KR20140136593A - Soluble expression and purification method of active recombinant human Dkk2 - Google Patents

Soluble expression and purification method of active recombinant human Dkk2 Download PDF

Info

Publication number
KR20140136593A
KR20140136593A KR20130056597A KR20130056597A KR20140136593A KR 20140136593 A KR20140136593 A KR 20140136593A KR 20130056597 A KR20130056597 A KR 20130056597A KR 20130056597 A KR20130056597 A KR 20130056597A KR 20140136593 A KR20140136593 A KR 20140136593A
Authority
KR
South Korea
Prior art keywords
rhdkk2
recombinant
protein
hdkk2
hpdi
Prior art date
Application number
KR20130056597A
Other languages
Korean (ko)
Other versions
KR101508052B1 (en
Inventor
최한석
정승미
유한봉
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to KR20130056597A priority Critical patent/KR101508052B1/en
Publication of KR20140136593A publication Critical patent/KR20140136593A/en
Application granted granted Critical
Publication of KR101508052B1 publication Critical patent/KR101508052B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/04Intramolecular oxidoreductases (5.3) transposing S-S bonds (5.3.4)
    • C12Y503/04001Protein disulfide-isomerase (5.3.4.1), i.e. disufide bond-forming enzyme

Abstract

The present invention relates to a soluble expression and a purification method of recombinant protein human Dkk2 having biological activity using the PDI tag of human. The present invention provides a recombinant expression vector including genes coding human protein disulfide isomerase (hPDI) and human Dickkopf2 (hDkk2) genes. In addition, provided are a recombinant microorganism transformed by the recombinant expression vector, a manufacturing method of the hDkk2 recombinant protein (rhDkk2) and the rhDkk2 manufactured by the method.

Description

생물학적 활성을 가진 인간 Dkk2 재조합 단백질의 수용성 발현 및 정제방법{Soluble expression and purification method of active recombinant human Dkk2}(Soluble expression and purification method of active recombinant human Dkk2)

본 발명은 인간 PDI 태그를 이용한 생물학적 활성을 가진 인간 Dkk2 재조합 단백질의 수용성 발현 및 정제방법에 관한 것이다.The present invention relates to a water-soluble expression and purification method of a human Dkk2 recombinant protein having a biological activity using a human PDI tag.

Wingless-type (Wnt) 신호전달 기작은 Wnt/β-카테닌(catenin) 신호전달을 조절하는 주요 단백질인 β-카테닌(catenin) 양에 의해 조절되고, 배발생(embryogenesis) 및 세포 항상성 과정에서 다양한 세포 형태로의 세포 증식, 분화 및 이동을 포함하는 다중 발달 과정에 관련되어 있다. 분비 당지질 단백질(glycolipoprotein)인 Wnt 단백질의 돌연변이는 종종 여러 암 및 퇴행성 질환을 일으킨다. 이러한 이유로, 분비 프리즐드 연관 단백질(secreted Frizzled related proteins; sFRPs), Wnt 억제 단백질(Wnt inhibitory protein; WIF), 시사 단백질(Shisa proteins), Norrin, Wise/SOST 및 Dickkopf (Dkk) 패밀리와 같은, Wnt 신호전달 기작의 억제제가 항암 및 항-혈관신생(anti-angiogenesis)을 위해 연구되고 있다. The Wingless-type (Wnt) signaling mechanism is regulated by the amount of β-catenin, the main protein that regulates Wnt / β-catenin signaling, and is involved in various processes in embryogenesis and cell homeostasis It involves multiple developmental processes, including cell proliferation, differentiation and migration in the form. Mutations in the Wnt protein, a glycolipoprotein, often cause multiple cancers and degenerative diseases. For this reason, it has been shown that Wnt, such as secreted Frizzled related proteins (sFRPs), Wnt inhibitory protein (WIF), Shisa proteins, Norrin, Wise / SOST and Dickkopf (Dkk) Inhibitors of signaling mechanisms are being studied for anti-cancer and anti-angiogenesis.

인간 Dkk(hDkk) 패밀리는 Wnt 신호전달 기작에 대응하는 길항제(antagonist)의 하나로서, 4개의 멤버(Dkk1, 2, 3, 4)로 구성되는데, N- 및 C-말단에 각각 10개의 시스테인-잔기를 가진 두 개의 보존 도메인(conserved domains)(Cys1 및 Cys2)을 포함하고, 몇몇 암세포에서 Wnt 신호전달을 음성적으로 조절한다. hDkk 패밀리 중, Dkk2는 Wnt 신호전달의 잠재적 억제제로서, LRP5/6 및 크레멘 수용체(Kremen receptor; Krm) 유사 Dkk1에 함께 결합함으로써 프리즐드 수용체(frizzled receptor; FzR)-Wnt-저밀도 지단백질 수용체 관련 단백질 5/6(LRP5/6)의 형성을 억제한다. Dkk2의 Wnt 신호전달 저해 기능은 세포사멸을 유도하고, 신장 암세포에서 세포 주기-관련 유전자를 조절한다. 따라서, 다른 Wnt 길항제 뿐만 아니라 Dkk2는 암 치료제 및 암 진단용 바이오마커로서 사용될 수 있다. The human Dkk (hDkk) family is one of the antagonists corresponding to the Wnt signaling mechanism and consists of four members (Dkk1, 2, 3, 4) with 10 cysteine- Conserved domains (Cys1 and Cys2) with a few residues and negatively regulate Wnt signaling in some cancer cells. Among the hDKK family, Dkk2 is a potent inhibitor of Wnt signaling that binds to both the LRP5 / 6 and Kremen receptor (Krm) -like Dkk1 to produce a frizzled receptor (FzR) -Wnt-low density lipoprotein receptor related protein 5 / 6 (LRP5 / 6). The Wnt signaling inhibitory function of Dkk2 induces apoptosis and regulates cell cycle-related genes in renal cancer cells. Therefore, Dkk2 as well as other Wnt antagonists can be used as cancer therapeutic agents and cancer diagnostic biomarkers.

하지만, 치료용 단백질로 사용하기 위해 대장균(Escherichia coli)에서 수용성 Wnt 단백질을 분리하기 위한 시도에도 불구하고, 보존된 시스테인-풍부 도메인으로 인한 팔미트화(palmitoylation) 및 소수성 특성을 가진 Dkk2은 다른 Wnt 단백질들과 마찬가지로 수용성 형태로 정제가 불가능하였다. 불용성 성질을 가진 Wnt 단백질을 수용성화시키고 이의 수율을 향상시키기 위해서, 글루타치온 S-트랜스퍼라제(glutathione S-transferase; GST), 티오레독신(thioredoxin; Trx) 및 말토즈 결합 단백직(maltose binding protein; MBP)과 같은 많은 수용성 태그들을 사용하였다. 최근에, 본 발명자들은 이황화물 이성질화 및 샤페론(chaperon) 및 항-샤페론(chaperon) 유사 작용를 포함하는 이중 기능을 갖고, 강력한 수용성 태그 중 하나인 인간 단백질 이황화물 이성질화효소(human protein disulfide isomerase; hPDI)를 대장균(E. coli)으로부터 분비 단백질의 수용성 발현 및 정제에 사용하였다.
However, despite attempts to isolate the water-soluble Wnt protein from Escherichia coli for use as a therapeutic protein, Dkk2 with palmitoylation and hydrophobic properties due to the conserved cysteine- As with proteins, it was impossible to purify into a water-soluble form. Glutathione S-transferase (GST), thioredoxin (Trx) and maltose binding protein (GST) have been used to render Wnt proteins insoluble and to improve their yield. MBP) were used. Recently, the present inventors have discovered that human protein disulfide isomerase (DNF), one of the strong water soluble tags, has dual functions including disulfide isomerization and chaperon and anti-chaperon analogues. hPDI) was used for the aqueous expression and purification of secreted proteins from E. coli .

한편 국제공개특허 제 2010-075194호는 solubilization molecule로서 티오레독신을 이용한 티오레독신(Trx)-Dkk2c 융합단백질을 통해 수용성 활성 Dkk를 생산하는 방법에 관해 개시하고 있지만, 본원발명의 Dkk2를 분리하기 위한 인간 PDI 태깅 시스템에 대한 언급은 없다. On the other hand, International Patent Publication No. 2010-075194 discloses a method for producing a water-soluble active Dkk through thioredoxin (Trx) -Dkk2c fusion protein using thioredoxin as a solubilization molecule. However, when Dkk2 of the present invention is isolated There is no mention of the human PDI tagging system.

본 발명의 목적은 인간 단백질 이황화물 이성질화효소(human protein disulfide isomerase; hPDI)를 코딩하는 유전자 및 인간 Dickkopf2(hDkk2) 유전자를 포함하는 재조합 발현벡터를 제공하는데 있다. It is an object of the present invention to provide a recombinant expression vector comprising a gene encoding a human protein disulfide isomerase (hPDI) and a human Dickkopf2 (hDkk2) gene.

본 발명의 다른 목적은 상기 재조합 발현벡터로 형질전환된 재조합 미생물을 제공하는데 있다. It is another object of the present invention to provide a recombinant microorganism transformed with the recombinant expression vector.

본 발명의 또 다른 목적은 상기 hDkk2 재조합 단백질(rhDkk2)의 생산방법 및 상기 생산방법에 의해 생산된 hDkk2 재조합 단백질(rhDkk2)을 제공하는데 있다. It is still another object of the present invention to provide a method for producing the hDkk2 recombinant protein (rhDkk2) and a hDkk2 recombinant protein (rhDkk2) produced by the production method.

상기 목적을 달성하기 위하여, 본 발명자들은 여러 태그를 가지고 재조합 인간 Dkk2(recombinant human Dkk2; rhDkk2)의 발현 수준을 확인하였고, hPDI로 태깅된 rhDkk2를 선별하였다. 본 발명자들은 최초로 수용성 rhDkk2를 정제하였고, 웨스턴 블랏 및 MALDI-TOR MS 분석을 통하여 동정하였으며, HEK293 세포를 이용하여 생물학적 활성을 확인하고 본 발명을 완성하였다.
In order to achieve the above object, the present inventors confirmed the expression level of recombinant human Dkk2 (recombinant human Dkk2; rhDkk2) with various tags and selected rhDkk2 tagged with hPDI. The present inventors first purified water-soluble rhDkk2, identified by Western blotting and MALDI-TOR MS analysis, and confirmed biological activity using HEK293 cells, and completed the present invention.

본 발명은 인간 단백질 이황화물 이성질화효소(human protein disulfide isomerase; hPDI)를 코딩하는 유전자 및 인간 Dickkopf2(hDkk2) 유전자를 포함하는 재조합 발현벡터를 제공한다. 상세하게는, 상기 hDkk2 유전자는 서열번호 1로 표시되는 것을 특징으로 하고, 상기 hPDI 유전자는 서열번호 2로 표시되는 것을 특징으로 한다.
The present invention provides a recombinant expression vector comprising a gene encoding human protein disulfide isomerase (hPDI) and a human Dickkopf2 (hDkk2) gene. Specifically, the hDkk2 gene is represented by SEQ ID NO: 1, and the hPDI gene is represented by SEQ ID NO: 2.

본 발명에 있어서, “벡터”는 클론유전자(또는 클론 DNA의 다른 조각)를 운반하는데 사용되는 스스로 복제되는 DNA분자를 의미한다.
In the present invention, " vector " means a DNA molecule that is replicated by itself, which is used to carry the clone gene (or another fragment of the clone DNA).

본 발명에서 있어서, “발현 벡터”는 목적한 코딩 서열과, 특정 숙주 생물에서 작동 가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질 전환된 세포를 비 형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 앰피실린(ampicilin), 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol) 과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니며, 당업자에 의해 적절히 선택 가능하다.
In the present invention, an "expression vector" means a recombinant DNA molecule comprising a desired coding sequence and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked in a particular host organism. The expression vector may preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having a property that can be selected by a chemical method, and includes all genes capable of distinguishing a transformed cell from a non-transformed cell. Examples include, but are not limited to, antibiotic resistance genes such as ampicilin, kanamycin, G418, Bleomycin, hygromycin, chloramphenicol, It can be selected appropriately.

본 발명에서 사용한 Gateway Vector system은 엔트리벡터와 목적벡터로 구성되며, 상기 엔트리벡터는 목적유전자의 양말단에 attL1, attL2를 갖는 벡터이며, 목적벡터는 attR1, attR2를 포함하는 벡터이다. 상기 엔트리벡터와 상기 목적벡터는 목적벡터의 attR1 및 attR2가 엔트리벡터의 attL1 및 attL2와 재조합효소에 의해 LR반응을 일으키며, 이 과정에서 엔트리벡터에 포함되어 있던 목적유전자가 목적벡터로 전달되게 되고, attR1과 attR2 는 attB1과 attB2 서열로 치환되어진다.
The gateway vector system used in the present invention is composed of an entry vector and a destination vector. The entry vector is a vector having attL1 and attL2 at both ends of the target gene. The destination vector is a vector containing attR1 and attR2. The entry vector and the target vector are subjected to LR reaction by attR1 and attR2 of the target vector and attL1 and attL2 of the entry vector. In this process, the target gene contained in the entry vector is transferred to the destination vector. attR1 and attR2 are replaced with attB1 and attB2 sequences.

또한, 본 발명은 상기 재조합 발현벡터로 형질전환된 재조합 미생물을 제공한다. 상세하게는 상기 미생물은 대장균인 것을 특징으로 하고, 보다 상세하게는 대장균 BL21(DE3)인 것을 특징으로 한다.
The present invention also provides a recombinant microorganism transformed with the recombinant expression vector. Specifically, the microorganism is characterized by being Escherichia coli, more specifically, Escherichia coli BL21 (DE3).

또한, 본 발명은 상기 재조합 미생물을 배지에서 배양하여 hPDI 태그-hDkk2 재조합 단백질을 발현시키는 단계; 담배 식각 바이러스(Tobacco Etch Virus; TEV) 단백질 분해효소(protease)를 처리하여 상기 hPDI 태그를 제거하는 단계; 및 상기 hPDI 태그가 제거된 hDkk2 재조합 단백질을 회수하는 단계를 포함하는 hDkk2 재조합 단백질(rhDkk2) 생산방법을 제공한다.
The present invention also relates to a method for producing a recombinant microorganism, which comprises culturing the recombinant microorganism in a medium to express an hPDI tag-hDkk2 recombinant protein; Treating the tobacco etch virus (TEV) protease to remove the hPDI tag; And recovering the hDkk2 recombinant protein from which the hPDI tag has been removed. The present invention also provides a method for producing hDkk2 recombinant protein (rhDkk2).

한편, 본 발명의 실시예에서는 담배 식각 바이러스(Tobacco Etch Virus; TEV) 단백질 분해효소(protease)를 사용했지만, 상기 단백질 분해효소(protease)는 당업계에서 통상적으로 사용될 수 있는 트롬빈(Thrombin), 엔테로키나제(Enterokinase), Factor Xa, 유비퀴틴-특이적 단백질 분해효소(Ubiquitin-specific protease), 푸린(Furin), 유전자 분해효소 I(Genease I) 또는 단백질 분해효소 K(Proteinase K)등을 적용할 수 있으나, 이에 한정되는 것은 아니다.
Meanwhile, although the tobacco etch virus (TEV) protease is used in the embodiment of the present invention, the protease may be a thrombin such as thrombin, Factor Xa, Ubiquitin-specific protease, Furin, Genease I or Proteinase K can be applied to the present invention. , But is not limited thereto.

또한, 본 발명은 상기 생산방법에 의해 생산된 hDkk2 재조합 단백질(rhDkk2)을 제공한다.
In addition, the present invention provides the hDkk2 recombinant protein (rhDkk2) produced by the above production method.

본 발명에서 사용한 유전공학적 기술과 관련된 사항은 샘브룩 등의 문헌(Sambrook, et al. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor laboratory Press, Cold Spring Harbor, N. Y.(2001)) 및 프레드릭 등의 문헌 (Frederick M. Ausubel et al., Current protocols in molecular biology volume 1,2,3, John Wiley & Sons, Inc.(1994)) 등을 참조할 수 있다.The issues related to the genetic engineering techniques used in the present invention are described in Sambrook et al. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001) Frederick M. Ausubel et al., Current Protocols in Molecular Biology Volume 1,2,3, John Wiley & Sons, Inc. (1994)).

본 발명은 인간 PDI 태그를 이용한 인간 Dkk2 재조합 단백질의 수용성 발현 및 정제방법에 관한 것으로서, hPDI 도메인과의 태깅을 통해 대장균 내에서 용해도 및 안정도가 증가된 Dkk2 단백질을 분리, 정제하는 방법에 대한 것이다. 이렇게 얻어진 Dkk2 단백질은 항암 및 항-혈관신생을 위한 치료제로서 중요한 역할을 할 것으로 기대된다.The present invention relates to a water-soluble expression and purification method of a human Dkk2 recombinant protein using a human PDI tag, and a method for separating and purifying a Dkk2 protein having enhanced solubility and stability in E. coli through tagging with the hPDI domain. The Dkk2 protein thus obtained is expected to play an important role as a therapeutic agent for anti-cancer and anti-angiogenesis.

도 1은 rhDkk2 과발현을 위한 발현벡터의 제작 과정을 나타낸다. (A)는 게이트웨이 클로닝 시스템에 통한 여러 태그들을 가진 rhDkk2 단백질 발현벡터를 제작과정을 나타낸다. (B) 재조합 단백질의 모식도를 나타낸다. 각 단백질은 여러 태그 및 TEV 인식 사이트(화살표)을 가진다.
도 2는 E. coli BL21(DE3)에서의 rhDkk2 발현을 나타낸다. 각각 10ug 단백질이 10% 트리스-트리신 SDS-PAGE 젤에 로딩되었다. M, 분자량 사이즈 마커; C, 0.5mM IPTG 유도 전의 총 세포 용해물; T, 유도 후의 총 세포 용해물; S, 유도 후세포 용해물의 상등액.
도 3은 rhDkk2의 분리에 대한 것이다. (A) rhDkk2는 His 친화, 이온 교환 및 젤 여과 컬럼 크로마토그래피를 통해 대장균으로부터 분리되었다. Lane 4는 hPDI-rhDkk2가 TEV 단백질 분해효소 처리 후에 절단된 것을 보여준다. 음이온 교환 컬럼 후, 젤 여과 컬럼을 사용하여 rhDkk2를 분리하였다. M: 분자량 마커; lane 1, IPTG 유도 전 대장균 세포 용해물; lane 2: 유도 후 세포 용해물의 상등액; lane 3: hPDI-rhDkk2 융합 단백질(84.6kDa)의 1st 분리; lane 4: TEV 단백질 분해효소로 처리한 hPDI 태그 절단(hPDI: 53.8kDa, Dkk2: 25.1 kDa); lane 5: 음이온 교환 크로마토그래피에 의한 rhDkk2의 2nd 분리. (B) hPDI-rhDkk2의 분리 과정을 나타내는 모식도이다. (C) 최종 분리된 rhDkk2에 대한 젤 여과 크로마토그램(왼쪽) 및 10% 트리스-트리신 SDS-PAGE 분석(오른쪽) 결과이다. 최종 분리된 rhDkk2의 SDS-PAGE 젤은 쿠마시 블루(Coomassie blue)(왼쪽 젤) 및 실버 염색(오른쪽 젤) 용액으로 확인하였다. 그리고 최종적으로, 분리된 rhDkk2는 항-Dkk2 항체로 웨스턴 블랏 분석하여 확인하였다(삽입 박스).
도 4는 rhDkk2의 MALDI-TOF MS 분석결과를 나타낸다. rhDkk2를 확인하기 위해서, 10mM 디티올트레이톨(dithiolthreitol; DTT)의 조건 하에서 환원된 샘플을 최종농도 10% 트리클로로아세트산(trichloroacetic acid; TCA)으로 침전시켰다. 침전된 단백질의 모든 시스테인 잔기는 25mM 이오도아세트아미드로 변형시켰다. 샘플을 14.4% 트리스-트리신 SDS-PAGE 젤에 로딩하였다. 젤을 염색한 후에, 예측되는 단백질 크기와 관련된 각 단백질 밴드들을 잘라냈고, 트립신으로 37℃에서 밤새도록 처리하였다. 트립신-처리된 샘플을 젤로부터 추출한 후에, 분리된 단백질을 동정하기 위해서 MALDI-TOF MS 분석(Voyager-DETM STR)을 수행하였다.
도 5는 rhDkk2의 생물학적 활성을 나타낸다. (A) HEK293 세포들은 분리된 rhDkk2로 24시간 동안 처리되었다. 각 단백질들은 0, 10, 100, 250, 500 ng/ml 농도로 각각 처리되었다. 20ug 단백질의 전체 세포 용해물을 10% 트리스-트리신 SDS-PAGE 젤에 로딩하였다. Wnt 신호 전달 기작에 있어서 하류 조절 단백질들은 웨스턴 블랏을 통해 검출하였다. (B) 웨스턴 블랏 분석을 숫자로 표시한 그래프이다. 단백질 수준은 표준방법으로서 GAPDH 농도로 계산되었다.
Fig. 1 shows a process for producing an expression vector for overexpression of rhDkk2. (A) shows the process of constructing a rhDkk2 protein expression vector having several tags through a gateway cloning system. (B) a recombinant protein. Each protein has several tags and TEV recognition sites (arrows).
2 is E. coli Expression of rhDkk2 in BL21 (DE3). Each 10 ug of protein was loaded onto a 10% tris-tricine SDS-PAGE gel. M, molecular weight size markers; C, total cell lysate before 0.5mM IPTG induction; T, total cell lysate after induction; S, supernatant of cell lysate after induction.
Figure 3 is for the separation of rhDkk2. (A) rhDkk2 was isolated from E. coli through His affinity, ion exchange and gel filtration column chromatography. Lane 4 shows that hPDI-rhDkk2 was cleaved after treatment with TEV protease. After the anion exchange column, the gel filtration column was used to separate rhDkk2. M: molecular weight marker; lane 1, Escherichia coli cell lysate before IPTG induction; lane 2: supernatant of cell lysate after induction; lane 3: 1 st separation of hPDI-rhDkk2 fusion protein (84.6 kDa); lane 4: hPDI tagging with TEV protease (hPDI: 53.8 kDa, Dkk2: 25.1 kDa); lane 5: 2 nd separation of rhDkk2 by anion exchange chromatography. (B) hPDI-rhDkk2. (C) gel filtration chromatogram (left) and 10% tris-tricine SDS-PAGE analysis (right) for final isolated rhDkk2. SDS-PAGE gels of the final isolated rhDkk2 were identified with Coomassie blue (left-hand gel) and silver-stained (right-hand gel) solutions. Finally, isolated rhDkk2 was identified by western blot analysis with anti-Dkk2 antibody (insert box).
Fig. 4 shows MALDI-TOF MS analysis results of rhDkk2. To confirm rhDkk2, the reduced sample was precipitated with 10% trichloroacetic acid (TCA) in a final concentration of 10 mM dithiolthreitol (DTT). All cysteine residues of the precipitated protein were transformed into 25 mM iodoacetamide. Samples were loaded onto a 14.4% tris-tricine SDS-PAGE gel. After dyeing the gel, each protein band associated with the predicted protein size was cut out and treated with trypsin at 37 < 0 > C overnight. After extracting the trypsin-treated sample from the gel, MALDI-TOF MS analysis (Voyager-DE TM STR) was performed to identify the separated proteins.
Figure 5 shows the biological activity of rhDkk2. (A) HEK293 cells were treated with separate rhDkk2 for 24 h. Each protein was treated at 0, 10, 100, 250, and 500 ng / ml, respectively. A total cell lysate of 20 ug protein was loaded onto a 10% tris-tricine SDS-PAGE gel. Downstream regulatory proteins in Wnt signaling were detected by Western blot. (B) Western blot analysis. Protein levels were calculated as GAPDH concentrations as a standard method.

이하, 하기 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<< 실시예Example 1> 게이트웨이  1> Gateway 클로닝(Gateway cloning)에In cloning (Gateway cloning) 의한 여러 태그를 가진 발현벡터의 제작  Of expression vector with multiple tags

259개의 아미노산을 코딩하는 hDkk2(GeneBank: BC075078.2)의 DNA 서열은 유전자 합성 서비스에 의해 합성되었다(Source BioScience Lifesciences, UK, Clone ID 30915595). 신호전달 펩타이드를 코딩하는 DNA 서열을 제거하고 유전자를 증폭시키기 위해서, 다음 2개의 프라이머를 사용하였다. 정방향 5'-AGTTCGGGTACCAAACTCAACTCCATCAAGTCC-3' 및 역방향 5'-CCTCAATCTAGATCAAATTTTCTGACACACATG-3'이고, 밑줄 친 부분은 각각 KpnI 및 XbaI의 제한효소 사이트를 나타낸다. 증폭된 DNA는 N-말단에 담배 식각 바이러스 인식 사이트(tobacco etch virus recognition site; TEVrs; ENLYFQˇG)를 가진 pDONR207 벡터로 서브 클로닝하였고, pENTR-Dkk2를 얻었다. hDkk2 과발현을 위한 여러 태그를 포함하는 발현벡터를 만들기 위해서, pENTR-Dkk2는 LR 재조합(Invitrogen, CA, USA)을 통해 목적 벡터인 pHGWA (pDEST-His6), pHGGWA (pDEST-GST), pHXGWA (pDEST-TRX), pHNGWA (pDEST-NusA), pHMGWA (pDEST-MBP) 및 pDEST-hPDIb'a'로 각각 서브 클로닝되었다(도 1A). 여러 태그를 가진 hDkk2 융합 단백질을 코딩하는 최종 구조체(constructs)는 DNA 서열분석을 통해 확인되었다(Macrogen, Inc., Daejon, Korea). 태그를 절단하기 위해서 태그 및 표적 단백질 사이에 TEV 인식 사이트를 삽입하였다(도 1B).
The DNA sequence of hDkk2 (GeneBank: BC075078.2) encoding 259 amino acids was synthesized by the gene synthesis service (Source BioScience Lifesciences, UK, Clone ID 30915595). In order to remove the DNA sequence encoding the signal transduction peptide and amplify the gene, the following two primers were used. And forward 5'-AGTTCG GGTACC AAACTCAACTCCATCAAGTCC-3 'and reverse 5'-CCTCAA TCTAGA TCAAATTTTCTGACACACATG-3' , underlined part represents a restriction enzyme site, Kpn I and Xba I, respectively. The amplified DNA was subcloned into pDONR207 vector having N-terminal tobacco etch virus recognition site (TEVrs; ENLYFQG), and pENTR-Dkk2 was obtained. (pDEST-His6), pHGGWA (pDEST-GST), and pHXGWA (pDEST-GST) were constructed through LR recombination (Invitrogen, CA, USA) in order to construct an expression vector containing several tags for hDkk2 over- -TRX), pHNGWA (pDEST-NusA), pHMGWA (pDEST-MBP) and pDEST-hPDIb'a ', respectively (Figure 1A). The final constructs coding for the hDkk2 fusion protein with multiple tags were confirmed by DNA sequencing (Macrogen, Inc., Daejon, Korea). To cut the tag, a TEV recognition site was inserted between the tag and the target protein (Fig. 1B).

<< 실시예Example 2>  2> hPDIhPDI -- rhDkk2rhDkk2 의 발현 Manifestation of

여러 태그 플라스미드의 rhDkk2를 컴피턴트(competent) E. coli BL21(DE3)(Norvagen) 숙주세포로 형질전환하였다. 단일 콜로니를 50ug/ml 앰피실린이 포함된 2mL LB 배지에서 37℃로 배양하였다. 600 nm에서 배양액의 광학 밀도(OD)가 0.4~0.5에 이르렀을 때, 융합 단백질 발현을 위하여 최종 0.5mM 이소프로필-β-D-티오갈락토시드(isopropyl-β-D-thiogalactoside; IPTG)를 배양 배지에 첨가하였다. 그 후, 배양 조건을 180 rpm, 30℃로 변경하였다. 박테리아 세포는 추가적으로 3시간 동안 더 배양하였다. 배양된 세포는 13,000 rpm에서 1분 동안 원심분리하여 수확한 후, 세포 펠렛은 200 uL 용해 완충액(lysis buffer) (50 mM Tris-Cl, pH 8.0, 0.5 mM EDTA, 5% glycerol (v/v))에 재현탁하였다. 초음파에 의해 세포를 깬 후에, 융합 단백질의 발현 및 용해도 수준을 10% 트리스-트리신 SDS-PAGE에 의해 분석하였고, ImageJ program (http://imagej.nih.gov/ij)으로 계산하였다.RhDkk2 of several tagged plasmids was isolated from competent E. coli And transformed with BL21 (DE3) (Norvagen) host cells. Single colonies were cultured at 37 占 폚 in 2 ml LB medium containing 50 ug / ml ampicillin. When the optical density (OD) of the culture solution reached from 0.4 to 0.5 at 600 nm, final 0.5 mM isopropyl-beta -D-thiogalactoside (IPTG) was added for expression of the fusion protein And added to the culture medium. Thereafter, the culture conditions were changed to 180 rpm and 30 캜. Bacterial cells were further cultured for an additional 3 hours. The cultured cells were harvested by centrifugation at 13,000 rpm for 1 minute and then the cell pellet was resuspended in 200 uL lysis buffer (50 mM Tris-Cl, pH 8.0, 0.5 mM EDTA, 5% glycerol (v / v) ). After breaking the cells by sonication, the expression and solubility levels of the fusion proteins were analyzed by 10% tris-tricine SDS-PAGE and calculated with the ImageJ program ( http://imagej.nih.gov/ij ).

여러 태그를 가진 모든 구조체들은 rhDkk2 단백질을 과발현시켰으나, MBP, NusA 및 hPDI 태그를 가진 rhDkk2만이 수용성으로 발현되었다(도 2). 이들 중에서, hPDI-rhDkk2를 가진 균주가 높은 용해도 및 안정도를 나타냈다(표 1). 따라서 정제를 위하여, 최종적으로 hPDI-rhDkk2를 가진 균주를 선택하고 배양하였다.
All structures with multiple tags overexpressed the rhDkk2 protein, but only rhDkk2 with the MBP, NusA and hPDI tags were expressed water-soluble (FIG. 2). Of these, strains with hPDI-rhDkk2 showed high solubility and stability (Table 1). Therefore, for purification, a strain with hPDI-rhDkk2 was finally selected and cultured.

여러 태그를 가진 rhDkk2의 발현 및 용해도 수준Expression and solubility levels of rhDkk2 with multiple tags Tagging protein Tagging protein 발현수준 (%)Expression level (%) 용해도 (%)Solubility (%) rhDkk2rhDkk2 rhDkk2rhDkk2 His6- (3.1 kDa)His6- (3.1 kDa) 98.7 98.7 3.7 3.7 Trx- (15.7 kDa)Trx- (15.7 kDa) 80.6 80.6 17.2 17.2 GST- (30 kDa)GST- (30 kDa) 85.1 85.1 32.4 32.4 MBP- (43.4 kDa)MBP- (43.4 kDa) 79.7 79.7 75.7 75.7 NusA- (57.8 kDa)NuSA- (57.8 kDa) 90.6 90.6 21.6 21.6 hPDI- (58.3 kDa)hPDI- (58.3 kDa) 91.9 91.9 91.9 91.9

<< 실시예Example 3>  3> rhDkk2rhDkk2 의 분리 및 정제Separation and purification of

대장균(E. coli)에서 수용성 rhDkk2를 분리하기 위해서, hPDI-TEVrs-rhDkk2 구조체를 E. coli BL21 (DE3)로 형질전환하였다. 단일 콜로니는 50ug/ml 앰피실린이 포함된 2mL LB 배지에 전-접종하였고, 37℃에서 밤새도록 배양하였다. 최종 농도 0.5%의 전-배양 세포를 50ug/ml 앰피실린이 함유된 1L 새로운 LB 배지에 접종하였고 상기와 같은 조건으로 배양하였다. 세포가 OD600에서 0.5~0.7에 이르렀을 때, 최종농도 0.5mM IPTG를 배양 배지에 첨가하고, 융합 단백질의 수용성 발현 수준을 개선시키기 위해서 18℃에서 18시간 동안 더 배양하였다. 배양된 세포는 3500rpm에서 30분 동안 원심분리를 통해 수확하였고, 그 후 20 mL/g의 세포 건조 중량비 당 완충액으로 세포 펠렛을 용해 완충액(50 mM Tris-HCl, pH8.0, 0.5 mM EDTA, 5% glycerol (v/v))에 재현탁하였다. 세포 파괴를 위하여 세포 용해물은 20회 초음파처리하였고, 18,000 rpm에서 20분 동안 원심분리하였다. 상등액을 0.45um WhatmanTM 실린지 필터(GE Healthcare, Bucks, UK)를 통해 여과하였고, 결합 완충액(50 mM Tris-HCl, pH 8.0, 500 mM NaCl, 5% glycerol (v/v))으로 전-평형화된 미리 패킹된 5mL HisTrapTM FF column (GE Healthcare, Bucks, UK)을 사용하였다. 모든 컬럼 작업은 AKTA explorer system (Ammersham Pharmacia Biotech, Bucks, UK) 상에서 수행하였다. 미결합된 단백질을 제거하기 위해서 HisTrapTM FF 컬럼은 2-4 컬럼 볼륨(column volumn; CV)의 결합 완충액으로 씻어냈고, 비특이적 결합 단백질을 제거하기 위해서 8-10 CV의 세척 완충액(50 mM Tri-HCl, pH 8.0, 500 mM NaCl, 110 mM imidazole, 5% glycerol (v/v))으로 씻어냈다. 그 후, hPDI-rhDkk2 융합 단백질을 용출 완충액(50 mM Tri-HCl, pH 8.0, 500 mM NaCl, 200 mM imidazole, 5% glycerol (v/v))으로 용출하였다. hPDI-rhDkk2 융합 단백질을 포함하는 분획을 모았고, 완충액 A(50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 5% glycerol (v/v))에 1:40 (v/v) 비율로 녹인 분자량 컷-오프 12-14 kDa (Viskase Companies, Inc, USA)의 투석막으로 이미다졸(imidazole) 및 NaCl을 희석하기 위해서 4℃에서 2시간 동안 세 번 투석하였다. 다음으로, 분리된 총 단백질을 TEV 단백질 분해효소 비율 20:1 (w/w)의 TEV 단백질 분해효소 처리하여 융합 단백질을 절단하였다. 절단은 18℃에서 14-16 시간 동안 수행하였다. 단백질 분해 절단 후에, 절단 반응 혼합물을 0.45um WhatmanTM 실린지 필터로 여과하였고, 음이온 교환 컬럼을 통하여 rhDkk2을 분리하기 위해서 완충액 A로 평형화된 미리 패킹된 5 mL HiTrap SPTM column (GE Healthcare, Bucks, UK)에 로딩하였다. 컬럼은 4-6 CV의 완충액 A로 씻어낸 후, 완충액 B(완충액 A에 1 M NaCl 첨가)에 선형 구배(linear gradient)로 용출하였다. rhDkk2를 포함하는 분획은 분자량 컷-오프 10 kDa (Millipore Corp., MA, USA) 이상의 원심분리 필터를 이용하여 1mL로 농축하였고, 13,000 rpm에서 5분 동안 원심분리하여 상등액을 수집하였다. 추가적인 분리를 위하여, 수집된 샘플은 저장 완충액(50 mM Tris-HCl, pH 8.0, 500 mM NaCl, 10 mM DTT , 5% glycerol (v/v))으로 전-평형화된 Superdex 75 16/60 (GE Healthcare, Bucks, UK)에 로딩하였다. 최종적으로, 분리된 rhDkk2는 농축되었고, 10% 트리스-트리신 SDS-PAGE에 의해 분석하였다. 분리 과정에서의 단백질 농도는 표준방법으로 BSA를 이용한 Bradford assay에 의해 측정되었다. 그 결과는 도 3에 나타냈다. rhDkk2의 최종 수율은 0.073mg/g(E. coli 세포 건조 중량)이었고, 순도는 94%였다(표 2).
To isolate soluble rhDKK2 from E. coli , the hPDI-TEVrs-rhDkk2 construct was transformed into E. coli BL21 (DE3). Single colonies were pre-inoculated in 2 mL LB medium containing 50 ug / ml ampicillin and incubated overnight at 37 ° C. Pre-cultured cells at a final concentration of 0.5% were inoculated into 1 L of fresh LB medium containing 50 ug / ml ampicillin and cultured under the same conditions as above. When cells reached 0.5-0.7 at OD600, a final concentration of 0.5 mM IPTG was added to the culture medium and further incubated for 18 h at 18 C to improve the level of soluble expression of the fusion protein. The cultured cells were harvested by centrifugation at 3500 rpm for 30 minutes and then the cell pellet was resuspended in lysis buffer (50 mM Tris-HCl, pH 8.0, 0.5 mM EDTA, 5 mM) at a cell dry weight ratio of 20 mL / % glycerol (v / v)). Cell lysates were sonicated 20 times for cell destruction and centrifuged at 18,000 rpm for 20 minutes. The supernatant was filtered through a 0.45 um Whatman TM syringe filter (GE Healthcare, Bucks, UK) and eluted with binding buffer (50 mM Tris-HCl, pH 8.0, 500 mM NaCl, 5% glycerol (v / A pre-packed 5 mL HisTrap FF column (GE Healthcare, Bucks, UK) was used. All column work was performed on the AKTA explorer system (Amersham Pharmacia Biotech, Bucks, UK). To remove unbound proteins, the HisTrap FF column was washed with binding buffer in 2-4 column volumes (CV) and washed with 8-10 CV of wash buffer (50 mM Tri- HCl, pH 8.0, 500 mM NaCl, 110 mM imidazole, 5% glycerol (v / v)). The hPDI-rhDkk2 fusion protein was then eluted with elution buffer (50 mM Tri-HCl, pH 8.0, 500 mM NaCl, 200 mM imidazole, 5% glycerol (v / v)). The fractions containing the hPDI-rhDkk2 fusion protein were pooled and the fractions containing the hPDI-rhDkk2 fusion protein were dissolved in buffer A (50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 5% glycerol (v / v) The dialysis membrane of the cut-off 12-14 kDa (Viskase Companies, Inc, USA) was dialyzed three times for 2 hours at 4 ° C to dilute the imidazole and NaCl. Next, the separated total proteins were subjected to TEV protease treatment at a TEV protease ratio of 20: 1 (w / w) to cleave the fusion protein. The cleavage was carried out at 18 [deg.] C for 14-16 hours. After proteolytic cleavage, the cleavage reaction mixture was filtered through a 0.45 um Whatman syringe filter and pre-packed 5 mL HiTrap SP column (GE Healthcare, Bucks, UK) equilibrated with buffer A to separate rhDkk2 through anion exchange column UK). The column was washed with 4-6 CV of buffer A and then eluted with a linear gradient to buffer B (1 M NaCl in buffer A). The fractions containing rhDkk2 were concentrated to 1 mL using a centrifugation filter with a molecular weight cut-off of 10 kDa (Millipore Corp., MA, USA) or higher, and the supernatant was collected by centrifugation at 13,000 rpm for 5 minutes. For further separation, the collected samples were collected on a Superdex 75 16/60 (GE) column pre-equilibrated with storage buffer (50 mM Tris-HCl, pH 8.0, 500 mM NaCl, 10 mM DTT, 5% glycerol Healthcare, Bucks, UK). Finally, the isolated rhDkk2 was concentrated and analyzed by 10% tris-tricine SDS-PAGE. Protein concentration in the separation process was measured by Bradford assay using BSA as standard method. The results are shown in Fig. The final yield of rhDkk2 was 0.073 mg / g (dry weight of E. coli cells) and the purity was 94% (Table 2).

분리 단계Separation step 부피
(ml)
volume
(ml)
습중량
(Wet weight)
(g)
Wet weight
(Wet weight)
(g)
총 단백질
(mg/g)
Total protein
(mg / g)
순도
(%)
water
(%)
Bacterial culture Bacterial culture 200200 0.98 0.98 - - - - Supernatant Supernatant 20 20 - - 81.6 81.6 - - 1stpurification 1 st purification 42.5 42.5 - - 4.034.03 - - TEV protease treatment TEV protease treatment 42.5 42.5 - - 5.03 5.03 - - 2ndpurification2 nd purification 0.9 0.9 - - 0.39 0.39 - - Gel filtration Gel filtration 1.31.3 - - 0.070.07 9494

<< 실시예Example 4>  4> MALDIMALDI -- TOFTOF MSMS 분석에 의한 재조합 융합 단백질의 확인 Identification of Recombinant Fusion Proteins by Analysis

MALDI-TOF MS 분석을 통해 분리된 rhDkk2를 확인하기 위해서, 10mM DTT를 분리된 rhDkk2에 첨가한 후에 최종 농도 10% 트리클로로아세트산(trichloroacetic acid; TCA, 6.1 N, Sigma-Aldrich Corp.)을 샘플에 첨가하였다. 그 후, 재빨리 5분 동안 얼음에 두었다. 샘플을 12,000 rpm에서 10분 동안 원심분리한 후에, 침전된 샘플을 50 mM 이오도아세트아미드(iodoacetamide; IAA, Sigma-Aldrich Corp.) 9 uL IA 완충액 (0.5 M Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 2% SDS, 5% glycerol)에 재현탁하였고, 그 후 어두운 곳에서 상온으로 30분 동안 반응시켰다. 단백질 샘플 12uL를 10% 트리스-트리신 SDS-PAGE 젤에 로딩하였다. rhDkk2와 관련된 밴드를 젤로부터 잘라냈고, 밤새도록 20uL 트립신 용액으로 처리하였다. 1uL 단백질 반응물 전체를 동일 부피의 α-시아노-4-하이드록시시나믹산(10 mg/mL) 용액에 혼합하였고, Voyager-DE™ STR (Applied Biosystems)을 이용하여 MALDI-TOF MS을 수행하였다. 데이터 해석은 Data Explorer TM software (Applied Biosystems)를 이용하여 수행하였다. 트립신 처리 펩타이드의 질량은 모두 일치했다. 분리된 rhDkk2는 웨스턴 블랏(도 3C 삽입박스) 및 MALDI-TOF MS 분석(도 4)에 의해 확인되었다.
10 mM DTT was added to the separated rhDKK2 and then 10% trichloroacetic acid (TCA, 6.1 N, Sigma-Aldrich Corp.) was added to the sample to confirm the rhDKK2 isolated by MALDI-TOF MS analysis . After that, it was quickly left on ice for 5 minutes. After centrifugation of the sample at 12,000 rpm for 10 minutes, the precipitated sample was resuspended in 50 μl iodoacetamide (IAA, Sigma-Aldrich Corp.) 9 uL IA buffer (0.5 M Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 2% SDS, 5% glycerol) and then reacted in the dark at room temperature for 30 minutes. 12 uL of protein sample was loaded onto 10% tris-tricine SDS-PAGE gel. The band associated with rhDkk2 was excised from the gel and treated with 20 uL trypsin solution overnight. All 1 uL protein reactants were mixed in an equal volume of a-cyano-4-hydroxycinnamic acid (10 mg / mL) solution and MALDI-TOF MS was performed using Voyager-DE ™ STR (Applied Biosystems). Data analysis was performed using Data Explorer TM software (Applied Biosystems). The masses of trypsin-treated peptides were all consistent. The isolated rhDkk2 was identified by Western blot (Fig. 3C insert box) and MALDI-TOF MS analysis (Fig. 4).

<< 실시예Example 5>  5> 트리톤Triton (( TritonTriton ) X-114 상 분리 및 ) X-114 phase separation and 엔도톡신Endotoxin (( endotoxin)endotoxin) 분석  analysis

분리된 rhDkk2에서 엔도톡신을 제거하기 위해서, 최종 농도 1% 트리톤 X-114를 샘플에 첨가하였고, 혼합 샘플을 4℃에서 30분 동안 반응시켰다. 재빨리 37℃로 옮긴 후에, 12,000 rpm에서 10분 동안 원심분리하였다. rhDkk2를 포함하는 상층의 수용성 상(aqueous phase)을 조심스럽게 모았고, 엔도톡신 분석에 사용하였다.To remove endotoxin from the separate rhDkk2, a final concentration of 1% Triton X-114 was added to the sample and the mixed sample was reacted at 4 占 폚 for 30 minutes. After quickly transferring to 37 ° C, it was centrifuged at 12,000 rpm for 10 minutes. The aqueous phase of the upper layer containing rhDkk2 was carefully collected and used for endotoxin analysis.

rhDkk2를 포함하는 수용성 상에서의 잔여 엔도톡신의 양을 측정하기 위해서, Endpoint Chromogenic Limulus Amebocyte Lysate (LAL) 시험 (Lonza, Basel, Switzerland)을 수행하였다. 1ug/mL 농도의 샘플을 37℃에서 미리 데운 무-엔도톡신-마이크로플레이트 웰에 50ul씩 분주하였고, 동일 부피의 LAL 시약을 각 웰에 첨가하였다. 플레이트를 37℃에서 10분 동안 반응시킨 후, 미리 데운 100ul 색소 기질 용액(chromogenic substrate solution)을 각 웰에 첨가하였고, 37℃에서 6분 동안 반응하였다. 그리고 난 후, 100ul 정지 시약 (25% 아세트산 (v/v))을 첨가하였고, 분광 광도계를 이용하여 405 nm에서 분석하였다. 흡광도 분석 후에, 엔도톡신 표준용액(1.0, 0.5, 0.25, 0.1 EU/ml)으로부터 얻어진 표준 곡선을 이용하여 엔도톡신 농도를 계산하였다.Endpoint Chromogenic Limulus Amebocyte Lysate (LAL) test (Lonza, Basel, Switzerland) was performed to determine the amount of residual endotoxin in the aqueous phase containing rhDkk2. Samples at a concentration of 1 ug / mL were dispensed at 50 占 폚 in pre-warmed endotoxin-microplate wells at 37 占 and the same volume of LAL reagent was added to each well. Plates were incubated at 37 占 폚 for 10 minutes, and a pre-heated 100 占 퐇 chromogenic substrate solution was added to each well and reacted at 37 占 폚 for 6 minutes. After this, 100 ul stopping reagent (25% acetic acid (v / v)) was added and analyzed at 405 nm using a spectrophotometer. After the absorbance analysis, the endotoxin concentration was calculated using a standard curve obtained from the endotoxin standard solution (1.0, 0.5, 0.25, 0.1 EU / ml).

그 결과, 트리톤 X-114를 처리하기 전에는 분리된 단백질의 엔도톡신의 양이 2 EU/ug 보다 높았으나, 처리 후에는 엔도톡신 수준이 0.15 EU/ug 보다 낮아졌다(표 3).
As a result, the amount of endotoxin in the isolated protein was higher than 2 EU / ug before treatment with Triton X-114, but the endotoxin level was lower than 0.15 EU / ug after treatment (Table 3).

TritonX-114 처리 Treatment with Triton X-114 분리된 단백질의 엔도톡신 수준 (EU/ug)The endotoxin level of the isolated protein (EU / ug) 처리 전Before processing 2.4492.449 처리 후After processing 0.1150.115

<< 실시예Example 6>  6> rhDkk2rhDkk2 의 활성 측정Activity measurement

rhDkk2의 생물학적 활성을 측정하기 위해서, 이를 정상적인 Wnt 신호전달 과정을 보이는 HEK293 세포에 처리하였다. HEK293 세포는 10% 열-불활화시킨 우태아혈청(fetal bovine serum; FBS), 소듐 바이카보네이트(sodium bicarbonate; Sigma #S8875), MEM 소듐 피루베이트(MEM sodium pyruvate; Gibco, #11360-070), MEM 비-기본 아미노산(MEM non-essential amino acid; MEM NEAA) (Gibco, #11140-050) 및 항생제(100 U/ml 페니실린 G, 100 ug/ml 스트렙토마이신 설페이트(streptomycin sulfate)가 첨가된 최소 기본 배지(minimum essential medium; MEM) (Gibco, #61100-061)에서 37℃, 5% CO2를 함유하는 배양기에서 배양하였다. 4~5×105 세포는 6-웰 조직 배양 시험 플레이트(SPL life sciences, Inc., Korea)에서 배양시켰다. 24시간 동안 FBS 배지를 제외한 세포 밀집도(cell confluency)가 70~80%일 때, rhDkk2를 0, 10, 100, 250, 500 ng/ml의 농도로 각각 처리하였다. 전체 세포 용해물은 NP-40 용해 완충액(150 mM sodium chloride, 10% NP-40, 50 mM Tris inhibitor)으로 모았고, 20ug의 단백질을 트리스-트리신 SDS-PAGE에 로딩하였다.To measure the biological activity of rhDkk2, it was treated with HEK293 cells showing normal Wnt signal transduction. HEK293 cells were cultured in DMEM supplemented with 10% heat-inactivated fetal bovine serum (FBS), sodium bicarbonate (Sigma # S8875), MEM sodium pyruvate (Gibco, # 11360-070) MEM non-essential amino acids (MEM NEAA) (Gibco, # 11140-050) and antibiotics (100 U / ml penicillin G, 100 ug / ml streptomycin sulfate) Were cultured in a minimal essential medium (MEM) (Gibco, # 61100-061) in an incubator containing 5% CO 2 at 37 ° C. 4-5 × 10 5 cells were plated on a 6-well tissue culture test plate (SPL life When cell confluency was 70 to 80% except for FBS medium, rhDkk2 was cultured for 24 hours at concentrations of 0, 10, 100, 250 and 500 ng / ml, respectively. The whole cell lysate was collected with NP-40 lysis buffer (150 mM sodium chloride, 10% NP-40, 50 mM Tris inhibitor) Gt; SDS-PAGE. &Lt; / RTI &gt;

웨스턴 블랏 분석을 위해, 젤을 PVDF 멤브레인(Pall Corp.)으로 옮긴 후, 멤브레인을 차단 용액 (5% skim milk powder, 10 mM Tris-Cl, pH 7.4, 150 mM NaCl)으로 차단하였다. rhDkk2 검출을 위해서, 멤브레인을 항-Dkk2 항체(1:200, Abcam, Ab38594)로 차단 용액에서 밤새도록 4℃로 반응시켰다. 그 후, 멤브레인을 TBST (10 mM Tris-Cl, pH 7.4, 150 mM NaCl, 0.05% Tween 20)로 10분 동안 4번 씻어냈다. 씻어낸 멤브레인은 TBST 완충액에 녹인 퍼록시다제(peroxidase) 표지된 항-토끼 IgG (1:5000, Abclon, AbC-5003)와 상온에서 1시간 동안 반응시켰고, TBST로 4번 씻어냈다. 씻어낸 후에, 멤브레인은 picoEPD (Elpis biotech, Daejeon, Korea)를 이용하여 분석하였다.For Western blot analysis, the gel was transferred to a PVDF membrane (Pall Corp.) and the membrane was blocked with blocking solution (5% skim milk powder, 10 mM Tris-Cl, pH 7.4, 150 mM NaCl). For rhDkk2 detection, membranes were reacted overnight at 4 ° C in blocking solution with anti-Dakk2 antibody (1: 200, Abcam, Ab38594). The membrane was then rinsed four times with TBST (10 mM Tris-Cl, pH 7.4, 150 mM NaCl, 0.05% Tween 20) for 10 minutes. The washed membrane was reacted with peroxidase-labeled anti-rabbit IgG (1: 5000, Abclon, AbC-5003) dissolved in TBST buffer for 1 hour at room temperature and rinsed 4 times with TBST. After washing, the membranes were analyzed using picoEPD (Elpis biotech, Daejeon, Korea).

Wnt 신호 전달에 있어서, rhDkk2-관련 단백질의 발현 수준은 rhDkk2의 생물학적 활성을 측정하여 확인하였다. β-카테닌(β-catenin)(1:1000, Cell signaling, #9562), c-Myc (1:1000, Sigma, M4439), cyclin D1 (1:1000, cell signaling, #2978), GAPDH (1:1000, Ab frontier, LF-PA0209) 및 β-actin (1:2000, Ab frontier, LF-PA0018)을 사용하였다.In Wnt signaling, the level of expression of rhDkk2-related protein was determined by measuring the biological activity of rhDkk2. β-catenin (1: 1000, Cell signaling, # 9562), c-Myc (1: 1000, Sigma, M4439), cyclin D1 (1: 1000, cell signaling, # 2978), GAPDH : 1000, Ab frontier, LF-PA0209) and β-actin (1: 2000, Ab frontier, LF-PA0018) were used.

그 결과, rhDkk2를 HEK293 세포에 처리하였을 때, Wnt 신호 전달 기작의 모든 하류(downstream)-관련 단백질이 감소하였다(도 5). 따라서, 본 발명자들은 Wnt 신호 전달 기작 유사 인간 Dkk1에 대응하는 억제자로서의 rhDkk2 기능을 확인할 수 있었다.
As a result, when rhDkk2 was treated in HEK293 cells, all downstream-related proteins of the Wnt signaling mechanism were decreased (FIG. 5). Thus, the present inventors could confirm the function of rhDkk2 as an inhibitor corresponding to the Wnt signal transduction-like human Dkk1.

<110> University of Ulsan Foundation For Industry Cooperation <120> Soluble expression and purification method of active recombinant human Dkk2 <130> ADP-2013-0143 <160> 3 <170> KopatentIn 2.0 <210> 1 <211> 681 <212> DNA <213> Homo sapiens <400> 1 aaactcaact ccatcaagtc ctctctgggc ggggagacgc ctggtcaggc cgccaatcga 60 tctgcgggca tgtaccaagg actggcattc ggcggcagta agaagggcaa aaacctgggg 120 caggcctacc cttgtagcag tgataaggag tgtgaagttg ggaggtattg ccacagtccc 180 caccaaggat catcggcctg catggtgtgt cggagaaaaa agaagcgctg ccaccgagat 240 ggcatgtgct gccccagtac ccgctgcaat aatggcatct gtatcccagt tactgaaagc 300 atcttaaccc ctcacatccc ggctctggat ggtactcggc acagagatcg aaaccacggt 360 cattactcaa accatgactt gggatggcag aatctaggaa gaccacacac taagatgtca 420 catataaaag ggcatgaagg agacccctgc ctacgatcat cagactgcat tgaagggttt 480 tgctgtgctc gtcatttctg gaccaaaatc tgcaaaccag tgctccatca gggggaagtc 540 tgtaccaaac aacgcaagaa gggttctcat gggctggaaa ttttccagcg ttgcgactgt 600 gcgaagggcc tgtcttgcaa agtatggaaa gatgccacct actcctccaa agccagactc 660 catgtgtgtc agaaaatttg a 681 <210> 2 <211> 1461 <212> DNA <213> Homo sapiens <400> 2 gacgcaccgg aagaagagga tcatgtcctg gttctgcgca aaagcaactt cgcggaagca 60 ctggccgcac ataaatatct gctggtggaa ttttatgctc cttggtgcgg tcattgcaaa 120 gccctggccc cggagtacgc caaagccgca ggtaaactga aagctgaagg tagcgaaatc 180 cgcctggcaa aggttgatgc tacggaagag agtgacctgg cgcagcagta tggtgtccgc 240 ggctatccta caattaaatt cttccgtaac ggtgataccg catctccaaa agaatatacc 300 gctggtcgcg aggcggacga tattgttaac tggctgaaga aacgcactgg ccctgccgca 360 accaccctgc ctgatggcgc tgctgccgaa agcctggtcg aaagtagcga agttgccgtc 420 attggtttct ttaaggatgt agaatctgac agtgccaaac agtttctgca agcggcagag 480 gctatcgatg acatcccgtt cggcatcacc tctaacagtg acgtattcag taaataccaa 540 ctggataaag acggcgttgt gctgttcaag aaatttgatg aaggtcgcaa caactttgag 600 ggtgaggtga ccaaggagaa cctgctggat tttattaagc acaaccaact gccgctggtt 660 attgaattta cagaacaaac ggcgccgaaa attttcggcg gtgagattaa aacacatatc 720 ctgctgtttc tgccgaagag cgtttctgat tacgatggta aactgagtaa ttttaaaacc 780 gccgcagaat ctttcaaagg taagattctg ttcattttca ttgatagcga ccacacggac 840 aatcagcgta tcctggagtt ctttggtctg aagaaagagg aatgcccggc tgtgcgtctg 900 attacgctgg aagaggaaat gacaaagtac aagccggaga gcgaggaact gactgcagaa 960 cgtatcaccg aattttgtca tcgtttcctg gaggggaaga ttaagccgca tctgatgagc 1020 caggaactgc cggaggattg ggacaaacag ccagtgaaag ttctggtggg gaagaatttt 1080 gaagatgtgg ccttcgatga gaagaagaat gtgtttgtgg agttctacgc cccgtggtgt 1140 gggcactgta aacagctggc gccgatctgg gacaaactgg gcgaaacgta taaagatcac 1200 gaaaatattg tgatcgcgaa aatggattct accgcgaatg aagtagaagc ggtaaaagta 1260 cactcttttc cgacgctgaa attctttcca gcgagcgcgg atcgtactgt cattgattat 1320 aatggcgaac gtactctgga cggctttaag aaatttctgg aaagcggcgg ccaggatggc 1380 gcgggcgatg atgatgacct ggaagacctg gaagaagcgg aggaaccaga catggaggag 1440 gatgacgacc agaaagcggt c 1461 <210> 3 <211> 229 <212> PRT <213> Homo sapiens <400> 3 Gly Gly Thr Lys Leu Asn Ser Ile Lys Ser Ser Leu Gly Gly Glu Thr 1 5 10 15 Pro Gly Gln Ala Ala Asn Arg Ser Ala Gly Met Tyr Gln Gly Leu Ala 20 25 30 Phe Gly Gly Ser Lys Lys Gly Lys Asn Leu Gly Gln Ala Tyr Pro Cys 35 40 45 Ser Ser Asp Lys Glu Cys Glu Val Gly Arg Tyr Cys His Ser Pro His 50 55 60 Gln Gly Ser Ser Ala Cys Met Val Cys Arg Arg Lys Lys Lys Arg Cys 65 70 75 80 His Arg Asp Gly Met Cys Cys Pro Ser Thr Arg Cys Asn Asn Gly Ile 85 90 95 Cys Ile Pro Val Thr Glu Ser Ile Leu Thr Pro His Ile Pro Ala Leu 100 105 110 Asp Gly Thr Arg His Arg Asp Arg Asn His Gly His Tyr Ser Asn His 115 120 125 Asp Leu Gly Trp Gln Asn Leu Gly Arg Pro His Thr Lys Met Ser His 130 135 140 Ile Lys Gly His Glu Gly Asp Pro Cys Leu Arg Ser Ser Asp Cys Ile 145 150 155 160 Glu Gly Phe Cys Cys Ala Arg His Phe Trp Thr Lys Ile Cys Lys Pro 165 170 175 Val Leu His Gln Gly Glu Val Cys Thr Lys Gln Arg Lys Lys Gly Ser 180 185 190 His Gly Leu Glu Ile Phe Gln Arg Cys Asp Cys Ala Lys Gly Leu Ser 195 200 205 Cys Lys Val Trp Lys Asp Ala Thr Tyr Ser Ser Lys Ala Arg Leu His 210 215 220 Val Cys Gln Lys Ile 225 <110> University of Ulsan Foundation for Industry Cooperation <120> Soluble expression and purification method of active recombinant          human Dkk2 <130> ADP-2013-0143 <160> 3 <170> Kopatentin 2.0 <210> 1 <211> 681 <212> DNA <213> Homo sapiens <400> 1 aaactcaact ccatcaagtc ctctctgggc ggggagacgc ctggtcaggc cgccaatcga 60 tctgcgggca tgtaccaagg actggcattc ggcggcagta agaagggcaa aaacctgggg 120 caggcctacc cttgtagcag tgataaggag tgtgaagttg ggaggtattg ccacagtccc 180 caccaaggat catcggcctg catggtgtgt cggagaaaaa agaagcgctg ccaccgagat 240 ggcatgtgct gccccagtac ccgctgcaat aatggcatct gtatcccagt tactgaaagc 300 atcttaaccc ctcacatccc ggctctggat ggtactcggc acagagatcg aaaccacggt 360 cattactcaa accatgactt gggatggcag aatctaggaa gaccacacac taagatgtca 420 catataaaag ggcatgaagg agacccctgc ctacgatcat cagactgcat tgaagggttt 480 tgctgtgctc gtcatttctg gaccaaaatc tgcaaaccag tgctccatca gggggaagtc 540 tgtaccaaac aacgcaagaa gggttctcat gggctggaaa ttttccagcg ttgcgactgt 600 gcgaagggcc tgtcttgcaa agtatggaaa gatgccacct actcctccaa agccagactc 660 catgtgtgtc agaaaatttg a 681 <210> 2 <211> 1461 <212> DNA <213> Homo sapiens <400> 2 gacgcaccgg aagaagagga tcatgtcctg gttctgcgca aaagcaactt cgcggaagca 60 ctggccgcac ataaatatct gctggtggaa ttttatgctc cttggtgcgg tcattgcaaa 120 gccctggccc cggagtacgc caaagccgca ggtaaactga aagctgaagg tagcgaaatc 180 cgcctggcaa aggttgatgc tacggaagag agtgacctgg cgcagcagta tggtgtccgc 240 ggctatccta caattaaatt cttccgtaac ggtgataccg catctccaaa agaatatacc 300 gctggtcgcg aggcggacga tattgttaac tggctgaaga aacgcactgg ccctgccgca 360 accaccctgc ctgatggcgc tgctgccgaa agcctggtcg aaagtagcga agttgccgtc 420 attggtttct ttaaggatgt agaatctgac agtgccaaac agtttctgca agcggcagag 480 gctatcgatg acatcccgtt cggcatcacc tctaacagtg acgtattcag taaataccaa 540 ctggataaag acggcgttgt gctgttcaag aaatttgatg aaggtcgcaa caactttgag 600 ggtgaggtga ccaaggagaa cctgctggat tttattaagc acaaccaact gccgctggtt 660 attgaattta cagaacaaac ggcgccgaaa attttcggcg gtgagattaa aacacatatc 720 ctgctgtttc tgccgaagag cgtttctgat tacgatggta aactgagtaa ttttaaaacc 780 gccgcagaat ctttcaaagg taagattctg ttcattttca ttgatagcga ccacacggac 840 aatcagcgta tcctggagtt ctttggtctg aagaaagagg aatgcccggc tgtgcgtctg 900 attacgctgg aagaggaaat gacaaagtac aagccggaga gcgaggaact gactgcagaa 960 cgtatcaccg aattttgtca tcgtttcctg gaggggaaga ttaagccgca tctgatgagc 1020 caggaactgc cggaggattg ggacaaacag ccagtgaaag ttctggtggg gaagaatttt 1080 gaagatgtgg ccttcgatga gaagaagaat gtgtttgtgg agttctacgc cccgtggtgt 1140 gggcactgta aacagctggc gccgatctgg gacaaactgg gcgaaacgta taaagatcac 1200 gaaaatattg tgatcgcgaa aatggattct accgcgaatg aagtagaagc ggtaaaagta 1260 cactcttttc cgacgctgaa attctttcca gcgagcgcgg atcgtactgt cattgattat 1320 aatggcgaac gtactctgga cggctttaag aaatttctgg aaagcggcgg ccaggatggc 1380 gcgggcgatg atgatgacct ggaagacctg gaagaagcgg aggaaccaga catggaggag 1440 gatgacgacc agaaagcggt c 1461 <210> 3 <211> 229 <212> PRT <213> Homo sapiens <400> 3 Gly Gly Thr Lys Leu Asn Ser Ile Lys Ser Ser Leu Gly Gly Glu Thr   1 5 10 15 Pro Gly Gln Ala Ala Asn Arg Ser Ala Gly Met Tyr Gln Gly Leu Ala              20 25 30 Phe Gly Gly Ser Lys Lys Gly Lys Asn Leu Gly Gln Ala Tyr Pro Cys          35 40 45 Ser Ser Asp Lys Glu Cys Glu Val Gly Arg Tyr Cys His Ser Pro His      50 55 60 Gln Gly Ser Ser Ala Cys Met Val Cys Arg Arg Lys Lys Lys Arg Cys  65 70 75 80 His Arg Asp Gly Met Cys Cys Pro Ser Thr Arg Cys Asn Asn Gly Ile                  85 90 95 Cys Ile Pro Val Thr Glu Ser Ile Leu Thr Pro His Ile Pro Ala Leu             100 105 110 Asp Gly Thr Arg His Arg Asp Arg Asn His Gly His Tyr Ser Asn His         115 120 125 Asp Leu Gly Trp Gln Asn Leu Gly Arg Pro His Thr Lys Met Ser His     130 135 140 Ile Lys Gly His Glu Gly Asp Pro Cys Leu Arg Ser Ser Asp Cys Ile 145 150 155 160 Glu Gly Phe Cys Cys Ala Arg His Phe Trp Thr Lys Ile Cys Lys Pro                 165 170 175 Val Leu His Gln Gly Glu Val Cys Thr Lys Gln Arg Lys Lys Gly Ser             180 185 190 His Gly Leu Glu Ile Phe Gln Arg Cys Asp Cys Ala Lys Gly Leu Ser         195 200 205 Cys Lys Val Trp Lys Asp Ala Thr Tyr Ser Ser Lys Ala Arg Leu His     210 215 220 Val Cys Gln Lys Ile 225

Claims (9)

인간 단백질 이황화물 이성질화효소(human protein disulfide isomerase; hPDI)를 코딩하는 유전자 및 인간 Dickkopf2(hDkk2) 유전자를 포함하는 재조합 발현벡터.A recombinant expression vector comprising a gene encoding human protein disulfide isomerase (hPDI) and a human Dickkopf2 (hDkk2) gene. 제 1 항에 있어서, 상기 hDkk2 유전자는 서열번호 1로 표시되는 것을 특징으로 하는 재조합 발현벡터.2. The recombinant expression vector according to claim 1, wherein the hDkk2 gene is represented by SEQ ID NO: 제 1 항에 있어서, 상기 hPDI 유전자는 서열번호 2로 표시되는 것을 특징으로 하는 재조합 발현벡터.2. The recombinant expression vector according to claim 1, wherein the hPDI gene is represented by SEQ ID NO: 2. 제 1 항에 따른 재조합 발현벡터로 형질전환된 재조합 미생물.A recombinant microorganism transformed with the recombinant expression vector according to claim 1. 제 4 항에 있어서, 상기 미생물은 대장균인 것을 특징으로 하는 재조합 미생물.The recombinant microorganism according to claim 4, wherein the microorganism is E. coli. 제 5 항에 있어서, 상기 대장균은 BL21(DE3)인 것을 특징으로 하는 재조합 미생물.The recombinant microorganism according to claim 5, wherein the Escherichia coli is BL21 (DE3). 제 4 항에 따른 재조합 미생물을 배지에서 배양하여 hPDI 태그-hDkk2 재조합 단백질을 발현시키는 단계;
담배 식각 바이러스(Tobacco Etch Virus; TEV) 단백질 분해효소(protease)를 처리하여 상기 hPDI 태그를 제거하는 단계; 및
상기 hPDI 태그가 제거된 hDkk2 재조합 단백질을 회수하는 단계를 포함하는 hDkk2 재조합 단백질(rhDkk2) 생산방법.
Culturing the recombinant microorganism according to claim 4 in a medium to express an hPDI tag-hDkk2 recombinant protein;
Treating the tobacco etch virus (TEV) protease to remove the hPDI tag; And
And recovering the hDkk2 recombinant protein from which the hPDI tag has been removed.
제 7 항에 따른 생산방법에 의해 생산된 hDkk2 재조합 단백질(rhDkk2).A recombinant protein of hDkk2 produced by the production method according to claim 7 (rhDkk2). 제 8 항에 있어서, 상기 hDkk2 재조합 단백질은 서열번호 3으로 표시되는 것을 특징으로 하는 hDkk2 재조합 단백질(rhDkk2).

9. The hDkk2 recombinant protein (rhDkk2) according to claim 8, wherein the hDkk2 recombinant protein is represented by SEQ ID NO: 3.

KR20130056597A 2013-05-20 2013-05-20 Soluble expression and purification method of active recombinant human Dkk2 KR101508052B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130056597A KR101508052B1 (en) 2013-05-20 2013-05-20 Soluble expression and purification method of active recombinant human Dkk2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130056597A KR101508052B1 (en) 2013-05-20 2013-05-20 Soluble expression and purification method of active recombinant human Dkk2

Publications (2)

Publication Number Publication Date
KR20140136593A true KR20140136593A (en) 2014-12-01
KR101508052B1 KR101508052B1 (en) 2015-04-08

Family

ID=52456772

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130056597A KR101508052B1 (en) 2013-05-20 2013-05-20 Soluble expression and purification method of active recombinant human Dkk2

Country Status (1)

Country Link
KR (1) KR101508052B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017074774A1 (en) * 2015-10-28 2017-05-04 Yale University Humanized anti-dkk2 antibody and uses thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017074774A1 (en) * 2015-10-28 2017-05-04 Yale University Humanized anti-dkk2 antibody and uses thereof
US11267875B2 (en) 2015-10-28 2022-03-08 Yale University Humanized anti-DKK2 antibody and uses thereof
AU2016344459B2 (en) * 2015-10-28 2023-10-05 Yale University Humanized anti-DKK2 antibody and uses thereof

Also Published As

Publication number Publication date
KR101508052B1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
Kollmann et al. Identification of novel lysosomal matrix proteins by proteome analysis
Su et al. The Arabidopsis homolog of the mammalian OS-9 protein plays a key role in the endoplasmic reticulum-associated degradation of misfolded receptor-like kinases
KR20150008852A (en) Method for the preparation of surfactant peptides
Dahl et al. Carica papaya glutamine cyclotransferase belongs to a novel plant enzyme subfamily: cloning and characterization of the recombinant enzyme
Strydom et al. An Angiogenic Protein from Bovine Serum and Milk—Purification and Primary Structure of Angiogenin‐2
KR101508052B1 (en) Soluble expression and purification method of active recombinant human Dkk2
KR101557196B1 (en) Soluble expression and purification method of active recombinant human GCSF
KR102608876B1 (en) Enzymes for Glycan Analysis
EP2714727B1 (en) High affinity sumo traps
DOMINGUEZ et al. Structural and functional similarities between the central eukaryotic initiation factor (eIF) 4A-binding domain of mammalian eIF4G and the eIF4A-binding domain of yeast eIF4G
Hinck et al. Overexpression and purification of avian ovomucoid third domains in Escherichia coli
Lück et al. A gelsolin-related protein from lobster muscle: cloning, sequence analysis and expression
KR101828672B1 (en) Soluble overexpression and purification method of bioactive recombinant human interferon alpha 2b
KR20190109947A (en) METHOD FOR SOLUBLE OVEREXPRESSION and PURIFICATION OF RECOMBINANT HUMAN SERUM ALBUMIN
EP3210994A1 (en) Purification method, purification kit, and silica-binding tag using same
KR20160093156A (en) Method for producing antimicrobial peptide using intein
KR101434734B1 (en) Expression and purification method of biological active human FGF2 with human PDIb´a´ domain in Escherichia coli
US20100212030A1 (en) Use of n-terminal and c-terminal proteomics technology to enhance protein therapeutics and diagnostics
JP6578620B2 (en) New protease
KR102073338B1 (en) Method for expression and purification of human sweet taste receptor
Dihazi et al. One-step purification of recombinant yeast 6-phosphofructo-2-kinase after the identification of contaminants by MALDI-TOF MS
US11932860B2 (en) Method for producing alkaline phosphatase, alkaline phosphatase obtained using said method, and vector and transformant for production thereof
Wu et al. Deciphering structural and functional roles of disulfide bonds in decorsin
KR102011291B1 (en) Novel fusion polypeptide and method of preparing human parathyroid hormone 1-34 using the same
KR101517297B1 (en) Soluble expression and purification method of active recombinant human growth hormone

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190207

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 6