KR20150001693A - Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same - Google Patents

Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same Download PDF

Info

Publication number
KR20150001693A
KR20150001693A KR1020140110847A KR20140110847A KR20150001693A KR 20150001693 A KR20150001693 A KR 20150001693A KR 1020140110847 A KR1020140110847 A KR 1020140110847A KR 20140110847 A KR20140110847 A KR 20140110847A KR 20150001693 A KR20150001693 A KR 20150001693A
Authority
KR
South Korea
Prior art keywords
heparin
docetaxel
acid
dtx
tca
Prior art date
Application number
KR1020140110847A
Other languages
Korean (ko)
Inventor
이용규
이정희
Original Assignee
한국교통대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국교통대학교산학협력단 filed Critical 한국교통대학교산학협력단
Priority to KR1020140110847A priority Critical patent/KR20150001693A/en
Publication of KR20150001693A publication Critical patent/KR20150001693A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/727Heparin; Heparan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy

Abstract

The present invention relates to a target type water-soluble anticancer drug composed of a heparin-docetaxel-tourocholic acid conjugate and to a method for preparing the same and, more specifically, to a target type water-soluble anticancer drug in which a spherical nanoparticle is formed of a conjugate having aminized docetaxel and tourocholic acid linked to low-molecular weight heparin, and the docetaxel is introduced to a core of the nanoparticle and the tourocholic acid is introduced to a surface of the nanoparticle, and to a method for preparing the target type water-soluble anticancer drug, comprising the steps of removing a sodium salt from low-molecular heparin; introducing an amine group to docetaxel; introducing an amine group to tourcholic acid; mixing the sodium salt-removed heparin and the docetaxel with the introduced amine group and the tourocholic acid with the introduced amine group to self-aggregate the mixture; and purifying the self-aggregated heparin-docetaxel-tourocholic acid conjugate. According to the present invention, provided can be a target type water-soluble anticancer drug capable of overcoming the low solubility of docetaxel in water through the use of heparin and tourocholic acid, solving a problem in that heparin cannot be orally administered, improving the absorptivity in the ileum due to the introduction of bile acid, and expecting a synergy effect of simultaneously applying anticancer activity of docetaxel and anticancer activity of heparin.

Description

헤파린-도세탁셀-토로콜산 접합체로 이루어진 표적성이 향상된 수용성 항암제 및 그의 제조방법{Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same}[0001] The present invention relates to a water-soluble anticancer agent comprising heparin-docetaxel-tocoloic acid conjugate,

본 발명은 헤파린-도세탁셀-토로콜산 접합체로 이루어진 표적성이 향상된 수용성 항암제 및 그의 제조방법에 관한 것이다.The present invention relates to a water-soluble anticancer drug having improved hepatoprotective activity comprising heparin-docetaxel-tocolacic acid conjugate and a method for producing the same.

최근의 암 연구는 항-신생혈관형성 요법을 통해 이루어지는 경향이 있다. 종양과 암 세포는 이들의 과증식(proliferation)과 비정상적인 성장 때문에 과량의 영양소를 요구하는 것으로 밝혀졌다. 새로운 세포를 위한 충분한 양의 영양소를 공급하기 위하여, 새로운 혈관의 출현한다. 항-신생혈관형성 제제는 새로운 혈관의 발생을 방지하여 암 세포의 성장을 저해할 수 있다.Recent cancer studies tend to be done through anti-angiogenic therapy. Tumor and cancer cells have been found to require excess nutrients because of their proliferation and abnormal growth. To supply a sufficient amount of nutrients for new cells, new blood vessels emerges. Anti-angiogenic agents can prevent the development of new blood vessels and inhibit the growth of cancer cells.

저분자량 헤파린(Low Molecular Weight Heparin, LMWH)은 잘 알려진 항응고 및 항 신생혈관형성 제제이다. 그러나 LMWH의 경구 전달은 낮은 흡수성 때문에 사용이 제한되었다. 낮은 흡수성의 이유는 고분자량, 음으로 하전된 구조 및 자연상태에서 친수성을 나타내는 구조 때문이다. 초기의 연구자들은 이러한 장애를 디옥시콜산(deoxycholic acid, DOCA)와 접합시켜 해소하려고 하였다. DOCA는 담즙산으로 널리 사용되고 있으며, 담즙산을 전달체로 하여 헤파린의 흡수를 향상시키려 하였다.Low Molecular Weight Heparin (LMWH) is a well-known anticoagulant and anti-angiogenic agent. However, oral delivery of LMWH was restricted due to low water absorption. The reason for the low water absorption is due to the high molecular weight, the negatively charged structure and the hydrophilic structure in the natural state. Earlier researchers tried to solve this problem by conjugating it with deoxycholic acid (DOCA). DOCA is widely used as bile acid, and bile acid is used as a carrier to improve the absorption of heparin.

그러나 DOCA 사용의 주요한 불이익은, DOCA가 LMWH와 접합되어 수용액에서 미셀을 형성하고 모든 DOCA가 미셀의 내부에 위치한다는 것이다. 결과적으로 주목할만한 최대의 효과나 흡수는 얻을 수 없었다. LMWH의 최대의 생물학적이용도(bioavailability)를 얻기 위하여 수용성 담즙산은 LMWH와 접합되기 위하여 필요하였다. However, the major disadvantage of using DOCA is that DOCA is conjugated with LMWH to form micelles in aqueous solution and all DOCA is located inside micelles. As a result, notable maximum effect or absorption was not obtained. Water-soluble bile acids were required to be conjugated with LMWH to obtain maximum bioavailability of LMWH.

도세탁솔(Docetaxole, DTX)은 항암제로 널리 사용되며, 독소루비신(doxorubicin), 파크리탁셀(paclitaxel) 및 플루오로우라실(fluorouracil) 보다 더욱 효과적임이 알려져 있다. 비록 DTX가 효과적이고 널리 사용되고 있는 항암 제제이긴 하지만 투여 경로 때문에 적용이 제한적이다. Docetaxole (DTX) is widely used as an anticancer agent and is known to be more effective than doxorubicin, paclitaxel and fluorouracil. Although DTX is an effective and widely used anti-cancer agent, its application is limited due to its route of administration.

보다 나은 수용과 편이성을 위하여, DTX의 경구 투여가 요구되고 있다. DTX와 유사한 고분자의 코팅이나 담지(loading)된 몇몇 제형이 경구 투여를 위하여 제안되었다. 그러나 이러한 종류의 제형은 흡수 강화제의 부족에 기인하여 목적하는 생물학적이용도를 충족시키지 못하였다.Oral administration of DTX is required for better acceptance and convenience. Several formulations coated or loaded with a polymer similar to DTX have been proposed for oral administration. However, this type of formulation did not meet the desired bioavailability due to the lack of absorption enhancers.

본 발명에서는, 수용성 담즙산의 일종인 토로콜산(taurocholic acid, TCA)을 LMWH의 생물학적이용도를 강화시키기 위하여 LMWH와 접합시키고, 결국 DTX를 헤파린-TCA와 접합시켜 수용액에서 분산될 수 있는 미셀을 만들고자 하였다.In the present invention, it has been tried to prepare taurocholic acid (TCA), which is a kind of water-soluble bile acid, with LMWH in order to enhance the bioavailability of LMWH and finally to make micelles dispersible in aqueous solution by bonding DTX with heparin- Respectively.

상기한 목적을 달성하기 위한 일례로서 본 발명의 표적성이 향상된 수용성 항암제는, 저분자량 헤파린에 아민화된 도세탁셀과 토로콜산이 결합된 접합체로서 구형 나노입자를 구성하여, 상기 나노입자의 코어에는 도세탁셀이 도입되고, 표면에는 토로콜산이 도입된 것을 특징으로 한다.As an example of achieving the above object, the water-soluble anticancer agent with improved targeting of the present invention comprises spherical nanoparticles as a conjugate in which docetaxel aminated with a low molecular weight heparin is bound to trocolic acid, and the core of the nanoparticles is doped with docetaxel Is introduced, and the surface is doped with tallowacetic acid.

이때, 상기 저분자량 헤파린은 분자량이 3000 내지 5000 da 범위인 것이 바람직하다. At this time, it is preferable that the molecular weight of the low molecular weight heparin is in the range of 3000 to 5000 da.

상기한 목적을 달성하기 위한 다른 일례로서 본 발명의 표적성이 향상된 수용성 항암제의 제조방법은, 저분자량 헤파린의 소디움 염을 제거하는 과정, 도세탁셀에 아민기를 도입하는 과정, 토로콜산에 아민기를 도입하는 과정, 상기 소디움 염이 제거된 헤파린과 아민기가 도입된 도세탁셀 및 토로콜산을 혼합하여 자가 응집시키는 과정, 및 , 상기 자가 응집된 헤파린-도세탁셀-토로콜산 접합체를 정제하는 과정을 포함하여 이루어지는 것을 특징으로 한다.As another example for achieving the above object, a method for producing a water-soluble anticancer drug having improved targeting of the present invention includes a process of removing a sodium salt of a low molecular weight heparin, a process of introducing an amine group into docetaxel, A step of mixing the sodium salt-eliminated heparin with the amine-introduced docetaxel and the tropolacol acid to cause self-aggregation, and a step of purifying the self-aggregated heparin-docetaxel-tocoloic acid conjugate. do.

이때, 상기 헤파린과 도세탁셀은 몰비가 1 : 1 내지 10 범위로 결합되는 것이 바람직하며, 상기 토로콜산은 헤파린-도세탁셀 접합체 1 몰에 대하여 1 내지 10 몰비 범위로 결합되는 것이 바람직하다. The molar ratio of heparin to docetaxel is preferably in the range of 1: 1 to 10, and the molar ratio of the heparin and docetaxel to the heparin-docetaxel conjugate is preferably 1 to 10 molar equivalents.

항암제의 경구 투여는 투약이 간편하고 환자의 만족성 때문에 매우 편리하다. 그러나 전적으로 효과적인 항암제는 이들이 수용액 내에서의 불수용성 때문에 IV 형으로 적용가능하였다. Oral administration of anticancer drugs is very convenient because of its ease of administration and patient satisfaction. However, a totally effective anticancer agent could be applied as IV because of the water-insolubility in aqueous solution.

저분자량 헤파린(Low Moelcular Weight Heparin, LMWH), 토로콜산(Taourocholic acid, TCA) 및 도세탁솔(Docetaxol, DTX)을 다기능성 전달체로 개발하기 위하여 접합시켰다. Low Moelcular Weight Heparin (LMWH), Taurocholic acid (TCA) and Docetaxol (DTX) were conjugated to develop multifunctional delivery vehicles.

LMWH와 DTX는 양자가 모두 항암 효과를 가지고 있음이 관찰되었으므로 이들의 시너지 효과를 예측할 수 있다. TCA와 DTX는 LMWH와 접합되어 DTX의 소수성 특성에 기인하여 수상에서 미셀을 형성한다. Both LMWH and DTX have been shown to have anticancer effects, so their synergistic effects can be predicted. TCA and DTX are conjugated with LMWH to form micelles in the aqueous phase due to the hydrophobic nature of DTX.

담즙산, 더욱 구체적으로 TCA는 미셀의 표면에 위치함으로써 담즙산 전달체를 통하여 LMWH의 흡수를 강화시킨다. Bile acids, more specifically TCA, are located on the surface of micelles to enhance the absorption of LMWH through bile acid transporters.

또한, 담즙산은 회장부분을 통해서 흡수가 이루어지는 성분으로, 본 발명에 적용되어 회장을 통한 LMWH-TCA-DTX 접합체의 흡수가 용이하게 하는 역할을 수행하게 된다. 이러한 특징으로 인해 본 발명의 LMWH-TCA-DTX 접합체가 답즙산을 흡수하는 회장부분을 통해 흡수가 용이해서 경구용으로 사용될 수 있는 특성이 부가된다.In addition, bile acid is a component which is absorbed through the site of the ileum, and is applied to the present invention, thereby facilitating the absorption of the LMWH-TCA-DTX conjugate through the ileum. Due to such a feature, the LMWH-TCA-DTX conjugate of the present invention is easily absorbed through a site for absorbing succinic acid, so that it can be used for oral administration.

TCA와 DTX 분자는 LMWH와 아마이드 결합 형성을 통하여 접합된다. TCA와 DTX의 LMWH와의 접합은 FT-IR과 1H-NMR에 의하여 확인된다. TCA와 DTX의 커플링 비율 또한 함께 측정되었다. 합성된 LMWH-DTX-TCA 입자는 DTX 접합 비율에 따라 150 내지 250 nm의 직경을 가지는 것으로 확인되었다. 이러한 나노입자는 다기능성 전달체로서 활용되어질 수 있다.TCA and DTX molecules are conjugated with LMWH through amide bond formation. The bond between TCA and DTX with LMWH is confirmed by FT-IR and 1 H-NMR. The coupling ratio of TCA to DTX was also measured. The synthesized LMWH-DTX-TCA particles were found to have a diameter of 150 to 250 nm depending on the DTX junction ratio. These nanoparticles can be utilized as multifunctional carriers.

상기한 본 발명에 의하면, 도세탁셀이 지니고 있는 소수성 세그먼트가 도세탁셀의 항암제로써의 이용을 상당히 제한시켰던 문제점을 해결할 수 있는 효과를 기대할 수 있다. According to the present invention, it is possible to solve the problem that the hydrophobic segment possessed by docetaxel significantly restricts the use of docetaxel as an anticancer agent.

본 발명에 의하면, 혈액과의 양립성과 생체적합성의 연관성을 향상시킬 수 있는 LMWH(Low-molecular-weight-heparin)와 도세탁셀 및 토로콜산을 자가 응집시켜 마이셀 구조 표면에 친수성 환경을 제공해줌으로써 이것의 생물학적 이용 가능성을 입증시킬 수 있다. According to the present invention, a low-molecular-weight-heparin (LMWH) capable of improving compatibility with biocompatibility with blood, and a hydrophilic environment on the surface of a micelle structure by self-aggregating docetaxel and tororoic acid, Availability can be demonstrated.

또한, 본 발명에 의하면, LMWH와 도세탁셀을 자가 응집시켜 나노 입자 사이즈의 접합체인 마이셀을 만듦으로써 주사제로만 사용되는 기존의 항암제를 천연물을 사용하여 경구용 항암제로 사용될 수 있도록 한 효과를 기대할 수 있다. In addition, according to the present invention, it is expected that an existing anticancer agent used only as an injectable agent can be used as an oral anticancer drug by natural products, by making micelles which are a conjugate of nanoparticle size by self-aggregating LMWH and docetaxel.

또한, 본 발명은 실용화가 되면 기존약물보다 쉽게 복용할 수 있을 뿐만 아니라, 암을 보다 쉽게 예방할 수 있는 경구용 약물로 개발될 수 있는 가능성을 가지고 있다. In addition, when the present invention is put to practical use, the present invention has the potential to be developed as an oral drug that can be more easily taken than existing drugs and can prevent cancer more easily.

또한, 본 발명에 의하면 암과 혈관신생 요법에서 LMWH와 DTX의 상승효과를 나타낼 것으로 예상한다.In addition, according to the present invention, it is expected that the synergistic effect of LMWH and DTX is exhibited in cancer and angiogenesis therapy.

도 1은 LMWH-TCA 접합체의 합성 과정(A)과 LMWH-DTX-TCA 접합체의 합성 과정(B)을 나타낸 것이다.
도 2는 HDTA의 화학적 구조(A)와, HDTA의 물리적 구조(B)를 나타내었다.
도 3은 LMWH에 결합되는 TCA의 다양한 몰비(LMWH:TCA, 1:2 (A), 1:4 (B) 및 1:7 (C))에 따른 1H-NMR 스펙트럼이다.
도 4는 HTA에 결합되는 TCA의 다양한 몰비(HTA:DTX, 1:6 (A), 1:8 (B) and 1:10 (C))에 따른 HDTA의 1H-NMR 스펙트럼이다.
Fig. 1 shows the synthesis process (A) of the LMWH-TCA conjugate and the synthesis process (B) of the LMWH-DTX-TCA conjugate.
Figure 2 shows the chemical structure (A) of HDTA and the physical structure (B) of HDTA.
3 is a 1 H-NMR spectrum according to various molar ratios (LMWH: TCA, 1: 2 (A), 1: 4 (B) and 1: 7 (C)) of TCA bound to LMWH.
Figure 4 is a 1 H-NMR spectrum of HDTA according to various molar ratios (HTA: DTX, 1: 6 (A), 1: 8 (B) and 1:10 (C)) of TCA bound to HTA.

이하, 본 발명을 실시예 등에 의하여 구체적으로 설명하겠는 바, 본 발명이 다음 실시예 등에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described concretely with examples and the like, but the present invention is not limited by the following examples and the like.

참고예. 사용성분Reference example. Component used

저분자량 헤파린(Low-molecular-weight-heparin, LMWH, Fraxiparin1; average MW 4.5 kDa)은 Mediplex Co., Ltd (Seoul, Korea)로부터 구입하여 사용하였다. 토로콜산 소디움 염(Taurocholic acid sodium salt, TCA)), 도세탁셀(Docetaxel,DTX),EDAC(1-ethyl-3-(3-dimethylaminopropyl) carbodiimidehydrochloride), 4-NPC(4-nitrophenyl chloroformate), 트리에틸아민(triethylamine), HOSu(N-hydroxysuccinimide), MMP( 4-methylmorpholine), 1,4-디옥산(1,4-dioxane), 2% 닌히드린 시약(ninhydrin reagent) 및 트립신-EDTA(trypsin-EDTA)는 Sigma Chemical Co. (St. Louis, MO)에서 구입하였다. DMF(N,N-dimethylformamide), 에틸렌디아민, 포름아미드 및 아세톤은 Sigma Chemical Co. (St. Louis, MO)에서 구입하였다.
Low-molecular-weight heparin (LMWH, Fraxiparin1; average MW 4.5 kDa) was purchased from Mediplex Co., Ltd (Seoul, Korea). 4-NPC (4-nitrophenyl chloroformate), triethylamine (EDTA), tetrochloric acid sodium salt (TCA), docetaxel (N-hydroxysuccinimide), MMP (4-methylmorpholine), 1,4-dioxane, 2% ninhydrin reagent and trypsin- Lt; / RTI > (St. Louis, MO). DMF (N, N-dimethylformamide), ethylenediamine, formamide, and acetone were purchased from Sigma Chemical Co. (St. Louis, MO).

실시예 1. Example 1.

1)LMWH-TCA(HTA) 접합체의 제조1) Preparation of LMWH-TCA (HTA) conjugate

토로콜산(TCA) 소디움 염을 0℃ DMF(4.6 mL)에 용해시킨 후 TEA와 4-NPC를 첨가하고, 같은 조건으로 1시간 동안 반응시킨 후 실온에서 6 시간동안 반응시켰다. 반응시킨 용액을 원심분리시키고 에탄올과 탈이온수를 사용하여 분액여두에 의해 추출하였으며, 이를 3 회 반복하였다. 분획된 추출액은 유기용매를 증발시키기 위해 회전 감압 농축하고, 동결 건조하여 TCA-NPC 분말을 얻었다. TCA-NPC 분말은 DMF(5 mL)에 용해시키고, 4-MMP를 첨가한 후 50 ℃에서 1 시간동안 반응시켰다. 1 시간 후, 상기 용액에 EDA를 적가하고 실온에서 16 시간동안 유지시킨 다음, 여기에 과량의 아세톤을 첨가하여 결정화시켰다. 마지막으로 결정화된 부분은 여과하고 진공 건조시켰다. Tocopherol (TCA) sodium salt was dissolved in DMF (4.6 mL) at 0 ° C, TEA and 4-NPC were added, reacted for 1 hour under the same conditions, and reacted at room temperature for 6 hours. The reaction solution was centrifuged and extracted with a separating funnel using ethanol and deionized water, and this was repeated three times. The extracted extract was concentrated by rotary evaporation to evaporate the organic solvent and lyophilized to obtain TCA-NPC powder. TCA-NPC powder was dissolved in DMF (5 mL), 4-MMP was added, and reacted at 50 ° C for 1 hour. After 1 hour, EDA was added dropwise to the solution, and the mixture was maintained at room temperature for 16 hours, and then an excessive amount of acetone was added thereto for crystallization. Finally, the crystallized portion was filtered and vacuum dried.

HTA 접합체를 합성하기 위하여, LMWH 를 증류수에 첨가하여 약하게 가열하여 용해시키고, 0.1 M의 HCl을 첨가하여 pH를 평균 5.5 내지 6 범위로 유지시켰다. HTA conjugate, LMWH was added to distilled water, heated to dissolve slightly, and 0.1 M HCl was added to maintain the pH within the range of 5.5 to 6 on average.

공급된 TCA-NH2의 몰비는 LMWH에 결합된 TCA의 커플링 함량을 상이하게 얻기 위하여 조절되었다. 상기 LMWH 용액에 EDC를 첨가하고 5 분간 교반한 후 NHS를 첨가한 후 30 분간 교반한 다음, TCA-NH2 와 DTX 용액을 첨가하고 실온에서 12 시간동안 교반한 후, 용액을 투석하여 미반응 물질을 제거하고 동결건조하여 HTA 접합체 분말을 얻었다.
The molar ratio of TCA-NH2 fed was adjusted to obtain different coupling contents of TCA bound to LMWH. EDC was added to the LMWH solution, and the mixture was stirred for 5 minutes. NHS was added to the LMWH solution, and the mixture was stirred for 30 minutes. Then, TCA-NH 2 and DTX solution were added and stirred at room temperature for 12 hours. And lyophilized to obtain HTA conjugate powder.

2) LMWH-DTX-TCA(HDTA) 접합체의 제조2) Preparation of LMWH-DTX-TCA (HDTA) conjugate

DTX를 DMSO에 용해시키고 교반하여 맑은 용액을 제조하고, 트리에틸아민과 NPC(4-nitrophenyl chloroformate)를 첨가하여 실온에서 12 시간동안 교반하였다. 미반응 TEA와 NPC를 메탄올과 헥산 용액으로 추출하여 제거하는 과정을 3 회 반복수행하였다. DTX was dissolved in DMSO and stirred to prepare a clear solution. Triethylamine and NPC (4-nitrophenyl chloroformate) were added, and the mixture was stirred at room temperature for 12 hours. Unreacted TEA and NPC were extracted with methanol and hexane solution and removed three times.

MMP를 메탄올 용액이 담겨진 활성 DTX에 첨가하고, 실온에서 1 시간동안 교반한 후, EDA를 첨가하고 같은 조건에서 12 시간 이상 유지시켰다. 상기 용액에 헥산을 첨가하여 반응 용액으로부터 미반응 MMP와 EDA를 추출하여 제거하고, 30 분간 감압농축하여 모액으로부터 헥산을 증발시켰다. HDTA 접합체의 더 많은 합성을 위하여 N-도세탁솔 에틸렌디아민을 함유하는 메탄올 용액을 4 ℃에서 보존시켰다.The MMP was added to the active DTX containing the methanol solution, stirred at room temperature for 1 hour, and then EDA was added and kept at the same condition for 12 hours or more. Hexane was added to the solution, unreacted MMP and EDA were extracted and removed from the reaction solution, and concentrated under reduced pressure for 30 minutes to evaporate hexane from the mother liquor. To further synthesize the HDTA conjugate, a methanol solution containing N-doxetaxol ethylenediamine was stored at 4 占 폚.

LMWH를 약한 열과 교반에 의하여 증류수에 용해시켰다. 공급되는 N-도세탁솔 에틸렌디아민(N-docetaxol ethylenediamine)의 몰비는 HTA와 DTX의 상이한 커플링 함량을 위하여 조절되었다. EDC를 LMWH에 첨가하고 5 분간 교반하며, NHS를 첨가하고 30 분간 교반하였다. 그런다음, 상기 용액에 N-도세탁솔 에틸렌디아민용액을 첨가하고 실온에서 12 시간동안 교반한 후 탈이온수로 투석하여 미결합된 DTX, EDC 및 NHS를 제거하고, 전체 용액을 동결건조하여 분말상의 HDTA 접합체를 얻었다. 다음 표 1에는 LMWH에 대한 TCA 와 DTX 의 공급 몰비와 커플링 비율 및 HDTA의 입자 사이즈를 나타내었다.LMWH was dissolved in distilled water by mild heat and stirring. The molar ratio of N-docetaxol ethylenediamine supplied was adjusted for different coupling contents of HTA and DTX. EDC was added to LMWH, stirred for 5 minutes, NHS was added and stirred for 30 minutes. Then, an N-doxetaxol ethylenediamine solution was added to the solution, stirred at room temperature for 12 hours and then dialyzed with deionized water to remove unbound DTX, EDC and NHS, and the whole solution was lyophilized to obtain powder HDTA To obtain a conjugate. Table 1 below shows the molar ratios and coupling ratios of TCA and DTX to LMWH and the particle size of HDTA.

상기 LMWH-TCA 접합체의 합성 과정(A)과 LMWH-DTX-TCA 접합체의 합성 과정(B)을 도 1에 나타내었다.The process (A) for synthesizing the LMWH-TCA conjugate and the process (B) for synthesizing the LMWH-DTX-TCA conjugate are shown in FIG.

SampleSample Feed mole of LMWH:TCAFeed mole of LMWH: TCA Coupling mole of LMWH:TCACoupling mole of LMWH: TCA Feed mole ratio of HTA:DTXFeed mole ratio of HTA: DTX Coupling mole ration HTA:DTXCoupling mole ration HTA: DTX Particle size in diameter(㎚)Particle size in diameter (nm) HDTA 1HDTA 1 1:21: 2 1:0.85±0.131: 0.85 + 0.13 1:61: 6 1:1.034±0.451: 1.034 + - 0.45 242.0±85.5242.0 ± 85.5 1:81: 8 1:1.583±0.1351: 1.583 + - 0.135 251.3±96.4251.3 ± 96.4 1:101:10 1:2.387±0.6511: 2.387 + 0.651 220.7±58.0220.7 ± 58.0 HDTA 2HDTA 2 1:41: 4 1:1.35±0.391: 1.35 + 0.39 1:61: 6 1:0.98±0.1621: 0.98 + 0.162 217.3±78.8217.3 ± 78.8 1:81: 8 1:1.431±0.4211: 1.431 + 0.421 220.8±50.5220.8 ± 50.5 1:101:10 1:2.291±0.7411: 2.291 + 0.741 160.8±47.5160.8 ± 47.5 HDTA 3HDTA 3 1:71: 7 1:2.59±0.461: 2.59 + - 0.46 1:61: 6 1:0.765±0.2641: 0.765 + 0.264 177.7±53.9177.7 + -53.9 1:81: 8 1:1.128±0.3681: 1.128 + 0.368 164.9±60.8164.9 ± 60.8 1:101:10 1:1.794±0.6421: 1.794 + 0.642 181.1±46.2181.1 + - 46.2

3) HTA와 HDTA의 특성3) Characteristics of HTA and HDTA

HTA와 HDTA 접합체는 LMWH 의 카르복실 기와 TCA와 DTX의 아민 기 사이의 아마이드 결합 형성에 의하여 이루어지며 FT-IR과 1H-NMR을 사용하여 확인하였다. FT-IR 을 위하여 HTA 접합체를 고형 분말로 스캔하였다. LMWH-DTX-TCA의 DTX와 TCA의 커플링 비율은 황산법에 의하여 측정하였으며, 이는 담즙산으로 개질된 다당류의 특성을 위하여 전개되었다.The HTA and HDTA conjugates were formed by the formation of amide bonds between the carboxyl groups of LMWH and the amine groups of TCA and DTX, and were confirmed by FT-IR and 1 H-NMR. HTA conjugates were scanned as solid powder for FT-IR. The coupling ratio of DTX to TCA in LMWH-DTX-TCA was determined by the sulfuric acid method, which was developed for the characterization of bile acid-modified polysaccharides.

실험 과정을 요약하면, 증류수에 정확한 함량의 LMWH를 용해시킨 용액 140 μL를 황산 360 μL와 80 ℃에서 3 분 동안 혼합하고, 이를 실온으로 냉각시킨 다음 동일한 조성의 시료를 대조구로 하여 420 nm에서 흡광도를 측정하였다.
To summarize the experimental procedure, 140 μL of the solution in which the correct amount of LMWH was dissolved in distilled water was mixed with 360 μL of sulfuric acid at 80 ° C. for 3 minutes. The sample was cooled to room temperature, and the absorbance at 420 nm Were measured.

4) 크기 및 모포로지 측정 4) Size and morphology measurement

HTA와 HDTA를 탈이온수에 용해시키고 수분동안 격렬하게 혼합하여 균일하게 분산시켰다. 두 종류의 접합체의 크기 분포는 DLS(Otsuka, Japan)를 사용하여 측정하였다. HDTA 접합체의 모포로지는 SEM(scanning electron microscopy, JEOL, Japan)을 사용하여 측정하였다. SEM 을 위한 시료는 접합체 나노입자 1 mg을 1 mL의 물에 분산시켜 준비하였다. 그런 다음, 200 lL 의 분산된 나노입자를 피펫으로 사용하여 욕조에 넣고, 탈수시키고(dehydrated), 백금을 스퍼터 코팅한 다음 25kV로 전압을 증가시켜 측정하였다.
HTA and HDTA were dissolved in deionized water and mixed vigorously for several minutes to uniformly disperse. The size distribution of the two types of conjugates was measured using DLS (Otsuka, Japan). The morphology of the HDTA conjugate was measured using scanning electron microscopy (JEOL, Japan). SEM samples were prepared by dispersing 1 mg of the conjugate nanoparticles in 1 mL of water. 200 lL of dispersed nanoparticles were then pipetted into a bath, dehydrated, sputter coated with platinum, and then ramped to 25 kV.

실험예. Experimental example.

1) HTA의 합성 여부1) Synthesis of HTA

HTA의 합성에서, N-토로코릴에틸렌디아민(N-taurocholylethylenediamine)의 아민 기는 EDAC 존재하에 LMWH의 카르복실 기와 결합하였다[도 의 (a)]. 합성의 정밀성은 FT-IR과 1H-NMR에 의하여 확인하였다. 1H-NMR 스펙트럼에서, 8 ppm 에서의 아마이드 피크는 모든 종류의 HTA 내에 아미이드 결합이 존재함을 지시하고, 0.65 - 2.1 ppm 영역의 피크는 토로콜레이트(taurocholate, TCA) 잔기가 성공적으로 도입되었음을 지시한다[도 3]. 다양한 HTA의 항 응집활성을 습득하기 위하여 반응물의 몰비를 다양하게 제공하고 이들의 커플링 비율을 측정하였다.In the synthesis of HTA, the amine group of N-taurocholylethylenediamine bound to the carboxyl group of LMWH in the presence of EDAC (Fig. A). The precision of the synthesis was confirmed by FT-IR and 1 H-NMR. In the < 1 > H-NMR spectrum, the amide peak at 8 ppm indicates the presence of amide bonds in all HTAs and the peak in the 0.65-2.1 ppm region indicates that the taurocholate (TCA) (Fig. 3). To obtain the anticoagulant activity of various HTAs, various molar ratios of reactants were provided and their coupling ratios were measured.

도 2는 HDTA의 화학적 구조(A)와 HDTA의 물리적 구조(B)를 나타내었다. LDTA 나노입자를 보여주며, TCA는 미셀의 표면에 나타나고 DTX는 코어에 위치하였다.Figure 2 shows the chemical structure (A) of HDTA and the physical structure (B) of HDTA. LDTA nanoparticles, TCA appeared on the surface of the micelle and DTX was located on the core.

도 3은 LMWH에 결합되는 TCA의 다양한 몰비(LMWH:TCA, 1:2 (A), 1:4 (B) and 1:7 (C))에 따른 1H-NMR 스펙트럼이고, 도 4는 HTA에 결합되는 TCA의 다양한 몰비(HTA:DTX, 1:6 (A), 1:8 (B) and 1:10 (C))에 따른 HDTA의 1H-NMR 스펙트럼이다. 붉은 원은 LMWH와 TCA 및 DTX 사이의 아미이드 결합을 나타낸다. 중수소수(D2O)가 모든 분석을 위한 용매로 사용되었다.
FIG. 3 is a 1 H-NMR spectrum according to various molar ratios of TCA bound to LMWH (LMWH: TCA, 1: 2 (A), 1: 4 (B) and 1: 1 H-NMR spectrum of HDTA according to various molar ratios (HTA: DTX, 1: 6 (A), 1: 8 (B) and 1:10 (C)) of TCA bound. The red circle represents the amide bond between LMWH and TCA and DTX. Deuterium water (D2O) was used as the solvent for all analyzes.

2) HDTA의 합성2) Synthesis of HDTA

HDTA의 합성에 있어서, N-도세탁솔 에틸렌디아민(N-docetaxol ethylenediamine)이 LTH와 결합한다. DTX의 하이드록실 기는 NPC에 의하여 활성화되고 EDA와 교체되어 아민 기를 형성한다(도 1의 (b)). DTX는 LMWH가 TCA와 결합하여 아마이드 결합을 형성하고 남은 카르복실 기와 반응하게 된다. HTA와 DTX 사이에 형성된 아마이드 결합은 FT-IR과 NMR에 의하여 확인되었다. FT-IR과 1H-NMR 스펙트럼 양자 모두에서 TCA와 DTX의 피크가 나타났고, 이는 이들의 잔기 모두가 LMWH에 포함되었음을 확인할 수 있는 것이다[도 3]. DTX와 TCA는 LMWH에 접합되어 수용액 내에서 미셀을 형성하고, DTX는 미셀의 코어에 위치하며 TCA는 미셀의 표면에 위치하게 된다[도 2].
In the synthesis of HDTA, N-docetaxol ethylenediamine binds LTH. The hydroxyl group of DTX is activated by NPC and replaced with EDA to form an amine group (Fig. 1 (b)). DTX causes LMWH to bond with TCA to form amide bonds and react with the remaining carboxyl groups. The amide bond formed between HTA and DTX was confirmed by FT-IR and NMR. Peaks of TCA and DTX were observed in both the FT-IR and the 1 H-NMR spectra, confirming that all of these residues were included in the LMWH (FIG. 3). DTX and TCA are conjugated to LMWH to form micelles in aqueous solution, DTX is located in the core of micelles, and TCA is located on the surface of micelles (FIG. 2).

3) HTA와 HDTA 접합체의 특성3) Characteristics of HTA and HDTA conjugates

HTA 내에 결합된 TCA와 DTX의 함량으로 나타내어지는 커플링 비율은 황산법에 의하여 측정된다. HTA의 커플링 비율은 1 내지 2 범위이며, 이들은 전적으로 포화된 형태의 경우 커플링 비율은 약 2 이다. 이러한 결과는 2 몰의 TCA가 1 몰의 HTA 와 결합됨을 나타낸다. HTA의 특성과 각 반응물의 공급되는 몰비는 표 1에 나타내었다. DTX의 커플링 비율은 1 내지 2 범위이며, 이는 최대 2 몰의 DTX가 1 몰의 HTA와 결합됨을 나타낸다[표 1].
The coupling ratio, expressed as the amount of TCA and DTX bound in the HTA, is determined by the sulfuric acid method. The coupling ratios of HTA range from 1 to 2, with a coupling ratio of about 2 for fully saturated forms. These results indicate that two moles of TCA bind to one mole of HTA. The properties of HTA and the molar ratios of each reactant are shown in Table 1. The coupling ratio of DTX ranges from 1 to 2, indicating that up to 2 moles of DTX is bound to 1 mole of HTA.

4) 크기와 모포로지의 측정4) Measurement of size and morphology

입자의 크기 분석이 DLS와 SEM에 의하여 이루어지는 동안, 자연과 유사한 상태와 친수성이 높은 LMWH에 기인하여 HTA 접합체의 경우 입자의 형성이 감지되지 않았다. 그러나, SEM과 DLS 자료는 약 200 nm 직경의 입자가 HDTA 미셀에서 형성되었으며 이는 미셀형성에 기인한 것이다. SEM 자료는 나노 크기의 구형 입자가 응집되지 않고 균일하게 분포함을 지시한다.
While particle size analysis was performed by DLS and SEM, particle formation was not detected in HTA conjugates due to nature-like conditions and high hydrophilic LMWH. However, SEM and DLS data show that about 200 nm diameter particles are formed in HDTA micelles, which is due to micelle formation. SEM data indicate that nanoscale spherical particles are uniformly distributed without agglomeration.

상기한 바와같이, TCA와 DTX가 LMWH 분자와 접합되어 효과적인 경구용 항암제를 예측하게 한다. TCA는 소장의 담즙산 전달체를 통하여 흡수성을 강화하는 도움을 준다. LMWH 뿐만 아니라 DTX는 항 신생혈관형성 절차를 통하여 항암 효과를 나타낸다. TCA와 DTX의 커플링 비율은 공급량의 조절에 의하여 증감시킬 수 있다.As described above, TCA and DTX are conjugated with LMWH molecules to predict an effective oral anticancer agent. TCA helps strengthen the absorptivity through the bile acid transporter of the small intestine. DTX as well as LMWH exhibit anti-cancer effects through anti-angiogenic processes. The coupling ratio between TCA and DTX can be increased or decreased by controlling the amount of feed.

도 3 및 4에서 붉은 원은 TCA와 DTX 및 LMWH 사이에 형성된 아마이드 결합을 확인할 수 있는 것이다.In Figures 3 and 4, the red circle is able to identify the amide bond formed between TCA, DTX and LMWH.

Claims (5)

저분자량 헤파린에 아민화된 도세탁셀과 토로콜산이 결합된 접합체로서 구형 나노입자를 구성하여, 상기 나노입자의 코어에는 도세탁셀이 도입되고, 표면에는 토로콜산이 도입된 표적형 수용성 항암제.
A water-soluble anticancer agent which is spherical nanoparticles composed of docetaxel conjugated with low molecular weight heparin and tocoloic acid, wherein the core of the nanoparticles is doped with docetaxel,
청구항 1에 있어서,
상기 저분자량 헤파린은 분자량이 3000 내지 5000 da 범위인 것을 특징으로 하는 표적형 수용성 항암제.
The method according to claim 1,
Wherein the low molecular weight heparin has a molecular weight in the range of 3000 to 5000 Da.
저분자량 헤파린의 소디움 염을 제거하는 과정,
도세탁셀에 아민기를 도입하는 과정,
토로콜산에 아민기를 도입하는 과정,
상기 소디움 염이 제거된 헤파린과 아민기가 도입된 도세탁셀 및 토로콜산을 혼합하여 자가 응집시키는 과정, 및 ,
상기 자가 응집된 헤파린-도세탁셀-토로콜산 접합체를 정제하는 과정
을 포함하여 이루어지는 것을 특징으로 하는 표적형 수용성 항암제의 제조방법.
The process of removing the sodium salt of low molecular weight heparin,
The process of introducing an amine group into docetaxel,
A step of introducing an amine group into the tororic acid,
A step of mixing heparin from which the sodium salt has been removed with docetaxel and an amino group-introduced docetaxel, followed by self-aggregation,
The process of purifying the self-aggregated heparin-docetaxel-tocoloic acid conjugate
Wherein the water-soluble anticancer agent is a water-soluble anticancer agent.
청구항 3에 있어서,
상기 헤파린과 도세탁셀은 몰비가 1 : 1 내지 10 범위로 결합되는 것을 특징으로 하는 표적형 수용성 항암제의 제조방법.
The method of claim 3,
Wherein the heparin and the docetaxel are combined in a molar ratio of 1: 1 to 10.
청구항 3에 있어서,
상기 토로콜산은 헤파린-도세탁셀 접합체 1 몰에 대하여 1 내지 10 몰비 범위로 결합되는 것을 특징으로 하는 표적형 수용성 항암제의 제조방법.
The method of claim 3,
Wherein the tocolic acid is bound to the heparin-docetaxel conjugate in a molar ratio of 1 to 10 moles per mole of the heparin-docetaxel conjugate.
KR1020140110847A 2014-08-25 2014-08-25 Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same KR20150001693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140110847A KR20150001693A (en) 2014-08-25 2014-08-25 Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140110847A KR20150001693A (en) 2014-08-25 2014-08-25 Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020110038449A Division KR20120120712A (en) 2011-04-25 2011-04-25 Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same

Publications (1)

Publication Number Publication Date
KR20150001693A true KR20150001693A (en) 2015-01-06

Family

ID=52475337

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140110847A KR20150001693A (en) 2014-08-25 2014-08-25 Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same

Country Status (1)

Country Link
KR (1) KR20150001693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700045255A1 (en) * 2017-04-26 2018-10-26 Univ Degli Studi Di Ferrara METHOD TO MODULATE THE FAGOCYTIC ABSORPTION OF AN ACTIVE PRINCIPLE OR ITS PRECURSOR BY MACROPHAGES.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700045255A1 (en) * 2017-04-26 2018-10-26 Univ Degli Studi Di Ferrara METHOD TO MODULATE THE FAGOCYTIC ABSORPTION OF AN ACTIVE PRINCIPLE OR ITS PRECURSOR BY MACROPHAGES.
WO2018198030A1 (en) * 2017-04-26 2018-11-01 Università degli Studi di Ferrara Method for modulating phagocytic uptake of an active ingredient or a precursor thereof by macrophages

Similar Documents

Publication Publication Date Title
Liang et al. α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: Preparation, characterization and in vitro/in vivo evaluations
Yang et al. Redox-sensitive self-assembled nanoparticles based on alpha-tocopherol succinate-modified heparin for intracellular delivery of paclitaxel
Zhang et al. Potential of amphiphilically modified low molecular weight chitosan as a novel carrier for hydrophobic anticancer drug: synthesis, characterization, micellization and cytotoxicity evaluation
Raja et al. Self-assembled nanoparticles based on amphiphilic chitosan derivative and arginine for oral curcumin delivery
Han et al. Redox-sensitive micelles for targeted intracellular delivery and combination chemotherapy of paclitaxel and all-trans-retinoid acid
Shi et al. Nanoparticles of deoxycholic acid, polyethylene glycol and folic acid-modified chitosan for targeted delivery of doxorubicin
Sun et al. Macrophages-targeting mannosylated nanoparticles based on inulin for the treatment of inflammatory bowel disease (IBD)
CN104436203A (en) Preparation method and application of hyaluronic acid modified by vitamin E succinate
Hu et al. Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy
US20140199349A1 (en) Ph-sensitive hyaluronic acid derivative and uses thereof
JP2024054248A (en) Hyaluronic acid derivatives, pharmaceutical compositions and hyaluronic acid derivative-drug conjugates
WO2009091103A1 (en) Complex of biopolymers and insoluble biomolecules, and manufacturing method thereof
Wang et al. Preparation and evaluation of folic acid modified succinylated gelatin micelles for targeted delivery of doxorubicin
WO2014155145A1 (en) Stable nanocomposition comprising epirubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
Yang et al. Novel self-assembled amphiphilic mPEGylated starch-deoxycholic acid polymeric micelles with pH-response for anticancer drug delivery
Cafaggi et al. Preparation, characterisation and preliminary antitumour activity evaluation of a novel nanoparticulate system based on a cisplatin-hyaluronate complex and N-trimethyl chitosan
KR101429668B1 (en) Nanoparticles comprising amphiphilic low molecular weight hyaluronic acid complex and a process for the preparation thereof
Parhizkar et al. Synthesis and characterization of water-soluble conjugates of cabazitaxel hemiesters-dextran
Rozga-Wijas et al. An efficient synthetic route for a soluble silsesquioxane-daunorubicin conjugate
K Singh et al. Dendrimer-drug conjugates in drug delivery and targeting
Zhu et al. In vitro–in vivo evaluation of hyaluronic acid-based amphiphilic copolymers for tumour targeted delivery: The role of hydrophobic groups
KR20150001693A (en) Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same
KR20120120712A (en) Water souble Heparin-DTX-TCA conjugates improved targeting and preparing method for the same
KR20220009417A (en) Pharmaceutical compositions containing mixed polymer micelles
KR101332001B1 (en) Nanoparticles comprising amphiphilic low molecular weight hyaluronic acid complex and a process for the preparation thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL NUMBER: 2016101003261; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20160531

Effective date: 20171031