KR20150008292A - A method for quality test of wheat using near-infrared spectroscopy - Google Patents
A method for quality test of wheat using near-infrared spectroscopy Download PDFInfo
- Publication number
- KR20150008292A KR20150008292A KR1020130082109A KR20130082109A KR20150008292A KR 20150008292 A KR20150008292 A KR 20150008292A KR 1020130082109 A KR1020130082109 A KR 1020130082109A KR 20130082109 A KR20130082109 A KR 20130082109A KR 20150008292 A KR20150008292 A KR 20150008292A
- Authority
- KR
- South Korea
- Prior art keywords
- wheat
- content
- ash
- sample
- protein
- Prior art date
Links
- 241000209140 Triticum Species 0.000 title claims abstract description 142
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 142
- 238000000034 method Methods 0.000 title claims abstract description 70
- 238000012360 testing method Methods 0.000 title claims description 6
- 238000004497 NIR spectroscopy Methods 0.000 title abstract description 7
- 238000011088 calibration curve Methods 0.000 claims abstract description 46
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 42
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 42
- 238000004458 analytical method Methods 0.000 claims abstract description 37
- 238000001228 spectrum Methods 0.000 claims abstract description 29
- 238000004062 sedimentation Methods 0.000 claims abstract description 19
- 238000001556 precipitation Methods 0.000 claims description 25
- 230000003595 spectral effect Effects 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 12
- 239000005862 Whey Substances 0.000 claims description 4
- 102000007544 Whey Proteins Human genes 0.000 claims description 4
- 108010046377 Whey Proteins Proteins 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 12
- 238000003306 harvesting Methods 0.000 abstract description 5
- 230000001066 destructive effect Effects 0.000 abstract description 3
- 238000000985 reflectance spectrum Methods 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 43
- 235000018102 proteins Nutrition 0.000 description 38
- 235000013312 flour Nutrition 0.000 description 19
- 239000000243 solution Substances 0.000 description 13
- 235000013339 cereals Nutrition 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 235000012149 noodles Nutrition 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- 108010068370 Glutens Proteins 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 235000008429 bread Nutrition 0.000 description 4
- 235000014510 cooky Nutrition 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 235000021312 gluten Nutrition 0.000 description 4
- 238000002329 infrared spectrum Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000010422 painting Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 238000007619 statistical method Methods 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010061711 Gliadin Proteins 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000021321 essential mineral Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 210000002816 gill Anatomy 0.000 description 1
- 108010050792 glutenin Proteins 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 235000019156 vitamin B Nutrition 0.000 description 1
- 239000011720 vitamin B Substances 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 229940046001 vitamin b complex Drugs 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/10—Starch-containing substances, e.g. dough
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
본 발명은 근적외선(near-infrared; NIR) 분광기를 이용하여 밀 시료에 대한 반사 스펙트럼을 측정하는 단계; 상기 측정된 스펙트럼으로부터 도출된 스펙트럼 값을, 밀의 수분, 회분, 단백질 및 침전가 함량 검량곡선에 대입하여, 밀 시료의 수분, 회분, 단백질 및 침전가 함량을 결정하는 단계를 포함하는, 밀의 품질을 평가하는 방법에 관한 것이다.
The present invention relates to a method for measuring a reflection spectrum of a wheat flour using a near-infrared (NIR) spectrometer; Determining the moisture, ash, protein, and precipitation content of the whey sample by substituting the spectral value derived from the measured spectrum into the moisture, ash, protein, and precipitation content calibration curves of the wheat to determine the quality of the wheat ≪ / RTI >
밀은 전 세계적으로 재배되는 작물로 지구상 3대 주식량의 하나이며 벼과의 한해살이풀로 높이는 1 m 내외이고 소맥이라고도 한다. 세계 곡물 생산량에서 쌀과 옥수수와 함께 매년 각각 약 6억 톤씩 생산하고 있다. 동양에서는 보조식량으로 사용되나 서양에서는 주식량이다. 낟알은 맥주의 원료가 되기도 하며, 낟알을 빻아 밀가루로 만들어 빵, 과자, 국수 등을 만드는데 이용한다.Wheat is one of the three major food crops on the planet. It is a perennial plant of the paddy field and it is about 1 meter in height and it is also called wheat. It produces about 600 million tons of grain each year along with rice and corn from world grain production. It is used as an auxiliary food in the Orient, but it is the main food in the West. The grain is also used as a raw material for beer, and it is used to make bread, cookies and noodles by grinding the grain and making flour.
밀은 열량원이 우수하며 쌀의 약 2배에 달하는 단백질을 함유한다. 상기 밀 단백질은 다른 곡물에는 없는 단백질 성분을 포함하며, 또한 지질, 칼슘, 인 및 철분 함량도 쌀보다 높다.Wheat is excellent in calories and contains about twice as much protein as rice. The wheat protein contains protein components not found in other grains, and also has higher lipid, calcium, phosphorus and iron contents than rice.
밀에는 반죽을 부드럽게 만드는 글루텐이라고 하는 단백질이 들어 있기 때문에 빵을 만들기에 적당하다. 또한, 단백질, 녹말, 비타민E를 비롯해 니아신·리보플라빈·티아민과 같은 비타민B 복합체, 철분·인과 같은 필수 무기질 등 영양분이 풍부하다. 빵 이외에도 국수, 가정용 밀가루, 마카로니, 스파게티, 케이크, 쿠키, 비스킷, 푸딩, 각종 시리얼 등 밀을 이용한 식품은 아주 많다.Wheat is suitable for making bread because it contains a protein called gluten which softens the dough. In addition, protein, starch, vitamin E, niacin, riboflavin, thiamine and vitamin B complex, such as essential minerals such as iron and phosphorus are rich in nutrients. In addition to bread, there are many foods that use wheat, such as noodles, household flour, macaroni, spaghetti, cakes, cookies, biscuits, puddings, and various cereals.
세계 주요 밀 수출국인 미국, 캐나다, 호주 등에서는 밀의 품질 등급을 구분하여 판매시 적용하고 있으나, 국내에서는 밀의 품질 등급에 대한 기준이 아직 정해지지 않아 산물수매시 각기 다른 품질의 밀을 같이 수매하고 저장하므로 품질관리가 되고 있지 못한 실정이다. 밀의 품질은 밀가루 수율 및 등급과 관련된 제품의 품질 즉, 단백질 및 침전가와 같은 밀가루의 이화학적 특성과 반죽특성 그리고 최종 가공적성을 고려하여 품질을 구분할 수 있다.
In the United States, Canada, and Australia, which are major mill exporters in the world, wheat quality grades are classified and sold. However, in Korea, wheat quality standards have not been established yet. Quality control has not been achieved. The quality of the wheat can be distinguished by considering the quality of the product related to the flour yield and grade, ie, the physicochemical properties of the wheat flour, such as protein and sedimentation, the dough characteristics and the final processability.
이에 본 발명자들은 수확단계에서 빠르고 간단하게 밀의 품질을 평가할 수 있는 방법을 찾기 위하여 예의 연구 노력한 결과, 근적외선 분광기를 이용하여 밀 원맥의 반사 스펙트럼을 측정하여 이로부터 밀의 수분, 회분, 단백질 및 침전가 함량을 동시에 결정할 수 있음을 확인하고 본 발명을 완성하였다.
As a result of intensive research to find a method for evaluating the quality of wheat quickly and easily in the harvesting stage, the present inventors measured the reflection spectrum of the Wheatland using a near-infrared spectroscope and measured moisture, ash, protein, And the present invention has been completed.
본 발명의 목적은 근적외선(near-infrared; NIR) 분광기를 이용하여 밀 시료에 대한 반사 스펙트럼을 측정하는 단계; 상기 측정된 스펙트럼으로부터 도출된 스펙트럼 값을, 밀의 수분, 회분, 단백질 및 침전가 함량 검량곡선에 대입하여, 밀 시료의 수분, 회분, 단백질 및 침전가 함량을 결정하는 단계를 포함하는, 밀의 품질을 평가하는 방법을 제공하는 것이다.
SUMMARY OF THE INVENTION The object of the present invention is to provide a method of measuring a reflectance spectrum for a wheat sample using a near-infrared (NIR) spectroscope; Determining the moisture, ash, protein, and precipitation content of the whey sample by substituting the spectral value derived from the measured spectrum into the moisture, ash, protein, and precipitation content calibration curves of the wheat to determine the quality of the wheat Method.
상기 목적을 달성하기 위한 양태로서, 본 발명은 근적외선(near-infrared; NIR) 분광기를 이용하여 밀 시료에 대한 반사 스펙트럼을 측정하는 단계; 상기 측정된 스펙트럼으로부터 도출된 스펙트럼 값을, 밀의 수분, 회분, 단백질 및 침전가 함량 검량곡선에 대입하여, 밀 시료의 수분, 회분, 단백질 및 침전가 함량을 결정하는 단계를 포함하는, 밀의 품질을 평가하는 방법을 제공한다.According to an aspect of the present invention, there is provided a method for measuring a reflection spectrum of a wheat flour using a near-infrared (NIR) spectroscope. Determining the moisture, ash, protein, and precipitation content of the whey sample by substituting the spectral value derived from the measured spectrum into the moisture, ash, protein, and precipitation content calibration curves of the wheat to determine the quality of the wheat ≪ / RTI >
본 발명에 따른 밀의 품질을 평가하는 방법은 분말로 가공된 시료가 아닌 원맥 상태로부터 성분의 함량을 측정할 수 있는 비파괴적인 방법인 것이 특징이다. 따라서, 근적외선 분광기를 이용하면 수확 즉시 현장에서 상기 4가지 성분의 함량 분석이 가능하므로 품질 및/또는 가공용도에 따라 구분할 수 있다.The method for evaluating the quality of wheat according to the present invention is characterized by being a non-destructive method capable of measuring the content of components from the state of the wheat rather than the sample processed into powder. Therefore, by using the near-infrared spectroscope, it is possible to analyze the content of the four components immediately upon harvesting, so that it can be classified according to quality and / or processing use.
밀은 빵, 과자, 국수 등 다양한 각각의 가공용도에 맞게 사용하기 위해서 그 품질을 분석해야 하는데, 기존의 밀의 품질 분석방법의 경우 밀의 품질 관련 요인들인 수분, 회분, 단백질, 침전가 함량 등을 분석하기 위하여 일반분석법과 같이 각각 별도의 실험을 통해 이루어져 왔다. 그러나, 이러한 분석방법의 경우 많은 노력과 시간이 소요되고 복잡한 시료 처리과정이 요구되므로 현장에서 적시에 밀 품질을 분석하기가 어렵다는 단점이 있었다. 또한 단백질 함량 분석 등의 경우에는 원맥이 아닌 분말 상태의 밀을 이용하여 분석을 해야만 하는 단점이 있었다.Wheat should be analyzed for its quality in order to be used for various processing purposes such as bread, cookies, noodles, etc. In the case of conventional quality analysis methods of wheat, analysis of moisture, ash, protein, As a general method, it has been done through separate experiments. However, this method has a disadvantage in that it is difficult to analyze the wheat quality in a timely manner in the field because it requires a lot of effort and time and complicated sample processing. In addition, in the case of protein content analysis, there is a disadvantage in that it is necessary to perform analysis using a wheat in powder state rather than a grain.
이에 따라, 본 발명자들은 이러한 단점을 해소하기 위하여, 적시에 현장에서도 분석이 가능한 밀 품질 분석방법을 개발하고자 노력하였고, 본 발명의 근적외선 분광법을 이용하면, 원맥을 마쇄하지 않고 그 상태 그대로 분석이 가능할 뿐만 아니라 단 한 번의 근적외선 분광법만으로도 수분, 회분, 단백질 및 침전가 함량 등 밀 품질에 영향을 미치는 다양한 인자들을 동시에 분석할 수 있음을 확인하였다.Accordingly, the present inventors have sought to develop a wheat quality analysis method capable of analyzing in a timely manner in order to solve such disadvantages, and using the near-infrared spectroscopy method of the present invention, In addition, it was confirmed that only a single NIR spectroscopy can analyze various factors affecting wheat quality such as moisture, ash, protein and sediment content.
시험재료로는 농촌진흥청 국립식량과학원에서 보유한 밀 자원과 2011년산 산물수매, 2012년산 산물수매, 2012년산 원맥 500 여점을 이용하여 파장에 따라 형성된 그래프의 Peak를 중심으로 함량을 수치화시켜줌으로서 1차, 2차의 미적분 방법 등으로 통계분석하여 품질 측정 기준선인 검량곡선을 최적화하였다.As a test material, the contents of the wheat resources held by the National Institute of Food Science and Technology (RDA) of the Rural Development Administration were used to quantify the content based on the peaks of the graphs formed by the wavelengths using the 2011 product purchase, the 2012 product purchase, The second calibration equation was used for statistical analysis to optimize the calibration curve.
따라서, 본 발명의 평가방법은 단회 측정으로 수분, 회분, 단백질 및 침전가 함량을 동시에 결정할 수 있는 방법인 것이 특징이다.Therefore, the evaluation method of the present invention is characterized in that moisture, ash, protein, and precipitation content can be simultaneously determined by a single measurement.
본 발명에서 "밀의 수분 함량"은 밀 시료 전체 중량에 대한 수분이 차지하는 중량의 백분율로 정의되는 밀의 특성이다. 상기 밀의 수분 함량은 저장상태에 영향을 줄 수 있다. 밀을 저장하는 데 있어서 수분 함량이 높은 경우, 저장 기간 동안 부패할 수 있으므로, 가급적 14% 이하의 수분함량을 지니고 있는 원맥을 수매하고 저장하는 것이 바람직하다. 따라서, 수분 함량이 14% 초과하는 밀은 구분하여 별도로 보관하는 것이 바람직하며, 필요에 따라서 추가적인 건조과정 등을 수행하거나 즉시 가공할 수 있다.In the present invention, the "moisture content of wheat" is a characteristic of wheat, which is defined as a percentage of the weight of water to the total weight of the wheat sample. The moisture content of the wheat may affect the storage state. If the moisture content is high in storing the wheat, it may be corrupted during the storage period. Therefore, it is preferable to purchase and store the wheat having a water content of 14% or less. Therefore, wheat having moisture content of more than 14% is preferably separated and stored separately. If necessary, additional drying process or the like can be carried out or processed immediately.
본 발명에서 "밀의 회분 함량"은 밀 시료 전체 중량에 대한 회분 중량의 백분율로 표시되며, 상기 회분 중량은 시료를 완전히 연소시키고 남은 물질 예컨대, 재의 양으로 측정한다. 상기 회분 함량은 무기질의 양으로 정의된다. 밀 종실의 껍질은 배유부에 비하여 무기성분이 많으므로 껍질이 두꺼우면 회분 함량이 증가하게 된다. 따라서, 회분 함량은 밀의 제분성능 및 제분기술과도 밀접한 관련이 있으며, 일반적으로 회분 함량이 증가할수록 밀가루의 색이 어두워지므로 소비자 선호도에 영향을 주기도 한다.In the present invention, the "ash content of wheat" is expressed as a percentage of the ash content relative to the total weight of the wheat sample, and the ash weight is measured by the amount of the remaining material, for example, ash after the sample is completely burnt. The ash content is defined as the amount of minerals. Since the husk of wheat seeds has more inorganic components than the husked part, the ash content increases when the shell is thicker. Therefore, the ash content is closely related to the milling performance and milling technology of the wheat. In general, as the ash content increases, the color of the flour becomes darker and affects consumer preference.
본 발명에서 "밀의 단백질 함량"은 밀 시료 전체 중량에 대한 단백질 중량의 백분율로 표시되며, 구체적으로 함유된 질소의 양을 측정하여 단백질의 양으로 환산한다. 밀의 단백질 함량은 양적 및 질적인 측면에서 밀의 품질을 좌우하는 중요한 요소이다. 밀가루에 수분을 첨가하여 반죽하면 글루텐이 형성되면서 점성을 갖게 된다. 이는 서로 엉켜 그물코 구조를 형성하며 전분입자를 감싸서 다양한 반죽을 만든다. 상기 글루텐은 전체 단백질 중 약 80%를 차지하는 저장 단백질로서 글리아딘(gliadin)과 글루테닌(glutenin)으로 구성되며 신장력과 탄력성에 절대적인 영향을 미친다. 이와 같이 밀의 단백질 함량은 생성되는 밀가루 반죽의 점성 및 탄성 등에 중요한 영향을 미치므로, 이는 밀가루의 가공용도를 구분하는 기준이 될 수 있다. 일명 박력분이라고 하는 밀가루는 단백질을 8% 정도 포함하는 것으로 반죽의 점성이 낮아 부드럽고 바삭한 쿠키, 스폰지 케익, 슈반죽 등의 제과용으로 사용된다. 강력분은 11 내지 13%의 단백질을 함유하는 것으로 점성이 높아 파이 등의 일반 제빵용으로 사용되며 상기 박력분과 강력분의 중간 정도의 글루텐 강도를 갖는 중력분은 국수나 우동 등의 제면용으로 사용될 수 있다.In the present invention, the "protein content of wheat" is expressed as a percentage of the protein weight with respect to the total weight of the wheat sample. Specifically, the amount of nitrogen contained is measured and converted into the amount of the protein. The protein content of wheat is an important factor that determines wheat quality both quantitatively and qualitatively. When flour is added with water and kneaded, gluten is formed and becomes viscous. They form a tangled network structure, wrapping starch particles and making various doughs. The gluten is composed of gliadin and glutenin as a storage protein which occupies about 80% of total protein, and has an absolute effect on stretchability and elasticity. As such, the protein content of the wheat has a significant influence on the viscosity and elasticity of the resulting dough, which can serve as a reference for distinguishing the processing purpose of wheat flour. The so-called flour, called flour, contains about 8% protein and is used for confectionery such as soft and crispy cookies, sponge cake, and shoe dough with low viscosity of the dough. The strong powder contains 11 to 13% of protein and is highly viscous and is used for general baking such as pie. The gravity powder having a gluten strength midway between the powder and the strong powder can be used for noodles such as noodles and udon noodles.
본 발명에서 "밀의 침전가 함량"은 단백질의 질적 특성을 나타내는 측정값의 하나이다. 구체적으로 밀가루가 균일하게 용해된 용액을 제조하고 충분한 시간동안 방치하여 침전시킨 후 생성된 침전의 부피를 측정한다. 상기 침전가는 밀가루의 단백질 용해도에 근거하여 단백질의 함량이나 질적인 특성에 따라 용출되는 단백질의 양이 달라지고 이에 따라 침강되는 속도가 달라지므로 침전부피가 달라진다는 사실에 기초하여 측정되는 값이다. 따라서, 이를 근거로 단백질의 특성을 파악하여 밀가루 단백질의 특성을 판별할 수 있으며, 일반적으로 침전가가 높을수록 단백질의 함량이나 질적인 특성이 제빵용에 적합하다. 따라서, 측정된 밀의 침전가는 밀의 가공용도를 결정하는 또 하나의 인자로 작용할 수 있다.
In the present invention, the "amount of precipitation of wheat" is one of the measurement values indicating the qualitative characteristics of the protein. Specifically, a solution in which wheat flour is uniformly dissolved is prepared, and the solution is allowed to stand for a sufficient time to precipitate, and then the volume of the resulting precipitate is measured. Based on the protein solubility of wheat flour, the precipitate is a value measured based on the fact that the amount of the eluted protein varies depending on the content of the protein or the qualitative characteristics thereof, and thus the sedimentation rate varies, and thus the sedimentation volume varies. Therefore, it is possible to identify the characteristics of wheat flour protein based on the characteristics of the protein, and in general, the higher the settling value, the better the protein content and qualitative characteristics are for baking. Thus, the settling of the measured mill can serve as another factor in determining the milling application.
본 발명에 따른 근적외선 스펙트럼 값으로부터 밀의 수분 함량을 결정하기 위하여 사용되는 상기 밀의 수분 함량 검량곡선은 바람직하게 1) 표준 밀 시료의 NIR 스펙트럼에 1차미분과 직선뺄셈법을 적용하여 도출한 값을, 2) 표준 밀 시료를 AACC Method 44-15 방법 및 AOAC official method 925.10으로 구성된 군으로부터 선택되는 습식 수분 분석방법에 의해 측정한 수분 함량과 비교하여 최적화하여 도출된 것일 수 있다. 본 발명의 일 실시예에서는 표준 밀 시료에 대해 상기 습식 수분 분석방법에 의해 측정한 수분 함량을 기준으로 동일 시료에 대해 NIR 스펙트럼을 일련의 수학적 조작을 통해 도출한 값이 상기 습식 방법에 의해 측정된 값에 근접하도록 오차를 최소화하는 방향으로 최적화하여 밀에 최적화된 수분 함량 검량곡선을 도출하였다. 상기 기준 값으로써 표준 밀 시료에 대한 수분 함량을 측정하기 위한 습식 수분 분석방법은 상기 열거한 방법에 제한되지 않으며, 당업계에 공지된 수분 분석방법을 제한없이 사용할 수 있다.The moisture content calibration curve of the wheat used to determine the moisture content of the wheat from the near infrared spectrum value according to the present invention is preferably 1) a value derived by applying a first derivative and a linear subtraction method to the NIR spectrum of a standard wheat sample, ) Standard wheat samples were compared with the moisture content measured by a wet moisture analysis method selected from the group consisting of the AACC Method 44-15 method and the AOAC official method 925.10. In one embodiment of the present invention, a value obtained by performing a series of mathematical operations on the NIR spectrum for the same sample on the basis of the moisture content measured by the wet moisture analysis method on a standard wheat sample is measured by the wet method To optimize the error in the direction of minimizing the error so as to obtain a moisture content calibration curve optimized for the wheat. The wet moisture analysis method for measuring the moisture content with respect to the standard wheat flour as the reference value is not limited to the above-mentioned method, and the moisture analysis method known in the art can be used without limitation.
상기 밀의 수분 함량 검량곡선은 y=(0.922±0.005)x+(0.911±0.01)일 수 있으며, 바람직하게는 상기 밀의 수분 함량 검량곡선은 y=0.922x+0.911일 수 있다. 여기서, 상기 x가 밀 시료의 스펙트럼 값일 때, 밀 시료의 수분 함량 측정값 y(%)가 결정될 수 있다.
The moisture content calibration curve of the wheat may be y = (0.922 0.005) x + (0.911 0.01), and preferably the moisture content calibration curve of the wheat may be y = 0.922x + 0.911. Here, when x is the spectral value of the wheat sample, the water content measurement value y (%) of the wheat sample can be determined.
본 발명에 따른 근적외선 스펙트럼 값으로부터 밀의 회분 함량을 결정하기 위하여 사용되는 상기 밀의 회분 함량 검량곡선은 바람직하게 1) 표준 밀 시료의 NIR 스펙트럼에 1차미분과 벡터정규화를 적용하여 도출한 값을, 2) 표준 밀 시료를 AACC Method 08-01 방법 및 AOAC official method 923.03으로 구성된 군으로부터 선택되는 습식 회분 분석방법에 의해 측정한 회분 함량과 비교하여 최적화하여 도출된 것일 수 있다. 본 발명의 일 실시예에서는 표준 밀 시료에 대해 상기 습식 회분 분석방법에 의해 측정한 회분 함량을 기준으로 동일 시료에 대해 NIR 스펙트럼을 일련의 수학적 조작을 통해 도출한 값이 상기 습식 방법에 의해 측정된 값에 근접하도록 오차를 최소화하는 방향으로 최적화하여 밀에 최적화된 회분 함량 검량곡선을 도출하였다. 상기 기준 값으로써 표준 밀 시료에 대한 회분 함량을 측정하기 위한 습식 회분 분석방법은 상기 열거한 방법에 제한되지 않으며, 당업계에 공지된 회분 분석방법을 제한없이 사용할 수 있다.The ash ash content calibration curve used to determine the ash content of the wheat from the near infrared spectrum values according to the present invention is preferably 1) the values derived by applying the first order differential and vector normalization to the NIR spectra of the standard wheat samples, ) Standard wheat samples compared to the ash content measured by a wet batch analysis method selected from the group consisting of the AACC Method 08-01 method and the AOAC official method 923.03. In one embodiment of the present invention, a value obtained by performing a series of mathematical operations on the NIR spectrum for the same sample on the basis of the ash content measured by the wet ash analysis method for a standard wheat sample is measured by the wet method To optimize the error in the direction of minimizing the error to yield a wheat optimized ash content calibration curve. The wet ash analysis method for measuring the ash content of the standard wheat flour as the reference value is not limited to the above-mentioned method, and the ash analysis method known in the art can be used without limitation.
상기 밀의 회분 함량 검량곡선은 y'=(0.933±0.005)x'+(0.08±0.01)일 수 있으며, 바람직하게는 상기 밀의 회분 함량 검량곡선은 y'=0.933x'+0.08일 수 있다. 여기서, 상기 x'이 밀 시료의 스펙트럼 값일 때, 밀 시료의 회분 함량 측정값 y'(%)이 결정될 수 있다.
The ash content calibration curve of the wheat may be y '= (0.933 0.005) x' + (0.08 0.01), and preferably the ash content calibration curve of the wheat may be y '= 0.933x' + 0.08. Here, when x 'is the spectral value of the wheat sample, the ash content measurement value y' (%) of the wheat sample can be determined.
본 발명에 따른 근적외선 스펙트럼 값으로부터 밀의 단백질 함량을 결정하기 위하여 사용되는 상기 밀의 단백질 함량 검량곡선은 바람직하게 1) 표준 밀 시료의 NIR 스펙트럼에 1차미분과 승법산포수정법을 적용하여 도출한 값을, 2) 표준 밀 시료를 AACC Method 44-15 방법, AACC Method 46-08, AACC Method 46-16 방법 및 AOAC official method 920.87으로 구성된 군으로부터 선택되는 습식 단백질 분석방법에 의해 측정한 단백질 함량과 비교하여 최적화하여 도출된 것일 수 있다. 본 발명의 일 실시예에서는 표준 밀 시료에 대해 상기 습식 단백질 분석방법에 의해 측정한 단백질 함량을 기준으로 동일 시료에 대해 NIR 스펙트럼을 일련의 수학적 조작을 통해 도출한 값이 상기 습식 방법에 의해 측정된 값에 근접하도록 오차를 최소화하는 방향으로 최적화하여 밀에 최적화된 단백질 함량 검량곡선을 도출하였다. 상기 기준 값으로써 표준 밀 시료에 대한 단백질 함량을 측정하기 위한 습식 단백질 분석방법은 상기 열거한 방법에 제한되지 않으며, 당업계에 공지된 단백질 분석방법을 제한없이 사용할 수 있다.The protein content calibration curve of the wheat used to determine the protein content of the wheat from the near infrared spectrum according to the present invention is preferably 1) a value derived by applying a first derivative and a multiplication method to the NIR spectrum of a standard wheat sample, 2) Standard wheat samples were optimized by comparing with the protein content measured by a wet protein assay method selected from the group consisting of AACC Method 44-15 method, AACC Method 46-08, AACC Method 46-16 method and AOAC official method 920.87 . In an embodiment of the present invention, a value obtained by a series of mathematical operations of the NIR spectrum for the same sample on the basis of the protein content measured by the wet protein analysis method for a standard wheat sample is measured by the wet method To optimize the error in the direction that minimizes the error so as to derive the protein content calibration curve optimized for wheat. The wet protein analysis method for measuring the protein content of the standard wheat flour as the reference value is not limited to the above-mentioned method, and any protein analysis method known in the art can be used without limitation.
상기 밀의 단백질 함량 검량곡선은 y''=(0.937±0.005)x''+(0.786±0.01)일 수 있으며, 바람직하게 상기 밀의 단백질 함량 검량곡선은 y''=0.937x''+0.786일 수 있다. 여기서, 상기 x''이 밀 시료의 스펙트럼 값일 때, 밀 시료의 단백질 함량 측정값 y''(%)이 결정될 수 있다.
The protein content calibration curve of the wheat may be y "= (0.937 ± 0.005) x" + (0.786 ± 0.01), and preferably the protein content calibration curve of the wheat may be y "= 0.937x" have. Here, when x "is the spectral value of the wheat sample, the protein content measurement value y" (%) of the wheat sample can be determined.
본 발명에 따른 근적외선 스펙트럼 값으로부터 밀의 침전가 함량을 결정하기 위하여 사용되는 상기 밀의 침전가 함량 검량곡선은 바람직하게 1) 표준 밀 시료의 NIR 스펙트럼에 1차미분을 적용하여 도출한 값을, 2) 표준 밀 시료를 SDS(Dodecyl sulfate of sodium)-침전시험(SDS-sedimentation test) 방법 및 AACC method 56-61A으로 구성된 군으로부터 선택되는 습식 침전가 분석방법에 의해 측정한 침전가 함량과 비교하여 최적화하여 도출된 것일 수 있다. 본 발명의 일 실시예에서는 표준 밀 시료에 대해 상기 습식 침전가 분석방법에 의해 측정한 침전가 함량을 기준으로 동일 시료에 대해 NIR 스펙트럼을 일련의 수학적 조작을 통해 도출한 값이 상기 습식 방법에 의해 측정된 값에 근접하도록 오차를 최소화하는 방향으로 최적화하여 밀에 최적화된 침전가 함량 검량곡선을 도출하였다. 상기 기준 값으로써 표준 밀 시료에 대한 침전가 함량을 측정하기 위한 습식 침전가 분석방법은 상기 열거한 방법에 제한되지 않으며, 당업계에 공지된 침전가 분석방법을 제한없이 사용할 수 있다.The calibration curve for the precipitation content of the wheat used to determine the precipitation amount of the wheat from the near infrared spectrum value according to the present invention is preferably 1) a value derived by applying a first derivative to the NIR spectrum of a standard wheat sample, 2) The sample may be one that has been optimized by comparing the sedimentation amount measured by a wet precipitation assay method selected from the group consisting of the Dodecyl sulfate of sodium (SDS) sedimentation test method and the AACC method 56-61A have. In an embodiment of the present invention, a value obtained by a series of mathematical operations of the NIR spectrum for the same sample on the basis of the precipitation amount measured by the wet precipitation analysis method for a standard wheat sample is measured by the wet method To optimize the error in the direction of minimizing the error so as to obtain a precipitation content calibration curve optimized for the wheat. The wet sedimentation analysis method for measuring the sedimentation amount with respect to the standard wheat sample as the reference value is not limited to the above-mentioned method, and the sedimentation analysis method known in the art can be used without limitation.
상기 밀의 침전가 함량 검량곡선은 y'''=(0.947±0.005)x'''+(2.150±0.01)일 수 있으며, 바람직하게 상기 밀의 침전가 함량 검량곡선은 y'''=0.947x'''+2.150일 수 있다. 여기서, 상기 x'''이 밀 시료의 스펙트럼 값일 때, 밀 시료의 침전가 함량 측정값 y'''(㎖)이 결정될 수 있다.
The precipitation content calibration curve of the wheat may be y''' = (0.947 ± 0.005) x '''+ (2.150 ± 0.01), preferably the precipitation content calibration curve of the wheat is y''' = 0.947x '''Lt; / RTI > Here, when x '''is the spectral value of the wheat sample, the measurement value y''' (ml) of the precipitation content of the wheat sample can be determined.
본 발명에서는 상기와 같이 밀, 바람직하게는 마쇄되지 않은 원맥을 근적외선 분광법으로 분석하여, 수분 함량, 회분 함량, 단백질 함량 및 침전가 함량을 동시에 결정함으로써, 밀의 품질을 평가할 수 있다.In the present invention, the quality of the wheat can be evaluated by analyzing the wheat, preferably the unmachined wheat, by the near-infrared spectroscopic method, and simultaneously determining the moisture content, the ash content, the protein content and the precipitation content.
본 발명의 일 실시예에서는 NIR 분광법에 의해 측정한 밀 원맥에 대한 스펙트럼을 상기 최적화된 검량곡선에 대입하여 얻은 수분, 회분, 단백질 및 침전가 함량 및 동일한 시료에 대한 일반분석값을 비교하였고, 본 발명에 따른 밀 원맥으로부터 NIR을 이용하여 측정한 값이 기존의 일반분석값과 비교하여 모든 성분에 대해 ±0.5(% 또는 ㎖) 이내의 오차범위 수준으로 측정됨을 확인하였다(표 1).
In one embodiment of the present invention, the contents of moisture, ash, protein, and sediment obtained by substituting the spectrum of the Wheatmeal measured by NIR spectroscopy into the optimized calibration curve were compared with those of the same sample, (NIR) of the wheat nets according to the present invention was compared with the conventional analytical values, and it was confirmed that the error range was within ± 0.5 (% or ㎖) for all the components (Table 1).
본 발명의 근적외선 분광법을 이용한 밀의 품질 평가방법은 원맥 자체를 시료로 사용할 수 있는 비파괴적인 분석방법이며, 밀의 품질에 지표가 되는 수분, 회분, 단백질 및 침전가를 단회 측정으로 동시에 분석할 수 있으므로, 수확과 동시에 빠르고 간편하게 밀의 품질을 평가할 수 있다.
The method of evaluating the quality of wheat using the near-infrared spectroscopic method of the present invention is a non-destructive analysis method which can use the wheat itself as a sample. Since moisture, ash, protein and precipitation value which are indicators of the quality of wheat can be analyzed simultaneously by a single measurement, The quality of the wheat can be evaluated quickly and easily.
도 1은 밀 원맥 시료에 대한 NIR 스펙트럼 및 각 성분별 파장영역대를 나타낸 도이다.
도 2는 각 성분에 대해 최적화된 검량곡선을 나타낸 도이다.FIG. 1 is a graph showing the NIR spectrum and the wavelength region band for each component of a wheat field sample.
Fig. 2 is a graph showing a calibration curve optimized for each component. Fig.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are for further illustrating the present invention, and the scope of the present invention is not limited to these examples.
실시예Example
1: 시험재료 1: Test material
시험재료로는 국립식량과학원에서 보유한 밀 자원과 2011년산 산물수매, 2012년산 산물수매 및 2012년산 원맥 500여점을 사용하였다.As the test materials, we used the wheat resources held by the National Institute of Food Science and Technology, the 2011 product purchase, the 2012 product purchase, and the 2012 annual production line.
상기 시료는 전라남북도 및 경상남도지역(김제, 장성, 사천 및 합천)의 산물과 전국 각지(전라남북도 150 농가, 경상남북도 48 농가, 충청남북도 57 농가 및 경기강원지역 27 농가)의 원맥을 사용하였다. 상기 산물은 산물수매처에서 500 g씩 수집하였으며, 원맥은 전국의 재배지로부터 수집하였다.The samples used were the products of Jeollanam - do and Gyeongsangnam - do (Gimje, Jangseong, Sacheon and Hapcheon) and the parts of the whole country (150 farmhouses in North and South Korea, 48 farmhouses in North and South Kyungsang provinces, 57 farmhouses in Chungcheongnambuk province and 27 farmhouses in Gangwon province in Gyeonggi province). The products were collected at 500 grams at the place where the products were bought, and the oranges were collected from the cultivation sites throughout the country.
전체적이 시험 일정은 하기를 따른다: 6월에 산물수매처로부터 산물을, 농가별로 원맥을 수집한 후 동월에 즉시 NIR을 이용하여 수분, 회분, 단백질 및 침전가를 측정하였다. 그리고, 7월 및 8월에는 동일한 시료에 대해 일반분석을 수행하여 수분, 회분, 단백질 및 침전가를 측정하였다. 이어서 9월과 10월에는 상기 NIR 데이터를 일반분석으로부터 얻은 데이터와 비교분석하였고, 11월에는 기존의 검량곡선에 데이터를 추가하여 검량곡선을 최적화하였다.
The overall test schedule is as follows: Moisture, ash, protein, and sedimentation value were measured using NIR immediately after harvesting products from farms and harvesting farms in June. In July and August, general analysis was performed on the same samples to measure moisture, ash, protein and sedimentation value. In September and October, the NIR data was compared with the data obtained from the general analysis. In November, the calibration curve was optimized by adding data to the existing calibration curve.
실시예Example
2: 종래 밀 품질분석 방법 2: Conventional wheat quality analysis method
본 발명에 따른 근적외석 분광법을 이용한 비파괴적 품질분석결과와의 비교를 위하여 기존의 습식방법으로 수분, 회분, 단백질 및 침전가를 측정하였다. 수분 분석은 AACC Method 44-15 방법에 따라, 회분 분석은 회화로를 이용하여 AACC Method 44-15 방법에 따라, 단백질 분석은 Elementar Analysensester를 이용한 AACC(American Association of Cereal Chemists) Method 46-30 방법에 따라, 그리고 침전가 분석은 SDS-침전시험(SDS-sedimentation test) 방법으로 수행하였다. 상기 일반분석방법들은 밀을 분쇄하여 얻은 분말 시료를 이용한다.
Moisture, ash, protein, and sedimentation value were measured by the conventional wet method for comparison with the nondestructive quality analysis result using the near-infrared spectroscopic method according to the present invention. Moisture analysis was performed according to AACC Method 44-15 method, ash analysis was performed using AACC Method 44-15 method using a furnace, and protein analysis was performed using the American Association of Cereal Chemists (AACC) Method 46-30 using Elementar Analysensester And sedimentation analysis was performed by the SDS-sedimentation test method. The above general analytical methods use powder samples obtained by pulverizing wheat.
2.1. 수분 분석2.1. Moisture analysis
105℃(±1℃)로 온도가 조절된 건조기에 칭량병의 뚜껑을 열어둔 채로 1 내지 2시간 가열한 후, 칭량병의 뚜껑을 덮고, 데시케이터에 옮겨 방냉하여 실온에 도달하면 정확히 칭량하였다. 가열시간을 30분 정도로 하여 칭량병의 무게가 일정해질 때(W0, 항량이 될 때)까지 상기 과정을 반복하였다. 항량에 도달한 칭량병에 시료 3 내지 5 g을 넣고 무게를 측정(W1)하였다. 105℃로 조절된 건조기에 칭량병의 뚜껑을 연 채 넣어 2 내지 3시간 건조시킨 뒤 뚜껑을 닫고 데시케이터에 옮겨 방냉하여 실온에 도달하면 빨리 칭량하였다. 다시 뚜껑을 열고 건조기 속에 넣어 상기한 방법으로 한 시간 건조시켜 칭량하여 항량(W2)이 될 때까지 반복하였다. It is heated for 1 to 2 hours with the lid of the weighing bottle kept open at 105 ° C (± 1 ° C), and the lid of the weighing bottle is covered. After transferring to a desiccator and cooling, Respectively. The above procedure was repeated until the weight of the weighing bottle became constant (W 0 , when the weight became constant) with a heating time of about 30 minutes. 3 to 5 g of a sample was placed in a weighing bottle having reached a constant weight and weighed (W 1 ). The lid of the weighing bottle was opened and dried for 2 to 3 hours, and the lid was closed and transferred to a desiccator and allowed to cool. When the temperature reached room temperature, it was weighed quickly. The lid was then opened and placed in a drier, dried for one hour in the same manner as described above, weighed, and repeated until the weight became constant (W 2 ).
2.2. 회분 분석2.2. Ash analysis
평량한 회화용기를 600℃ 이상의 전기로 속에서 수 시간 연소시킨 다음 데시케이터에 옮기어 방냉한 후 실온에 달하면 즉시 평량(W0)하였다. 상기 항량에 도달한 도가니에 잘 건조된 시료를 곱게 분쇄하여 2 내지 5 g을 넣고 무게를 측정(W1)하였다. 상기 회화도가니를 그대로 회화로에 옮겨 550 내지 600℃에서 백색 또는 회백색의 회분이 얻어질 때까지 계속 가열하였다. 회화가 완료되면 회화로 내에서 그대로 식히고 온도가 약 200℃ 정도 되었을 때 데시케이터에 옮겨 냉각시킨 후 실온에 달하면 신속하게 칭량(W2)하였다.The weighed container was placed in an electric furnace at 600 ° C or higher for several hours, transferred to a desiccator, allowed to cool, and immediately weighed (W 0 ) when it reached room temperature. A well-dried sample was crushed finely in a crucible reaching the constant weight, and 2 to 5 g of the sample were weighed and weighed (W 1 ). The above painting crucible was directly transferred to a painting furnace and heated at 550 to 600 ° C until a white or off-white ash was obtained. When the painting was completed, it was left to cool in the painting furnace. When the temperature reached about 200 ° C, it was transferred to a desiccator, cooled, and then weighed quickly (W 2 ) when it reached room temperature.
2.3. 단백질 분석2.3. Protein analysis
킬달(Kjeldahl)법은 하기 4단계 반응으로 진행된다.The Kjeldahl method proceeds in the following four-step reaction.
분해반응 : 질소(N) + H2SO4 → (NH4)2SO4+SO2↑ +CO2↑ + CO↑ + H2O↑Decomposition reaction: nitrogen (N) + H 2 SO 4 → (NH 4 ) 2 SO 4 + SO 2 ↑ + CO 2 ↑ + CO ↑ + H 2 O ↑
증류반응 : (NH4)2SO4+2NaOH → 2NH3+Na2SO4+2H2ODistilling the reaction: (NH 4) 2 SO 4 + 2NaOH → 2NH 3 +
중화반응 : 2NH3+H2SO4 → (NH4)2SO4 Neutralization reaction: 2 NH 3 + H 2 SO 4 → (NH 4 ) 2 SO 4
적정반응 : H2SO4+2NaOH → Na2SO4+2H2O
Appropriate reaction: H 2 SO 4 + 2 NaOH → Na 2 SO 4 + 2H 2 O
분말 시료 약 0.5 내지 1 g을 취하여 정확히 칭량한 다음 분해튜브에 상기 칭량한 시료를 넣고, 2종의 촉매제(CuSO4 + K2SO4)와 진한 황산 12 내지 15 ㎖를 차례로 첨가하였다. 420℃까지 예열된 분해기에 상기 분해튜브를 스탠드를 이용하여 분해기 내에 장착하고 약 50분간 연소시켜 분해하였다. 분해가 완료되면 분해튜브를 꺼내어 상온까지 냉각시켰다. 분해액에 40% NaOH를 가하고, 수증기로 증류하여 암모니아 발생하면 포화용액에 흡수시켰다. 지시약이 들어있는 붕산액에 포집하고 0.1N 염산표준용액으로 적정하여 하기 수식으로 단백질 함량을 계산하였다.
0.5 to 1 g of a powder sample was precisely weighed, the weighed sample was placed in a dissolution tube, and 2 kinds of catalysts (CuSO 4 + K 2 SO 4 ) and 12 to 15 ml of concentrated sulfuric acid were added in order. The decomposition tube was placed in a decomposer preheated to 420 DEG C by using a stand and decomposed by burning for about 50 minutes. When the decomposition was completed, the decomposition tube was taken out and cooled to room temperature. 40% NaOH was added to the decomposed solution, and when the ammonia was distilled by steam, it was absorbed into a saturated solution. The sample was collected in a boric acid solution containing the indicator and titrated with 0.1 N hydrochloric acid standard solution. The protein content was calculated by the following formula.
상기 수식에서 V는 분석시료에 대한 0.1N HCl 적정치, ㎖; V0는 공시료(Blank)에 대한 0.1N HCl 적정치, ㎖; F는 0.1N HCl 표준용액의 계수(factor); D는 희석배수; 0.001401은 0.1N HCl용액 1 ㎖에 상응하는 질소량, g; N은 질소환산계수; S는 시료채취량, g이다.In the above equation, V is the 0.1N HCl specific concentration of the analytical sample, ml; V 0 is the 0.1N HCl specific constant for the blank, ml; F is the factor of a 0.1 N HCl standard solution; D is the dilution factor; 0.001401 represents the amount of nitrogen corresponding to 1 ml of 0.1 N HCl solution, g; N is the nitrogen conversion factor; S is the sample weight, g.
상기 계산된 단백질 함량은 상기 측정된 수분함량을 기초로 수분함량 14%를 기준으로 보정하여 실험실 값으로 사용하였다.
The calculated protein content was used as a laboratory value based on the measured moisture content based on a moisture content of 14%.
2.4. 2.4. 침전가Precipitant 분석 analysis
SDS(Sodium Dodecyl Sulfate) 20 g을 증류수 1 L에 녹여 2% SDS 용액을 제조하고, 락트산(lactic acid)과 증류수를 1:8로 혼합하여 락트산 용액을 제조하였다. 상기 제조한 2% SDS 용액 1 L에 락트산 용액 20 ㎖을 첨가하여 SDS-락트산 용액을 제조하였다. 수분함량이 14%인 밀가루 5 g을 100 ㎖ 실린더에 넣고, 증류수 50 ㎖을 첨가하여 15초 동안 잘 혼합되도록 흔들어주었다. 2분과 4분 경과 후에 다시 15초씩 흔들어주었다. 상기 밀가루 용액을 포함하는 실린더에 먼저 제조한 SDS-락트산 용액 50 ㎖을 첨가하였다. 실린더를 4회 정도 상하로 흔들어주었다. 2분, 4분 및 6분 경과 후에 추가로 실린더를 4회 정도 위아래로 흔들어주었다. 40분 동안 방치한 후 침전된 밀가루와 용액의 경계면 수치를 읽어 침전량을 결정하였다.
A 2% SDS solution was prepared by dissolving 20 g of SDS (sodium dodecyl sulfate) in 1 L of distilled water. Lactic acid solution was prepared by mixing 1: 8 of lactic acid and distilled water. To 1 L of the 2% SDS solution prepared above, 20 mL of a lactic acid solution was added to prepare an SDS-lactic acid solution. 5 g of wheat flour with a water content of 14% was placed in a 100 ml cylinder, and 50 ml of distilled water was added thereto, followed by shaking for 15 seconds to mix well. After 2 minutes and 4 minutes, they were shaken again for 15 seconds. To the cylinder containing the flour solution was added 50 ml of the previously prepared SDS-lactic acid solution. The cylinder was shaken up and down about 4 times. After 2 minutes, 4 minutes and 6 minutes, the cylinder was shaken up and down about 4 times. After standing for 40 minutes, the settling amount was determined by reading the value of the interface between the precipitated wheat and the solution.
실시예Example
3: 3:
근적외선Near infrared
분광법을 이용한 밀 품질분석 방법 Analysis method of wheat quality by spectroscopy
밀 원맥 시료를 정선 후 건전한 곡립 50립(또는 3 g)을 취하여 측정병에 넣어주었다. 측정병을 NIR(near-infrared) 분광기의 광 측정 위치에 올려놓고, 근적외선을 조사하고 반사되는 빛을 받아들여 스펙트럼을 얻었다. 상기 반사된 광의 세기는 조사한 광의 세기로부터 투과된 광의 세기를 뺀 값과 일치한다. 3회 반복하여 측정한 스펙트럼을 저장하고, 시료를 교체한 후 각 시료에 대해 상기 과정을 반복하였다. 검량곡선을 작성하기 위하여 모든 시료에 대한 스펙트럼을 불러들여 1차 미분, 2차 미분 등의 통계분석으로 최적의 검량곡선을 생성하였다. 상기 검량곡선은 일반분석 데이터와 비교하여 오차를 최소화하도록 최적화하였다.The wheat grain samples were selected, and 50 grains (or 3 g) of good grape were taken and placed in a measuring bottle. The measurement bottle was placed on the optical measurement position of a near-infrared (NIR) spectrometer, irradiated near-infrared, and the reflected light was received to obtain a spectrum. The intensity of the reflected light corresponds to the intensity of the irradiated light minus the intensity of the transmitted light. The spectrum was repeated three times and the procedure was repeated for each sample after replacing the sample. In order to create the calibration curve, the spectrum of all the samples was called up and the optimal calibration curve was created by statistical analysis of the first and second derivatives. The calibration curves were optimized to minimize errors compared to general analytical data.
성분별 파장 영역대는 도 1에 나타내었다.The wavelength band of each component is shown in Fig.
파장에 따라 형성된 그래프의 피크를 중심으로 함량을 수치화시켜 검량곡선을 확립하기 위하여 1차, 2차 미적분 방법 등으로 통계분석하여 최적화하였다. 수분 함량곡선은 1차미분과 직선뺄셈법(Straight line substraction)을, 회분 함량곡선은 1차미분과 벡터 정규화(Vector normalization)를, 단백질 함량곡선은 1차 미분과 승법산포수정법(multiplicative scatter correction; MSC)을, 그리고 침전가 함량곡선은 1차미분을 주로 적용하였다. NIR 스펙트럼으로부터 얻은 데이터는 각 성분에 대한 함량 측정의 정확성을 검토하여 오차범위를 최소화하는 방향으로 최적화하였다. 이에 따라 얻어진 각 성분에 대한 검량곡선은 모두 90을 초과하는 R2 값을 나타내었다. 구체적으로 단백질 함량 검량곡선은 93.6, 수분 함량 검량곡선은 91.6, 침전가 검량곡선은 94.3 및 회분 함량 검량곡선은 93.4의 R2 값을 나타내었다.In order to establish the calibration curve by quantifying the content around the peak of the graph formed according to the wavelength, statistical analysis was performed using the first and second calculus methods. Moisture content curves were calculated by first order differential and straight line substraction. The ash content curves were subjected to first order differential and vector normalization. The protein content curves were multiplicative scatter correction method (MSC ), And the precipitation content curve was mainly applied to the first derivative. The data obtained from the NIR spectra were optimized to minimize the error range by examining the accuracy of the content measurement for each component. The calibration curves for each component thus obtained showed R 2 values exceeding 90. Specifically, the protein content is 93.6 calibration curve, calibration curve moisture content 91.6, 94.3 and chimjeonga calibration curve ash calibration curve exhibited a R 2 value of 93.4.
이렇게 얻어진 각 성분의 함량에 대한 검량수식은 하기와 같다:The calibration formula for the content of each component thus obtained is as follows:
수분함량 : y=0.922x+0.911;Moisture content: y = 0.922x + 0.911;
회분함량 : y'=0.933x'+0.08;Ash content: y '= 0.933x' + 0.08;
단백질 함량 : y''=0.937x''+0.786; 및Protein content: y " = 0.937x " + 0.786; And
침전가 함량 : y'''=0.947x'''+2.150.Precipitation content: y '' '= 0.947x' '' + 2.150.
상기 각 수식에서 x 내지 x'''은 각각 수분, 회분, 단백질 및 침전가에 대한 스펙트럼 값으로, 개별 샘플에 대한 스펙트럼 측정 후 파장 영역대의 스펙트럼을 최소자승법으로 수치화하여 수식에 적용하면 예측값(NIR 측정 함량)인 y 내지 y'''이 수치화되어 함량으로 얻어질 수 있다. 각 성분에 대한 최적화된 검량곡선을 도 2에 나타내었다.
In the above equations, x to x '''are spectral values for moisture, ash, protein, and sedimentation, respectively. After spectrum measurement for individual samples is performed, the spectrum of the wavelength region band is quantified by the least squares method, Quot; content y) to y '''can be quantified and obtained in a content. An optimized calibration curve for each component is shown in Fig.
NIR 분광법에 의해 측정한 밀 원맥에 대한 스펙트럼을 상기 최적화된 검량곡선에 대입하여 얻은 수분, 회분, 단백질 및 침전가 함량 및 동일한 시료에 대한 일반분석값을 하기 표 1에 비교하였다. 본 발명에 따른 밀 원맥으로부터 NIR을 이용하여 측정한 값은 기존의 일반분석값과 비교하여 모든 성분에 대해 ±0.5(% 또는 ㎖) 이내의 오차범위 수준으로 측정할 수 있음을 확인하였다.The contents of moisture, ash, protein, and sediment obtained by substituting the spectrum of the Wheatmeal measured by NIR spectroscopy into the above optimized calibration curve and the general analytical values for the same samples are shown in Table 1 below. It was confirmed that the values measured using the NIR from wheat gills according to the present invention can be measured at an error range level within ± 0.5 (% or ㎖) for all the components compared with the conventional analytical values.
Claims (9)
상기 측정된 스펙트럼으로부터 도출된 스펙트럼 값을, 밀의 수분, 회분, 단백질 및 침전가 함량 검량곡선에 대입하여, 밀 시료의 수분, 회분, 단백질 및 침전가 함량을 결정하는 단계를 포함하는, 밀의 품질을 평가하는 방법.
Measuring a reflection spectrum for the wheat sample using a near-infrared (NIR) spectroscope;
Determining the moisture, ash, protein, and precipitation content of the whey sample by substituting the spectral value derived from the measured spectrum into the moisture, ash, protein, and precipitation content calibration curves of the wheat to determine the quality of the wheat Way.
상기 밀의 수분 함량 검량곡선은 1) 표준 밀 시료의 NIR 스펙트럼에 1차미분과 직선뺄셈법을 적용하여 도출한 값을, 2) 표준 밀 시료를 AACC Method 44-15 방법 및 AOAC official method 925.10로 구성된 군으로부터 선택되는 습식 수분 분석방법에 의해 측정한 수분 함량과 비교하여 최적화하여 도출된 것인 방법.
The method according to claim 1,
The moisture content calibration curves of the wheat were 1) values obtained by applying first order differential and linear subtraction to the NIR spectra of standard wheat samples, 2) standard wheat samples were composed of AACC Method 44-15 method and AOAC official method 925.10 Wherein the moisture content is measured by a wet moisture analysis method selected from the group consisting of:
상기 밀의 수분 함량 검량곡선은 y=(0.922±0.005)x+(0.911±0.01)이며, 상기 x가 밀 시료의 스펙트럼 값일 때, 밀 시료의 수분 함량 측정값 y(%)가 결정되는 것인 방법.
3. The method of claim 2,
Wherein the moisture content calibration curve of the wheat is y = (0.922 0.005) x + (0.911 0.01), and when the x is the spectral value of the wheat sample, the moisture content measurement value y (%) of the wheat sample is determined.
상기 밀의 회분 함량 검량곡선은 1) 표준 밀 시료의 NIR 스펙트럼에 1차미분과 벡터정규화를 적용하여 도출한 값을, 2) 표준 밀 시료를 AACC Method 08-01 방법 및 AOAC official method 923.03으로 구성된 군으로부터 선택되는 습식 회분 분석방법에 의해 측정한 회분 함량과 비교하여 최적화하여 도출된 것인 방법.
The method according to claim 1,
The ash content of the wheat was determined by 1) the first derivative and vector normalization applied to the NIR spectrum of the standard wheat samples, 2) the standard wheat samples were composed of the AACC Method 08-01 method and the AOAC official method 923.03 Wherein the ash content is determined by optimization with respect to the ash content measured by a wet ash analysis method selected from the following:
상기 밀의 회분 함량 검량곡선은 y'=(0.933±0.005)x'+(0.08±0.01)이며, 상기 x'이 밀 시료의 스펙트럼 값일 때, 밀 시료의 회분 함량 측정값 y'(%)이 결정되는 것인 방법.
5. The method of claim 4,
The ash content calibration curve of the wheat is determined as y '= (0.933 ± 0.005) x' + (0.08 ± 0.01), where x 'is the spectral value of the wheat sample, Lt; / RTI >
상기 밀의 단백질 함량 검량곡선은 1) 표준 밀 시료의 NIR 스펙트럼에 1차미분과 승법산포수정법을 적용하여 도출한 값을, 2) 표준 밀 시료를 AACC Method 44-15 방법, AACC Method 46-08, AACC Method 46-16 방법 및 AOAC official method 920.87으로 구성된 군으로부터 선택되는 습식 단백질 분석방법에 의해 측정한 단백질 함량과 비교하여 최적화하여 도출된 것인 방법.
The method according to claim 1,
2) standard wheat samples were analyzed by AACC Method 44-15 method, AACC Method 46-08, and AACC Method 46-08, respectively. AACC Method 46-16 method, and AOAC official method 920.87. ≪ Desc / Clms Page number 26 >
상기 최적화된 밀의 단백질 함량 검량곡선은 y''=(0.937±0.005)x''+(0.786±0.01)이며, 상기 x''이 밀 시료의 스펙트럼 값일 때, 밀 시료의 단백질 함량 측정값 y''(%)이 결정되는 것인 방법.
The method according to claim 6,
The protein content calibration curve of the optimized wheat is y '' = (0.937 ± 0.005) x '' + (0.786 ± 0.01), and when x '' is the spectral value of the wheat sample, (%) ≪ / RTI > is determined.
상기 밀의 침전가 함량 검량곡선은 1) 표준 밀 시료의 NIR 스펙트럼에 1차미분을 적용하여 도출한 값을, 2) 표준 밀 시료를 SDS(Dodecyl sulfate of sodium)-침전시험(SDS-sedimentation test) 방법 및 AACC method 56-61A으로 구성된 군으로부터 선택되는 습식 침전가 분석방법에 의해 측정한 침전가 함량과 비교하여 최적화하여 도출된 것인 방법.
The method according to claim 1,
The calibration curve of the amount of precipitation of the wheat was determined by 1) a value derived by applying a first differential to the NIR spectrum of a standard wheat sample, 2) a standard wheat sample using a SDS-sedimentation test (SDS) And AACC method 56-61A. ≪ RTI ID = 0.0 > A < / RTI >
상기 밀의 침전가 함량 검량곡선은 y'''=(0.947±0.005)x'''+(2.150±0.01)이며, 상기 x'''이 밀 시료의 스펙트럼 값일 때, 밀 시료의 단백질 함량 측정값 y'''(㎖)이 결정되는 것인 방법.9. The method of claim 8,
The calibration curve of the amount of precipitation of the wheat is y '''= (0.947 ± 0.005) x''' + (2.150 ± 0.01), where x '''is the spectral value of the wheat sample, (&Quot;)< / RTI > is determined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130082109A KR101509069B1 (en) | 2013-07-12 | 2013-07-12 | A method for quality test of wheat using near-infrared spectroscopy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130082109A KR101509069B1 (en) | 2013-07-12 | 2013-07-12 | A method for quality test of wheat using near-infrared spectroscopy |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150008292A true KR20150008292A (en) | 2015-01-22 |
KR101509069B1 KR101509069B1 (en) | 2015-04-07 |
Family
ID=52571991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20130082109A KR101509069B1 (en) | 2013-07-12 | 2013-07-12 | A method for quality test of wheat using near-infrared spectroscopy |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101509069B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102141154B1 (en) * | 2019-10-28 | 2020-08-05 | 조선대학교산학협력단 | Non-destructive Quality Evaluation Method of Sweet Potatoes Using Near Infrared and Chemometrics |
KR20220058798A (en) * | 2020-10-30 | 2022-05-10 | 대한민국(농촌진흥청장) | A method for quality evaluation method of wheat using near-infrared spectroscopy |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180072211A (en) | 2016-12-21 | 2018-06-29 | 주식회사 아이지에스피 | An apparatus for sorting and measuring grains using infrared rays |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5056721A (en) * | 1990-06-12 | 1991-10-15 | The United States Of America As Represented By The Secretary Of Agriculture | Method for classifying wheat kernels as hard or soft |
JPH0829337A (en) * | 1994-07-18 | 1996-02-02 | Hokkaido Prefecture | Wheat quality judging apparatus |
-
2013
- 2013-07-12 KR KR20130082109A patent/KR101509069B1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102141154B1 (en) * | 2019-10-28 | 2020-08-05 | 조선대학교산학협력단 | Non-destructive Quality Evaluation Method of Sweet Potatoes Using Near Infrared and Chemometrics |
KR20220058798A (en) * | 2020-10-30 | 2022-05-10 | 대한민국(농촌진흥청장) | A method for quality evaluation method of wheat using near-infrared spectroscopy |
Also Published As
Publication number | Publication date |
---|---|
KR101509069B1 (en) | 2015-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Caporaso et al. | Hyperspectral imaging for non-destructive prediction of fermentation index, polyphenol content and antioxidant activity in single cocoa beans | |
Pojić et al. | Near infrared spectroscopy—advanced analytical tool in wheat breeding, trade, and processing | |
Zhang et al. | Application of near-infrared spectroscopy for the nondestructive analysis of wheat flour: A review | |
Marti et al. | Structural characterization of proteins in wheat flour doughs enriched with intermediate wheatgrass (Thinopyrum intermedium) flour | |
Mutlu et al. | Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks | |
Arazuri et al. | Rheological parameters determination using Near Infrared technology in whole wheat grain | |
Jirsa et al. | Near-infrared prediction of milling and baking parameters of wheat varieties | |
Williams | Grains and seeds | |
Natsuga et al. | Visible and near-infrared reflectance spectroscopy for determining physicochemical properties of rice | |
Chen et al. | Rapid analysis of wheat flour by different handheld near-infrared spectrometers: A discussion of calibration model maintenance and performance comparison | |
KR101509069B1 (en) | A method for quality test of wheat using near-infrared spectroscopy | |
KR20150112902A (en) | Simultaneous analysis method for content of nutritional components in various foods with different matrix and form using near-infrared reflectance spectroscopy | |
CN110220865A (en) | The construction method of whole corn silage nutritional ingredient prediction model and application | |
KR20100004129A (en) | Non-destructive analysis method of wet-paddy rice for protein contents of brown and milled rice by near infrared spectroscopy | |
Grassi et al. | Gluten aggregation properties as a tool for durum wheat quality assessment: A chemometric approach | |
Zhu et al. | A method for evaluating Hunter whiteness of mixed powders | |
Feng et al. | Correlation of gluten molecular conformation with dough viscoelastic properties during storage | |
Singh et al. | Physicochemical components of wheat grain quality and advances in their testing methods | |
Miskelly et al. | Assessing and managing wheat-flour quality before, during and after milling | |
Miah et al. | Prediction of chemical compositions of crushed maize used in meat animal ration using near infrared spectroscopy and multivariate analysis | |
Adesokan et al. | Prediction of functional characteristics of gari (cassava flakes) using near-infrared reflectance spectrometry | |
Kukin et al. | Adaptation of the rapid near-infrared (NIR) spectroscopy technique to determine the mass fraction of protein and moisture in gluten-free bakery products | |
Wang et al. | Advancements, limitations and challenges in hyperspectral imaging for comprehensive assessment of wheat quality: An up-to-date review | |
Blake et al. | Effect of surfactant treatment on swelling behaviour of normal and waxy cereal starches | |
Gergely et al. | Changes in protein content during wheat maturation—what is measured by near infrared spectroscopy? |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |