KR20150001330A - gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia - Google Patents

gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia Download PDF

Info

Publication number
KR20150001330A
KR20150001330A KR20130074369A KR20130074369A KR20150001330A KR 20150001330 A KR20150001330 A KR 20150001330A KR 20130074369 A KR20130074369 A KR 20130074369A KR 20130074369 A KR20130074369 A KR 20130074369A KR 20150001330 A KR20150001330 A KR 20150001330A
Authority
KR
South Korea
Prior art keywords
bsh
lactobacillus johnsonii
lactobacillus
derived
bile salt
Prior art date
Application number
KR20130074369A
Other languages
Korean (ko)
Inventor
강대경
채종표
Original Assignee
단국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 산학협력단 filed Critical 단국대학교 산학협력단
Priority to KR20130074369A priority Critical patent/KR20150001330A/en
Publication of KR20150001330A publication Critical patent/KR20150001330A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/746Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/3262Foods, ingredients or supplements having a functional effect on health having an effect on blood cholesterol

Abstract

The present invention relates to genes and enzymes derived from Lactobacillus johnsonii PF01, and a method for extracting the enzyme for reducing hypercholesterolemia. More specifically, the present invention investigates characteristics of recombinant bshA, bshB, and bshC by amplifying the bshA, bshB, and bshC genes which code bile salt hydrolase derived from the Lactobacillus johnsonii PF01, cloning and overexpressing the same in Escherichia coli. The bile salt hydrolase bsh coded by the bshA, bshB, and bshC genes derived from the Lactobacillus johnsonii PF01 decomposes taurine binding and glycine binding of the bile salt, thereby confirming the fact that single strain of the Lactobacillus johnsonii PF01 has two kinds of bile salt hydrolases. The bile salt hydrolase bsh hereby: more efficiently lowers serum cholesterol levels in hypercholesterolemia patients using the efficacies of increasing intestinal viability and lowering cholesterol levels better than conventional bsh at the same time when adding the Lactobacillus johnsonii PF01 into foods and taking the same; and is useful for preventing people with normal cholesterol levels from having hypercholesterolemia.

Description

고콜레스테롤혈증 감소를 위한 락토바실러스 존소니 PF01 균주 유래의 유전자, 효소 및 효소의 분리방법{gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia}(Gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia) gene derived from Lactobacillus Johnson PF01 strain for the reduction of hypercholesterolemia

본 발명은 고콜레스테롤혈증 감소를 위한 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 균주 유래 유전자, 효소 및 효소의 분리방법에 관한 것으로, 보다 상세하게는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래의 담즙산염 가수분해효소를 코딩하는 bshA, bshB, bshC 유전자를 증폭하여 클로닝하고 대장균에서 과발현시켜 상기 재조합 bshA, bshB, bshC의 특성을 규명한 것이다. The present invention relates to a method for separating genes, enzymes and enzymes derived from Lactobacillus johnsonii PF01 strain for the reduction of hypercholesterolemia, and more particularly to a method for separating genes, enzymes and enzymes from bile acids derived from Lactobacillus johnsonii PF01 The bsh A, bsh B, and bsh C genes encoding the salt hydrolase were amplified and cloned and overexpressed in E. coli to identify the characteristics of the recombinant bsh A, Bsh B, and Bsh C.

현재 경제 발전 및 소득 수준이 향상됨에 따라서 각종 성인성 질환이 급증하고 암과 동맥경화증 등이 현대인의 사망 요인으로 가장 중요하게 대두되었다. 성인성 질환을 유발시키는 요인 중에서 가장 중요한 것은 동물성 지방의 과다한 섭취로 인한 혈중 고 콜레스테롤이다. 유산균은 장내유해균 억제작용 및 정장작용, 혈중 콜레스테롤 감소기능, 항암작용, 면역증강 작용, 유당불내증(lactose intolerance) 완화 작용 등 성인성 질환에 유익하고 안전한 미생물이다. 콜레스테롤은 체내에서 1차 담즙산의 전구체로서 사람의 경우 하루에 약 0.5g 정도의 유리형 담즙산이 분변으로 배출되고 같은 양의 담즙산이 간에서 생성되어 인체 내에는 일정한 담즙산이 유지된다. 간에서 1차 담즙산은 타우린(taurine)이나 글리신(glycine)과 결합하여 복합형 담즙산이 합성되게 되는데 담즙산과 아미노산의 결합은 펩타이드 결합과 유사하지만 어떠한 단백분해효소에도 분해가 되지 않으며 bile salt hydrolase(bsh)라고 하는 효소에 의해서만 분해가 되는 것으로 알려져 있다. 하나의 균주가 여러 개의 bsh 유전자를 가지고 있다고 보고되었지만 모든 유전자가 활성을 나타내지는 못하였다. 또한 체내에는 타우린 또는 글리신과 결합한 8가지의 주요 복합형 담즙산이 존재하며 하나의 bsh가 모두를 가수분해하지는 못한다고 알려졌다. As the current economic development and income levels have improved, various adult diseases have increased rapidly, and cancer and arteriosclerosis have become the most important factors of modern death. Among the factors that cause adult disease, the most important is the high cholesterol in the blood due to excessive intake of animal fat. Lactic acid bacteria are beneficial and safe microorganisms for adult diseases such as inhibitory action of enteropathogenic bacteria in the intestines, function of reducing cholesterol in blood, function of anti-cancer, immunity enhancement, and lactose intolerance. Cholesterol is the precursor of the first bile acid in the body. In the case of humans, about 0.5g of free bile is excreted as feces. The same amount of bile acid is produced in the liver, and a constant bile acid is maintained in the body. In the liver, the primary bile acid is combined with taurine or glycine to form a complex bile acid. Binding of bile acid to amino acid is similar to peptide binding, but does not degrade any proteolytic enzymes. Even salt hydrolase ( bsh ) Is known to be degraded only by the enzyme. One strain was reported to have multiple bsh genes, but not all genes were active. It is also known that there are eight major complex bile acids in the body, which are bound to taurine or glycine, and that one bsh does not hydrolyze all of them.

락토바실러스 존소니는 위장관에 생존하고, 시험관 내 숙주 상피 세포에 부착하며, 숙주 면역반응을 조절할 뿐만 아니라, 헬리코박터 파일로리(Helicobacter pyroli)와 같은 병원성 세균을 저해하며, 마우스에서 간 보호 효과를 제공할 수 있다고 알려져 있다. 이와 같이 락토바실러스 존소니는 포유동물의 장관에서 생물학적으로 매우 중요한 역할을 하지만, 락토바실러스 존소니 유래의 bsh 효소의 특성은 아직까지 규명되지 않았다. 따라서 본 발명에서는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 균주로부터 담즙산 가수분해 유전자, bsh를 클로닝하고 유전자의 특성을 분석하였으며, 또한 클로닝한 bsh 유전자를 대장균에서 대량발현시킨 후에 분리 및 정제하여 효소적 특성을 조사함으로써, 산업적 응용이 가능하게 하고자 한다.Lactobacillus Johnson survives in the gastrointestinal tract, adheres to in vitro host epithelial cells, modulates host immune responses, inhibits pathogenic bacteria such as Helicobacter pyroli , and can provide liver protection in mice . Thus, although Lactobacillus Johnson plays a very important biological role in mammalian intestinal tract, the characteristics of bSh enzyme derived from Lactobacillus Johnson have not yet been elucidated. Therefore, in the present invention, the gene for bile acid hydrolysis and bsh was cloned from the Lactobacillus johnsonii PF01 strain, and the gene was analyzed. Also, the cloned bsh gene was expressed in E. coli, followed by isolation and purification, By investigating the characteristics, we want to make industrial applications possible.

출원번호 10-2004-0102428 비피도박테리움 비피둠의 공배양을 통한 담즙산 활성효소 증가 방법 및 이를 이용한 담즙산 활성효소 증가제Patent application No. 10-2004-0102428 Method for increasing bile acid-activating enzyme through co-culture of Bifidobacterium bifidum and method for enhancing bile acid-activating enzyme using the same

본 발명의 목적은, 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 균주로부터 bshA, bshB, bshC 유전자를 증폭, 클로닝 후 대장균에 대량발현시켜 각각의 bsh의 기질을 조사함으로 락토바실러스 존소니 PF01의 담즙산염 가수분해 효과를 규명함으로 본 발명을 완성하였다.It is an object of the present invention to provide a pharmaceutical composition containing Lactobacillus Johnson PF01 johnsonii PF01) from the strain bsh A, bsh B, bsh C amplify the gene, followed by mass expressed after cloning E. coli completed the present invention by identifying Lactobacillus zone bile salt hydrolytic effect of Sony PF01 by irradiating the substrate of each bsh Respectively.

상기 목적을 달성하기 위해 본 발명은 서열번호 1의 염기서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshA(bile salt hydrolase A) 유전자를 제공한다.In order to accomplish the above object, the present invention provides a recombinant vector comprising Lactobacillus Johnson PF01 ( Lactobacillus johnsonii PF01) derived bsh A (even salt hydrolase A) gene.

또한 본 발명은 서열번호 2의 염기서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshB(bile salt hydrolase B) 유전자를 제공한다.The present invention also provides a bsh B (bile salt hydrolase B) gene derived from Lactobacillus johnsonii PF01 comprising the nucleotide sequence of SEQ ID NO: 2.

또한 본 발명은 서열번호 3의 염기서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshC(bile salt hydrolase C) 유전자를 제공한다.The present invention also provides a bsh C (bile salt hydrolase C) gene derived from Lactobacillus johnsonii PF01 comprising the nucleotide sequence of SEQ ID NO: 3.

또한 본 발명은 상기 유전자를 포함하는 벡터를 제공한다.The present invention also provides a vector comprising the gene.

또한 본 발명은 상기 재조합 벡터로 형질전환된 숙주세포를 제공한다.The present invention also provides a host cell transformed with the recombinant vector.

또한 본 발명은 상기 서열번호 7 및 8의 염기서열을 갖는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshA(bile salt hydrolase A) 유전자를 증폭하기 위한 프라이머 세트를 제공한다.In another aspect, the present invention Lactobacillus bacteria zone Sony PF01 (Lactobacillus having the nucleotide sequence of SEQ ID NO: 7 and 8 and a primer set for amplifying the bsh A (bile salt hydrolase A) gene derived from P. johnsonii PF01.

또한 본 발명은 상기 서열번호 9 및 10의 염기서열을 갖는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshB(bile salt hydrolase A) 유전자를 증폭하기 위한 프라이머 세트를 제공한다.The present invention also relates to a nucleic acid encoding a lactobacillus Johnson PF01 ( Lactobacillus strains having the nucleotide sequences of SEQ ID NOS: 9 and 10, and a primer set for amplifying the bsh B (bile salt hydrolase A) gene derived from P. johnsonii PF01.

또한 본 발명은 상기 서열번호 11 및 12의 염기서열을 갖는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshC(bile salt hydrolase A) 유전자를 증폭하기 위한 프라이머 세트를 제공한다.The present invention also relates to a nucleic acid encoding a Lactobacillus Johnson PF01 ( Lactobacillus < RTI ID = 0.0 > and a primer set for amplifying the bsh C (bile salt hydrolase A) gene derived from P. johnsonii PF01.

또한 본 발명은 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 균주로부터 bshA, bshB, bshC 유전자에 대응되는 증폭용 프라이머를 사용하여 PCR 방법으로 bshA, bshB, bshC 유전자를 증폭하는 단계; 상기 증폭된 bshA, bshB, bshC 유전자를 각각 벡터와 결합시켜 대장균 균주에 도입하는 클로닝 단계; 상기 클로닝 단계에서 생성된 재조합 플라스미드를 제한효소로 절단하고 인서트 DNA를 회수하는 단계; 상기 회수된 인서트 DNA를 벡터에 결합시켜 서브클로닝 후, 대장균 균주에 도입하여 형질전환하는 단계; 상기 형질전환된 균주에서 재조합 플라스미드를 추출하는 단계; 상기 추출된 재조합 플라스미드를 대량발현을 위해 숙주세포인 대장균에 도입하는 단계; 상기 대장균에 도입된 재조합 플라스미드를 배양하여 침전반응을 보이는 형질전환 효소를 선발하는 단계; 를 포함하여 이루어지는 고콜레스테롤혈증 감소를 위한 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 균주 유래의 담즙산염 가수분해효소 분리방법을 제공한다.In another aspect, the present invention Lactobacillus bacteria zone Sony PF01 (Lactobacillus amplifying bsh A, bsh B, and bsh C genes by PCR using amplification primers corresponding to the bsh A, bsh B, and bsh C genes from the johnsonii PF01 strain; A step of introducing the amplified bsh A, bsh B, and bsh C genes into vectors, respectively, and introducing them into an Escherichia coli strain; Digesting the recombinant plasmid produced in the cloning step with a restriction enzyme and recovering the insert DNA; Subcloning the recovered insert DNA by binding it to a vector, introducing the subcloned strain into an E. coli strain, and transforming the transformed DNA; Extracting a recombinant plasmid from the transformed strain; Introducing the extracted recombinant plasmid into E. coli which is a host cell for mass expression; Selecting a transforming enzyme showing a precipitation reaction by culturing the recombinant plasmid introduced into the E. coli; Lactobacillus Johnson PF01 for the reduction of hypercholesterolemia comprising Lactobacillus johnsonii PF01) strain-derived bile acid salt hydrolase.

또한 본 발명은 서열번호 4의 아미노산 서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshA(bile salt hydrolase A)를 제공한다.In another aspect, the present invention Lactobacillus bacteria zone consisting of the amino acid sequence of SEQ ID NO: 4 Sony PF01 (Lactobacillus johnsonii PF01) derived bsh A (even salt hydrolase A).

또한 본 발명은 서열번호 5의 아미노산 서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshB(bile salt hydrolas B)를 제공한다.The present invention also relates to a pharmaceutical composition comprising Lactobacillus Johnson PF01 ( Lactobacillus < RTI ID = 0.0 > johnsonii PF01) derived bsh B (bile salt hydrolas B).

또한 본 발명은 서열번호 6의 아미노산 서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshC(bile salt hydrolase C)를 제공한다.The present invention also relates to the use of Lactobacillus Johnson PF01 ( Lactobacillus < RTI ID = 0.0 > bsh C (bile salt hydrolase C) derived from johnsonii PF01.

또한 본 발명은 특정 성질을 갖는 정제된 bshA 를 갖는다.The invention also has a purified bsh A having specific properties.

또한 본 발명은 특정 성질을 갖는 정제된 bshB를 갖는다.The present invention also has a purified bsh B having specific properties.

또한 본 발명은 특정 성질을 갖는 정제된 bshC를 갖는다.The present invention also has a purified bsh C having specific properties.

또한 본 발명은 서열번호 1, 서열번호 2 및 서열번호 3의 염기서열로 이루어진 bshA, bshB, bshC 유전자가 발현되는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01)을 제공한다.The present invention also provides Lactobacillus johnsonii PF01, wherein the bsh A, Bsh B, and Bsh C genes comprising the nucleotide sequences of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3 are expressed.

또한 본 발명은 상기 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01)를 함유하는 콜레스테롤 저하용 식품을 제공한다.In another aspect, the present invention the Lactobacillus zone Sony PF01 (Lactobacillus johnsonii PF01). < / RTI >

상술한 바와 같이 본 발명에 따른 고콜레스테롤혈증 감소를 위한 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 균주 유래의 유전자, 효소 및 효소의 분리방법은, 락토바실러스 존소니 PF01 균주 유래의 bshA, bshB, bshC 유전자에 의해 코딩되는 담즙산염 가수분해효소(bsh)가 담즙산염의 타우린 결합과 글리신 결합을 모두 분해함으로, 락토바실러스 존소니 PF01 단일 균주가 두 종류의 담즙산염 가수분해효소를 모두 가지고 있음을 확인하였다. 이로써 락토바실러스 존소니 PF01을 식품에 첨가하여 섭취할 때 장내 생존력을 높이는 동시에 종래 발견된 bsh 보다 효과적으로 콜레스테롤 수준을 낮출 수 있는 효과를 이용하여 고콜레스테롤혈증 환자에서 혈청 콜레스테롤 수준을 보다 더 효과적으로 낮추고, 정상적인 콜레스테롤 수준을 갖는 사람에서는 고콜레스테롤혈증을 예방하는데 유용하게 사용될 수 있다.As described above, in order to reduce hypercholesterolemia according to the present invention, Lactobacillus Johnson PF01 ( Lactobacillus johnsonii PF01) isolation method of the gene of the strains derived from, enzyme and enzyme, Lactobacillus zone Sony bile salts singer encoded by the bsh A, bsh B, bsh C gene of PF01 strain derived lyase (bsh) a bile acid salt of taurine bond And glycine bond, it was confirmed that a single strain of Lactobacillus Johnson PF01 had both kinds of bile salt hydrolases. Thus, when Lactobacillus Johnson PF01 is added to food, it is possible to increase the viability of the intestines and to lower the serum cholesterol level more effectively in patients with hypercholesterolemia using the effect of lowering the cholesterol level more effectively than conventionally found bsh , People with cholesterol levels can be useful in preventing hypercholesterolemia.

도 1. 제한효소에 의해 절단되어 정제된 bsh 유전자.
A는 락토바실러스 존소니 PF01 균주로부터 증폭된 bsh 유전자로 1번 레인은 bshA, 2번 레인은 bshB, 3번 레인은 bshC.
B는 증폭 후 정제된 bsh 유전자로 1번 레인은 bshA, 2번 레인은 bshB, 3번 레인은 bshC.
C는 제한효소로 절단 후, 정제된 bsh 유전자로 1번 레인은 Nde , Hind Ⅲ로 절단된 bshA, 2번 레인은 Nde , Xho 으로 절단된 bshB, 3번 레인은 Nde , Xho 에 의해 절단된 bshC.
도 2. 대장균 DH5α에 형질전환된 플라스미드 DNA의 제한효소 처리 결과.
레인 M은 DNA 사이즈 마커, 1번 레인은 pET21b 벡터, 2, 3, 4, 5번 레인은 pET21b 벡터와 bshA, 6, 7, 8, 9번 레인은 pET21b 벡터와 bshB, 10, 11, 12번 레인은 pET21b 벡터와 bshC.
도 3. 형질전환된 bsh 선발.
37℃에서 24시간 배양된 플레이트로, (A), (B) 플레이트는 0.3%의 taurodeoxycholic acid(TDC)를 포함하고, (C) 플레이트는 glycodeoxycholic acid(GDC)를 포함한다.
도 4. 대장균에서 발현된 bsh
레인 M은 단백질 사이즈 마커, 1번 레인은 bshA의 과발현 결과, 2번 레인은 bshB의 과발현 결과, 3번 레인은 bshC의 과발현 결과, 레인 N1, N2, N3은 컨트롤.
도 5. 정제된 재조합 bsh
1번 레인은 총 세포 용해물, 2번 레인은 컬럼에 로딩된 후, 3번 레인은 세척후를 나타낸다.
도 6. 8개의 주요 담즙산염 사용 결과.
TC : taurocholic acid, TDC : taurodeoxycholic acid, TCDC : taurochenodeoxycholic acid, THDC : taurohyodeoxycholic acid, TUDC : tauroursodeoxycholic acid, GC : glycocholic acid, GDC : glycodeoxycholic acid, GCDC : glycochenodeoxycholic acid
도 7. 재조합 대장균 내 bsh의 온도에 따른 효과.
도 8. 재조합 대장균 내 bsh의 pH에 따른 효과.
도 9. 락토바실러스 존소니 PF01 유래 bshA 유전자의 염기서열과 아미노산 서열.
RBS는 리보솜 결합부위(ribosome binding site)이며, 위쪽을 향한 화살표는 전사 시작 시점(transcriptional start point ; TSP)
도 10. 락토바실러스 존소니 PF01 유래 bshB 유전자의 염기서열과 아미노산 서열.
RBS는 리보솜 결합부위(ribosome binding site)이며, 위쪽을 향한 화살표는 전사 시작 시점(transcriptional start point ; TSP)
도 11. 락토바실러스 존소니 PF01 유래 bshC 유전자의 염기서열과 아미노산 서열.
RBS는 리보솜 결합부위(ribosome binding site)이며, 위쪽을 향한 화살표는 전사 시작 시점(transcriptional start point ; TSP)
도 12. 락토바실러스 존소니 PF01 유래 bsh 유전자의 얼라인먼트(alignment).
아래를 향하는 화살표는 활성부위라 불리는 C, D, N, N, R을 나타내며 4개의 박스로 표시된 부위에서 bsh들이 높은 확률로 가지고 있는 4개의 보존서열(FGRNXD, AGLNF, VLTNXP, GXGXGXXGXPGD) 또한 코드 되는 것을 확인할 수 있었다.
Figure 1. Bsh gene cleaved by restriction enzyme.
A is Lactobacillus zone Sony number 1 lane with the bsh PF01 gene amplified from strain A is bsh, No. 2 Lane bsh B, lane 3 is bsh C.
B is amplified and purified bsh gene, lane 1 is bsh A, lane 2 is bsh B, lane 3 is bsh C.
C was digested with restriction enzymes, and the purified bsh gene was amplified by using Nde I , Hind III digested bsh A, lane 2 Nde I , Bsh B, lane 3 is cut by Xho Nde Ⅰ, cut by Xho bsh C.
Fig. 2. Results of restriction enzyme treatment of plasmid DNA transformed into Escherichia coli DH5α.
Lane M is DNA size marker, lane 1 is pET21b vector, pET21b vector and bsh A for lanes 2, 3, 4 and 5, pET21b vector and bsh B for lanes 6, 7, Lane 12 is the pET21b vector and bsh C.
Figure 3. Transformed bsh selection.
The plates (A) and (B) contain 0.3% of taurodeoxycholic acid (TDC) and the plate (C) contains glycodeoxycholic acid (GDC).
Figure 4. Expression of bsh
Lane M is the protein size marker, lane 1 is the over-expression of bsh A, lane 2 is the over-expression of bsh B, lane 3 is the over-expression of bsh C, lanes N1, N2 and N3 are control.
Figure 5. Purified recombinant bsh
Lane 1 represents total cell lysate, lane 2 is loaded on the column, and lane 3 represents after washing.
Figure 6. Results of eight major bile salts use.
TC: taurocholic acid, TDC: taurodeoxycholic acid, TCDC: taurochenodeoxycholic acid, THDC: taurohyodeoxycholic acid, TUDC: tauroursodeoxycholic acid, GC: glycocholic acid, GDC: glycodeoxycholic acid, GCDC: glycochenodeoxycholic acid
Figure 7. Effects of temperature of bsh in recombinant E. coli.
Figure 8. Effect of pH of bsh in recombinant E. coli according to pH.
Fig. 9. Base sequence and amino acid sequence of bsh A gene derived from Lactobacillus Johnson PF01.
RBS is the ribosome binding site, and the upward arrow indicates the transcriptional start point (TSP)
Figure 10. Base sequence and amino acid sequence of bsh B gene derived from Lactobacillus Johnson PF01.
RBS is the ribosome binding site, and the upward arrow indicates the transcriptional start point (TSP)
Figure 11. Base sequence and amino acid sequence of bsh C gene derived from Lactobacillus Johnson PF01.
RBS is the ribosome binding site, and the upward arrow indicates the transcriptional start point (TSP)
Figure 12. Lactobacillus Johnson Alignment of the bsh gene from PF01.
Arrow pointing down the active site, called C, D, N, N, four conserved sequence that represents the R has a bsh have a high probability in the area indicated by the four boxes (FGRNXD, AGLNF, VLTNXP, GXGXGXXGXPGD ) which also codes .

이하, 본 발명을 구체적인 실시예에 의해 보다 더 상세히 설명하고자 한다. 하지만, 본 발명은 하기 실시예에 의해 한정되는 것은 아니며, 본 발명의 사상과 범위 내에서 여러 가지 변형 또는 수정할 수 있음은 이 분야에서 당업자에게 명백한 것이다.Hereinafter, the present invention will be described in more detail by way of specific examples. However, it is to be understood that the present invention is not limited by the following examples, and that various changes and modifications may be made therein without departing from the spirit and scope of the present invention.

실시예Example 1. 사용 균주 및 보존 1. Use strains and preservation

본 발명에 사용된 균주는 단국대학교 생명자원과학대학 동물자원학과 산업미생물학 실험실에서 보관중인 자돈에서 분리된 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01)을 사용하였고, 이 균주는 lactobacilli de Man-Rogosa-Sharpe(MRS, Difco LAB, USA) 배지에 1% 접종을 하여 37℃에서 24시간 배양(incubator; jeio tech, Korea)하였으며, 균주의 활력을 유지하기 위해 2대 계대 배양하여 사용하였다. 락토바실러스 존소니 PF01은 자돈의 분변에서 유래된 유산균으로 이미 선행연구를 통해 담즙산 분해능력이 뛰어난 것으로 알려져 있다. The strain used in the present invention was Lactobacillus johnsonii PF01 isolated from piglets stored in the laboratory of the Department of Animal Resources and Industrial Microbiology, College of Life Science and Natural Resources, Dankook University, and lactobacilli de Man-Rogosa-Sharpe (MRS, Difco LAB, USA), incubated at 37 ° C for 24 hours (in an incubator; jeio tech, Korea) and incubated in two subcultures to maintain the viability of the strain. Lactobacillus Johnson PF01 is a lactic acid bacterium derived from the feces of pigs, and is known to have excellent ability to degrade bile acids through previous studies.

실시예Example 2.  2. 사용배지Use badge 및 배양 And culture

사용된 균주는 유산균 배지인 deMan-Rogosa-Sharpe(MRS) 배지에서 배양 및 저장하였으며, 단기간 저장용 균주의 경우 MRS 배지에 배양하여 냉장 조건에서 보관하였고, 균주의 활력 유지를 위해 1주일 단위로 배양하여 활력을 유지하였다. 장기간 저장을 위해서는 MRS 배지에서 배양된 균주를 3,000×g에서 20분 동원 원심분리하여 세포를 수집하였으며 수집한 세포를 15% 글리세롤(glycerol)에 희석 후 -80℃ 초저온냉동고에 저장하였다.The strains used were cultivated and stored in deMan-Rogosa-Sharpe (MRS) medium, a lactic acid culture medium. For short-term storage strains, they were cultured in MRS medium and stored under refrigeration conditions. To maintain vitality. For long-term storage, cells were collected by centrifugation at 3,000 × g for 20 min in a MRS medium. The collected cells were diluted with 15% glycerol and stored at -80 ° C in a cryogenic freezer.

실시예Example 3.  3. bileeven saltsalt hydrolasehydrolase (( bshbsh ) A, B, C 유전자의 증폭) Amplification of A, B and C genes

락토바실러스 존소니 PF01 유래의 bsh(bile salt hydrolase) gene을 증폭하기 위하여 Polymerase chain reaction(PCR)을 이용하였다. MRS 액체배지에서 배양한 락토바실러스 존소니 PF01의 균주로부터 chromosomal DNA를 분리하여 주형 DNA로 이용하였다. Polymerase chain reaction (PCR) was used to amplify the bsh (bile salt hydrolase) gene derived from Lactobacillus Johnson PF01. Chromosomal DNA was isolated from the strain of Lactobacillus Johnson PF01 cultured in MRS liquid medium and used as template DNA.

락토바실러스 존소니 PF01 bshA, B, C 유전자 염기서열에 근거하여 각각의 특이적인 프라이머(Primer)를 표 1과 같이 제작하여 PCR을 수행하였다.Based on the gene sequences of Lactobacillus Johnson PF01 bsh A, B, and C, specific primers were prepared as shown in Table 1 and PCR was performed.

유전자 클로닝(cloning)과 발현(expression)을 위해 bshA 프라이머의 양쪽 말단에는 PstⅠ, NdeⅠ, HindⅢ를, bshB 및 bshC 프라이머의 양쪽 말단에는 PstⅠ, NdeⅠ, XhoⅠ 제한효소 영역을 덧붙여 제작하였다.For gene cloning and expression, Pst I, Nde I and Hind III are attached to both ends of the bsh A primer, Pst I, Nde I and Xho I restriction sites are attached to both ends of the bsh B and bsh C primers, Were added.

bshA, bshB, bshC 유전자 증폭을 위해 사용된 프라이머 염기서열 bsh A, bsh B, bsh C Primer sequences used for gene amplification 유전자 이름Gene name 염기서열Base sequence bshA bsha ForwardForward AAA CTG CAG CAT ATG TGT AACC TCA ATT GTT TAAAA CTG CAG CAT ATG TGT AACC TCA ATT GTT TA ReverseReverse AGC CTG CAG AAG CTT ATT TTG ATA ATT AAT TGAGC CTG CAG AAG CTT ATT TTG ATA ATT AAT TG bshB bsh B ForwardForward AAA CTG CAG CAT ATG TGT ACT GGT TTA AGA TAAA CTG CAG CAT ATG TGT ACT GGT TTA AGA T ReverseReverse CTG CAG CTC GAG GTA AGT CAC AAG ACTCTG CAG CTC GAG GTA AGT CAC AAG ACT bshC bsh C ForwardForward CTG CAG CAT ATG TGT ACA TCA ATT TTA TCTG CAG CAT ATG TGT ACA TCA ATT TTA T ReverseReverse AAA CTG CAG CTC GAG ATT TTC AAA TTT AATAAA CTG CAG CTC GAG ATT TTC AAA TTT AAT

PCR(Polymerase Chain Reaction)은 GeneAMP PCR system 9700을 이용하여 다음과 같은 조건하에서 실시하였다. PCR 반응액은 주형 DNA(20~200ng/㎕) 1㎕, 각각의 프라이머 쌍 1㎕, 10X Buffer(10mM Tris-HCl, 50mM KCl, 1.5mM MgCl, pH 8.3) 2㎕, dNTP 1㎕, Taq Polymerase (10unit/㎕) 0.2㎕를 첨가한 후 PCR 반응액을 총 20㎕로 조정하여 PCR 반응을 진행하였다. 반응조건은 예비가열 95℃에 5분, 95℃ 1분, 55℃ 1분, 72℃ 1분 30초로 35회 반복한 다음 마지막으로 72℃ 7분을 주어 반응을 종료하였다. PCR 종료 후 2㎕의 PCR 산물을 2% 아가로즈 겔에 전기영동 하여 DNA의 증폭 여부를 확인하였다(도 1). PCR (Polymerase Chain Reaction) was performed using GeneAMP PCR system 9700 under the following conditions. 1 μl of each primer pair, 2 μl of 10 × Buffer (10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl 2, pH 8.3), 1 μl of dNTP, 1 μl of Taq Polymerase (10 units / μl) was added to the reaction solution, and the total amount of the PCR reaction solution was adjusted to 20 μl to carry out the PCR reaction. The reaction was repeated 35 times at 95 ° C for 5 minutes, at 95 ° C for 1 minute, at 55 ° C for 1 minute, at 72 ° C for 1 minute and 30 seconds, and finally at 72 ° C for 7 minutes to complete the reaction. After completion of the PCR, 2 μl of the PCR product was electrophoresed on 2% agarose gel to confirm whether the DNA was amplified (FIG. 1).

실시예Example 4.  4. bshbsh AA , B, C 유전자의 클로닝(, B and C genes ( cloningcloning ))

제조합 DNA 제작 및 유전자 조작은 Sambrook 등(2001)의 방법에 준하여 수행하였다. pUC19 벡터와 PCR 산물을 PstⅠ으로 처리하여 16℃에서 결합(ligation)시킨 후 대장균 균주 DH5α(Takara, Japan)에 도입하였다. 형질전환된 대장균을 엠피실린(ampicillin 50㎍), 이소프로필티오갈락토피라노시드(IPTG 0.1mM/ml) 및 X-gal(0.002%)이 첨가된 Luria-Bertani agar(Difco, USA)에 도말하고, 37℃에서 16~24시간 동안 배양한 후에 bshA, B, C 콜로니(colony)를 선발하였고, 콜로니에서 QIAPrep Miniprep kit(Qiagen, Netherlads)를 이용하여 재조합 플라스미드(recombinant plasmid)를 추출하였다. 서브클로닝(sub cloning)을 위해 상기 재조합 플라스미드를 제한효소(bshA : NdeⅠ/HindⅢ, bshB, C : NdeⅠ/XhoⅠ)로 절단하고 인서트 DNA(insert DNA)만을 gel extraction kit(Qiagen, Netherlands)를 이용하여 회수하였고 pET21b 벡터를 동일한 제한효소로 절단, 16℃에서 결합시킨 후, 대장균 DH5α에 도입하였다. 형질전환 후 재조합 플라스미드를 추출하고 제한효소 처리하여 자른 후 전기영동을 통해 인서트 DNA의 유무를 확인함으로 형질전환 효소를 선발하였다(도 2). 선발된 형질전환 효소에서 추출한 재조합 플라스미드를 대량 발현시키기 위해 발현숙주인 대장균 BLR(DE3)에 도입하였고 엠피실린(50㎍/ml), 이소프로필티오갈락토피라노시드(0.1mM/ml) 및 X-gal(0.002%)이 첨가된 Luria-Bertani agar(Difco, USA)에서 배양한 후에 white colony(bshA, B, C 콜로니)를 선별하여 선택배지(LB agar, Taurodeoxycholic acid or Glycodeoxycholic acid 0.3%, glucose 1%, CaCl2 0.035%, ampicillin 50㎍/ml)에 접종하여 37℃에서 24시간 동안 배양한 후, 콜로니 주위에 침전반응을 보이는 형질전환 효소를 선발하였다(도 3).The combined DNA preparation and gene manipulation were performed according to the method of Sambrook et al. (2001). The pUC19 vector and the PCR product were treated with Pst I and ligated at 16 ° C before being introduced into Escherichia coli strain DH5α (Takara, Japan). The transformed Escherichia coli was plated on Luria-Bertani agar (Difco, USA) supplemented with ampicillin (50 g), isopropyl thiogalactopyranoside (IPTG 0.1 mM / ml) and X-gal After culturing at 37 ° C for 16-24 hours, bsh A, B, and C colonies were selected. Recombinant plasmids were extracted from the colonies using QIAPrep Miniprep kit (Qiagen, Netherlads). For the subcloning, the recombinant plasmid was digested with restriction enzymes ( bsh A: Nde I / Hind III, bsh B, C: Nde I / Xho I), and only the insert DNA (insert DNA) , Netherlands). The pET21b vector was digested with the same restriction enzyme, bound at 16 ° C, and then introduced into Escherichia coli DH5α. After the transformation, the recombinant plasmid was extracted and treated with a restriction enzyme, and the transformed enzyme was selected by confirming presence or absence of insert DNA through electrophoresis (FIG. 2). The recombinant plasmids extracted from the selected transformants were introduced into E. coli BLR (DE3), which was an expression host, in order to express a large amount of recombinant plasmids. Amphicrin (50 μg / ml), isopropylthiogalactopyranoside (0.1 mM / (LB agar, Taurodeoxycholic acid or Glycodeoxycholic acid, 0.3%) was added to the culture medium after selection of white colony ( bsh A, B and C colonies) after culturing in Luria-Bertani agar (Difco, USA) glucose 1%, CaCl 2 0.035%, ampicillin 50 μg / ml) and cultured at 37 ° C. for 24 hours. Transforming enzymes showing a precipitation reaction around the colonies were selected (FIG.

실시예Example 5.  5. bshbsh AA , B, C 유전자의 대량발현, B, and C genes

클로닝 한 bshA, B, C 유전자를 대장균에서 과발현시키기 위해 N-말단부분에 His-tag이 연결되어 있는 pET21b 발현벡터(Novagen, Germany)를 이용하였다. A pET21b expression vector (Novagen, Germany) was used in which the His-tag was linked to the N-terminal portion of the cloned bsh A, B and C genes in E. coli.

서브클로닝 한 재조합 플라스미드를 대장균 BLR(DE3)에 도입한 후, 형질전환된 효소를 선발하였다. 형질전환된 효소를 엠피실린(50㎍/ml)이 함유된 LB 배지에서 O.D.(600nm) 값이 0.5가 될 때까지 배양한 후에 이소프로필티오갈락토피라노시드 (IPTG)를 0.1mM이 되도록 첨가하여 단백질 발현을 유도하였다. 단백질이 충분히 발현되도록 25℃에서 5시간 더 배양한 후 세포를 수확(3,000xg, 20min)하였다. 과발현된 재조합 단백질을 얻기 위하여, 세포 펠렛(cell pellet)을 lysis buffer(50mM Na-Pi, 300mM NaCl, 1mM DTT)로 현탁한 후 초음파 분쇄기(Sonicator; Sonics, USA)로 세포를 파쇄(pulse on 20 sec, off 10 sec, 1.5 min, 35% amplitude)한 다음, 14,000rpm에서 30분 동안 원심분리하여 세포 용해물(cell lysate)를 분리하였다. 세포 용해물은 12% SDS-PAGE 전기영동으로 효소의 대량발현을 확인하였다(도 4).The sub-cloned recombinant plasmid was introduced into Escherichia coli BLR (DE3), and the transformed enzyme was selected. The transformed enzyme was cultured in an LB medium containing ampicillin (50 μg / ml) until the OD (600 nm) value became 0.5, and then isopropylthiogalactopyranoside (IPTG) was added so as to be 0.1 mM To induce protein expression. The cells were further cultured at 25 ° C for 5 hours to express the protein sufficiently, and the cells were harvested (3,000xg, 20 min). The cell pellet was suspended in lysis buffer (50 mM Na-Pi, 300 mM NaCl, 1 mM DTT) to obtain over-expressed recombinant proteins, and the cells were disrupted with an ultrasonic disintegrator (Sonicator; Sonics, USA) sec, off 10 sec, 1.5 min, 35% amplitude) and then centrifuged at 14,000 rpm for 30 minutes to separate the cell lysate. The cell lysate was subjected to 12% SDS-PAGE electrophoresis to confirm the mass expression of the enzyme (Fig. 4).

실시예Example 6. 발현된 재조합  6. Expressed recombination bshbsh AA , B, C의 정제, B, C purification

세포 용해물(Cell lysate)에서 발현된 bshA, bshB, bshC를 정제하기 위해 Ni2+NNTA affinity cloumn(Qiagen, netherlands)을 이용하였다. 컬럼(column)에 lysis buffer(50mM Na-Pi, 300mM NaCl, 1mM DTT)를 수차례 흘려보내어 컬럼의 평형화(equilibrate) 시킨 후에 세포 용해물을 로딩(loading)하고 50mM 이미다졸 버퍼(imidazole buffer)로 세척한 후 250mM 이미다졸 버퍼로 용출하였다. 12% SDS-PAGE(Sodium dodecyl sulfate polyacrylamide) 전기영동을 통하여 재조합 단백질의 정제 유무를 확인하였고, 단백질 밴드(band)는 Coomassie Brilliant Blue R250(Bio-Rad, USA)을 이용하여 염색하였다.To purify bsh A, bsh B, and bsh C expressed in cell lysate, Ni 2 + N NTA affinity cloumn (Qiagen, netherlands) was used. The column was equilibrated by lysing buffer (50mM Na-Pi, 300mM NaCl, 1mM DTT) several times, and the cell lysate was loaded and loaded into a 50mM imidazole buffer Washed and eluted with 250 mM imidazole buffer. The presence of purified protein was confirmed by 12% SDS-PAGE (Sodium dodecyl sulfate polyacrylamide) electrophoresis and the protein band was stained with Coomassie Brilliant Blue R250 (Bio-Rad, USA).

그 결과, 세포 용해물로부터 발현된 bsh 이외의 기타 단백질 밴드는 제거되고 각각 약 35kDa, 34kDa, 37kDa 크기의 재조합 bshA, B, C가 각각 정제되었음을 확인하였다(도5).As a result, it was confirmed that other protein bands other than bsh expressed from the cell lysate were removed, and the recombinant bsh A, B and C of about 35 kDa, 34 kDa and 37 kDa were respectively purified (FIG. 5).

실시예Example 7. 기질의 특이성 조사 7. Investigation of substrate specificity

체내에는 taurocholic acid(TC), taurodeoxycholic acid(TDC), taurochenodeoxycholic acid (TCDC), taurohyodeoxycholic acid (THDC) 그리고 tauroursodeoxycholic acid (TUDC), glycocholic acid(GC), glycodeoxycholic acid(GDC), glycochenodeoxycholic acid(GCDC) 등과 같은 8종류의 주요 담즙산이 존재하고 있으며, 크게 타우린(taurine)계 담즙산과 글리신(glycine)계 담즙산으로 나뉜다. 하나의 bsh가 타우린계 담즙산과 글리신계 담즙산 모두를 가수분해하는 예는 현재까지 보고된 바 없기 때문에 락토바실러스 존소니 PF01 균주 유래의 bsh들이 각각 어느 계열의 담즙산과 특이적으로 기질-효소 결합을 하여 분해하는지 조사하였다. (TC), taurodeoxycholic acid (TDC), taurochenodeoxycholic acid (TCDC), taurohyodeoxycholic acid (THDC) and tauroursodeoxycholic acid (TUDC), glycocholic acid (GC), glycodeoxycholic acid (GDC) and glycochenodeoxycholic acid There are eight kinds of major bile acids such as taurine-based bile acid and glycine-based bile acid. Since no single bsh hydrolysis of both taurine and glycine-based bile acids has been reported so far It was examined that decomposition by the enzyme-linked-Lactobacillus bsh John Sony PF01 strain derived from that of any sequence bile acids and specific to the substrate, respectively.

정제된 재조합 bshA, B, C의 기질 특이성 조사는 표 2에 나타낸 8가지 담즙산(bile acid ; Sigma, USA)을 이용하였으며 Tanaka 등(1999)의 방법을 기초로 약간 변형하여 사용하였다. 구체적으로, 정제된 bsh를 0.2ml의 총 부피에서 10mM 접합된 담즙산 및 100mM 인산나트륨(pH 6.0)과 혼합하였다. 반응을 37℃에서 30분간 수행하고, 15% 트리클로아세트산(trichloroacetic acid)으로 정지시킨 후 1500rpm에서 5분간 원심분리하여 침전물을 제거하였다. 상등액 20㎕를 80㎕의 증류수와 섞고, 1% 닌히드린(ninhydrin) 0.5ml, 글리세롤 1.2ml 및 0.5M 시트레이트(citrate pH 5.5) 0.2ml을 포함하는 닌히드린 시약 1.9ml을 첨가하여 15분간 100℃에서 가열하고 3분간 냉각하였으며 나타난 발색의 정도를 분광도계(spectrophotometer)를 이용하여 O.D. 570nm에서 측정하였다.The substrate specificity of the purified recombinant bsh A, B and C was investigated using 8 bile acids (Sigma, USA) shown in Table 2 and slightly modified based on Tanaka et al. (1999). Specifically, purified bsh was mixed with a total volume of 0.2 ml of 10 mM conjugated bile acid and 100 mM sodium phosphate (pH 6.0). The reaction was carried out at 37 ° C for 30 minutes, stopped with 15% trichloroacetic acid, and centrifuged at 1500 rpm for 5 minutes to remove the precipitate. 20 μl of supernatant was mixed with 80 μl of distilled water and 1.9 ml of ninhydrin reagent containing 0.5 ml of 1% ninhydrin, 1.2 ml of glycerol and 0.2 ml of 0.5 M citrate (pH 5.5) And then cooled for 3 minutes. The degree of color development was measured at OD 570 nm using a spectrophotometer.

그 결과 bshA와 bshB는 타우린 계열의 담즙산을 모두 특이적으로 가수분해하였으나, 글리신 계열의 담즙산에 대해서는 분해능력이 매우 떨어지는 것으로 나타났다. 반대로 bshC의 경우 타우린 계열의 담즙산 보다는 글리신 계열의 담즙산에 대한 분해 능력이 우수한 것으로 확인되었다.(도 6). 락토바실러스 존소니 PF01 균주는 세 종류의 담즙산 가수분해효소에 의해 타우린계, 글리신계 담즙산 모두 분해 가능하다.As a result, bsh A and bsh B specifically hydrolyzed all of the taurine-based bile acids, but the degradation ability of glycine-based bile acids was very poor. On the other hand, bsh C was found to be superior to bile acid of taurine type in the degradation of glycine-based bile acid (Fig. 6). Lactobacillus Johnson PF01 strain is capable of degrading both taurine and glycine-based bile acids by three kinds of bile acid hydrolases.

본 발명에 사용된 담즙산The bile acid used in the present invention Glycocholic acid(GC)Glycocholic acid (GC) Glycodeoxycholic acid (GDC)Glycodeoxycholic acid (GDC) Glycochenodeoxycholic acid (GCDC)Glycochenodeoxycholic acid (GCDC) Taurocholic acid (TC)Taurocholic acid (TC) Taurodeoxycholic acid (TDC)Taurodeoxycholic acid (TDC) Taurochenodeoxycholic acid (TCDC)Taurochenodeoxycholic acid (TCDC) Taurohyodeoxycholic acid (THDC)Taurohyodeoxycholic acid (THDC) Tauroursodeoxycholic acid (TUDC)Tauroursodeoxycholic acid (TUDC)

실시예Example 8. 재조합  8. Recombination 복합담즙산염Complex bile acid salt 가수분해효소의 활성에 미치는 반응 조건 조사 Investigation of reaction conditions on the activity of hydrolytic enzymes

bshA, B, C의 효소 활성 및 반응에 미치는 온도 및 pH의 영향을 조사하기 위해, 정제된 bsh를 반응에 사용하였다. bsh To investigate the effect of temperature and pH on the enzyme activity and reaction of A, B and C, purified bsh was used in the reaction.

효소 반응의 최적 온도를 조사하기 위해, 0.1M 인산나트륨(sodium phosphate) 완충용액 (pH 7.0)에서 bshA, bshB는 10mM TDC(10mM DTT), bshC는 10mM GDC(10mM DTT)를 기질로 사용하여 20℃에서 90℃까지 10℃ 구간별로 반응시킨 후, 실시예 7과 같은 효소 활성 측정법으로 효소 활성을 비교하였다. 효소의 최적 pH를 조사하기 위해서는, 정제된 bsh를 아래의 각 pH 별 완충용액에 넣고 bshA, bshB는 60℃, bshC는 70℃에서 반응시킨 후, 활성을 비교하였다. 사용한 완충용액으로, pH 3.0~6.0 사이는 0.1M 아세트산나트륨(sodium acetate) 버퍼, pH 6.0~80 사이는 0.1M 인산나트륨(sodium phosphate) 버퍼, pH 8.0~9.0은 0.1M 트리스(tris) 버퍼를 각각 사용하였다.In order to examine the optimal temperature of the enzyme reaction, in 0.1M sodium phosphate (sodium phosphate) buffer (pH 7.0) bsh A, B is bsh 10mM TDC (10mM DTT), bsh C is as a substrate for (10mM DTT) 10mM GDC The enzyme activity was measured by the enzyme activity assay as in Example 7 after the reaction was performed at intervals of 10 ° C from 20 ° C to 90 ° C. In order to investigate the optimal pH of the enzyme, purified bsh was added to each of the following pH buffer solutions, and the activity of bsh A, bsh B at 60 ° C and bsh C at 70 ° C were compared. The buffer solution used was 0.1 M sodium acetate buffer for pH 3.0 to 6.0, 0.1 M sodium phosphate buffer for pH 6.0-80, 0.1 M tris buffer for pH 8.0-9.0 Respectively.

효소 활성의 최적 온도는 bshA는 55℃, bshB는 60℃이고 두 효소 모두 70℃까지 80% 이상의 활성을 보여 어느 정도의 내열성을 가지고 있다고 판단되며 bshC의 경우는 그보다 높은 70℃에서 최적활성을 나타내면서 80℃의 고온에서도 90% 이상의 활성을 유지하는 것으로 보아 뛰어난 내열성을 자지고 있다고 판단된다(도 7).The optimal temperature for enzyme activity was 55 ℃ for bsh A and 60 ℃ for bsh B. The activity of both enzymes was 80% or more up to 70 ℃ and thus it was judged to have some degree of heat resistance. In case of bsh C, And exhibits activity and maintains an activity of 90% or more even at a high temperature of 80 캜, indicating that it has excellent heat resistance (Fig. 7).

한편, 효소의 활성에 미치는 pH의 영향을 조사한 결과 bshA는 pH 6.0, bshB는 pH 4.5, bshC는 pH 5.0에서 효소의 활성이 가장 우수한 것으로 나타난 것으로 보아 세 효소 모두 약산성 효소라고 판단된다(도 8).On the other hand, when the effect of pH on the activity of enzyme was investigated, it was found that bsh A had the highest activity at pH 6.0, bsh B at pH 4.5, and bsh C at pH 5.0, indicating that all three enzymes were weakly acidic 8).

실시예Example 9. 재조합  9. Recombination bshbsh 유전자의 분석 Analysis of genes

pET21b에 클로닝한 bsh 유전자의 염기서열을 분석하였고, 분석된 염기서열을 기초로 코드된 단백질의 아미노산 서열을 추론하였으며, NCBI Blast Searching 프로그램을 이용하여 염기서열 및 아미노산 서열의 상동성을 조사하였다. 아미노산의 multiple sequence alignment는 Clustal W 프로그램을 사용하여 분석하였다.The nucleotide sequence of the bsh gene cloned in pET21b was analyzed. The amino acid sequence of the encoded protein was deduced based on the analyzed nucleotide sequence, and the homology of the nucleotide sequence and the amino acid sequence was examined using the NCBI Blast Searching program. Multiple sequence alignment of amino acids was analyzed using the Clustal W program.

그 결과, bshA, B, C 유전자 모두 하나의 ORF(open reading frame) 임을 확인하였으며 bshA 유전자의 크기는 981bp로서, 326개의 아미노산으로 구성되어 있었으며 개시코돈의 상단에는 리보솜 결합 부위(ribosome-binding site)로 추정되는 염기서열과 프로모토(promotor)로 추정되는 염기서열이 존재하였다(도 9, 서열번호 1, 서열번호 4). bshB 유전자의 크기는 951bp로서, 316개의 아미노산으로 구성되어 있었으며 마찬가지로 리보솜 결합 부위로 추정되는 염기서열과 프로모토로 추정되는 염기서열이 존재하였다(도 10, 서열번호 2, 서열번호 5).As a result, it was confirmed that bsh A, B and C genes were all one ORF (open reading frame). The size of bsh A gene was 981 bp and consisted of 326 amino acids. The ribosome binding site site) and a nucleotide sequence presumed to be a promoter (Fig. 9, SEQ ID NO: 1, SEQ ID NO: 4). The size of the bsh B gene was 951 bp and consisted of 316 amino acids. Similarly, there existed a base sequence presumed to be a ribosome binding site and a base sequence presumed to be a promoter (Fig. 10, SEQ ID NO: 2, SEQ ID NO: 5).

bshC 유전자의 경우 유전자의 크기는 978bp로서, 325개의 아미노산으로 구성되어 있었으며 리보솜 결합 부위로 추정되는 염기서열과 프로모토 서열이 존재 하였다(도 11, 서열번호 3, 서열번호 6). In the case of the bsh C gene, the size of the gene was 978 bp, which was composed of 325 amino acids and had a nucleotide sequence and a promoter sequence presumed to be a ribosome binding site (FIG. 11, SEQ ID NO: 3, SEQ ID NO: 6).

실시예Example 10.  10. bshbsh 유전자의  Gene 아미노산서열Amino acid sequence 분석 analysis

본 발명을 통해 클로닝한 bshA, bshB, bshC 유전자들의 상동성을 비교하였다. 현재까지 연구된 모든 bsh 유전자는 active site(활성 부위)라 불리는 C, D, N, N, R의 다섯 가지 아미노산 서열을 보존하고 있는데 락토바실러스 존소니 PF01 유래의 세 종류의 bsh 유전자 역시 다섯 가지 활성부위를 모두 가지고 있었고, bsh 유전자들이 높은 확률로 가지고 있는 4개의 보존서열(FGRNXD, AGLNF, VLTNXP, GXGXGXXGXPGD) 또한 코드 되어 있는 것을 확인하였다(도 12).The homology of the cloned bsh A, bsh B, and bsh C genes was compared using the present invention. All of the bsh The gene conserves five amino acid sequences of C, D, N, N, and R, which are called active sites. Three bsh genes from Lactobacillus Johnson PF01 also have five active sites, bsh Four conserved sequences (FGRNXD, AGLNF, VLTNXP, GXGXGXXGXPGD) with high probability of the genes were also coded (FIG. 12).

실시예Example 11.  11. bshbsh 의 이용Use of

콜레스테롤은 체내에서 1차 담즙산의 전구체로서, 사람의 경우 하루에 약 0.5g 정도의 유리형 담즙산이 분변으로 배출되고 많은 양의 담즙산이 간에서 생성되어 인체 내에는 일정량의 담즙산이 유지된다. 간에서 1차 담즙산은 타우린이나 글리신과 결합하여 복합형 담즙산이 합성되게 되는데 담즙산과 아미노산의 결합은 펩타이드 결합과 유사하지만 어떠한 단백질분해효소에도 분해가 되지 않으며 bile salt hydrolase(bsh)에 의해서만 분해가 된다.Cholesterol is the precursor of the first bile acid in the body. In humans, about 0.5 g of free bile acid is released as feces and a large amount of bile acid is produced in the liver, and a certain amount of bile acid is maintained in the human body. In the liver, the first bile acid is combined with taurine or glycine to form a complex bile acid. The bile acid-amino acid bond is similar to the peptide bond, but is not degraded by any proteolytic enzymes but is degraded only by salt hydrolase ( bsh ) .

체내에는 타우린 또는 글리신과 결합한 8가지 주요 복합형 담즙산이 존재하며 하나의 bsh가 모두를 가수분해하지는 못한다고 알려져 있다.There are eight major types of complex bile acids in the body associated with taurine or glycine, and it is known that one bsh does not hydrolyze all.

따라서 상기 실시예를 통해 세 종류의 bsh 유전자를 가지고 있는 락토바실러스 존소니 PF01(L. johnsonii PF01) 균주로부터 담즙산 가수분해 효소 유전자를 클로닝하고 유전자의 특성을 분석, 클로닝한 bsh 유전자를 대장균에서 발현시킨 후에 분리, 정제하여 효소의 특성을 조사하였으며, 이를 산업적 응용을 위한 기초 자료로 확보하였다.Therefore, the above-mentioned example was used to clone a bile acid hydrolase gene from L. johnsonii PF01 strain having three kinds of bsh gene, analyze the gene characteristics, and cloned the bsh gene in Escherichia coli After separation and purification, the characteristics of enzyme were investigated and obtained as basic data for industrial application.

본 발명은 이상과 같은 bshA, bshB, bshC 유전자가 발현되는 락토바실러스 존소니 PF01을 함유하는 식품을 제공한다.The present invention provides a food containing Lactobacillus Johnson PF01 in which the bsh A, bsh B, and bsh C genes as described above are expressed.

본 발명의 bshA, bshB, bshC 유전자를 발현하는 락토바실러스 존소니 PF01을 식품 첨가물로 사용할 경우 상기 균주를 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다.When Lactobacillus Johnson PF01 expressing the bsh A, bsh B, and bsh C genes of the present invention is used as a food additive, the strain may be added as it is or may be used together with other food or food ingredients, Can be used.

상기 균주를 첨가할 수 있는 식품의 예로는 육류, 소세지, 빵, 쵸코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 검류, 아이스크림류를 포함하는 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등이 있고, 발효유, 요쿠르트, 치즈, 우유 음료 또는 분유로 제조하는 것이 바람직하고, 발효유, 요구르트, 음료수, 분유, 식품첨가물, 또는 건강보조식품인 것이 더욱 바람직하다. 유효 성분의 혼합양은 그의 사용 목적(예방, 건강 또는 치료적 처치)에 따라 적합하게 결정될 수 있다. 일반적으로, 본 발명의 락토바실러스 존소니 PF01 균주를 식품 또는 음료의 제조시에 상기 특정식품 소재 1g(또는 ml) 당 본 발명의 균을 1×107 내지 10×108 개(균수) 첨가하고, 바람직하게는 1×108 내지 5×108 개의 양으로 첨가한다. 본 발명의 균주의 유효 용량은 상기 조성물의 유효 용량에 준해서 사용할 수 있으나, 건강 및 위생을 목적으로 하거나 도는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 범위 이하일 수 있으며, 유효성분은 안정성 면에서 아무런 문제가 없기 때문에 상기 범위 이상의 양으로도 사용될 수 있음은 확실하다.Examples of the foods to which the strains can be added include dairy products including meat, sausage, bread, chocolate, candy, snack, confectionery, pizza, ramen, other noodles, gourmet, ice cream, soups, drinks, tea, , Alcoholic beverages and vitamin complexes, and it is preferable that they are made of fermented milk, yogurt, cheese, milk beverage or milk powder, and more preferably fermented milk, yogurt, beverage, powdered milk, food additive or health supplement. The amount of the active ingredient to be mixed can be suitably determined according to its intended use (prevention, health or therapeutic treatment). Generally, the Lactobacillus Johnson PF01 strain of the present invention is added to 1 x 10 7 to 10 x 10 8 bacteria (the number of bacteria) of the present invention per 1 g (or ml) of the specific food material at the time of producing food or beverage , Preferably 1 x 10 < 8 > to 5 x 10 < 8 > The effective dose of the strain of the present invention may be used in accordance with the effective dose of the composition, but may be less than the above range for health and hygiene purposes or long-term intake for the purpose of health control, It can be used in an amount exceeding the range described above.

한국미생물보존센터(국내)Korea Microorganism Conservation Center (Domestic) KFCC11549PKFCC11549P 2013022820130228

<110> DanKook university Industry-Academic Cooperation Foundation <120> gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia <130> P13-0026 <160> 12 <170> KopatentIn 2.0 <210> 1 <211> 981 <212> DNA <213> Lactobacillus johnsonii PF01 bshA DNA sequence <400> 1 atgtgtacct caattgttta tagttcaaat aatcatcatt attttggccg aaatctagac 60 ttggaaattt catttggtga acatcctgta attacaccaa gaaattatga gtttcaatat 120 cgtaaattac caaataaaaa ggcaaaatat gccatggttg ggatggcgat tgtagaagat 180 aattatccat tatattttga tgcatcaaat gaagaagggc taggaattgc tggtcttaat 240 tttgatggac catgtcatta tttcccagaa gtgtctggaa aaaataatgt tacaccattt 300 gaattaattc cttatttgtt aagtcaatat actacagtgg ctgaagtaaa agaagcattg 360 aaaagtgtta acttagtaaa gataaacttt tcagaaaaac tccaactttc tccactgcat 420 tggttaatgg ctgataagac tggagagtca attgttgtag aatctacttt aagtggatta 480 cacgtttatg ataatccagt tcatgtttta accaataatc ctgaatttcc aggccagtta 540 agtaatttag ctaattatag caatatagca ccttcacagc ctaaaaatac tcttgttcca 600 ggtgttgacc ttaatttata tagtcgcggg ttagggactc attttttgcc aggaggaatg 660 gattcagcca gtcgttttgt gaaagtagct tttgttcgtg cacattctcc tcaagggaat 720 aatgaactaa gtagtgtaac aaattacttc catattctac attcagtcga acagccaaaa 780 ggaacagatg aagtaggacc aaattcttat gagtacacaa tttactctga tggaactaat 840 ttagagacag gaacatttta ttatacaaat tatgaaaata atcaaattaa cgccattgaa 900 ttaaataaag aaaacttaaa tggtgatgag ttaatagatt acaagttgat tgaaaagcaa 960 acaattaatt atcaaaatta g 981 <210> 2 <211> 951 <212> DNA <213> Lactobacillus johnsonii PF01 bshB DNA sequence <400> 2 atgtgtactg gtttaagatt cacagatgat caaggaaatt tatactttgg ccgtaatcta 60 gatgttggac aggattatgg cgaaggcgtt attattacgc cgcgtaatta tcctcttcca 120 tataagttct tagataacac cactactaaa aaggctgtta ttggaatggg aattgtggtt 180 gatggctatc catcatactt tgactgctat aacgaagatg gattaggcat tgcaggttta 240 aacttcccac attttgctaa atttagtgat ggtcctattg acggtaaaat caacttagct 300 tcttacgaaa ttatgctctg ggttactcaa aactttactc atgttagtga agtaaaggaa 360 gcgttaaaga atgttaactt agtgaatgaa gctattaaca catcatttgc ggttgcccct 420 cttcactgga tcattagtga tagtgacgaa gccattattg ttgaagtttc aaaacaatat 480 ggaatgaaag tctttgatga taaagttggc gttttaacta atagccctga ctttaactgg 540 caccttacta accttggtaa ctatactggt ttaaatccac atgacgctac agcccaaagc 600 tggaacggtc aaaaagttgc tccttggggt gtaggaactg gtagtttagg tctgcctggt 660 gacagcattc cagccgaccg ttttgttaaa gctgcttact taaacgtaaa ctatccaact 720 gctaaaggtg aaaaagcaaa cgtcgctaaa ttctttaaca tcttaaagtc tgttgccatg 780 atcaaaggca gtgtagtcaa cgatcaaggc aaggacgaat atactgttta tactgcatgc 840 tactcttctg gaagcaagac ttactactgt aattttgaag atgattttga attaaagact 900 tataaactag atgatcacac gatgaattca accagtcttg tgacttacta g 951 <210> 3 <211> 978 <212> DNA <213> Lactobacillus johnsonii PF01 bshC DNA sequence <400> 3 atgtgtacat caattttata tagtccaaaa gataattatt ttggtagaaa tttagattat 60 gaaattgcct atggtcagaa agtggtaatt actcctagaa attatcaact taattatcgt 120 catttaccaa cacaagatac tcattatgca atgatcggtg tttcagtagt tgccaatgac 180 tatccattgt attgtgatgc tatcaatgaa aaaggattag gaatagccgg attaaatttc 240 actggtcctg gtaaatattt tgctgtagat gaaagcaaaa agaatgttac ttcttttgaa 300 ctgatcccat atttactaag cagttgtgaa actattgaag atgtaaagaa attattgtct 360 gaaactaata ttactgatga aagtttctct aaagatttac cagttactac tcttcattgg 420 ttaatgggtg ataaaagtgg taagagtata gttattgaat caacagaaac tggtttacac 480 gtttatgaca acccagttaa tactttaaca aataatcctg tctttccagc tcaagttgaa 540 accttggcta actttgcttc ggtttctcca gctcaaccta aaaatacact tgtacctaat 600 gcagatatta atctgtatag tcgtggatta gggacccatc atttaccagg cggaacagat 660 tcaaattctc gctttattaa ggcatctttt gtattagctc attcaccaaa aggtaatgat 720 gaagttgaaa atgtaactaa tttctttcat atcttacatt cagttgaaca agcaaagggt 780 accgatgaag ttgaagataa tgtatttgaa tttaccatgt attcagactg tatgaatttg 840 gataagggaa ttttatattt tactacttac gataataacc aaattaatgc tgtggatatg 900 aataatgaaa atttggatac ttctgacttg attacctatg aattatttaa ggatcaagcc 960 attaaatttg aaaattaa 978 <210> 4 <211> 326 <212> PRT <213> Lactobacillus johnsonii PF01 bshA amino acid sequence <400> 4 Met Cys Thr Ser Ile Val Tyr Ser Ser Asn Asn His His Tyr Phe Gly 1 5 10 15 Arg Asn Leu Asp Leu Glu Ile Ser Phe Gly Glu His Pro Val Ile Thr 20 25 30 Pro Arg Asn Tyr Glu Phe Gln Tyr Arg Lys Leu Pro Asn Lys Lys Ala 35 40 45 Lys Tyr Ala Met Val Gly Met Ala Ile Val Glu Asp Asn Tyr Pro Leu 50 55 60 Tyr Phe Asp Ala Ser Asn Glu Glu Gly Leu Gly Ile Ala Gly Leu Asn 65 70 75 80 Phe Asp Gly Pro Cys His Tyr Phe Pro Glu Val Ser Gly Lys Asn Asn 85 90 95 Val Thr Pro Phe Glu Leu Ile Pro Tyr Leu Leu Ser Gln Tyr Thr Thr 100 105 110 Val Ala Glu Val Lys Glu Ala Leu Lys Ser Val Asn Leu Val Lys Ile 115 120 125 Asn Phe Ser Glu Lys Leu Gln Leu Ser Pro Leu His Trp Leu Met Ala 130 135 140 Asp Lys Thr Gly Glu Ser Ile Val Val Glu Ser Thr Leu Ser Gly Leu 145 150 155 160 His Val Tyr Asp Asn Pro Val His Val Leu Thr Asn Asn Pro Glu Phe 165 170 175 Pro Gly Gln Leu Ser Asn Leu Ala Asn Tyr Ser Asn Ile Ala Pro Ser 180 185 190 Gln Pro Lys Asn Thr Leu Val Pro Gly Val Asp Leu Asn Leu Tyr Ser 195 200 205 Arg Gly Leu Gly Thr His Phe Leu Pro Gly Gly Met Asp Ser Ala Ser 210 215 220 Arg Phe Val Lys Val Ala Phe Val Arg Ala His Ser Pro Gln Gly Asn 225 230 235 240 Asn Glu Leu Ser Ser Val Thr Asn Tyr Phe His Ile Leu His Ser Val 245 250 255 Glu Gln Pro Lys Gly Thr Asp Glu Val Gly Pro Asn Ser Tyr Glu Tyr 260 265 270 Thr Ile Tyr Ser Asp Gly Thr Asn Leu Glu Thr Gly Thr Phe Tyr Tyr 275 280 285 Thr Asn Tyr Glu Asn Asn Gln Ile Asn Ala Ile Glu Leu Asn Lys Glu 290 295 300 Asn Leu Asn Gly Asp Glu Leu Ile Asp Tyr Lys Leu Ile Glu Lys Gln 305 310 315 320 Thr Ile Asn Tyr Gln Asn 325 <210> 5 <211> 316 <212> PRT <213> Lactobacillus johnsonii PF01 bshB amino acid sequence <400> 5 Met Cys Thr Gly Leu Arg Phe Thr Asp Asp Gln Gly Asn Leu Tyr Phe 1 5 10 15 Gly Arg Asn Leu Asp Val Gly Gln Asp Tyr Gly Glu Gly Val Ile Ile 20 25 30 Thr Pro Arg Asn Tyr Pro Leu Pro Tyr Lys Phe Leu Asp Asn Thr Thr 35 40 45 Thr Lys Lys Ala Val Ile Gly Met Gly Ile Val Val Asp Gly Tyr Pro 50 55 60 Ser Tyr Phe Asp Cys Tyr Asn Glu Asp Gly Leu Gly Ile Ala Gly Leu 65 70 75 80 Asn Phe Pro His Phe Ala Lys Phe Ser Asp Gly Pro Ile Asp Gly Lys 85 90 95 Ile Asn Leu Ala Ser Tyr Glu Ile Met Leu Trp Val Thr Gln Asn Phe 100 105 110 Thr His Val Ser Glu Val Lys Glu Ala Leu Lys Asn Val Asn Leu Val 115 120 125 Asn Glu Ala Ile Asn Thr Ser Phe Ala Val Ala Pro Leu His Trp Ile 130 135 140 Ile Ser Asp Ser Asp Glu Ala Ile Ile Val Glu Val Ser Lys Gln Tyr 145 150 155 160 Gly Met Lys Val Phe Asp Asp Lys Val Gly Val Leu Thr Asn Ser Pro 165 170 175 Asp Phe Asn Trp His Leu Thr Asn Leu Gly Asn Tyr Thr Gly Leu Asn 180 185 190 Pro His Asp Ala Thr Ala Gln Ser Trp Asn Gly Gln Lys Val Ala Pro 195 200 205 Trp Gly Val Gly Thr Gly Ser Leu Gly Leu Pro Gly Asp Ser Ile Pro 210 215 220 Ala Asp Arg Phe Val Lys Ala Ala Tyr Leu Asn Val Asn Tyr Pro Thr 225 230 235 240 Ala Lys Gly Glu Lys Ala Asn Val Ala Lys Phe Phe Asn Ile Leu Lys 245 250 255 Ser Val Ala Met Ile Lys Gly Ser Val Val Asn Asp Gln Gly Lys Asp 260 265 270 Glu Tyr Thr Val Tyr Thr Ala Cys Tyr Ser Ser Gly Ser Lys Thr Tyr 275 280 285 Tyr Cys Asn Phe Glu Asp Asp Phe Glu Leu Lys Thr Tyr Lys Leu Asp 290 295 300 Asp His Thr Met Asn Ser Thr Ser Leu Val Thr Tyr 305 310 315 <210> 6 <211> 325 <212> PRT <213> Lactobacillus johnsonii PF01 bshC amino acid sequence <400> 6 Met Cys Thr Ser Ile Leu Tyr Ser Pro Lys Asp Asn Tyr Phe Gly Arg 1 5 10 15 Asn Leu Asp Tyr Glu Ile Ala Tyr Gly Gln Lys Val Val Ile Thr Pro 20 25 30 Arg Asn Tyr Gln Leu Asn Tyr Arg His Leu Pro Thr Gln Asp Thr His 35 40 45 Tyr Ala Met Ile Gly Val Ser Val Val Ala Asn Asp Tyr Pro Leu Tyr 50 55 60 Cys Asp Ala Ile Asn Glu Lys Gly Leu Gly Ile Ala Gly Leu Asn Phe 65 70 75 80 Thr Gly Pro Gly Lys Tyr Phe Ala Val Asp Glu Ser Lys Lys Asn Val 85 90 95 Thr Ser Phe Glu Leu Ile Pro Tyr Leu Leu Ser Ser Cys Glu Thr Ile 100 105 110 Glu Asp Val Lys Lys Leu Leu Ser Glu Thr Asn Ile Thr Asp Glu Ser 115 120 125 Phe Ser Lys Asp Leu Pro Val Thr Thr Leu His Trp Leu Met Gly Asp 130 135 140 Lys Ser Gly Lys Ser Ile Val Ile Glu Ser Thr Glu Thr Gly Leu His 145 150 155 160 Val Tyr Asp Asn Pro Val Asn Thr Leu Thr Asn Asn Pro Val Phe Pro 165 170 175 Ala Gln Val Glu Thr Leu Ala Asn Phe Ala Ser Val Ser Pro Ala Gln 180 185 190 Pro Lys Asn Thr Leu Val Pro Asn Ala Asp Ile Asn Leu Tyr Ser Arg 195 200 205 Gly Leu Gly Thr His His Leu Pro Gly Gly Thr Asp Ser Asn Ser Arg 210 215 220 Phe Ile Lys Ala Ser Phe Val Leu Ala His Ser Pro Lys Gly Asn Asp 225 230 235 240 Glu Val Glu Asn Val Thr Asn Phe Phe His Ile Leu His Ser Val Glu 245 250 255 Gln Ala Lys Gly Thr Asp Glu Val Glu Asp Asn Val Phe Glu Phe Thr 260 265 270 Met Tyr Ser Asp Cys Met Asn Leu Asp Lys Gly Ile Leu Tyr Phe Thr 275 280 285 Thr Tyr Asp Asn Asn Gln Ile Asn Ala Val Asp Met Asn Asn Glu Asn 290 295 300 Leu Asp Thr Ser Asp Leu Ile Thr Tyr Glu Leu Phe Lys Asp Gln Ala 305 310 315 320 Ile Lys Phe Glu Asn 325 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> bshA_F <400> 7 aaactgcagc atatgtgtaa cctcaattgt tta 33 <210> 8 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bshA_R <400> 8 agcctgcaga agcttatttt gataattaat tg 32 <210> 9 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> bshB_F <400> 9 aaactgcagc atatgtgtac tggtttaaga t 31 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> bshB_R <400> 10 ctgcagctcg aggtaagtca caagact 27 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> bshC_F <400> 11 ctgcagcata tgtgtacatc aattttat 28 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> bshC_R <400> 12 aaactgcagc tcgagatttt caaatttaat 30 <110> DanKook university Industry-Academic Cooperation Foundation <120> gene, enzyme and enzyme extraction method from Lactobacillus          johnsonii PF01 for reducing hypercholesterolemia <130> P13-0026 <160> 12 <170> Kopatentin 2.0 <210> 1 <211> 981 <212> DNA <213> Lactobacillus johnsonii PF01 bshA DNA sequence <400> 1 atgtgtacct caattgttta tagttcaaat aatcatcatt attttggccg aaatctagac 60 ttggaaattt catttggtga acatcctgta attacaccaa gaaattatga gtttcaatat 120 cgtaaattac caaataaaaa ggcaaaatat gccatggttg ggatggcgat tgtagaagat 180 aattatccat tatattttga tgcatcaaat gaagaagggc taggaattgc tggtcttaat 240 tttgatggac catgtcatta tttcccagaa gtgtctggaa aaaataatgt tacaccattt 300 gaattaattc cttatttgtt aagtcaatat actacagtgg ctgaagtaaa agaagcattg 360 aaaagtgtta acttagtaaa gataaacttt tcagaaaaac tccaactttc tccactgcat 420 tggttaatgg ctgataagac tggagagtca attgttgtag aatctacttt aagtggatta 480 cacgtttatg ataatccagt tcatgtttta accaataatc ctgaatttcc aggccagtta 540 agtaatttag ctaattatag caatatagca ccttcacagc ctaaaaatac tcttgttcca 600 ggtgttgacc ttaatttata tagtcgcggg ttagggactc attttttgcc aggaggaatg 660 gattcagcca gtcgttttgt gaaagtagct tttgttcgtg cacattctcc tcaagggaat 720 aatgaactaa gtagtgtaac aaattacttc catattctac attcagtcga acagccaaaa 780 ggaacagatg aagtaggacc aaattcttat gagtacacaa tttactctga tggaactaat 840 ttagagacag gaacatttta ttatacaaat tatgaaaata atcaaattaa cgccattgaa 900 ttaaataaag aaaacttaaa tggtgatgag ttaatagatt acaagttgat tgaaaagcaa 960 acaattaatt atcaaaatta g 981 <210> 2 <211> 951 <212> DNA <213> Lactobacillus johnsonii PF01 bshB DNA sequence <400> 2 atgtgtactg gtttaagatt cacagatgat caaggaaatt tatactttgg ccgtaatcta 60 gatgttggac aggattatgg cgaaggcgtt attattacgc cgcgtaatta tcctcttcca 120 tataagttct tagataacac cactactaaa aaggctgtta ttggaatggg aattgtggtt 180 gatggctatc catcatactt tgactgctat aacgaagatg gattaggcat tgcaggttta 240 aacttcccac attttgctaa atttagtgat ggtcctattg acggtaaaat caacttagct 300 tcttacgaaa ttatgctctg ggttactcaa aactttactc atgttagtga agtaaaggaa 360 gcgttaaaga atgttaactt agtgaatgaa gctattaaca catcatttgc ggttgcccct 420 cttcactgga tcattagtga tagtgacgaa gccattattg ttgaagtttc aaaacaatat 480 ggaatgaaag tctttgatga taaagttggc gttttaacta atagccctga ctttaactgg 540 caccttacta accttggtaa ctatactggt ttaaatccac atgacgctac agcccaaagc 600 tggaacggtc aaaaagttgc tccttggggt gtaggaactg gtagtttagg tctgcctggt 660 gacagcattc cagccgaccg ttttgttaaa gctgcttact taaacgtaaa ctatccaact 720 gctaaaggtg aaaaagcaaa cgtcgctaaa ttctttaaca tcttaaagtc tgttgccatg 780 atcaaaggca gtgtagtcaa cgatcaaggc aaggacgaat atactgttta tactgcatgc 840 tactcttctg gaagcaagac ttactactgt aattttgaag atgattttga attaaagact 900 tataaactag atgatcacac gatgaattca accagtcttg tgacttacta g 951 <210> 3 <211> 978 <212> DNA <213> Lactobacillus johnsonii PF01 bshC DNA sequence <400> 3 atgtgtacat caattttata tagtccaaaa gataattatt ttggtagaaa tttagattat 60 gaaattgcct atggtcagaa agtggtaatt actcctagaa attatcaact taattatcgt 120 catttaccaa cacaagatac tcattatgca atgatcggtg tttcagtagt tgccaatgac 180 tatccattgt attgtgatgc tatcaatgaa aaaggattag gaatagccgg attaaatttc 240 actggtcctg gtaaatattt tgctgtagat gaaagcaaaa agaatgttac ttcttttgaa 300 ctgatcccat atttactaag cagttgtgaa actattgaag atgtaaagaa attattgtct 360 gaaactaata ttactgatga aagtttctct aaagatttac cagttactac tcttcattgg 420 ttaatgggtg ataaaagtgg taagagtata gttattgaat caacagaaac tggtttacac 480 gtttatgaca acccagttaa tactttaaca aataatcctg tctttccagc tcaagttgaa 540 accttggcta actttgcttc ggtttctcca gctcaaccta aaaatacact tgtacctaat 600 gcagatatta atctgtatag tcgtggatta gggacccatc atttaccagg cggaacagat 660 tcaaattctc gctttattaa ggcatctttt gtattagctc attcaccaaa aggtaatgat 720 gaagttgaaa atgtaactaa tttctttcat atcttacatt cagttgaaca agcaaagggt 780 accgatgaag ttgaagataa tgtatttgaa tttaccatgt attcagactg tatgaatttg 840 gataagggaa ttttatattt tactacttac gataataacc aaattaatgc tgtggatatg 900 aataatgaaa atttggatac ttctgacttg attacctatg aattatttaa ggatcaagcc 960 attaaatttg aaaattaa 978 <210> 4 <211> 326 <212> PRT <213> Lactobacillus johnsonii PF01 bshA amino acid sequence <400> 4 Met Cys Thr Ser Ile Val Tyr Ser Ser Asn Asn His His Tyr Phe Gly   1 5 10 15 Arg Asn Leu Asp Leu Glu Ile Ser Phe Gly Glu His Pro Val Ile Thr              20 25 30 Pro Arg Asn Tyr Glu Phe Gln Tyr Arg Lys Leu Pro Asn Lys Lys Ala          35 40 45 Lys Tyr Ala Met Val Gly Met Ala Ile Val Glu Asp Asn Tyr Pro Leu      50 55 60 Tyr Phe Asp Ala Ser Asn Glu Glu Gly Leu Gly Ile Ala Gly Leu Asn  65 70 75 80 Phe Asp Gly Pro Cys His Tyr Phe Pro Glu Val Ser Gly Lys Asn Asn                  85 90 95 Val Thr Pro Phe Glu Leu Ile Pro Tyr Leu Leu Ser Gln Tyr Thr Thr             100 105 110 Val Ala Glu Val Lys Glu Ala Leu Lys Ser Val Asn Leu Val Lys Ile         115 120 125 Asn Phe Ser Glu Lys Leu Gln Leu Ser Pro Leu His Trp Leu Met Ala     130 135 140 Asp Lys Thr Gly Glu Ser Ile Val Glu Ser Thr Leu Ser Gly Leu 145 150 155 160 His Val Tyr Asp Asn Pro Val His Val Leu Thr Asn Asn Pro Glu Phe                 165 170 175 Pro Gly Gln Leu Ser Asn Leu Ala Asn Tyr Ser Asn Ile Ala Pro Ser             180 185 190 Gln Pro Lys Asn Thr Leu Val Pro Gly Val Asp Leu Asn Leu Tyr Ser         195 200 205 Arg Gly Leu Gly Thr His Phe Leu Pro Gly Gly Met Asp Ser Ala Ser     210 215 220 Arg Phe Val Lys Val Ala Phe Val Arg Ala His Ser Pro Gln Gly Asn 225 230 235 240 Asn Glu Leu Ser Ser Val Thr Asn Tyr Phe His Ile Leu His Ser Val                 245 250 255 Glu Gln Pro Lys Gly Thr Asp Glu Val Gly Pro Asn Ser Tyr Glu Tyr             260 265 270 Thr Ile Tyr Ser Asp Gly Thr Asn Leu Glu Thr Gly Thr Phe Tyr Tyr         275 280 285 Thr Asn Tyr Glu Asn Asn Gln Ile Asn Ala Ile Glu Leu Asn Lys Glu     290 295 300 Asn Leu Asn Gly Asp Glu Leu Ile Asp Tyr Lys Leu Ile Glu Lys Gln 305 310 315 320 Thr Ile Asn Tyr Gln Asn                 325 <210> 5 <211> 316 <212> PRT <213> Lactobacillus johnsonii PF01 bSB amino acid sequence <400> 5 Met Cys Thr Gly Leu Arg Phe Thr Asp Asp Gln Gly Asn Leu Tyr Phe   1 5 10 15 Gly Arg Asn Leu Asp Val Gly Gln Asp Tyr Gly Glu Gly Val Ile Ile              20 25 30 Thr Pro Arg Asn Tyr Pro Leu Pro Tyr Lys Phe Leu Asp Asn Thr Thr          35 40 45 Thr Lys Lys Ala Val Ile Gly Met Gly Ile Val Val Asp Gly Tyr Pro      50 55 60 Ser Tyr Phe Asp Cys Tyr Asn Glu Asp Gly Leu Gly Ile Ala Gly Leu  65 70 75 80 Asn Phe Pro His Phe Ala Lys Phe Ser Asp Gly Pro Ile Asp Gly Lys                  85 90 95 Ile Asn Leu Ala Ser Tyr Glu Ile Met Leu Trp Val Thr Gln Asn Phe             100 105 110 Thr His Val Ser Glu Val Lys Glu Ala Leu Lys Asn Val Asn Leu Val         115 120 125 Asn Glu Ala Ile Asn Thr Ser Phe Ala Val Ala Pro Leu His Trp Ile     130 135 140 Ile Ser Asp Ser Asp Glu Ala Ile Ile Val Glu Val Ser Lys Gln Tyr 145 150 155 160 Gly Met Lys Val Phe Asp Lys Val Gly Val Leu Thr Asn Ser Pro                 165 170 175 Asp Phe Asn Trp His Leu Thr Asn Leu Gly Asn Tyr Thr Gly Leu Asn             180 185 190 Pro His Asp Ala Thr Ala Gln Ser Trp Asn Gly Gln Lys Val Ala Pro         195 200 205 Trp Gly Val Gly Thr Gly Ser Leu Gly Leu Pro Gly Asp Ser Ile Pro     210 215 220 Ala Asp Arg Phe Val Lys Ala Ala Tyr Leu Asn Val Asn Tyr Pro Thr 225 230 235 240 Ala Lys Gly Glu Lys Ala Asn Val Ala Lys Phe Phe Asn Ile Leu Lys                 245 250 255 Ser Val Ala Met Ile Lys Gly Ser Val Val Asn Asp Gln Gly Lys Asp             260 265 270 Glu Tyr Thr Val Tyr Thr Ala Cys Tyr Ser Ser Gly Ser Lys Thr Tyr         275 280 285 Tyr Cys Asn Phe Glu Asp Asp Phe Glu Leu Lys Thr Tyr Lys Leu Asp     290 295 300 Asp His Thr Met Asn Ser Thr Ser Leu Val Thr Tyr 305 310 315 <210> 6 <211> 325 <212> PRT <213> Lactobacillus johnsonii PF01 bSHC amino acid sequence <400> 6 Met Cys Thr Ser Ile Leu Tyr Ser Pro Lys Asp Asn Tyr Phe Gly Arg   1 5 10 15 Asn Leu Asp Tyr Glu Ile Ala Tyr Gly Gln Lys Val Ile Thr Pro              20 25 30 Arg Asn Tyr Gln Leu Asn Tyr Arg His Leu Pro Thr Gln Asp Thr His          35 40 45 Tyr Ala Met Ile Gly Val Ser Val Val Ala Asn Asp Tyr Pro Leu Tyr      50 55 60 Cys Asp Ala Ile Asn Glu Lys Gly Leu Gly Ile Ala Gly Leu Asn Phe  65 70 75 80 Thr Gly Pro Gly Lys Tyr Phe Ala Val Asp Glu Ser Lys Lys Asn Val                  85 90 95 Thr Ser Phe Glu Leu Ile Pro Tyr Leu Leu Ser Ser Cys Glu Thr Ile             100 105 110 Glu Asp Val Lys Lys Leu Leu Ser Glu Thr Asn Ile Thr Asp Glu Ser         115 120 125 Phe Ser Lys Asp Leu Pro Val Thr Thr Leu His Trp Leu Met Gly Asp     130 135 140 Lys Ser Gly Lys Ser Ile Val Ile Glu Ser Thr Glu Thr Gly Leu His 145 150 155 160 Val Tyr Asp Asn Pro Val Asn Thr Leu Thr Asn Asn Pro Val Phe Pro                 165 170 175 Ala Gln Val Glu Thr Leu Ala Asn Phe Ala Ser Val Ser Ala Gln             180 185 190 Pro Lys Asn Thr Leu Val Pro Asn Ala Asp Ile Asn Leu Tyr Ser Arg         195 200 205 Gly Leu Gly Thr His His Leu Pro Gly Gly Thr Asp Ser Asn Ser Arg     210 215 220 Phe Ile Lys Ala Ser Phe Val Leu Ala His Ser Pro Lys Gly Asn Asp 225 230 235 240 Glu Val Glu Asn Val Thr Asn Phe Phe His Ile Leu His Ser Val Glu                 245 250 255 Gln Ala Lys Gly Thr Asp Glu Val Glu Asp Asn Val Phe Glu Phe Thr             260 265 270 Met Tyr Ser Asp Cys Met Asn Leu Asp Lys Gly Ile Leu Tyr Phe Thr         275 280 285 Thr Tyr Asp Asn Asn Gln Ile Asn Ala Val Asp Met Asn Asn Glu Asn     290 295 300 Leu Asp Thr Ser Asp Leu Ile Thr Tyr Glu Leu Phe Lys Asp Gln Ala 305 310 315 320 Ile Lys Phe Glu Asn                 325 <210> 7 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> bshA_F <400> 7 aaactgcagc atatgtgtaa cctcaattgt tta 33 <210> 8 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bshA_R <400> 8 agcctgcaga agcttatttt gataattaat tg 32 <210> 9 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> bshB_F <400> 9 aaactgcagc atatgtgtac tggtttaaga t 31 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> bshB_R <400> 10 ctgcagctcg aggtaagtca caagact 27 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> bshC_F <400> 11 ctgcagcata tgtgtacatc aattttat 28 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> bshC_R <400> 12 aaactgcagc tcgagatttt caaatttaat 30

Claims (18)

서열번호 1의 염기서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshA(bile salt hydrolase A) 유전자.A gene for bsh A (bile salt hydrolase A) derived from Lactobacillus johnsonii PF01 comprising the nucleotide sequence of SEQ ID NO: 1. 서열번호 2의 염기서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshB(bile salt hydrolase B) 유전자.A bsh B (bile salt hydrolase B) gene derived from Lactobacillus johnsonii PF01, consisting of the nucleotide sequence of SEQ ID NO: 2. 서열번호 3의 염기서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshC(bile salt hydrolase C) 유전자.A bsh C (bile salt hydrolase C) gene derived from Lactobacillus johnsonii PF01 comprising the nucleotide sequence of SEQ ID NO: 3. 제1항 내지 제3항 중 어느 한 항에 따른 유전자를 포함하는 재조합 벡터.A recombinant vector comprising the gene according to any one of claims 1 to 3. 제 4항의 재조합 벡터로 형질전환된 숙주세포.A host cell transformed with the recombinant vector of claim 4. 제 5항에 있어서,
상기 숙주세포는 대장균인 것을 특징으로 하는 숙주세포.
6. The method of claim 5,
Wherein the host cell is Escherichia coli.
서열번호 7 및 8의 염기서열을 갖는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshA(bile salt hydrolase A) 유전자를 증폭하기 위한 프라이머 세트. Lactobacillus johnsonii ( Lactobacillus johnsonii) having the nucleotide sequences of SEQ ID NOS: 7 and 8 A primer set to amplify the bsh A (even salt hydrolase A) gene derived from PF01. 서열번호 9 및 10의 염기서열을 갖는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshB(bile salt hydrolase B) 유전자를 증폭하기 위한 프라이머 세트. Lactobacillus johnsonii ( Lactobacillus johnsonii) having the nucleotide sequences of SEQ ID NOS: 9 and 10 A primer set to amplify the bsh B (bile salt hydrolase B) gene derived from PF01. 서열번호 11 및 12의 염기서열을 갖는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshC(bile salt hydrolase C) 유전자를 증폭하기 위한 프라이머 세트. Lactobacillus johnsonii ( Lactobacillus johnsonii) having the nucleotide sequences of SEQ ID NOS: 11 and 12 A primer set for amplifying the bsh C (bile salt hydrolase C) gene derived from PF01. 자돈으로부터 분리한 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 균주로부터 bshA, bshB, bshC 유전자에 대응되는 증폭용 프라이머를 사용하여 PCR 방법으로 bshA, bshB, bshC 유전자를 증폭하는 단계; 상기 증폭된 bshA, bshB, bshC 유전자를 각각 벡터와 결합시켜 대장균 균주에 도입하는 클로닝 단계; 상기 클로닝 단계에서 생성된 재조합 플라스미드를 제한효소로 절단하고 인서트 DNA를 회수하는 단계; 상기 회수된 인서트 DNA를 벡터에 결합시켜 서브클로닝 후, 대장균 균주에 도입하여 형질전환하는 단계; 상기 형질전환된 균주에서 재조합 플라스미드를 추출하는 단계; 상기 추출된 재조합 플라스미드를 대량발현을 위해 숙주세포인 대장균에 도입하는 단계; 상기 대장균에 도입된 재조합 플라스미드를 배양하여 침전반응을 보이는 형질전환 효소를 선발하는 단계; 를 포함하여 이루어지는 고콜레스테롤혈증 감소를 위한 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 균주 유래의 담즙산염 가수분해효소 분리방법. Lactobacillus Johnson PF01 ( Lactobacillus &lt; RTI ID = 0.0 &gt; amplifying bsh A, bsh B, and bsh C genes by PCR using amplification primers corresponding to the bsh A, bsh B, and bsh C genes from the johnsonii PF01 strain; A step of introducing the amplified bsh A, bsh B, and bsh C genes into vectors, respectively, and introducing them into an Escherichia coli strain; Digesting the recombinant plasmid produced in the cloning step with a restriction enzyme and recovering the insert DNA; Subcloning the recovered insert DNA by binding it to a vector, introducing the subcloned strain into an E. coli strain, and transforming the transformed DNA; Extracting a recombinant plasmid from the transformed strain; Introducing the extracted recombinant plasmid into E. coli which is a host cell for mass expression; Selecting a transforming enzyme showing a precipitation reaction by culturing the recombinant plasmid introduced into the E. coli; ( Lactobacillus johnsonii PF01) for the reduction of hypercholesterolemia, comprising the steps of: (a) isolating a cholanic acid hydrolase from a strain of Lactobacillus johnsonii PF01. 서열번호 4의 아미노산 서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshA(bile salt hydrolase A). Lactobacillus johnsonii &lt; / RTI &gt; consisting of the amino acid sequence of SEQ ID NO: 4 PF01) derived from bsh A (bile salt hydrolase A). 서열번호 5의 아미노산 서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshB(bile salt hydrolase B). Lactobacillus johnsonii &lt; / RTI &gt; consisting of the amino acid sequence of SEQ ID NO: 5 PF01) derived from bsh B (bile salt hydrolase B). 서열번호 6의 아미노산 서열로 이루어진 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshC(bile salt hydrolase C).A Lactobacillus johnsonii ( Lactobacillus johnsonii &lt; RTI ID = 0.0 &gt; PF01) derived bsh C (bile salt hydrolase C). 제11항에 있어서,
상기 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshA(bile salt hydrolase A) 효소는 하기 특징을 갖는 정제된 bshA :
(a) 최적온도 50-70℃;
(b) 최적 pH 6.0;
(c) SDS-PAGE 측정 분자량 35kDa;
(d) 타우린 계열의 담즙산염에 특이적으로 가수분해 활성을 가짐.
12. The method of claim 11,
The Lactobacillus Johnson PF01 ( Lactobacillus johnsonii PF01) derived bsh A (bile salt hydrolase A) enzyme is a purified bsh A:
(a) optimum temperature 50-70 DEG C;
(b) Optimum pH 6.0;
(c) SDS-PAGE measurement: molecular weight 35 kDa;
(d) has a hydrolytic activity specifically for taurine-based bile salts.
제12항에 있어서,
상기 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshB(bile salt hydrolase B) 효소는 하기 특징을 갖는 정제된 bshB :
(a) 최적온도 55-70℃;
(b) 최적 pH 4.5;
(c) SDS-PAGE 측정 분자량 34kDa;
(d) 타우린 계열 담즙산염에 특이적으로 가수분해 활성을 가짐.
13. The method of claim 12,
The Lactobacillus Johnson PF01 ( Lactobacillus johnsonii PF01) derived bsh B (bile salt hydrolase B) enzyme is a purified bsh B:
(a) optimum temperature 55-70 DEG C;
(b) Optimum pH 4.5;
(c) SDS-PAGE measurement: molecular weight 34 kDa;
(d) has a hydrolytic activity specifically for taurine-based bile salts.
제 13항에 있어서,
상기 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01) 유래 bshC(bile salt hydrolase C) 효소는 하기 특징을 갖는 정제된 bshC 효소 :
(a) 최적온도 65-80℃;
(b) 최적 pH 5.0;
(c) SDS-PAGE 측정 분자량 37kDa;
(d) 글리신 계열의 담즙산염에 특이적으로 가수분해 활성을 가짐.
14. The method of claim 13,
The Lactobacillus Johnson PF01 ( Lactobacillus johnsonii PF01) derived bsh C (bile salt hydrolase C) enzyme is a purified bsh C enzyme having the following characteristics:
(a) optimum temperature 65-80 DEG C;
(b) Optimum pH 5.0;
(c) SDS-PAGE measurement Molecular weight 37 kDa;
(d) Hydrolytic activity specifically to glycine-based bile salts.
서열번호 1, 서열번호 2 및 서열번호 3의 염기서열로 이루어진 bshA, bshB, bshC 유전자가 발현되는 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01). Lactobacillus Johnson PF01 expressing the bsh A, bsh B and bsh C genes consisting of the nucleotide sequences of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3 ( Lactobacillus johnsonii PF01). 제 17항의 락토바실러스 존소니 PF01(Lactobacillus johnsonii PF01)을 함유하는 콜레스테롤 저하용 식품.The method of claim 17, wherein the Lactobacillus Johnson PF01 ( Lactobacillus johnsonii PF01).
KR20130074369A 2013-06-27 2013-06-27 gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia KR20150001330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130074369A KR20150001330A (en) 2013-06-27 2013-06-27 gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130074369A KR20150001330A (en) 2013-06-27 2013-06-27 gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia

Publications (1)

Publication Number Publication Date
KR20150001330A true KR20150001330A (en) 2015-01-06

Family

ID=52475110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130074369A KR20150001330A (en) 2013-06-27 2013-06-27 gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia

Country Status (1)

Country Link
KR (1) KR20150001330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957025A (en) * 2021-09-01 2022-01-21 绿康生化股份有限公司 Bacillus licheniformis for overexpression of bshCBA gene and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113957025A (en) * 2021-09-01 2022-01-21 绿康生化股份有限公司 Bacillus licheniformis for overexpression of bshCBA gene and application thereof
CN113957025B (en) * 2021-09-01 2023-09-01 绿康生化股份有限公司 Bacillus licheniformis over-expressing bshCBA gene and application thereof

Similar Documents

Publication Publication Date Title
Siragusa et al. Synthesis of γ-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses
Nguyen et al. Characterization and molecular cloning of a heterodimeric β-galactosidase from the probiotic strain Lactobacillus acidophilus R22
Maischberger et al. β‐Galactosidase from Lactobacillus pentosus: Purification, characterization and formation of galacto‐oligosaccharides
KR101488481B1 (en) Glycoside hydrolase From lactic acid bacteria And Use Thereof
Jayashree et al. Identification and characterization of bile salt hydrolase genes from the genome of Lactobacillus fermentum MTCC 8711
KR20080110447A (en) Lactic acid bacteria isolated from mother&#39;s milk with probiotic activity and inhibitory activity against body weight augmentation
Uriot et al. Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut
JP6594911B2 (en) Lactic acid bacteria, innate immune activators derived from the lactic acid bacteria, infectious disease preventive and therapeutic agents, and food and drink
CN113481185B (en) Salt-tolerant beta-galactosidase GalNC2-13 and preparation method and application thereof
Alvarez-Sieiro et al. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase
Lecomte et al. Streptococcus thermophilus, an emerging and promising tool for heterologous expression: advantages and future trends
KR20190103234A (en) Microbial lysozyme for use in the treatment of irritable bowel syndrome or inflammatory bowel disease
Yao et al. Gene cloning, expression, and properties of a fibrinolytic enzyme secreted by Bacillus pumilus BS15 isolated from gul (oyster) jeotgal
Oh et al. Molecular cloning and characterization of a bile salt hydrolase from Lactobacillus acidophilus PF01
Ariyaei et al. Cloning, expression and characterization of a novel alkaline serine protease gene from native Iranian Bacillus sp.; a producer of protease for use in livestock
Gu et al. Recombinant expressions of sweet plant protein mabinlin II in Escherichia coli and food-grade Lactococcus lactis
Agrahari et al. Isolation and characterization of feather degrading enzymes from Bacillus megaterium SN1 isolated from Ghazipur poultry waste site
Lortal et al. Autolysis of thermophilic lactobacilli and dairy propionibacteria: a review
Mo et al. Isolation and characterization of Bacillus polyfermenticus isolated from Meju, Korean soybean fermentation starter
KR101514775B1 (en) Glycoside hydrolase From lactic acid bacteria And Use Thereof
Dong et al. Codon and propeptide optimizations to improve the food-grade expression of bile salt hydrolase in Lactococcus lactis
He et al. Construction and analysis of food-grade Lactobacillus kefiranofaciens β-galactosidase overexpression system
KR20150001330A (en) gene, enzyme and enzyme extraction method from Lactobacillus johnsonii PF01 for reducing hypercholesterolemia
Kim et al. Screening of strains with fibrinolytic activity and angiotensin-converting enzyme inhibitory activity from doenjang
Yao et al. Isolation of Bacillus subtilis SJ4 from Saeu (Shrimp) jeotgal, a Korean fermented seafood, and its fibrinolytic activity

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application