amino acids 78-84), two RNA recognition motifs, a nuclear export signal, and a glycine-rich domain.
Figure 2 shows the results of analysis of TDP-43 wild-type and mismatch mutant expression levels in HEK 293T cells through Western blot.
3 is a photograph showing the result of transfection of GFP into nerve cells.
4 is a graph showing the ratio of the total neurite length.
Figure 5 is an image of TDP-43 expressing neuron showing the location of flag-TDP-43 immunostained with anti-flag antibody.
FIG. 6 is an image showing TDP-43 with mNLS using GFP for morphological observation of neurons. FIG.
7 is a graph showing the ratio of the total length of the nerve processes.
Figure 8 shows immunostaining of flagged TDP-43 or endogenous TDP-43 with anti-FLAG antibody or anti-TDP43 antibody, showing TDP-43 reduction in the nucleus by cytoplasmic expression of mNLS with TDP-43 Image (the circle indicates the nucleus of the neuron).

TDP-43에 대한 최근의 연구에도 불구하고, 현재까지 TDP-43이 어떻게 퇴행성 신경계 질환에 관련되는지에 대하여 정확한 이해가 매우 미비한 실정이다. 또한, TDP-43의 많은 연구가 효모나 초파리, 포유류 세포주를 이용하였는데, 이들 세포 내에서의 TDP-43은 많은 경우 인간 뇌세포에서의 병리학적 특성을 제대로 반영하지 못하는 경우가 많았다. 더욱이, 현재까지 TDP-43의 돌연변이 단백질이 포유류 신경세포의 구조에 미치는 영향에 대한 연구와 병리학적 작용 메카니즘에 대한 연구는 전무한 실정이다. Despite recent studies on TDP-43, there is very little understanding of how TDP-43 is involved in degenerative neurological diseases. In addition, many studies of TDP-43 have used yeast, Drosophila, and mammalian cell lines. In many cases, TDP-43 in these cells often fails to properly reflect the pathological characteristics in human brain cells. Furthermore, there have been no studies on the effect of TDP-43 mutant proteins on the structure of mammalian neurons and pathological mechanisms of action.

본 출원의 발명자들은 퇴행성 신경계 질환에서 발견된 TDP-43의 돌연변이 단백질이 신경세포의 구조 형성이나 유지 과정에서 미치는 영향을 분석하여 이들의 병리학적 메카니즘을 밝혀 냄으로써 TDP-43 미스센스 돌연변이가 퇴행성 신경계 질환 진단용 바이오 마커로 사용될 수 있음을 확인하였다.The inventors of the present application analyzed the effect of mutant proteins of TDP-43 found in degenerative neurological diseases on the structure formation and maintenance of neurons, and revealed the pathological mechanisms of them. Thus, TDP-43 mismatch mutations were found in degenerative nervous system diseases And it can be used as a biomarker for diagnosis.

본 발명에 따른 퇴행성 신경계 질환 진단용 바이오 마커는 서열번호 1 내지 3으로 이루어진 TDP-43 미스센스 돌연변이들 중 어느 하나 또는 그 이상을 포함한다.The biomarker for diagnosing a neurodegenerative disease according to the present invention comprises any one or more of the TDP-43 mismatch mutations of SEQ ID NOS: 1 to 3.

상기 서열번호 1 내지 3은 각각 A315T, Q331K, M337V로 명명되는 TDP-43 미스센스 돌연변이의 DNA 서열이다. SEQ ID NOS: 1 to 3 are DNA sequences of a TDP-43 missense mutation named A315T, Q331K, and M337V, respectively.

각 돌연변이 단백질이 신경세포의 구조나 기능에 영향이 있는지 알아보기 위해서 이들을 신경세포에 발현시켜 효과를 비교해 보았다. 그 결과, 각 돌연변이 단백질들은 야생형에 비해서 비정상적인 가지를 형성하여 신경세포의 전체적인 길이를 증가시켰다. To investigate the effect of each mutant protein on the structure and function of neurons, we compared the effects of these mutants on neuronal expression. As a result, each mutant protein formed an abnormal branch compared to the wild type, thereby increasing the overall length of the nerve cell.

또한, 이들을 시간별로 조사해 본 결과 비정상적인 돌기 구조는 후기에 신경돌기의 분절 현상을 일으키며 죽는 현상을 관찰하였다. 신경세포는 가지 돌기부위에서는 다양한 신호전달을 수행하게 되는데, 비정상적인 가지 돌기의 형성과 길이의 증가는 신경세포의 신호를 교란시킬 가능성이 많으며, 실제 알츠하이머성 치매환자의 뇌나 동물 모델에서 보여지는 이러한 신경세포 구조의 비정상적인 변화는 퇴행성 신경계 질환, 예를 들어 퇴행성 뇌질환의 초기 병리학적 메카니즘과 연관이 있다. In addition, by examining them over time, abnormal dendritic structures were observed as a result of the segmentation of neurites in the late period and dying. The neurons undergo various signal transduction in the dendritic region. The formation of abnormal dendrites and the increase in length are likely to disturb the signals of neuronal cells, and these neurons, which are seen in brain or animal models of patients with Alzheimer's dementia, Abnormal changes in cell structure are associated with early pathological mechanisms of degenerative neurological diseases, such as degenerative brain diseases.

따라서, 이러한 신경세포의 비정상적인 구조 변화 확인은 돌연변이에 의한 전측두엽성 치매나 루게릭 질환의 초기 병리학적 과정을 예측하는 중요한 결과라 할 수 있다. 대부분의 퇴행성 신경계 질환은 질환의 후기에 발견되어 신경세포의 죽음을 관찰하게 되어서 질환별 특이성을 얻기에 한계가 존재한다. 그러나 퇴행성 신경계 질환의 치료를 위해서는 초기 병리학적 과정을 이해해야 하는 것이 아주 중요하다는 점에서 TDP-43 돌연변이와 연관된 퇴행성 신경계 질환 치료의 단서를 제공할 수 있다.Thus, abnormal structural changes of these neurons may be an important predictor of the initial pathologic process of mutation-associated frontotemporal dementia or Lou Gehrig's disease. Most degenerative nervous system diseases are found in the late stage of the disease, and they observe the death of nerve cells. However, the treatment of degenerative nervous system disorders can provide clues to the treatment of degenerative neurological diseases associated with the TDP-43 mutation in that it is very important to understand the initial pathological process.

TDP-43의 돌연변이 단백질이 어떻게 신경세포의 구조를 변화시키는지에 대한 병리학적 메카니즘을 알아보기 위해 돌연변이 단백질의 세포 내 위치를 조사한 결과, TDP-43의 돌연변이 단백질은 야생형에 비해서 세포의 핵 밖으로 나와 세포질과 신경세포의 가지에 재위치하는 경향성이 증가하는 것을 확인할 수 있었다. 많은 단백질은 세포 내 역할을 수행하기 위해서 특정 위치에 존재해야 하므로 이들의 세포 내 정상적인 위치는 기능에 본질적이다. TDP-43의 돌연변이 단백질은 세포 내에서 위치 이동함으로써, 핵 안에서 세포구조에 관련된 유전자의 RNA전사나 가공에 관련된 본연의 기능 결여 유발할 수 있다.In order to investigate the pathological mechanism of how TDP-43 mutant proteins alter the structure of neurons, the mutant proteins of TDP-43 were found to be located outside the nucleus of the cell, And the tendency to relocate to the branches of neurons increases. Since many proteins must be in a specific location to perform an intracellular role, their normal intracellular location is essential to function. The mutant proteins of TDP-43 can migrate within the cell, resulting in the loss of the inherent function involved in RNA transcription or processing of genes involved in cell structure in the nucleus.

TDP-43의 돌연변이 단백질이 TDP-43 기능 소실을 유발하여 신경세포의 구조 이상을 유발한 것인지 확인한 결과 TDP-43의 기능 결여에 의해 비정상적인 가지 돌기가 형성되고 길이가 증가하였으며, 이는 TDP-43의 돌연변이 단백질에 의한 구조 변화와 비슷한 양상을 띠는 것을 확인할 수 있었다.The mutant protein of TDP-43 induced loss of TDP-43 function and induced abnormal structure of neurons. As a result, abnormal dendrites were formed and length was increased due to lack of function of TDP-43. It was confirmed that the mutant protein has a similar structure to that of the mutant protein.

위 결과를 바탕으로, 본 출원의 발명자들은 TDP-43 미스센스 돌연변이가 퇴행성 신경계 질환 진단을 위한 마커가 될 수 있음을 확인하였다.Based on the above results, the inventors of the present application confirmed that the TDP-43 mismatch mutation can be a marker for diagnosing a neurodegenerative disease.

본 발명에 있어서 "진단"은 병리 상태의 존재 또는 특징을 확인하는 것을 의미한다. 본 발명의 목적상 진단은 퇴행성 신경계 질환 예를 들어, 전측두엽성 치매 또는 루게릭 질환의 발병 가능성 또는 발병 여부를 확인하는 것이다.In the present invention, "diagnosis" means identifying the presence or characteristic of a pathological condition. For the purpose of the present invention, the diagnosis is to ascertain the likelihood or incidence of a degenerative neurological disease, for example, anterior temporal dementia or Lou Gehrig's disease.

하나의 실시예에서, 본 발명은 i) 검체로부터 시료를 얻는 단계; ii) 서열번호 1 내지 3으로 이루어진 TDP-43 미스센스 돌연변이들 중 어느 하나 또는 그 이상의 발현 여부 확인하는 단계를 포함하는 퇴행성 신경계 질환의 진단 방법일 수 있다.In one embodiment, the present invention provides a method comprising: i) obtaining a sample from a sample; ii) determining whether one or more of the TDP-43 mismatch mutations of SEQ ID NOS: 1 to 3 is expressed, and a method for diagnosing a neurodegenerative disease.

상기 단계 i)을 통해 검체로부터 생물학적 시료, 예를 들어 혈액을 채취한 다음, 단계 ii)의 TDP-43 미스센스 돌연변이 DNA 서열을 나타내는 서열번호 1 내지 3 중 어느 하나 또는 그 이상이 존재하는지 여부를 중합효소연쇄반응 (Polymerase Chain Reaction; PCR) 등 공지의 방법을 통해 확인할 수 있다.
After taking a biological sample, for example blood, from the sample through step i), it is determined whether or not any one or more of SEQ ID NOS: 1 to 3 representing the TDP-43 mismatch mutant DNA sequence of step ii) And can be confirmed by a known method such as Polymerase Chain Reaction (PCR).

실시예Example

이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.EXAMPLES The present invention will be further illustrated by the following examples and experimental examples, but the present invention is not limited by these examples and experimental examples.

[실험 방법 및 조건][Experimental Method and Condition]

1. 플라스미드 1. Plasmid

HEK293T 또는 마우스 흉선의 RNA 추출물 전체에서 인간 또는 마우스 코딩 cDNA를 하기 표 1의 프라이머를 사용하여 RT-PCR 통해 증폭시켰다. Human or mouse coding cDNAs were amplified by RT-PCR using the primers in Table 1 throughout the HEK293T or mouse thymus RNA extracts.

[표 1][Table 1]

Figure pat00001
Figure pat00001

1S, Sense; A, Antisense; hTDP-43, human TDP-43; mTDP-43, mouse TDP-43 1 S, Sense; A, Antisense; hTDP-43, human TDP-43; mTDP-43, mouse TDP-43

TDP-43 미스센스 돌연변이(A315T, Q331K, M337V)를 만들기 위해, 각각의 미스센스 돌연변이를 포함한 하기 표 2의 프라이머를 사용하여 재조합 PCR을 수행하였다. Recombinant PCR was performed using the primers of Table 2 below, each containing a mismatch mutation, to make a TDP-43 missense mutation (A315T, Q331K, M337V).

[표 2][Table 2]

Figure pat00002

Figure pat00002

변형된 핵 위치 신호(mutated nuclear localization signal, mNLS) 가지는 TDP-43 구조 제조하기 위하여 앞서 언급한 표 1에 기재된 특정 프라이머와 함께 PCR에 의해 핵 위치 신호(nuclear localization signal)가 변형되었다. 동물세포에서의 발현을 위해, 특정 프라이머를 사용하여 PCR에 의해 각 cDNA가 만들어졌으며 이후 cDNA는 HindIII-BamHI 사이트를 이용하여 3xflag-CMV7.1vector(Sigma)에 서브클로닝 되었다.
The nuclear localization signal was modified by PCR with the specific primers described in Table 1 above to produce the TDP-43 structure with a mutated nuclear localization signal (mNLS). For expression in animal cells, each cDNA was prepared by PCR using specific primers and the cDNA was then subcloned into 3xflag-CMV7.1 vector (Sigma) using the HindIII-BamHI site.

2. TDP-43 siRNA 생성2. TDP-43 siRNA production

TDP-43 siRNA 발현 구조 만들기 위해, siRNA 타겟 파인더(GenScript siRNA Target Finder) 프로그램을 이용하여 마우스 TDP-43에 대한 siRNA의 5개 부분을 선별한 다음, HingIII-BglII 사용하여 pSUPER-GFP 벡터(Oligoengine)에 서브클로닝 되었다. 마우스 TDP-43에 대한 TDP-43 합성 siRNA 서열은 sense: 5′-GAGAGGAUUUGAUCAUUAA-3′(서열번호 20)이고, antisense; 5′-UUAAUGAU- CAAAUCCUCUC-3′(서열번호 21) (BioneerCo.,Korea)이다.
Five sections of siRNA against mouse TDP-43 were selected using siRNA Target Finder program to generate TDP-43 siRNA expression structure. Then, pSUPER-GFP vector (Oligoengine) was prepared using HingIII-BglII. Lt; / RTI > The TDP-43 synthetic siRNA sequence for mouse TDP-43 is sense: 5'-GAGAGGAUUUGAUCAUUAA-3 '(SEQ ID NO: 20), antisense; 5'-UUAAUGAU-CAAAUCCUCUC-3 '(SEQ ID NO: 21) (Bioneer Co., Korea).

3. 세포배양 및 트랜스펙션3. Cell culture and transfection

E17 ICR 마우스 배아에서 신경세포 배양하고, 각 DNA 플라스미드를 리포펙타민 2000 (Lipofectamine 2000 (Invitrogen, USA)) 또는 인산칼슘 시약 (Clontech USA)와 함께 HEK293T 세포 또는 제조사의 프로토콜에 따라 배양 후 5일된 분화 신경세포에 트랜스펙션하였다. Neuronal cells were cultured in E17 ICR mouse embryos and each DNA plasmid was incubated with HYP293T cells or manufacturer's protocol together with Lipofectamine 2000 (Invitrogen, USA) or calcium phosphate reagent (Clontech USA) And transfected into neurons.

TDP-43을 하향 조절하기 위해서, 배양 후 5일차에 siRNA 저항성 인간 TDP-43 존재하에서 또는 없이 TDP-43 siRNA를 트랜스펙션 하였다. 회복 실험(rescue experiment)과 관련하여, 배양 후 5일차에 스크램블 siRNA 또는 TDP-43 siRNA와 함께 flag-인간 TDP-43 (또는 flag-TDP-43[mNLS])을 트랜스펙션 하였다.To down-regulate TDP-43, TDP-43 siRNA was transfected with or without siRNA-resistant human TDP-43 at day 5 after culture. With respect to the rescue experiment, flag-human TDP-43 (or flag-TDP-43 [mNLS]) was transfected with scrambled siRNA or TDP-43 siRNA on day 5 after incubation.

TDP-43 siRNA 트랜스펙션과 관련하여, RNAi MAX 제제 (Invitrogen, Carlsbad, CA, USA)를 사용하여 각각의 siRNA (75-90 pmol/μl/ well) aliquot을 세포 배양 배지에서 인큐베이션한 다음, 제조사의 프로토콜에 따라 트립신 처리된 신경세포 추가하였다.
Each siRNA (75-90 pmol / μl / well) aliquot was incubated in cell culture medium using RNAi MAX preparation (Invitrogen, Carlsbad, CA, USA) with TDP-43 siRNA transfection, Were added to trypsinized neurons.

4. 면역세포화학4. Immunocytochemistry

트랜스펙션 2일 후 트렌스펙션된 신경세포를 4% 파라포름알데히드(PFA)로 10분 동안 고정시켰다. 면역염색과 관련하여, 트랜스펙션된 뉴런은 0.1% Triton X 100에 5분간 투과시킨 다음 3% BSA (bovine serum albumin)로 실온에서 1시간 동안 블로킹하였다. 이후, 세포를 항-flag (Sigma, 1:100) 또는 항-마우스 TDP-43 항체(Abnova, 1:100)에 1시간 동안 인큐베이션한 다음 항-cy3 또는 항-DyLight 488 이차 항체(JacksonLab,USA)와 함께 실온에서 1시간 동안 인큐베이션 하였다.
Two days after transfection, transfected neurons were fixed with 4% paraformaldehyde (PFA) for 10 minutes. With respect to immunostaining, transfected neurons were permeabilized with 0.1% Triton X 100 for 5 minutes and then blocked with 3% bovine serum albumin (BSA) at room temperature for 1 hour. Cells were then incubated for 1 hour in anti-flag (Sigma, 1: 100) or anti-mouse TDP-43 antibody (Abnova, 1: 100) for 1 hour followed by anti-cy3 or anti-DyLight 488 secondary antibody ) At room temperature for 1 hour.

5. 총 신경돌기 길이에 대한 이미지 분석과 정량화 및 세포 생존도5. Image analysis and quantification of total neurite length and cell viability

축삭 및 수상돌기의 길이를 측정하기 위해, 각각 항-Tau1(Millipore, Billerica, USA, 1:200) 양성 및 항-MAP2 (Millipore, Billerica, MAUSA, 1:200) 양성 신경돌기를 사용하였다. 트랜스펙션 이후 24시간, 48시간 및 72시간에 LSM 510 공초점 레이져 스캐닝 현미경(LSM700, CarlZeiss, Oberkochen, Germany)을 사용하여 형태 분석을 위한 뉴런 이미지를 입수하였다. 트랜스펙션된 신경세포의 공초점 이미지는 순차적 획득을 통해 얻었고, 각 이미지는 Z 시리즈의 5-10개의 이미지이었다. 스택으로부터 이미지는 맥시멈 프로젝션을 사용하여 단일 이미지로 평면화되었다. 총 신경돌기 길이를 측정하기 위해, 20X대물렌즈를 사용하여 이미지를 얻었다. 개별 뉴런의 수상 및 축삭돌기를 포함한 모든 신경돌기 발달 과정이 추적되었다. 총 신경돌기의 길이를 정량화하기 위해 이미지 J 분석 프로그램, 어도비 포토샵CS3, 메타모프 이미지 분석을 사용하였다. 각 실험군에서 20개 이상의 신경세포의 길이는 3개의 독립적 실험으로부터 측정 및 정량화되었다. 그래프패드 프리즘 5 프로그램을 통해 통계 분석 (one way AVOVA, Student's t-test)을 수행하였다.(Millipore, Billerica, USA, 1: 200) positive and anti-MAP2 (Millipore, Billerica, MAUSA, 1: 200) positive neurites were used to measure the length of axons and dendrites. Neuronal images for morphometric analysis were obtained using an LSM 510 confocal laser scanning microscope (LSM700, Carl Zeiss, Oberkochen, Germany) at 24 hours, 48 hours and 72 hours after transfection. Confocal images of transfected neurons were obtained through sequential acquisition, and each image was 5-10 images of the Z series. Images from the stack were flattened into a single image using a maximal projection. To measure total neurite length, images were obtained using a 20X objective. All neurite development processes, including the aqueducts and axons of individual neurons, were traced. Image J analysis program, Adobe Photoshop CS3, and metamorphic image analysis were used to quantify the total neurite length. The length of more than 20 neurons in each experimental group was measured and quantified from three independent experiments. Statistical analysis (one way AVOVA, Student's t-test) was performed using the GraphPad Prism 5 program.

세포 생존 어세이와 관련하여, 신경세포는 mNLS TDP-43 또는 siRNA 중 어느 하나로 트랜스펙션된 다음, 트랜스펙션 72시간 이후 프로피듐 이오다이드로 염색되었다. 생존한 세포는 이후 GFP-양성이면서 PI-음성인 신경세포를 기초로 수를 세었다. 그래프패드 프리즘 5 프로그램을 통해 통계 분석 (one way AVOVA, Tukey's post-hoc test 또는 Student's t-test)을 수행하였다. 각 실험에서 개별 조건에 대하여 총 100-200개의 세포 수를 센 다음 3개의 독립적 실험으로부터 측정 및 정량화되었다.
Concerning cell survival assays, neurons were transfected with either mNLS TDP-43 or siRNA and then stained with propidium iodide after 72 hours of transfection. Surviving cells were then counted on the basis of GFP-positive and PI-negative neurons. Statistical analysis (one way AVOVA, Tukey's post-hoc test or Student's t-test) was performed using the GraphPad Prism 5 program. In each experiment, a total of 100-200 cells were counted for each condition and then measured and quantified from three independent experiments.

6. 웨스턴 블랏6. Western blot

TDP-43의 발현 (야생형 또는 미스센스 돌연변이 단백질) 확인하거나, flag 태깅된 마우스 TDP-43이 TDP-43 siRNA에 의해 knockdown되었는지 조사하기 위해 항-flag 항체(Sigma, 1:2000), 항-GFP 항체 (SantaCruz, 1:500) 및 HRP-컨쥬게이션된 항-마우스 또는 항-래빗 이차항체 (1:10,000-20,000)를 사용하여 웨스턴 블랏을 수행하였다.
(Sigma, 1: 2000), anti-GFP (anti-GFP) antibody to detect the expression of TDP-43 (wild type or a mismatch mutant protein) or to check whether flagged mouse TDP-43 was knocked down by TDP- Western blotting was performed using antibodies (SantaCruz, 1: 500) and HRP-conjugated anti-mouse or anti-rabbit secondary antibody (1: 10,000-20,000).

[실시예 1] 신경돌기 형태 변화에 미치는 TDP-43 미스센스 돌연변이의 영향[Example 1] Influence of TDP-43 mismatch mutations on neurite outgrowth morphology

세포독성 및 신경 퇴행에서 TDP-43의 영향에 대하여 많은 연구가 있었음에도 불구하고, 질병과 관련된 미스센스 돌연변이 단백질에 의한 초기 세포 발병에 대하여는 알려진 바가 거의 없다. Although there have been many studies on the effects of TDP-43 on cytotoxicity and neurodegeneration, little is known about the early onset of the disease by disease-associated mismatch mutant proteins.

이에, TDP-43미스센스 돌연변이 에 의한 초기 세포 결함을 더 자세히 확인하기 위해, 돌연변이 포함 특정 프라이머를 사용하여 재조합 PCR을 통해 글리신이 풍부한 도메인(도 1)에서 각각의 TDP-43 미스센스 돌연변이 (A315T, Q331K, M337V)를 만들었다. Thus, in order to further confirm early cell defects due to TDP-43 mismatch mutations, specific TDP-43 mismatch mutations (A315T (SEQ ID NO: 1)) in the glycine-rich domain (FIG. 1) via recombinant PCR using specific primers containing mutations , Q331K, M337V).

HEK 293T 세포에서 각각의 미스센스 돌연변이 단백질의 발현 레벨을 측정하고 그 결과를 도 2에 나타내었다. 도 2를 참조하면, 각각의 돌연변이 TDP-43 단백질의 발현 레벨은 야생형과 유사하였다.The expression levels of the respective mismatch mutant proteins in HEK 293T cells were measured and the results are shown in Fig. Referring to Figure 2, the expression levels of each mutant TDP-43 protein were similar to wild-type.

신경돌기 형태에서 TDP-43미스센스 돌연변이의 영향을 확인하기 위해, 돌연변이 또는 야생형 단백질을 분화된 신경세포에서 발현시켰다. 도 3및 도 4에 나타낸 바와 같이, 트랜스펙션된지 24시간 이후 미스센스 돌연변이 발현하는 뉴런에서 증가된 비정상적 작은 신경돌기가 보였으며 총 신경돌기를 측정하여 정량화하였다. To confirm the effect of TDP-43 mismatch mutations in neurite morphology, mutant or wild-type proteins were expressed in differentiated neurons. As shown in FIGS. 3 and 4, abnormal neurites were observed in the neurons expressing the missense mutation after 24 hours of transfection, and the total neurite was measured and quantified.

이를 통해 미스센스 돌연변이 단백질은 야생형 TDP-43에 비해 비정상적 신경세포 형태를 증가시킴을 확인할 수 있다.
This suggests that the mismatch mutant protein increases abnormal neuronal morphology compared to wild-type TDP-43.

[실시예 2] TDP-43 미스센스 돌연변이 단백질에 의한 위치 이상[Example 2] Location abnormality caused by TDP-43 mismatch mutant protein

야생형 TDP-43은 기본적으로 핵에 위치하였으며, 신경세포에서 DAPI(4',6'-diamidine-2'-phenylindole dihydrochloride)에 의해 마킹되었다. 다만, 돌연변이 단백질을 발현하는 신경세포는 응집물과 함께 TDP-43이 일부 세포질 및 신경돌기에 위치함을 보여주였다 (도 5). 핵에서 세포질로 TDP-43의 위치 이상을 보이는 세포의 수는 야생형 TDP-43 발현 신경세포와 비교하여 돌연변이 TDP-43 발현 신경세포에서 증가하였다.Wild-type TDP-43 was basically located in the nucleus and marked by DAPI (4 ', 6'-diamidine-2'-phenylindole dihydrochloride) in neurons. However, the neurons expressing the mutant protein showed that TDP-43 was located in some cytoplasm and neurite along with the aggregate (FIG. 5). The number of cells showing abnormal TDP-43 position from nucleus to cytoplasm was increased in mutant TDP-43-expressing neurons compared with wild-type TDP-43-expressing neurons.

이를 통해, TDP-43 미스센스 돌연변이 단백질은 핵-세포질 왕복에 결함을 나타냄을 확인할 수 있다.
Thus, it can be confirmed that the TDP-43 missense mutant protein exhibits defects in the nuclear-cytoplasmic round trip.

[실시예 3] 위치 이상과 세포 형태 결함 관련성 확인[Example 3] Confirmation of the relation between position and defect of cell morphology

야생형 또는 미스센스 돌연변이 TDP-43의 세포 내 위치가 분화된 신경세포에서의 초기 세포 형태 결함과 관련되어 있는지 확인하고, 신경돌기 형태에서 야생형 또는 돌연변이 단백질의 세포질 발현에 의한 영향 비교하기 위해 flag 미스센스 돌연변이 구조를 분화된 신경세포에 트랜스펙션 하였다. 미스센스 돌연변이 뿐만 아니라 야생형 TDP-43의 세포질 발현이 비정상 신경돌기에서 증가(도 6 및 7)하였으며, 이는 TDP-43의 세포질 발현이 비정상적 신경돌기 구조의 원인임을 의미한다.To determine whether the intracellular location of wild-type or mismatch mutant TDP-43 is associated with early cell morphological defects in differentiated neurons and to compare the effects of cytoplasmic expression of wild-type or mutant proteins in neurite morphology, The mutant structure was transfected into differentiated neurons. The cytoplasmic expression of wild-type TDP-43 as well as the missense mutation was increased in abnormal neurites (Figs. 6 and 7), indicating that cytoplasmic expression of TDP-43 is responsible for abnormal neurite structure.

실제로, TDP-43의 세포질 발현에 의해 트랜스펙션 72시간 이후 세포 생존율이 감소하였음을 확인하였다 (도 8). 또한, TDP-43의 세포질 발현에 의해 핵에서의 TDP-43을 감소시켜 TDP-43의 위치 이상이 핵 기능에 영향을 미칠 수 있음을 제시하였다.
In fact, it was confirmed that the cell viability after transfection 72 hours was decreased by the cytoplasmic expression of TDP-43 (FIG. 8). In addition, it was suggested that TDP-43 may be decreased by nuclear cytoplasmic expression of TDP-43, which may affect nuclear function.

<110> Hannam University Institute for Industry-Academia Cooperation <120> A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same <130> p130739 <160> 21 <170> KopatentIn 2.0 <210> 1 <211> 1245 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence of A315T <400> 1 atgtctgaat atattcgggt aaccgaagat gagaacgatg agcccattga aataccatcg 60 gaagacgatg ggacggtgct gctctccacg gttacagccc agtttccagg ggcgtgtggg 120 cttcgctaca ggaatccagt gtctcagtgt atgagaggtg tccggctggt agaaggaatt 180 ctgcatgccc cagatgctgg ctggggaaat ctggtgtatg ttgtcaacta tccaaaagat 240 aacaaaagaa aaatggatga gacagatgct tcatcagcag tgaaagtgaa aagagcagtc 300 cagaaaacat ccgatttaat agtgttgggt ctcccatgga aaacaaccga acaggacctg 360 aaagagtatt ttagtacctt tggagaagtt cttatggtgc aggtcaagaa agatcttaag 420 actggtcatt caaaggggtt tggctttgtt cgttttacgg aatatgaaac acaagtgaaa 480 gtaatgtcac agcgacatat gatagatgga cgatggtgtg actgcaaact tcctaattct 540 aagcaaagcc aagatgagcc tttgagaagc agaaaagtgt ttgtggggcg ctgtacagag 600 gacatgactg aggatgagct gcgggagttc ttctctcagt acggggatgt gatggatgtc 660 ttcatcccca agccattcag ggcctttgcc tttgttacat ttgcagatga tcagattgcg 720 cagtctcttt gtggagagga cttgatcatt aaaggaatca gcgttcatat atccaatgcc 780 gaacctaagc acaatagcaa tagacagtta gaaagaagtg gaagatttgg tggtaatcca 840 ggtggctttg ggaatcaggg tggatttggt aatagcagag ggggtggagc tggtttggga 900 aacaatcaag gtagtaatat gggtggtggg atgaactttg gtacgttcag cattaatcca 960 gccatgatgg ctgccgccca ggcagcacta cagagcagtt ggggtatgat gggcatgtta 1020 gccagccagc agaaccagtc aggcccatcg ggtaataacc aaaaccaagg caacatgcag 1080 agggagccaa accaggcctt cggttctgga aataactctt atagtggctc taattctggt 1140 gcagcaattg gttggggatc agcatccaat gcagggtcgg gcagtggttt taatggaggc 1200 tttggctcaa gcatggattc taagtcttct ggctggggaa tgtag 1245 <210> 2 <211> 1245 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence of Q331K <400> 2 atgtctgaat atattcgggt aaccgaagat gagaacgatg agcccattga aataccatcg 60 gaagacgatg ggacggtgct gctctccacg gttacagccc agtttccagg ggcgtgtggg 120 cttcgctaca ggaatccagt gtctcagtgt atgagaggtg tccggctggt agaaggaatt 180 ctgcatgccc cagatgctgg ctggggaaat ctggtgtatg ttgtcaacta tccaaaagat 240 aacaaaagaa aaatggatga gacagatgct tcatcagcag tgaaagtgaa aagagcagtc 300 cagaaaacat ccgatttaat agtgttgggt ctcccatgga aaacaaccga acaggacctg 360 aaagagtatt ttagtacctt tggagaagtt cttatggtgc aggtcaagaa agatcttaag 420 actggtcatt caaaggggtt tggctttgtt cgttttacgg aatatgaaac acaagtgaaa 480 gtaatgtcac agcgacatat gatagatgga cgatggtgtg actgcaaact tcctaattct 540 aagcaaagcc aagatgagcc tttgagaagc agaaaagtgt ttgtggggcg ctgtacagag 600 gacatgactg aggatgagct gcgggagttc ttctctcagt acggggatgt gatggatgtc 660 ttcatcccca agccattcag ggcctttgcc tttgttacat ttgcagatga tcagattgcg 720 cagtctcttt gtggagagga cttgatcatt aaaggaatca gcgttcatat atccaatgcc 780 gaacctaagc acaatagcaa tagacagtta gaaagaagtg gaagatttgg tggtaatcca 840 ggtggctttg ggaatcaggg tggatttggt aatagcagag ggggtggagc tggtttggga 900 aacaatcaag gtagtaatat gggtggtggg atgaactttg gtgcgttcag cattaatcca 960 gccatgatgg ctgccgccca ggcagcacta aagagcagtt ggggtatgat gggcatgtta 1020 gccagccagc agaaccagtc aggcccatcg ggtaataacc aaaaccaagg caacatgcag 1080 agggagccaa accaggcctt cggttctgga aataactctt atagtggctc taattctggt 1140 gcagcaattg gttggggatc agcatccaat gcagggtcgg gcagtggttt taatggaggc 1200 tttggctcaa gcatggattc taagtcttct ggctggggaa tgtag 1245 <210> 3 <211> 1245 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence of M337V <400> 3 atgtctgaat atattcgggt aaccgaagat gagaacgatg agcccattga aataccatcg 60 gaagacgatg ggacggtgct gctctccacg gttacagccc agtttccagg ggcgtgtggg 120 cttcgctaca ggaatccagt gtctcagtgt atgagaggtg tccggctggt agaaggaatt 180 ctgcatgccc cagatgctgg ctggggaaat ctggtgtatg ttgtcaacta tccaaaagat 240 aacaaaagaa aaatggatga gacagatgct tcatcagcag tgaaagtgaa aagagcagtc 300 cagaaaacat ccgatttaat agtgttgggt ctcccatgga aaacaaccga acaggacctg 360 aaagagtatt ttagtacctt tggagaagtt cttatggtgc aggtcaagaa agatcttaag 420 actggtcatt caaaggggtt tggctttgtt cgttttacgg aatatgaaac acaagtgaaa 480 gtaatgtcac agcgacatat gatagatgga cgatggtgtg actgcaaact tcctaattct 540 aagcaaagcc aagatgagcc tttgagaagc agaaaagtgt ttgtggggcg ctgtacagag 600 gacatgactg aggatgagct gcgggagttc ttctctcagt acggggatgt gatggatgtc 660 ttcatcccca agccattcag ggcctttgcc tttgttacat ttgcagatga tcagattgcg 720 cagtctcttt gtggagagga cttgatcatt aaaggaatca gcgttcatat atccaatgcc 780 gaacctaagc acaatagcaa tagacagtta gaaagaagtg gaagatttgg tggtaatcca 840 ggtggctttg ggaatcaggg tggatttggt aatagcagag ggggtggagc tggtttggga 900 aacaatcaag gtagtaatat gggtggtggg atgaactttg gtgcgttcag cattaatcca 960 gccatgatgg ctgccgccca ggcagcacta cagagcagtt ggggtatggt gggcatgtta 1020 gccagccagc agaaccagtc aggcccatcg ggtaataacc aaaaccaagg caacatgcag 1080 agggagccaa accaggcctt cggttctgga aataactctt atagtggctc taattctggt 1140 gcagcaattg gttggggatc agcatccaat gcagggtcgg gcagtggttt taatggaggc 1200 tttggctcaa gcatggattc taagtcttct ggctggggaa tgtag 1245 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 4 ggcctagccg gaaaagtaaa 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 5 caaccaccac cccactgtct 20 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 6 tccacactga acaaaccaat tt 22 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 7 ggcctagcgg agatttaagc 20 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 8 cccccattct aaatctacct aacc 24 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 9 ccacactgaa caaaccaatc tg 22 <210> 10 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 10 cgcccaagct tggcaccatg rcrgaatata ttcgg 35 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 11 cgcggatccc attccccagc cagaaga 27 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 12 aactttggta cgttcagca 19 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 13 tgctgaacgt accaaagtt 19 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 14 gcagcactaa agagcagt 18 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 15 actgctcttt agtgctgc 18 <210> 16 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 16 tatggtgggc atgtta 16 <210> 17 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 17 taacatgccc accata 16 <210> 18 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 18 tatccaaaag ataacgctgc tgctatggat gagacagat 39 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 19 atctgtctca tccatagcag cagcgttatc ttttggata 39 <210> 20 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> Artificial siRNA sequence <400> 20 gagaggauuu gaucauuaa 19 <210> 21 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> Artificial siRNA sequence <400> 21 uuaaugauca aauccucuc 19 <110> Hannam University Institute for Industry-Academia Cooperation <120> A Marker for Detecting a Neuro-Degenerative Disease and a Method          Detecting the Neuro-Degenerative Disease by Using the Same <130> p130739 <160> 21 <170> Kopatentin 2.0 <210> 1 <211> 1245 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence of A315T <400> 1 atgtctgaat atattcgggt aaccgaagat gagaacgatg agcccattga aataccatcg 60 gaagacgatg ggacggtgct gctctccacg gttacagccc agtttccagg ggcgtgtggg 120 cttcgctaca ggaatccagt gtctcagtgt atgagaggtg tccggctggt agaaggaatt 180 ctgcatgccc cagatgctgg ctggggaaat ctggtgtatg ttgtcaacta tccaaaagat 240 aacaaaagaa aaatggatga gacagatgct tcatcagcag tgaaagtgaa aagagcagtc 300 cagaaaacat ccgatttaat agtgttgggt ctcccatgga aaacaaccga acaggacctg 360 aaagagtatt ttagtacctt tggagaagtt cttatggtgc aggtcaagaa agatcttaag 420 actggtcatt caaaggggtt tggctttgtt cgttttacgg aatatgaaac acaagtgaaa 480 gtaatgtcac agcgacatat gatagatgga cgatggtgtg actgcaaact tcctaattct 540 aagcaaagcc aagatgagcc tttgagaagc agaaaagtgt ttgtggggcg ctgtacagag 600 gacatgactg aggatgagct gcgggagttc ttctctcagt acggggatgt gatggatgtc 660 ttcatcccca agccattcag ggcctttgcc tttgttacat ttgcagatga tcagattgcg 720 cagtctcttt gtggagagga cttgatcatt aaaggaatca gcgttcatat atccaatgcc 780 gaacctaagc acaatagcaa tagacagtta gaaagaagtg gaagatttgg tggtaatcca 840 ggtggctttg ggaatcaggg tggatttggt aatagcagag ggggtggagc tggtttggga 900 aacaatcaag gtagtaatat gggtggtggg atgaactttg gtacgttcag cattaatcca 960 gccatgatgg ctgccgccca ggcagcacta cagagcagtt ggggtatgat gggcatgtta 1020 gccagccagc agaaccagtc aggcccatcg ggtaataacc aaaaccaagg caacatgcag 1080 agggagccaa accaggcctt cggttctgga aataactctt atagtggctc taattctggt 1140 gcagcaattg gttggggatc agcatccaat gcagggtcgg gcagtggttt taatggaggc 1200 tttggctcaa gcatggattc taagtcttct ggctggggaa tgtag 1245 <210> 2 <211> 1245 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence of Q331K <400> 2 atgtctgaat atattcgggt aaccgaagat gagaacgatg agcccattga aataccatcg 60 gaagacgatg ggacggtgct gctctccacg gttacagccc agtttccagg ggcgtgtggg 120 cttcgctaca ggaatccagt gtctcagtgt atgagaggtg tccggctggt agaaggaatt 180 ctgcatgccc cagatgctgg ctggggaaat ctggtgtatg ttgtcaacta tccaaaagat 240 aacaaaagaa aaatggatga gacagatgct tcatcagcag tgaaagtgaa aagagcagtc 300 cagaaaacat ccgatttaat agtgttgggt ctcccatgga aaacaaccga acaggacctg 360 aaagagtatt ttagtacctt tggagaagtt cttatggtgc aggtcaagaa agatcttaag 420 actggtcatt caaaggggtt tggctttgtt cgttttacgg aatatgaaac acaagtgaaa 480 gtaatgtcac agcgacatat gatagatgga cgatggtgtg actgcaaact tcctaattct 540 aagcaaagcc aagatgagcc tttgagaagc agaaaagtgt ttgtggggcg ctgtacagag 600 gacatgactg aggatgagct gcgggagttc ttctctcagt acggggatgt gatggatgtc 660 ttcatcccca agccattcag ggcctttgcc tttgttacat ttgcagatga tcagattgcg 720 cagtctcttt gtggagagga cttgatcatt aaaggaatca gcgttcatat atccaatgcc 780 gaacctaagc acaatagcaa tagacagtta gaaagaagtg gaagatttgg tggtaatcca 840 ggtggctttg ggaatcaggg tggatttggt aatagcagag ggggtggagc tggtttggga 900 aacaatcaag gtagtaatat gggtggtggg atgaactttg gtgcgttcag cattaatcca 960 gccatgatgg ctgccgccca ggcagcacta aagagcagtt ggggtatgat gggcatgtta 1020 gccagccagc agaaccagtc aggcccatcg ggtaataacc aaaaccaagg caacatgcag 1080 agggagccaa accaggcctt cggttctgga aataactctt atagtggctc taattctggt 1140 gcagcaattg gttggggatc agcatccaat gcagggtcgg gcagtggttt taatggaggc 1200 tttggctcaa gcatggattc taagtcttct ggctggggaa tgtag 1245 <210> 3 <211> 1245 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence of M337V <400> 3 atgtctgaat atattcgggt aaccgaagat gagaacgatg agcccattga aataccatcg 60 gaagacgatg ggacggtgct gctctccacg gttacagccc agtttccagg ggcgtgtggg 120 cttcgctaca ggaatccagt gtctcagtgt atgagaggtg tccggctggt agaaggaatt 180 ctgcatgccc cagatgctgg ctggggaaat ctggtgtatg ttgtcaacta tccaaaagat 240 aacaaaagaa aaatggatga gacagatgct tcatcagcag tgaaagtgaa aagagcagtc 300 cagaaaacat ccgatttaat agtgttgggt ctcccatgga aaacaaccga acaggacctg 360 aaagagtatt ttagtacctt tggagaagtt cttatggtgc aggtcaagaa agatcttaag 420 actggtcatt caaaggggtt tggctttgtt cgttttacgg aatatgaaac acaagtgaaa 480 gtaatgtcac agcgacatat gatagatgga cgatggtgtg actgcaaact tcctaattct 540 aagcaaagcc aagatgagcc tttgagaagc agaaaagtgt ttgtggggcg ctgtacagag 600 gacatgactg aggatgagct gcgggagttc ttctctcagt acggggatgt gatggatgtc 660 ttcatcccca agccattcag ggcctttgcc tttgttacat ttgcagatga tcagattgcg 720 cagtctcttt gtggagagga cttgatcatt aaaggaatca gcgttcatat atccaatgcc 780 gaacctaagc acaatagcaa tagacagtta gaaagaagtg gaagatttgg tggtaatcca 840 ggtggctttg ggaatcaggg tggatttggt aatagcagag ggggtggagc tggtttggga 900 aacaatcaag gtagtaatat gggtggtggg atgaactttg gtgcgttcag cattaatcca 960 gccatgatgg ctgccgccca ggcagcacta cagagcagtt ggggtatggt gggcatgtta 1020 gccagccagc agaaccagtc aggcccatcg ggtaataacc aaaaccaagg caacatgcag 1080 agggagccaa accaggcctt cggttctgga aataactctt atagtggctc taattctggt 1140 gcagcaattg gttggggatc agcatccaat gcagggtcgg gcagtggttt taatggaggc 1200 tttggctcaa gcatggattc taagtcttct ggctggggaa tgtag 1245 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 4 ggcctagccg gaaaagtaaa 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 5 caaccaccac cccactgtct 20 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 6 tccacactga acaaaccaat tt 22 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 7 ggcctagcgg agatttaagc 20 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 8 cccccattct aaatctacct aacc 24 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 9 ccacactgaa caaaccaatc tg 22 <210> 10 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 10 cgcccaagct tggcaccatg rcrgaatata ttcgg 35 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 11 cgcggatccc attccccagc cagaaga 27 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 12 aactttggta cgttcagca 19 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 13 tgctgaacgt accaaagtt 19 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 14 gcagcactaa agagcagt 18 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 15 actgctcttt agtgctgc 18 <210> 16 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 16 tatggtgggc atgtta 16 <210> 17 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 17 taacatgccc accata 16 <210> 18 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 18 tatccaaaag ataacgctgc tgctatggat gagacagat 39 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Artificial primer sequence <400> 19 atctgtctca tccatagcag cagcgttatc ttttggata 39 <210> 20 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> Artificial siRNA sequence <400> 20 gagaggauuu gaucauuaa 19 <210> 21 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> Artificial siRNA sequence <400> 21 uuaaugauca aauccucuc 19

Claims (4)

서열번호 1 내지 3으로 이루어진 TDP-43 (TAR-binding protein of 43kDa) 미스센스 돌연변이들 중 어느 하나 또는 그 이상을 포함하는 퇴행성 신경계 질환 진단용 마커.A marker for diagnosing a degenerative nervous system disease comprising any one or more of TSP-43 (TAR-binding protein of 43 kDa) mismatch mutations consisting of SEQ ID NOS: 1 to 3; 제 1 항에 있어서,
상기 TDP-43 미스센스 돌연변이는 세포질과 신경세포 가지에 비정상적으로 위치하거나, 정상 TDP-43의 기능 소실 유도하여 신경세포의 비정상적 구조 변화 일으키는 것을 특징으로 하는 진단 방법.
The method according to claim 1,
Wherein said TDP-43 mismatch mutation is abnormally located in cytoplasmic and nerve cell branches, or induces dysfunction of normal TDP-43 to cause abnormal structural change of nerve cells.
제 1 항에 있어서,
상기 퇴행성 신경계 질환은 전측두엽성 치매 또는 루게릭 질환인 것을 특징으로 하는 진단 방법.
The method according to claim 1,
Wherein the degenerative neurological disease is anterior temporal dementia or Lou Gehrig's disease.
i) 검체로부터 시료를 얻는 단계;
ii) 서열번호 1 내지 3으로 이루어진 TDP-43 (TAR-binding protein of 43kDa) 미스센스 돌연변이들 중 어느 하나 또는 그 이상의 발현 여부 확인하는 단계를 포함하는 퇴행성 신경계 질환의 진단 방법.
i) obtaining a sample from a specimen;
ii) confirming whether one or more of the TSP-43 (TAR-binding protein of 43 kDa) mismatch mutations of SEQ ID NOS: 1 to 3 is expressed.
KR1020130091014A 2013-07-31 2013-07-31 A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same KR20150015226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130091014A KR20150015226A (en) 2013-07-31 2013-07-31 A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130091014A KR20150015226A (en) 2013-07-31 2013-07-31 A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160012814A Division KR101755530B1 (en) 2016-02-02 2016-02-02 A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same

Publications (1)

Publication Number Publication Date
KR20150015226A true KR20150015226A (en) 2015-02-10

Family

ID=52571792

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130091014A KR20150015226A (en) 2013-07-31 2013-07-31 A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same

Country Status (1)

Country Link
KR (1) KR20150015226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061818A1 (en) * 2015-10-07 2017-04-13 사회복지법인 삼성생명공익재단 Mutant genes as diagnostic markers for amyotrophic lateral sclerosis and diagnostic method using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061818A1 (en) * 2015-10-07 2017-04-13 사회복지법인 삼성생명공익재단 Mutant genes as diagnostic markers for amyotrophic lateral sclerosis and diagnostic method using same

Similar Documents

Publication Publication Date Title
Dulla et al. Antisense oligonucleotide-based treatment of retinitis pigmentosa caused by USH2A exon 13 mutations
Hoover et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration
Chae et al. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient
Tang et al. Defective Tmprss3-associated hair cell degeneration in inner ear organoids
Vazin et al. Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer's disease
Baj et al. Developmental and maintenance defects in Rett syndrome neurons identified by a new mouse staging system in vitro
Um et al. Calsyntenins function as synaptogenic adhesion molecules in concert with neurexins
Seyfried et al. Quantitative analysis of the detergent-insoluble brain proteome in frontotemporal lobar degeneration using SILAC internal standards
Aiken et al. TUBA1A mutations identified in lissencephaly patients dominantly disrupt neuronal migration and impair dynein activity
Cioni et al. SEMA3A signaling controls layer-specific interneuron branching in the cerebellum
Liu et al. Prickle1 is expressed in distinct cell populations of the central nervous system and contributes to neuronal morphogenesis
Han et al. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons
Lenzi et al. A subcellular analysis of genetic modulation of PINK1 on mitochondrial alterations, autophagy and cell death
Zhao et al. Hereditary spastic paraplegia-causing mutations in atlastin-1 interfere with BMPRII trafficking
Slosarek et al. Pathogenic TFG mutations underlying hereditary spastic paraplegia impair secretory protein trafficking and axon fasciculation
Han et al. Ferric chelate reductase 1 like protein (FRRS1L) associates with dynein vesicles and regulates glutamatergic synaptic transmission
EP2781601B1 (en) Method for producing insoluble aggregate of neurodegenerative-disease-related protein
Pinto et al. β-catenin aggregation in models of ALS motor neurons: GSK3β inhibition effect and neuronal differentiation
Léger et al. Ndr kinases regulate retinal interneuron proliferation and homeostasis
Moharir et al. Identification of a splice variant of optineurin which is defective in autophagy and phosphorylation
KR20150015226A (en) A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same
KR101755530B1 (en) A Marker for Detecting a Neuro-Degenerative Disease and a Method for Detecting the Neuro-Degenerative Disease by Using the Same
Oliveira da Silva et al. Cofilin pathology is a new player on α-synuclein-induced spine impairment in models of hippocampal synucleinopathy
Dewa et al. Neuronal DSCAM regulates the peri-synaptic localization of GLAST in Bergmann glia for functional synapse formation
US11582957B2 (en) TDP-43 knock-in mouse model of amyotrophic lateral sclerosis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E801 Decision on dismissal of amendment
A107 Divisional application of patent
WITB Written withdrawal of application