KR20140135855A - 동영상 처리 방법 및 장치 - Google Patents
동영상 처리 방법 및 장치 Download PDFInfo
- Publication number
- KR20140135855A KR20140135855A KR1020130054837A KR20130054837A KR20140135855A KR 20140135855 A KR20140135855 A KR 20140135855A KR 1020130054837 A KR1020130054837 A KR 1020130054837A KR 20130054837 A KR20130054837 A KR 20130054837A KR 20140135855 A KR20140135855 A KR 20140135855A
- Authority
- KR
- South Korea
- Prior art keywords
- unit
- picture
- encoding
- divided
- sum
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/96—Tree coding, e.g. quad-tree coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/189—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
- H04N19/196—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/91—Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
본 발명은 동영상 처리 방법 및 장치에 관한 것으로, 그 장치는 동영상 처리 장치에 있어서, 비디오 신호를 분석하여 픽쳐를 부호화 단위로 분할하는 픽쳐 결정부; 상기 부호화 단위별로 예측 부호화를 수행하고, 상기 예측 부호화에 따른 잔차 신호를 변환하는 변환부; 상기 잔차 신호에 대한 양자화를 수행하는 양자화부; 및 상기 양자화된 신호에 대해 엔트로피 부호화를 수행하여 출력하는 엔트로피 부호화부를 포함하고, 상기 픽쳐 결정부는 전체 부호화 단위에 대한 움직임 벡터의 절대차 합, 분할된 부호화 단위에 대한 움직임 벡터의 절대차 합 및 임계값에 따라 분할한다.
Description
본 발명은 동영상 처리 방법 및 장치에 관한 것으로, 더욱 상세하게는 동영상 처리를 위한 코딩 유닛의 분할 구조를 결정하는 방법 및 그 장치에 관한 것이다.
일반적으로 비디오 코딩 시, 인트라 예측과 인터 예측을 이용하여 잔차 신호(residual signal)를 만든다. 잔차 신호를 구하는 이유는 잔차 신호를 가지고 코딩을 했을 때 데이터의 양이 작아서 데이터 압축률이 높아지고, 예측이 좋을수록 잔차 신호의 값이 작게 된다.
인트라 예측 방법은 현재 블록의 주변의 픽셀을 이용하여 현재 블록의 데이터를 예측한다. 실제 값과 예측 값의 차이를 잔차 신호 블록이라고 한다. HEVC의 경우는 인트라 예측 방법이 기존 H.264/AVC에서 사용되던 9개의 예측모드에서 35개의 예측모드로 증가하여 더욱 세분화하여 예측을 한다.
인터 예측 방법의 경우는 현재 블록을 주변의 픽쳐들 내의 블록들과 비교하여 가장 비슷한 블록을 찾는다. 이때 찾은 블록에 대한 위치정보(Vx, Vy)를 모션 벡터라고 한다. 현재블록과 모션 벡터에 의하여 예측된 예측블록간의 블록내 화소 값들의 차이를 잔차 신호(residual signal) 블록이라고 한다 (motion-compensated residual block).
이와 같이 인트라 예측과 인터 예측이 더 세분화 되어 잔차 신호의 데이터 양이 줄어들고 있으나, 동영상의 처리를 위한 연산량은 크게 증가하였다.
특히, 코딩을 위한 픽쳐 내 분할 구조를 결정하는 과정에서의 복잡도 증가량으로 인해 파이프라인 구현 등에 있어서의 어려움이 존재하고 있다.
본 발명의 실시 예는 상기와 같은 연산량 증가의 문제점을 해결하기 위한 분할 구조 결정 방법 및 그 장치를 제공하는데 그 목적이 있다.
또한, 본 발명의 실시 예는 상기와 같은 파이프라인 및 워스트 케이스 복잡도로 인한 구현 문제점을 해결하기 위한 분할 구조 결정 방법 및 그 장치를 제공하는데 그 목적이 있다.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 실시예에 따른 동영상 처리 장치는 동영상 처리 장치에 있어서, 비디오 신호를 분석하여 픽쳐를 부호화 단위로 분할하는 픽쳐 결정부; 상기 부호화 단위별로 예측 부호화를 수행하고, 상기 예측 부호화에 따른 잔차 신호를 변환하는 변환부; 상기 잔차 신호에 대한 양자화를 수행하는 양자화부; 및 상기 양자화된 신호에 대해 엔트로피 부호화를 수행하여 출력하는 엔트로피 부호화부를 포함하고, 상기 픽쳐 결정부는 전체 부호화 단위에 대한 움직임 벡터의 절대차 합, 분할된 부호화 단위에 대한 움직임 벡터의 절대차 합 및 임계값에 따라 분할한다.
또한, 본 발명의 실시예에 따른 동영상 처리 방법은 동영상 처리 방법에 있어서, 비디오 신호를 분석하여 픽쳐를 부호화 단위로 분할하는 단계; 상기 부호화 단위별로 예측 부호화를 수행하고, 상기 예측 부호화에 따른 잔차 신호를 변환하는 단계; 상기 잔차 신호에 대한 양자화를 수행하는 단계; 및 상기 양자화된 신호에 대해 엔트로피 부호화를 수행하여 출력하는 단계를 포함하고, 상기 부호화 단위로 분할하는 단계는, 전체 부호화 단위에 대한 움직임 벡터의 평균 제곱 오차 합, 분할된 부호화 단위에 대한 움직임 벡터의 평균 제곱 오차 합 및 임계값에 따라 분할하는 단계를 포함한다.
한편, 상기 동영상 처리 방법은 컴퓨터에서 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체로 구현될 수 있다.
본 발명에 따르면, 픽쳐의 부호화 단위 분할에 있어서, 움직임 벡터의 절대차 합 및 임계값을 이용하여 복잡도가 낮으면서도 부호화 효율을 유지시킬 수 있는 부호화 단위 분할 방법을 제공할 수 있다.
또한, 본 발명에 따르면, 픽쳐의 부호화 단위 분할에 있어서, 움직임 벡터의 평균 제곱 오차 및 임계값을 이용하여 복잡도가 낮으면서도 부호화 효율을 유지시킬 수 있는 부호화 단위 분할 방법을 제공할 수 있다.
따라서, 본 발명의 실시 예에 따르면, 분할 구조 결정시의 RDO-Q를 구하는 복잡한 과정들을 단축시킴으로써 상기와 같은 파이프라인 및 워스트 케이스 복잡도로 인한 구현 문제점을 해결할 수 있게 된다.
도 1은 본 발명의 일실시예에 따른 동영상 부호화 장치의 구성을 나타내는 블록도이다.
도 2는 영상을 블록단위로 분할하여 처리하는 방법에 대한 일예를 설명하기 위한 도면이다.
도 3은 부호화 장치에서 인터 예측을 수행하는 구성에 대한 일실시예를 나타내는 블록도이다.
도 4는 본 발명의 일실시예에 따른 동영상 복호화 장치의 구성을 나타내는 블록도이다.
도 5는 복호화 장치에서 인터 예측을 수행하는 구성에 대한 일실시예를 나타내는 블록도이다.
도 6 및 도 7은 시퀀스 파라미터 셋(SPS, Sequence Parameter Set)의 구성에 대한 일예를 나타내는 도면이다.
도 8 및 도 9는 픽쳐 파라미터 셋(PPS, Picture Parameter Set)의 구성에 대한 일예를 나타내는 도면이다.
도 10 내지 도 12는 슬라이스 헤더(SH, Slice Header)의 구성에 대한 일예를 나타내는 도면이다.
도 13은 본 발명의 실시 예에 따른 분할 구조 결정 방법을 설명하기 위한 흐름도이다.
도 14는 본 발명의 실시 예에 따라 결정되는 분할 구조를 나타내는 도면이다.
도 2는 영상을 블록단위로 분할하여 처리하는 방법에 대한 일예를 설명하기 위한 도면이다.
도 3은 부호화 장치에서 인터 예측을 수행하는 구성에 대한 일실시예를 나타내는 블록도이다.
도 4는 본 발명의 일실시예에 따른 동영상 복호화 장치의 구성을 나타내는 블록도이다.
도 5는 복호화 장치에서 인터 예측을 수행하는 구성에 대한 일실시예를 나타내는 블록도이다.
도 6 및 도 7은 시퀀스 파라미터 셋(SPS, Sequence Parameter Set)의 구성에 대한 일예를 나타내는 도면이다.
도 8 및 도 9는 픽쳐 파라미터 셋(PPS, Picture Parameter Set)의 구성에 대한 일예를 나타내는 도면이다.
도 10 내지 도 12는 슬라이스 헤더(SH, Slice Header)의 구성에 대한 일예를 나타내는 도면이다.
도 13은 본 발명의 실시 예에 따른 분할 구조 결정 방법을 설명하기 위한 흐름도이다.
도 14는 본 발명의 실시 예에 따라 결정되는 분할 구조를 나타내는 도면이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시 예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재상에 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 ~(하는) 단계 또는 ~의 단계는 ~ 를 위한 단계를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 이들의 조합의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
실제 영상과 그것의 깊이 정보 맵을 부호화하는 방법의 일예로, 현재까지 개발된 비디오 부호화 표준 중에서 최고의 부호화 효율을 가지는 MPEG(Moving Picture Experts Group)과 VCEG(Video Coding Experts Group)에서 공동으로 표준화를 진행 중인 HEVC(High Efficiency Video Coding)를 이용하여 부호화를 수행할 수 있으나, 이에 한정되지는 아니한다.
통상, 부호화 장치는 인코딩 과정과 디코딩 과정을 포함하고, 복호화 장치는 디코딩 과정을 구비한다. 복호화 장치의 디코딩 과정은 부호화 장치의 디코딩 과정과 동일하다. 따라서, 이하에서는 부호화 장치를 위주로 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 동영상 부호화 장치의 구성을 블록도로 도시한 것이다.
도 1을 참조하면, 본 발명에 따른 동영상 부호화 장치(100)는 픽쳐 분할부(110), 변환부(120), 양자화부(130), 스캐닝부(131), 엔트로피 부호화부(140), 인트라 예측부(150), 인터 예측부(160), 역양자화부(135), 역변환부(125), 후처리부(170), 픽쳐 저장부(180), 감산부(190) 및 가산부(195)를 포함한다.
픽쳐 분할부(110)는 입력되는 비디오 신호를 분석하여 픽쳐를 가장 큰 코딩 유닛(LCU:Largest Coding Unit)마다 소정 크기의 코딩 유닛으로 분할하여 예측 모드를 결정하고, 상기 코딩 유닛별로 예측 유닛의 크기를 결정한다.
그리고, 픽쳐 분할부(110)는 부호화할 예측 유닛을 예측 모드(또는 예측 방법)에 따라 인트라 예측부(150) 또는 인터 예측부(160)로 보낸다. 또한, 픽쳐 분할부(110)는 부호화할 예측 유닛을 감산부(190)로 보낸다.
픽쳐는 복수의 슬라이스로 구성되고, 슬라이스는 복수개의 최대 부호화 단위(Largest coding unit: LCU)로 구성될 수 있다.
상기 LCU는 복수개의 부호화 단위(CU)로 분할될 수 있고, 부호기는 분할여부를 나타내는 정보(flag)를 비트스트림에 추가할 수 있다. 복호기는 LCU의 위치를 어드레스(LcuAddr)를 이용하여 인식할 수 있다.
분할이 허용되지 않는 경우의 부호화 단위(CU)는 예측 단위(Prediction unit: PU)로 간주되고, 복호기는 PU의 위치를 PU인덱스를 이용하여 인식할 수 있다.
예측 단위(PU)는 복수개의 파티션으로 나뉠 수 있다. 또한 예측 단위(PU)는 복수개의 변환 단위(Transform unit: TU)로 구성될 수 있다.
이 경우, 픽쳐 분할부(110)는 결정된 부호화 모드에 따른 소정 크기의 블록 단위(예를 들면, PU 단위 또는 TU 단위)로 영상 데이터를 감산부(190)로 보낼 수 있다.
도 2를 참조하면, 동영상 부호화 단위로 CTB (Coding Tree Block)을 사용하며, 이 때 CTB는 다양한 정사각형 모양으로 정의된다. CTB는 코딩단위 CU(Coding Unit)라고 부른다.
코딩단위(CU)는 쿼드트리(Quad Tree)의 모습을 하고 있으며, 크기가 64ㅧ64인 최대 코딩단위 LCU(Largest Coding Unit)일 때 깊이(Depth)를 0으로 하여 깊이가 3이 될 때까지, 즉 8ㅧ8크기의 코딩단위(CU)까지 재귀적(Recursive)으로 최적의 예측단위를 찾아 부호화를 수행한다.
예측을 수행하는 예측단위는 PU(Prediction Unit)로 정의되며, 각 코딩단위(CU)는 다수개의 블록으로 분할된 단위의 예측이 수행되며, 정사각형과 직사각형의 형태로 나뉘어 예측을 수행한다.
변환부(120)는 입력된 예측 유닛의 원본 블록과 인트라 예측부(150) 또는 인터 예측부(160)에서 생성된 예측 블록의 잔차신호인 잔차 블록을 변환한다. 상기 잔차 블록은 코딩 유닛 또는 예측 유닛으로 구성된다. 코딩 유닛 또는 예측 유닛으로 구성된 잔차 블록은 최적의 변환 단위로 분할되어 변환된다. 예측 모드(intra or inter)에 따라 서로 다른 변환 매트릭스가 결정될 수 있다. 또한, 인트라 예측의 잔차 신호는 인트라 예측 모드에 따라 방향성을 가지므로 인트라 예측 모드에 따라 적응적으로 변환 매트릭스가 결정될 수 있다.
변환 단위는 2개(수평, 수직)의 1차원 변환 매트릭스에 의해 변환될 수 있다. 예를 들어, 인터 예측의 경우에는 미리 결정된 1개의 변환 매트릭스가 결정된다.
반면에, 인트라 예측의 경우, 인트라 예측 모드가 수평인 경우에는 잔차 블록이 수직방향으로의 방향성을 가질 확률이 높아지므로, 수직방향으로는 DCT 기반의 정수 매트릭스를 적용하고, 수평방향으로는 DST 기반 또는 KLT 기반의 정수 매트릭스를 적용한다. 인트라 예측 모드가 수직인 경우에는 수직방향으로는 DST 기반 또는 KLT 기반의 정수 매트릭스를, 수평 방향으로는 DCT 기반의 정수 매트릭스를 적용한다.
DC 모드의 경우에는 양방향 모두 DCT 기반 정수 매트릭스를 적용한다. 또한, 인트라 예측의 경우, 변환 단위의 크기에 의존하여 변환 매트릭스가 적응적으로 결정될 수도 있다.
양자화부(130)는 상기 변환 매트릭스에 의해 변환된 잔차 블록의 계수들을 양자화하기 위한 양자화 스텝 사이즈를 결정한다. 양자화 스텝 사이즈는 미리 정해진 크기 이상의 부호화 단위(이하, 양자화 유닛이라 함)별로 결정된다.
상기 미리 정해진 크기는 8x8 또는 16x16일 수 있다. 그리고, 결정된 양자화 스텝 사이즈 및 예측 모드에 따라 결정되는 양자화 매트릭스를 이용하여 상기 변환 블록의 계수들을 양자화한다.
양자화부(130)는 현재 양자화 유닛의 양자화 스텝 사이즈 예측자로서 현재 양자화 유닛에 인접한 양자화 유닛의 양자화 스텝 사이즈를 이용한다.
양자화부(130)는 현재 양자화 유닛의 좌측 양자화 유닛, 상측 양자화 유닛, 좌상측 양자화 유닛 순서로 검색하여 1개 또는 2개의 유효한 양자화 스텝 사이즈를 이용하여 현재 양자화 유닛의 양자화 스텝 사이즈 예측자를 생성할 수 있다.
예를 들어, 상기 순서로 검색된 유효한 첫번째 양자화 스텝 사이즈를 양자화 스텝 사이즈 예측자로 결정할 수 있다. 또한, 상기 순서로 검색된 유효한 2개의 양자화 스텝 사이즈의 평균값을 양자화 스텝 사이즈 예측자로 결정할 수도 있고, 1개만이 유효한 경우에는 이를 양자화 스텝 사이즈 예측자로 결정할 수 있다.
상기 양자화 스텝 사이즈 예측자가 결정되면, 현재 부호화 단위의 양자화 스텝 사이즈와 상기 양자화 스텝 사이즈 예측자 사이의 차분값을 엔트로피 부호화부(140)로 전송한다.
한편, 현재 코딩 유닛의 좌측 코딩 유닛, 상측 코딩 유닛, 좌상측 코딩 유닛 모두가 존재하지 않을 가능성이 있다. 반면에 최대 코딩 유닛 내의 부호화 순서 상으로 이전에 존재하는 코딩 유닛이 존재할 수 있다.
따라서, 현재 코딩 유닛에 인접한 양자화 유닛들과 상기 최대 코딩 유닛 내에서는 부호화 순서상 바로 이전의 양자화 유닛의 양자화 스텝 사이즈가 후보자가 될 수 있다.
이 경우, 1) 현재 코딩 유닛의 좌측 양자화 유닛, 2) 현재 코딩 유닛의 상측 양자화 유닛, 3) 현재 코딩 유닛의 좌상측 양자화 유닛, 4) 부호화 순서상 바로 이전의 양자화 유닛 순서로 우선순위를 둘 수 있다. 상기 순서는 바뀔 수 있고, 상기 좌상측 양자화 유닛은 생략될 수도 있다.
상기 양자화된 변환 블록은 역양자화부(135)와 스캐닝부(131)로 제공된다.
스캐닝부(131)는 양자화된 변환 블록의 계수들을 스캐닝하여 1차원의 양자화 계수들로 변환한다. 양자화 후의 변환 블록의 계수 분포가 인트라 예측 모드에 의존적일 수 있으므로, 스캐닝 방식은 인트라 예측 모드에 따라 결정된다.
또한, 계수 스캐닝 방식은 변환 단위의 크기에 따라 달리 결정될 수도 있다. 상기 스캔 패턴은 방향성 인트라 예측 모드에 따라 달라질 수 있다. 양자화 계수들의 스캔순서는 역방향으로 스캔한다.
상기 양자화된 계수들이 복수개의 서브셋으로 분할된 경우에는 각각의 서브셋 내의 양자화 계수들에 동일한 스캔패턴을 적용한다. 서브셋 간의 스캔패턴은 지그재그 스캔 또는 대각선 스캔을 적용한다. 스캔 패턴은 DC를 포함하는 메인 서브셋으로부터 순방향으로 잔여 서브셋들로 스캔하는 것이 바람직하나, 그 역방향도 가능하다.
또한, 서브셋 내의 양자화된 계수들의 스캔패턴과 동일하게 서브셋 간의 스캔패턴을 설정할 수도 있다. 이 경우, 서브셋 간의 스캔패턴이 인트라 예측 모드에 따라 결정된다. 한편, 부호기는 상기 변환 유닛내의 0이 아닌 마지막 양자화 계수의 위치를 나타낼 수 있는 정보를 복호기로 전송한다.
각 서브셋 내의 0이 아닌 마지막 양자화 계수의 위치를 나타낼 수 있는 정보도 복호기로 전송할 수 있다.
역양자화(135)는 상기 양자화된 양자화 계수를 역양자화한다. 역변환부(125)는 역양자화된 변환 계수를 공간 영역의 잔차 블록으로 복원한다. 가산기는 상기 역변환부에 의해 복원된 잔차블록과 인트라 예측부(150) 또는 인터 예측부(160)로부터의 수신된 예측 블록을 합쳐서 복원 블록을 생성한다.
후처리부(170)는 복원된 픽쳐에 발생하는 블록킹 효과의 제거하기 위한 디블록킹 필터링 과정, 화소 단위로 원본 영상과의 차이값을 보완하기 위한 적응적 오프셋 적용 과정 및 코딩 유닛으로 원본 영상과의 차이값을 보완하기 위한 적응적 루프 필터링 과정을 수행한다.
디블록킹 필터링 과정은 미리 정해진 크기 이상의 크기를 갖는 예측 유닛 및 변환 단위의 경계에 적용하는 것이 바람직하다. 상기 크기는 8x8일 수 있다. 상기 디블록킹 필터링 과정은 필터링할 경계(boundary)를 결정하는 단계, 상기 경계에 적용할 경계 필터링 강도(bounary filtering strength)를 결정하는 단계, 디블록킹 필터의 적용 여부를 결정하는 단계, 상기 디블록킹 필터를 적용할 것으로 결정된 경우, 상기 경계에 적용할 필터를 선택하는 단계를 포함한다.
상기 디블록킹 필터의 적용 여부는 i) 상기 경계 필터링 강도가 0보다 큰지 여부 및 ii) 상기 필터링할 경계에 인접한 2개의 블록(P 블록, Q블록) 경계 부분에서의 화소값들이 변화 정도를 나타내는 값이 양자화 파라미터에 의해 결정되는 제1 기준값보다 작은지 여부에 의해 결정된다.
상기 필터는 적어도 2개 이상인 것이 바람직하다. 블록 경계에 위치한 2개의 화소들간의 차이값의 절대값이 제2 기준값보다 크거나 같은 경우에는 상대적으로 약한 필터링을 수행하는 필터를 선택한다.
상기 제2 기준값은 상기 양자화 파라미터 및 상기 경계 필터링 강도에 의해 결정된다.
적응적 오프셋 적용 과정은 디블록킹 필터가 적용된 영상내의 화소와 원본 화소간의 차이값(distortion)을 감소시키기 위한 것이다. 픽쳐 또는 슬라이스 단위로 상기 적응적 오프셋 적용 과정을 수행할지 여부를 결정할 수 있다.
픽쳐 또는 슬라이스는 복수개의 오프셋 영역들로 분할될 수 있고, 각 오프셋 영역별로 오프셋 타입이 결정될 수 있다. 오프셋 타입은 미리 정해진 개수(예를 들어, 4개)의 에지 오프셋 타입과 2개의 밴드 오프셋 타입을 포함할 수 있다.
오프셋 타입이 에지 오프셋 타입일 경우에는 각 화소가 속하는 에지 타입을 결정하여, 이에 대응하는 오프셋을 적용한다. 상기 에지 타입은 현재 화소와 인접하는 2개의 화소값의 분포를 기준으로 결정한다.
적응적 루프 필터링 과정은 디블록킹 필터링 과정 또는 적응적 오프셋 적용 과정을 거친 복원된 영상과 원본 영상을 비교한 값을 기초로 필터링을 수행할 수 있다. 적응적 루프 필터링은 상기 결정된 ALF는 4x4 크기 또는 8x8 크기의 블록에 포함된 화소 전체에 적용될 수 있다.
적응적 루프 필터의 적용 여부는 코딩 유닛별로 결정될 수 있다. 각 코딩 유닛에 따라 적용될 루프 필터의 크기 및 계수는 달라질 수 있다. 코딩 유닛별 상기 적응적 루프 필터의 적용 여부를 나타내는 정보는 각 슬라이스 헤더에 포함될 수 있다.
색차 신호의 경우에는, 픽쳐 단위로 적응적 루프 필터의 적용 여부를 결정할 수 있다. 루프 필터의 형태도 휘도와 달리 직사각형 형태를 가질 수 있다.
적응적 루프 필터링은 슬라이스별로 적용 여부를 결정할 수 있다. 따라서, 현재 슬라이스에 적응적 루프 필터링이 적용되는지 여부를 나타내는 정보는 슬라이스 헤더 또는 픽쳐 헤더에 포함된다.
현재 슬라이스에 적응적 루프 필터링이 적용됨을 나타내면, 슬라이스 헤더 또는 픽쳐 헤더는 추가적으로 적응적 루프 필터링 과정에 사용되는 휘도 성분의 수평 및/또는 수직 방향의 필터 길이를 나타내는 정보를 포함한다.
슬라이스 헤더 또는 픽쳐 헤더는 필터 세트의 수를 나타내는 정보를 포함할 수 있다. 이때 필터 세트의 수가 2 이상이면, 필터 계수들이 예측 방법을 사용하여 부호화될 수 있다. 따라서, 슬라이스 헤더 또는 픽쳐 헤더는 필터 계수들이 예측 방법으로 부호화되는지 여부를 나타내는 정보를 포함할 수 있으며, 예측 방법이 사용되는 경우에는 예측된 필터 계수를 포함한다.
한편, 휘도 뿐만 아니라, 색차 성분들도 적응적으로 필터링될 수 있다. 따라서, 색차 성분 각각이 필터링되는지 여부를 나타내는 정보를 슬라이스 헤더 또는 픽쳐 헤더가 포함할 수 있다. 이 경우, 비트수를 줄이기 위해 Cr과 Cb에 대한 필터링 여부를 나타내는 정보를 조인트 코딩(즉, 다중화 코딩)할 수 있다.
이때, 색차 성분들의 경우에는 복잡도 감소를 위해 Cr과 Cb를 모두 필터링하지 않는 경우가 가장 빈번할 가능성이 높으므로, Cr과 Cb를 모두 필터링하지 않는 경우에 가장 작은 인덱스를 할당하여 엔트로피 부호화를 수행한다.
그리고, Cr 및 Cb를 모두 필터링하는 경우에 가장 큰 인덱스를 할당하여 엔트로피 부호화를 수행한다.
픽쳐 저장부(180)는 후처리된 영상 데이터를 후처리부(170)로부터 입력받아 픽쳐(picture) 단위로 영상을 복원하여 저장한다. 픽쳐는 프레임 단위의 영상이거나 필드 단위의 영상일 수 있다. 픽쳐 저장부(180)는 다수의 픽쳐를 저장할 수 있는 버퍼(도시되지 않음)를 구비한다.
인터 예측부(160)는 상기 픽쳐 저장부(180)에 저장된 적어도 하나 이상의 참조 픽쳐를 이용하여 움직임 추정을 수행하고, 참조 픽쳐를 나타내는 참조 픽쳐 인덱스 및 움직임 벡터를 결정한다.
그리고, 결정된 참조 픽쳐 인덱스 및 움직임 벡터에 따라, 픽쳐 저장부(180)에 저장된 다수의 참조 픽쳐들 중 움직임 추정에 이용된 참조 픽쳐로부터, 부호화하고자 하는 예측 유닛에 대응하는 예측 블록을 추출하여 출력한다.
인트라 예측부(150)는 현재 예측 유닛이 포함되는 픽처 내부의 재구성된 화소값을 이용하여 인트라 예측 부호화를 수행한다.
인트라 예측부(150)는 예측 부호화할 현재 예측 유닛을 입력받아 현재 블록의 크기에 따라 미리 설정된 개수의 인트라 예측 모드 중에 하나를 선택하여 인트라 예측을 수행한다.
인트라 예측부(150)는 인트라 예측 블록을 생성하기 위해 참조 화소를 적응적으로 필터링한다. 참조 화소가 이용 가능하지 않은 경우에는 이용 가능한 참조 화소들을 이용하여 참조 화소들을 생성할 수 있다.
엔트로피 부호화부(140)는 양자화부(130)에 의해 양자화된 양자화 계수, 인트라 예측부(150)로부터 수신된 인트라 예측 정보, 인터 예측부(160)로부터 수신된 움직임 정보 등을 엔트로피 부호화한다.
도 3은 부호화 장치에서 인터 예측을 수행하는 구성에 대한 일실시예를 블록도로 도시한 것으로, 도시된 인터 예측 부호화 장치는 움직임 정보 결정부(161), 움직임 정보 부호화 모드 결정부(162), 움직임 정보 부호화부(163), 예측 블록 생성부(164), 잔차 블록 생성부(165), 잔차 블록 부호화부(166) 및 멀티플렉서(167)를 포함하여 구성될 수 있다.
도 3을 참조하면, 움직임 정보 결정부(161)는 현재 블록의 움직임 정보를 결정한다. 움직임 정보는 참조 픽쳐 인덱스와 움직임 벡터를 포함한다. 참조 픽쳐 인덱스는 이전에 부호화되어 복원된 픽쳐 중 어느 하나를 나타낸다.
현재 블록이 단방향 인터 예측 부호화되는 경우에는 리스트 0(L0)에 속하는 참조 픽쳐들 중의 어느 하나를 나타낸다. 반면에, 현재 블록이 양방향 예측 부호화되는 경우에는 리스트 0(L0)의 참조 픽쳐들 중 하나를 나타내는 참조픽쳐 인덱스와 리스트 1(L1)의 참조 픽쳐들 중의 하나를 나타내는 참조픽쳐 인덱스를 포함할 수 있다.
또한, 현재 블록이 양방향 예측 부호화되는 경우에는 리스트 0과 리스트 1을 결합하여 생성된 복합 리스트(LC)의 참조 픽쳐들 중의 1개 또는 2개의 픽쳐를 나타내는 인덱스를 포함할 수 있다.
움직임 벡터는 각각의 참조픽쳐 인덱스가 나타내는 픽쳐 내의 예측 블록의 위치를 나타낸다. 움직임 벡터는 화소단위(정수단위)일수도 있으나, 서브화소단위일 수도 있다.
예를 들어, 1/2, 1/4, 1/8 또는 1/16 화소의 해상도를 가질 수 있다. 움직임 벡터가 정수단위가 아닐 경우에는 예측 블록은 정수 단위의 화소들로부터 생성된다.
움직임 정보 부호화 모드 결정부(162)는 현재 블록의 움직임 정보를 스킵 모드로 부호화할지, 머지 모드로 부호화할지, AMVP 모드로 부호화할지를 결정한다.
스킵 모드는 현재 블록의 움직임 정보와 동일한 움직임 정보를 갖는 스킵 후보자가 존재하고, 잔차신호가 0인 경우에 적용된다. 또한, 스킵 모드는 현재 블록이 코딩 유닛과 사이즈가 같을 때 적용된다. 현재 블록은 예측 유닛으로 볼 수 있다.
머지 모드는 현재 블록의 움직임 정보와 동일한 움직임 정보를 갖는 머지 후보자가 존재할 때 적용된다. 머지 모드는 현재 블록이 코딩 유닛과 사이즈가 다르거나, 사이즈가 같을 경우에는 잔차 신호가 존재하는 경우에 적용된다. 머지 후보자와 스킵 후보자는 동일할 수 있다.
AMVP 모드는 스킵 모드 및 머지 모드가 적용되지 않을 때 적용된다. 현재 블록의 움직임 벡터와 가장 유사한 움직임 벡터를 갖는 AMVP 후보자를 AMVP 예측자로 선택한다.
움직임 정보 부호화부(163)는 움직임 정보 부호화 모드 결정부(162)에 의해 결정된 방식에 따라 움직임 정보를 부호화한다. 움직임 정보 부호화 모드가 스킵 모드 또는 머지 모드일 경우에는 머지 움직임 벡터 부호화 과정을 수행한다. 움직임 정보 부호화 모드가 AMVP일 경우에는 AMVP 부호화 과정을 수행한다.
예측 블록 생성부(164)는 현재 블록의 움직임 정보를 이용하여 예측 블록을 생성한다. 움직임 벡터가 정수 단위일 경우에는, 참조픽쳐 인덱스가 나타내는 픽쳐 내의 움직임 벡터가 나타내는 위치에 대응하는 블록을 복사하여 현재 블록의 예측 블록을 생성한다.
그러나, 움직임 벡터가 정수 단위가 아닐 경우에는, 참조픽쳐 인덱스가 나타내는 픽쳐내의 정수 단위 화소들로 부터 예측 블록의 화소들을 생성한다.
이 경우, 휘도 화소의 경우에는 8탭의 보간 필터를 사용하여 예측 화소를 생성할 수 있다. 색차 화소의 경우에는 4탭 보간 필터를 사용하여 예측 화소를 생성할 수 있다.
잔차 블록 생성부(165)는 현재 블록과 현재 블록의 예측 블록을 이용하여 잔차 블록을 생성한다. 현재 블록의 크기가 2Nx2N인 경우에는 현재 블록과 현재 블록에 대응하는 2Nx2N 크기의 예측 블록을 이용하여 잔차 블록을 생성한다.
그러나, 예측에 이용되는 현재 블록의 크기가 2NxN 또는 Nx2N인 경우에는 2Nx2N을 구성하는 2개의 2NxN 블록 각각에 대한 예측 블록을 구한 후, 상기 2개의 2NxN 예측 블록을 이용하여 2Nx2N 크기의 최종 예측 블록을 생성할 수 있다.
그리고, 상기 2Nx2N 크기의 예측 블록을 이용하여 2Nx2N 의 잔차 블록을 생성할 수도 있다. 2NxN 크기의 2개의 예측블록들의 경계부분의 불연속성을 해소하기 위해 경계 부분의 픽셀들을 오버랩 스무딩할 수 있다.
잔차 블록 부호화부(166)는 생성된 잔차 블록을 하나 이상의 변환 유닛으로 나눈다. 그리고, 각 변환 유닛을 변환 부호화, 양자화 및 엔트로피 부호화된다. 이때, 변환 유닛의 크기는 잔차 블록의 크기에 따라 쿼드트리 방식으로 결정될 수 있다.
잔차 블록 부호화부(166)는 인터 예측 방법에 의해 생성된 잔차 블록을 정수기반 변환 매트릭스를 이용하여 변환한다. 상기 변환 매트릭스는 정수기반 DCT 매트릭스이다.
잔차 블록 부호화부(166)는 상기 변환 매트릭스에 의해 변환된 잔차 블록의 계수들을 양자화하기 위해 양자화 매트릭스를 이용한다. 상기 양자화 매트릭스는 양자화 파라미터에 의해 결정된다.
상기 양자화 파라미터는 미리 정해진 크기 이상의 코딩 유닛별로 결정된다. 상기 미리 정해진 크기는 8x8 또는 16x16일 수 있다. 따라서, 현재 코딩 유닛이 상기 미리 정해진 크기보다 작은 경우에는 상기 미리 정해진 크기 내의 복수개의 코딩 유닛 중 부호화 순서상 첫번째 코딩 유닛의 양자화 파라미터만을 부호화하고, 나머지 코딩 유닛의 양자화 파라미터는 상기 파라미터와 동일하므로 부호화할 필요가 없다.
그리고, 결정된 양자화 파라미터 및 예측 모드에 따라 결정되는 양자화 매트릭스를 이용하여 상기 변환 블록의 계수들을 양자화한다.
상기 미리 정해진 크기 이상의 코딩 유닛별로 결정되는 양자화 파라미터는 현재 코딩 유닛에 인접한 코딩 유닛의 양자화 파라미터를 이용하여 예측 부호화된다. 현재 코딩 유닛의 좌측 코딩 유닛, 상측 코딩 유닛 순서로 검색하여 유효한 1개 또는 2개의 유효한 양자화 파라미터를 이용하여 현재 코딩 유닛의 양자화 파라미터 예측자를 생성할 수 있다.
예를 들어, 상기 순서로 검색된 유효한 첫번째 양자화 파라미터를 양자화 파라미터 예측자로 결정할 수 있다. 또한, 좌측 코딩 유닛, 부호화 순서상 바로 이전의 코딩 유닛 순으로 검색하여 유효한 첫번째 양자화 파라미터를 양자화 파라미터 예측자로 결정할 수 있다.
양자화된 변환 블록의 계수들은 스캐닝되어 1차원의 양자화 계수들로 변환한다. 스캐닝 방식은 엔트로피 부호화 모드에 따라 달리 설정될 수 있다. 예를 들어, CABAC으로 부호화될 경우에는 인터 예측 부호화된 양자화 계수들은 미리 정해진 하나의 방식(지그재그, 또는 대각선 방향으로의 래스터 스캔)으로 스캐닝될 수 있다. 반면에 CAVLC으로 부호화될 경우에는 상기 방식과 다른 방식으로 스캐닝될 수 있다.
예를 들어, 스캐닝 방식이 인터의 경우에는 지그재그, 인트라의 경우에는 인트라 예측 모드에 따라 결정될 수 있다. 또한, 계수 스캐닝 방식은 변환 단위의 크기에 따라 달리 결정될 수도 있다.
상기 스캔 패턴은 방향성 인트라 예측 모드에 따라 달라질 수 있다. 양자화 계수들의 스캔순서는 역방향으로 스캔한다.
멀티플렉서(167)는 상기 움직임 정보 부호화부(163)에 의해 부호화된 움직임 정보들과 상기 잔차 블록 부호화부에 의해 부호화된 잔차 신호들을 다중화한다. 상기 움직임 정보는 부호화 모드에 따라 달라질 수 있다.
즉, 스킵 또는 머지일 경우에는 예측자를 나타내는 인덱스만을 포함한다. 그러나, AMVP일 경우에는 현재 블록의 참조 픽쳐 인덱스, 차분 움직임 벡터 및 AMVP 인덱스를 포함한다.
이하, 인트라 예측부(150)의 동작에 대한 일실시예를 상세히 설명하기로 한다.
먼저, 픽쳐 분할부(110)에 의해 예측 모드 정보 및 예측 블록의 크기를 수신하며, 예측 모드 정보는 인트라 모드를 나타낸다. 예측 블록의 크기는 64x64, 32x32, 16x16, 8x8, 4x4등의 정방형일 수 있으나, 이에 한정하지 않는다. 즉, 상기 예측 블록의 크기가 정방형이 아닌 비정방형일 수도 있다.
다음으로, 예측 블록의 인트라 예측 모드를 결정하기 위해 참조 화소를 픽쳐 저장부(180)로부터 읽어 들인다.
상기 이용 가능하지 않은 참조화소가 존재하는지 여부를 검토하여 참조 화소 생성 여부를 판단한다. 상기 참조 화소들은 현재 블록의 인트라 예측 모드를 결정하는데 사용된다.
현재 블록이 현재 픽쳐의 상측 경계에 위치하는 경우에는 현재 블록의 상측에 인접한 화소들이 정의되지 않는다. 또한, 현재 블록이 현재 픽쳐의 좌측 경계에 위치하는 경우에는 현재 블록의 좌측에 인접한 화소들이 정의되지 않는다.
이러한 화소들은 이용 가능한 화소들이 아닌 것으로 판단한다. 또한, 현재 블록이 슬라이스 경계에 위치하여 슬라이스의 상측 또는 좌측에 인접하는 화소들이 먼저 부호화되어 복원되는 화소들이 아닌 경우에도 이용 가능한 화소들이 아닌 것으로 판단한다.
상기와 같이 현재 블록의 좌측 또는 상측에 인접한 화소들이 존재하지 않거나, 미리 부호화되어 복원된 화소들이 존재하지 않는 경우에는 이용 가능한 화소들만을 이용하여 현재 블록의 인트라 예측 모드를 결정할 수도 있다.
그러나, 현재 블록의 이용 가능한 참조화소들을 이용하여 이용 가능하지 않은 위치의 참조화소들을 생성할 수도 있다. 예를 들어, 상측 블록의 화소들이 이용 가능하지 않은 경우에는 좌측 화소들의 일부 또는 전부를 이용하여 상측 화소들을 생성할 수 있고, 그 역으로도 가능하다.
즉, 이용 가능하지 않은 위치의 참조화소로부터 미리 정해진 방향으로 가장 가까운 위치의 이용 가능한 참조화소를 복사하여 참조화소로 생성할 수 있다. 미리 정해진 방향에 이용 가능한 참조화소가 존재하지 않는 경우에는 반대 방향의 가장 가까운 위치의 이용 가능한 참조화소를 복사하여 참조화소로 생성할 수 있다.
한편, 현재 블록의 상측 또는 좌측 화소들이 존재하는 경우에도 상기 화소들이 속하는 블록의 부호화 모드에 따라 이용 가능하지 않은 참조 화소로 결정될 수 있다.
예를 들어, 현재 블록의 상측에 인접한 참조 화소가 속하는 블록이 인터 부호화되어 복원된 블록일 경우에는 상기 화소들을 이용 가능하지 않은 화소들로 판단할 수 있다.
이 경우에는 현재 블록에 인접한 블록이 인트라 부호화되어 복원된 블록에 속하는 화소들을 이용하여 이용 가능한 참조 화소들을 생성할 수 있다. 이 경우에는 부호기에서 부호화 모드에 따라 이용 가능한 참조 화소를 판단한다는 정보를 복호기로 전송해야 한다.
다음으로, 상기 참조 화소들을 이용하여 현재 블록의 인트라 예측 모드를 결정한다. 현재 블록에 허용 가능한 인트라 예측 모드의 수는 블록의 크기에 따라 달라질 수 있다. 예를 들어, 현재 블록의 크기가 8x8, 16x16, 32x32인 경우에는 34개의 인트라 예측 모드가 존재할 수 있고, 현재 블록의 크기가 4x4인 경우에는 17개의 인트라 예측 모드가 존재할 수 있다.
상기 34개 또는 17개의 인트라 예측 모드는 적어도 하나 이상의 비방향성 모드(non-directional mode)와 복수개의 방향성 모드들(directional modes)로 구성될 수 있다.
하나 이상의 비방향성 모드는 DC 모드 및/또는 플래너(planar) 모드일수 있다. DC 모드 및 플래너모드가 비방향성 모드로 포함되는 경우에는, 현재 블록의 크기에 관계없이 35개의 인트라 예측 모드가 존재할 수도 있다.
이 때에는 2개의 비방향성 모드(DC 모드 및 플래너 모드)와 33개의 방향성 모드를 포함할 수 있다.
플래너 모드는 현재 블록의 우하측(bottom-right)에 위치하는 적어도 하나의 화소값(또는 상기 화소값의 예측값, 이하 제1 참조값이라 함)과 참조화소들을 이용하여 현재 블록의 예측 블록을 생성한다.
상기한 바와 같이, 본 발명의 일실시예에 따른 동영상 복호화 장치의 구성은 도 1 내지 도 3을 참조하여 설명한 동영상 부호화 장치의 구성으로부터 도출될 수 있으며, 예를 들어 도 1을 참조하여 설명한 바와 같은 부호화 과정의 역과정을 수행함으로써 영상을 복호화할 수 있다.
도 4는 본 발명의 일실시예에 따른 동영상 복호화 장치의 구성을 블록도로 도시한 것이다.
도 4를 참조하면, 본 발명에 따른 동영상 복호화 장치는, 엔트로피 복호화부(210), 역양자화/역변환부(220), 가산기(270), 디블록킹 필터(250), 픽쳐 저장부(260), 인트라 예측부(230), 움직임 보상 예측부(240) 및 인트라/인터전환 스위치(280)를 구비한다.
엔트로피 복호화부(210)는, 동영상 부호화 장치로부터 전송되는 부호화 비트 스트림을 복호하여, 인트라 예측 모드 인덱스, 움직임 정보, 양자화 계수 시퀀스 등으로 분리한다. 엔트로피 복호화부(210)는 복호된 움직임 정보를 움직임 보상 예측부(240)에 공급한다.
엔트로피 복호화부(210)는 상기 인트라 예측 모드 인덱스를 상기 인트라 예측부(230), 역양자화/역변환부(220)로 공급한다. 또한, 상기 엔트로피 복호화부(210)는 상기 역양자화 계수 시퀀스를 역양자화/역변환부(220)로 공급한다.
역양자화/역변환부(220)는 상기 양자화 계수 시퀀스를 2차원 배열의 역양자화 계수로 변환한다. 상기 변환을 위해 복수개의 스캐닝 패턴 중에 하나를 선택한다. 현재 블록의 예측모드(즉, 인트라 예측 및 인터 예측 중의 어느 하나)와 인트라 예측 모드 중 적어도 하나에 기초하여 복수개의 스캐닝 패턴 중 하나를 선택한다.
상기 인트라 예측 모드는 인트라 예측부 또는 엔트로피 복호화부로부터 수신한다.
역양자화/역변환부(220)는 상기 2차원 배열의 역양자화 계수에 복수개의 양자화 매트릭스 중 선택된 양자화 매트릭스를 이용하여 양자화 계수를 복원한다. 복원하고자 하는 현재 블록의 크기에 따라 서로 다른 양자화 매트릭스가 적용되며, 동일 크기의 블록에 대해서도 상기 현재 블록의 예측 모드 및 인트라 예측 모드 중 적어도 하나에 기초하여 양자화 매트릭스를 선택한다.
그리고, 상기 복원된 양자화 계수를 역변환하여 잔차 블록을 복원한다.
가산기(270)는 역양자화/역변환부(220)에 의해 복원된 잔차 블록과 인트라 예측부(230) 또는 움직임 보상 예측부(240)에 의해 생성되는 예측 블록을 가산함으로써, 영상 블록을 복원한다.
디블록킹 필터(250)는 가산기(270)에 의해 생성된 복원 영상에 디블록킹 필터 처리를 실행한다. 이에 따라, 양자화 과정에 따른 영상 손실에 기인하는 디블록킹 아티펙트를 줄일 수 있다.
픽쳐 저장부(260)는 디블록킹 필터(250)에 의해 디블록킹 필터 처리가 실행된 로컬 복호 영상을 유지하는 프레임 메모리이다.
인트라 예측부(230)는 엔트로피 복호화부(210)로부터 수신된 인트라 예측 모드 인덱스에 기초하여 현재 블록의 인트라 예측 모드를 복원한다. 그리고, 복원된 인트라 예측 모드에 따라 예측 블록을 생성한다.
움직임 보상 예측부(240)는 움직임 벡터 정보에 기초하여 픽쳐 저장부(260)에 저장된 픽쳐로부터 현재 블록에 대한 예측 블록을 생성한다. 소수 정밀도의 움직임 보상이 적용될 경우에는 선택된 보간 필터를 적용하여 예측 블록을 생성한다.
인트라/인터 전환 스위치(280)는 부호화 모드에 기초하여 인트라 예측부(230)와 움직임 보상 예측부(240)의 어느 하나에서 생성된 예측 블록을 가산기(270)에 제공한다.
도 5는 복호화 장치에서 인터 예측을 수행하는 구성에 대한 일실시예를 블록도로 도시한 것으로, 인터 예측 복호화 장치는 디멀티플렉서(241), 움직임 정보 부호화 모드 판단부(242), 머지 모드 움직임 정보 복호화부(243), AMVP 모드 움직임 정보 복호화부(244), 예측블록 생성부(245), 잔차 블록 복호화부(246) 및 복원블록 생성부(247)를 포함한다.
도 5를 참조하면, 디멀티플렉서(241)는 수신된 비트스트림으로부터 현재 부호화된 움직임 정보와 부호화된 잔차 신호들을 역다중화한다. 디멀티플렉서(241)는 상기 역다중화된 움직임 정보를 움직임 정보 부호화 모드 판단부(242)로 전송하고, 역다중화된 잔차신호를 잔차블록 복호화부(246)로 전송한다.
움직임 정보 부호화 모드 판단부(242)는 현재 블록의 움직임 정보 부호화 모드를 판단한다. 움직임 정보 부호화 모드 판단부(242)는 수신된 비트스트림의 skip_flag가 1의 값을 갖는 경우에는 현재 블록의 움직임 정보 부호화 모드가 스킵 부호화 모드로 부호화된 것으로 판단한다.
움직임 정보 부호화 모드 판단부(242)는 수신된 비트스트림의 skip_flag가 0의 값을 갖고, 디멀티블렉서(241)로부터 수신된 움직임 정보가 머지 인덱스만을 갖는 현재 블록의 움직임 정보 부호화 모드가 머지 모드로 부호화된 것으로 판단한다.
움직임 정보 부호화 모드 판단부(242)는 수신된 비트스트림의 skip_flag가 0의 값을 갖고, 디멀티블렉서(241)로부터 수신된 움직임 정보가 참조 픽쳐 인덱스와 차분 움직임 벡터와 AMVP인덱스를 갖는 경우에는 현재 블록의 움직임 정보 부호화 모드가 AMVP 모드로 부호화된 것으로 판단한다.
머지 모드 움직임 정보 복호화부(243)는 움직임 정보 부호화 모드 판단부(242)가 현재 블록의 움직임 정보 부호화 모드를 스킵 또는 머지 모드로 판단한 경우에 활성화된다.
AMVP 모드 움직임 정보 복호화부(244)는 움직임 정보 부호화 모드 판단부(242)가 현재 블록의 움직임 정보 부호화 모드를 AMVP 모드로 판단한 경우에 활성화된다.
예측블록 생성부(245)는 상기 머지 모드 움직임 정보 복호화부(243) 또는 AMVP 모드 움직임 정보 복호화부(244)에 의해 복원된 움직임 정보를 이용하여 현재 블록의 예측 블록을 생성한다.
움직임 벡터가 정수 단위일 경우에는, 참조픽쳐 인덱스가 나타내는 픽쳐 내의 움직임 벡터가 나타내는 위치에 대응하는 블록을 복사하여 현재 블록의 예측 블록을 생성한다.
그러나, 움직임 벡터가 정수 단위가 아닐 경우에는, 참조픽쳐 인덱스가 나타내는 픽쳐내의 정수 단위 화소들로부터 예측 블록의 화소들을 생성한다. 이 경우, 휘도 화소의 경우에는 8탭의 보간 필터를 사용하여 예측 화소를 생성할 수 있다. 색차 화소의 경우에는 4탭 보간 필터를 사용하여 예측 화소를 생성할 수 있다.
잔차 블록 복호화부(246)는 잔차신호를 엔트로피 복호화한다. 그리고, 엔트로피 복호화된 계수들을 역스캐닝하여 2차원의 양자화된 계수 블록을 생성한다. 역스캐닝 방식은 엔트로피 복호화 방식에 따라 달라질 수 있다.
즉, CABAC 기반으로 복호화된 경우와 CAVLC 기반으로 복호화된 경우의 인터 예측 잔차신호의 역스캐닝 방식이 달라질 수 있다. 예를 들어, CABAC 기반으로 복호화된 경우에는 대각선 방향의 래스터 역스캔 방식으로, CAVLC 기반으로 복호화된 경우에는 지그재그 역스캔 방식이 적용될 수 있다.
또한, 예측 블록의 크기에 따라 역스캐닝 방식이 달리 결정될 수도 있다.
잔차블록 복호화부(246)는 생성된 계수블록을 역양자화 매트릭스를 이용하여 역양자화한다. 상기 양자화 매트릭스를 유도하기 위해 양자화 파리미터를 복원한다. 양자화 스텝 사이즈는 미리 정해진 크기 이상의 코딩 유닛별로 복원된다.
상기 미리 정해진 크기는 8x8 또는 16x16일 수 있다. 따라서, 현재 코딩 유닛이 상기 미리 정해진 크기보다 작은 경우에는 상기 미리 정해진 크기 내의 복수개의 코딩 유닛 중 부호화 순서상 첫번째 코딩 유닛의 양자화 파라미터만을 복원하고, 나머지 코딩 유닛의 양자화 파라미터는 상기 파라미터와 동일하므로 부호화할 필요가 없다.
상기 미리 정해진 크기 이상의 코딩 유닛별로 결정된 양자화 파라미터를 복원하기 위해 현재 코딩 유닛에 인접한 코딩 유닛의 양자화 파라미터를 이용한다. 현재 코딩 유닛의 좌측 코딩 유닛, 상측 코딩 유닛 순서로 검색하여 유효한 첫번째 양자화 파라미터를 현재 코딩 유닛의 양자화 파라미터 예측자로 결정할 수 있다.
또한, 좌측 코딩 유닛, 부호화 순서상 바로 이전의 코딩 유닛 순으로 검색하여 유효한 첫번째 양자화 파라미터를 양자화 파라미터 예측자로 결정할 수 있다. 상기 결정된 양자화 파라미터 예측자와 차분 양자화 파라미터를 이용하여 현재 예측 유닛의 양자화 파라미터를 복원한다.
잔차블록 복호화부(260)는 상기 역양자화된 계수 블록을 역변환하여 잔차블록을 복원한다.
복원블록 생성부(270)는 상기 예측블록 생성부(250)에 의해 생성된 예측블록과 상기 잔차블록 복호화부(260)에 의하여 생성된 잔차블록을 더하여 복원블록을 생성한다.
이하, 상기 도 3를 참조하여, 현재 블록을 인트라 예측을 통해 복원하는 과정을 설명한다.
먼저, 수신된 비트스트림으로부터 현재 블록의 인트라 예측 모드를 복호한다. 이를 위해, 엔트로피 복호화부(210)는 복수개의 인트라 예측 모드 테이블 중 하나를 참조하여 현재 블록의 제1 인트라 예측 모드 인덱스를 복원한다.
상기 복수개의 인트라 예측 모드 테이블은 부호기와 복호기가 공유하는 테이블로서, 현재 블록에 인접한 복수개의 블록들의 인트라 예측 모드의 분포에 따라 선택된 어느 하나의 테이블이 적용될 수 있다.
일예로써, 현재 블록의 좌측 블록의 인트라 예측 모드와 현재 블록의 상측 블록의 인트라 예측 모드가 동일하면 제1 인트라 예측 모드 테이블을 적용하여 현재 블록의 제 1 인트라 예측 모드 인덱스를 복원하고, 동일하지 않으면 제2 인트라 예측 모드 테이블을 적용하여 현재 블록의 제 1 인트라 예측 모드 인덱스를 복원할 수 있다.
또 다른 예로써, 현재 블록의 상측 블록과 좌측 블록의 인트라 예측 모드가 모두 방향성 예측 모드(directional intra prediction mode)일 경우에는, 상기 상측 블록의 인트라 예측 모드의 방향과 상기 좌측 블록의 인트라 예측 모드의 방향이 소정 각도 이내이면, 제 1 인트라 예측 모드 테이블을 적용하여 현재 블록의 제 1 인트라 예측 모드 인덱스를 복원하고, 소정 각도를 벗어나면 제2 인트라 예측 모드 테이블을 적용하여 현재 블록의 제 1 인트라 예측 모드 인덱스를 복원할 수도 있다.
엔트로피 복호화부(210)는 복원된 현재 블록의 제1 인트라 예측 모드 인덱스를 인트라 예측부(230)로 전송한다.
상기 제1 인트라 예측 모드를 인덱스를 수신한 인트라 예측부(230)는 상기 상기 인덱스가 최소값을 가질 경우(즉, 0)에는 현재 블록의 최대가능모드를 현재 블록의 인트라 예측 모드로 결정한다.
그러나, 상기 인덱스가 0 이외의 값을 가질 경우에는 현재 블록의 최대가능모드가 나타내는 인덱스와 상기 제1 인트라 예측 모드 인덱스를 비교한다. 비교 결과, 상기 제1 인트라 예측 모드 인덱스가 상기 현재 블록의 최대가능모드가 나타내는 인덱스보다 작지 않으면, 상기 제 1 인트라 예측 모드 인덱스에 1을 더한 제2 인트라 예측 모드 인덱스에 대응하는 인트라 예측 모드를 현재 블록의 인트라 예측 모드로 결정하고, 그렇지 않으면 상기 제 1 인트라 예측 모드 인덱스에 대응하는 인트라 예측 모드를 현재 블록의 인트라 예측 모드를 결정한다.
현재 블록에 허용 가능한 인트라 예측 모드는 적어도 하나 이상의 비방향성 모드(non-directional mode)와 복수 개의 방향성 모드들(directional modes)로 구성될 수 있다.
하나 이상의 비방향성 모드는 DC 모드 및/또는 플래너(planar) 모드일수 있다. 또한, DC 모드와 플래너 모드 중 어느 하나가 적응적으로 상기 허용 가능한 인트라 예측 모드 셋에 포함될 수 있다.
이를 위해, 픽쳐 헤더 또는 슬라이스 헤더에 상기 허용 가능한 인트라 예측 모드 셋에 포함되는 비방향성 모드를 특정하는 정보가 포함될 수 있다.
다음으로, 인트라 예측부(230)는 인트라 예측 블록을 생성하기 위해, 참조 화소들을 픽쳐 저장부(260)로터 읽어들이고, 이용 가능하지 않은 참조 화소가 존재하는지 여부를 판단한다.
상기 판단은 현재 블록의 복호된 인트라 예측 모드를 적용하여 인트라 예측 블록을 생성하는데 이용되는 참조 화소들의 존재 여부에 따라 행해질 수도 있다.
다음으로, 인트라 예측부(230)는 참조 화소를 생성할 필요가 있을 경우에는 미리 복원된 이용 가능한 참조 화소들을 이용하여 이용 가능하지 않은 위치의 참조화소들을 생성한다.
이용 가능하지 않은 참조 화소에 대한 정의 및 참조 화소의 생성 방법은 도 1에 따른 인트라 예측부(150)에서의 동작과 동일하다. 다만, 현재 블록의 복호된 인트라 예측 모드에 따라 인트라 예측 블록을 생성하는데 이용되는 참조 화소만들을 선택적으로 복원할 수도 있다.
다음으로, 인트라 예측부(230)는 예측 블록을 생성하기 위하여, 참조 화소들에 필터를 적용할지 여부를 판단한다. 즉, 인트라 예측부(230)는 현재 블록의 인트라 예측 블록을 생성하기 위하여 참조 화소들에 대해 필터링을 적용할지 여부를 상기 복호된 인트라 예측 모드 및 현재 예측 블록의 크기에 기초하여 결정한다.
블록킹 아티펙트의 문제는 블록의 크기가 커질수록 커지므로, 블록의 크기가 커질수록 참조화소를 필터링하는 예측모드의 수를 증가시킬 수 있다. 그러나, 블록이 소정 크기보다 커지는 경우에는 평탄한 영역으로 볼 수 있으므로 복잡도 감소를 위해 참조화소를 필터링하지 않을 수 있다.
상기 참조 화소에 필터 적용이 필요하다고 판단된 경우에는 필터를 이용하여 상기 참조 화소들을 필터링한다.
상기한 참조 화소들 간의 단차의 차이 정도에 따라 적어도 2개 이상의 필터를 적응적으로 적용할 수도 있다. 상기 필터의 필터계수는 대칭적인 것이 바람직하다.
또한, 상기한 2개 이상의 필터가 현재 블록의 크기에 따라 적응적으로 적용될 수도 있다. 즉, 필터를 적용할 경우, 크기가 작은 블록에 대해서는 대역폭이 좁은 필터를, 크기가 큰 블록들에 대해서는 대역폭이 넓은 필터를 적용할 수도 있다.
DC 모드의 경우에는 참조 화소들의 평균값으로 예측 블록이 생성되므로, 필터를 적용할 필요가 없다. 즉, 필터를 적용할 경우 불필요한 연산량만이 많아지게 된다.
또한, 영상이 수직 방향으로 연관성(correlation)이 있는 수직 모드에서는 참조화소에 필터를 적용할 필요가 없다. 영상이 수평 방향으로 연관성이 있는 수평 모드에서도 참조화소에 필터를 적용할 필요가 없다.
이와 같이, 필터링의 적용 여부는 현재 블록의 인트라 예측 모드와도 연관성이 있으므로, 현재 블록의 인트라 예측 모드 및 예측 블록의 크기에 기초하여 참조화소를 적응적으로 필터링할 수 있다.
다음으로, 상기 복원된 인트라 예측 모드에 따라, 상기 참조 화소 또는 상기 필터링된 참조 화소들을 이용하여 예측 블록을 생성한다. 상기 예측 블록의 생성은 부호기에서의 동작과 동일하므로 생략한다. 플래너 모드의 경우에도 부호기에서의 동작과 동일하므로 생략한다.
다음으로, 상기 생성된 예측 블록을 필터링할지 여부를 판단한다. 상기 필터링 여부의 판단은 슬라이스 헤더 또는 부호화 유닛 헤더에 포함된 정보를 이용할 수 있다. 또한, 현재 블록의 인트라 예측 모드에 따라 결정될 수도 있다.
상기 생성된 예측 블록을 필터링할 것으로 판단할 경우, 생성된 예측 블록을 필터링한다. 구체적으로, 현재 블록에 인접한 이용 가능한 참조 화소들을 이용하여 생성된 예측 블록의 특정 위치의 화소를 필터링하여 새로운 화소를 생성한다.
이는 예측 블록 생성시에 함께 적용될 수도 있다. 예를 들어, DC 모드에서는 예측 화소들 중 참조화소들과 접하는 예측 화소는 상기 예측 화소와 접하는 참조화소를 이용하여 필터링한다.
따라서, 예측 화소의 위치에 따라 1개 또는 2개의 참조화소를 이용하여 예측 화소를 필터링한다. DC 모드에서의 예측화소의 필터링은 모든 크기의 예측 블록에 적용할 수 있다. 수직 모드에서는 예측 블록의 예측 화소들 중 좌측 참조 화소와 접하는 예측화소들은 상기 예측블록을 생성하는데 이용되는 상측화소 이외의 참조화소들을 이용하여 변경될 수 있다.
마찬가지로, 수평 모드에서는 생성된 예측 화소들 중 상측 참조화소와 접하는 예측화소들은 상기 예측블록을 생성하는데 이용되는 좌측화소 이외의 참조화소들을 이용하여 변경될 수 있다.
이와 같은 방식으로 복원된 현재 블록의 예측 블록과 복호화한 현재 블록의 잔차 블록을 이용하여 현재 블록이 복원된다.
본 발명의 일실시예에 따른 동영상 비트스트림은 하나의 픽처에서의 부호화된 데이터를 저장하는데 사용되는 단위로서, PS(parameter sets)와 슬라이스 데이터를 포함할 수 있다.
PS(parameter sets)는, 각 픽처의 헤드에 상당하는 데이터인 픽처 파라미터 세트(이하 간단히 PPS라 한다)와 시퀀스 파라미터 세트(이하 간단히 SPS라 한다)로 분할된다. 상기 PPS와 SPS는 각 부호화를 초기화하는데 필요한 초기화 정보를 포함할 수 있다.
SPS는 램덤 액세스 유닛(RAU)으로 부호화된 모든 픽처를 복호화하기 위한 공통 참조 정보로서, 프로파일, 참조용으로 사용 가능한 픽처의 최대 수 및 픽처 크기 등을 포함하며, 도 6 및 도 7에 도시된 바와 같이 구성될 수 있다.
PPS는, 랜덤 액세스 유닛(RAU)으로 부호화된 각 픽처에 대해, 픽처를 복호화하기 위한 참조 정보로서 가변 길이 부호화 방법의 종류, 양자화 단계의 초기값 및 다수의 참조 픽처들을 포함하며, 도 8 및 도 9에 도시된 바와 같이 구성될 수 있다.
한편, 슬라이스 헤더(SH)는 슬라이스 단위의 코딩시 해당 슬라이스에 대한 정보를 포함하며, 도 10 내지 도 12에 도시된 바와 같이 구성될 수 있다.
이하에서는 이와 같이 구성된 본 발명의 실시 예에 따른 부호화 장치(100)의 픽처 분할 동작을 설명한다.
앞서 설명한 바와 같이, 픽쳐 분할부(110)는 쿼드 트리(Quad-tree)방식을 기반으로 하여 코딩 유닛(CU)의 분할 구조를 결정할 수 있다. 이 때 픽쳐 분할부(110)는 분할 구조를 결정할 때 RDO-Q(Rate distortion Optimization- Quantization)를 수행하면서 비트레이트와 디스토션(distortion) 측면에서 최적의 CU(Coding Unit) partition을 구할 수 있으며, 이에 따라 가장 효율이 높은 분할 구조를 결정할 수 있다.
앞서 설명한 도 2는 64x64 LCU를 기준으로 CU를 partition 하여 나온 한가지 예를 나타낸다.
그러나, 픽쳐 분할부(110)가 RDO-Q를 각 분할 구조에 따라 모두 계산하는 과정에 있어서 많은 문제점이 존재한다. 특히, 픽쳐 분할부(110)는 통상적으로 각 코딩 유닛에 대하여 움직임 벡터, 잔차신호 연산, 잔차신호의 변환(Transform) 및 양자화 및 CABAC(Context Adaptive Binary Arithmetic Coding) 산술 이진부호화를 모두 수행하고, 최적의 효율을 갖는 분할 구조를 결정하게 된다. 이러한 과정은 소프트웨어 기반 부호화 시스템에서는 문제가 없을 수 있으나, 하드웨어 기반 부호화 시스템 또는 소프트웨어 및 하드웨어 병합 부호화 시스템에서는 복잡도의 증가로 인해 구현이 어려운 문제점이 있다. 특히, 파이프라인(Pipeline) 처리 등의 병렬 처리 또는 워스트 케이스(Worst case) 복잡도를 가정하고 구현하는 경우 RDO-Q 방식으로는 현실적인 구현 및 상용화가 불가능한 문제점이 있다.
따라서, 본 발명의 일 실시 예에 따르면, 픽쳐 분할부(110)는 SAD (Sum of Absolute difference) 또는 MSE(Mean Square Error)를 이용하여 분할 구조를 결정함으로써 복잡도를 저감시키면서도 적절한 효율을 유지할 수 있다.
도 13은 본 발명의 실시 예에 따른 부호화 장치(100)의 동작 방법을 설명하기 위한 흐름도이다.
먼저, 부호화 장치(100)의 픽쳐 결정부(110)는 전체 CU에 대한 SAD를 연산한다(S100).
SAD는 다음의 수학식 1으로 연산될 수 있다.
수학식 1은 k번째 픽쳐 Fk의 임의의 전체 CU에서 이미 복원된 k-1 번째 픽쳐로부터 최적의 움직임벡터 (mx, my)에서 SAD를 구할 수 있는 식을 나타낸다. 여기서 전체 CU가 LCU(Largest Coding Unit)인 경우, M=64일 수 있다. 또한 수학식 1 에서 i=0와 j=0는 CU의 시작점을 의미할 수 있다.
그리고, 픽쳐 결정부(110)는 전체 CU를 4분할하고, 분할된 CU 각각에 대한 SAD를 연산한다(S110).
예를 들어, 픽쳐 결정부(110)는 64x64 LCU를 Quad-tree 구조로 분할한 4개의 32x32 CU 각각을 획득할 수 있다. 그리고, 각각의 분할된 CU에 대하여 상기의 수학식 1을 적용하여 최적의 움직임 벡터에 대한 SAD를 구할 수 있다. 본 발명의 실시 예에서 각각 분할된 CU에 대한 SAD는 SAD1, SAD2, SAD3 및 SAD4로 표현될 수 있다. 또한, 전체 CU의 M=64인 경우, 분할된 CU의 M=32일 수 있다.
그리고, 픽쳐 결정부(110)는 (전체 CU의 SAD ?? Threshold) 가 분할된 CU의 SAD 총합보다 작은지 판단한다.
예를 들어, 픽쳐 결정부(110)는 ((SAD-Threshold) < SAD1+SAD2+SAD3+SAD4)인지를 판단할 수 있다. Threshold 값은 미리 설정될 수 있으며, 설정에 따라 가변될 수 있다.
그리고, 픽쳐 결정부(110)는 (전체 CU의 SAD ?? Threshold) 가 분할된 CU의 SAD 총합보다 작은 경우에는 분할하지 않는 것으로 분할 구조를 결정하고(S140), 분할을 종료하며(S150), 결정된 분할 구조를 출력한다(S160).
그러나, 그렇지 않은 경우 픽쳐 결정부(110)는 각각의 CU로 분할하는 것으로 분할 구조를 결정하고(S135), 결정된 분할 구조의 분할된 CU가 8x8인지를 판단한다(S145). 분할된 CU가 8x8인 경우에는 더 이상 분할하지 않고, 분할을 종료한다(S150). 그러나, 8x8이 아닌 경우, 즉 8x8보다 큰 경우에는 분할된 CU 각각을 전체 CU로 설정하고(S155), 각 전체 CU에 대하여 S100부터 다시 분할 구조 결정 과정을 수행한다.
예를 들어, LCU인 64x64에서 분할되는 것으로 결정된 경우, 픽쳐 결정부(110)는 각각의 32x32 CU에 대하여 독립적으로 Quad-tree로 분할하여 S100 과정부터 다시 반복 수행할 수 있다.
도 14는 본 발명의 실시 예에 따른 CU 분할 구조 결정 과정을 나타내는 도면이다.
도 14를 참조하면, 도 14에는 수학식 1을 통해 64x64와 32x32의 SAD를 구하는 과정이 나타나 있다. 픽쳐 결정부(110)는 각각 분할된 CU의 사이즈가 8x8이 될 때까지 SAD 연산 및 비교 과정을 반복 수행할 수 있다.
또한, 본 발명의 실시 예에서, Threshold 값은 설정에 따라 달라질 수 있다. 예를 들어, 구현 시 큰 CU partition이 필요한 경우 아주 큰 값을 할당할 수 있다. 또한, 예를 들어 64x64가 많이 선택되도록 하려면 Threshold = 64x64x2로 할당할 수 있다. 뿐만 아니라, 작은 CU partition을 원하는 경우 작은 값을 할당할 수 있다. 예를 들어, Threshold = 64x64/4 로 할당할 수 있다.
이와 같이, 본 발명의 실시 예에 따르면, Threshold 조절을 통해 구현할 인코더가 LCU를 선호하는지, 작은 CU단위의 처리를 선호하는지에 따른 부호화 장치(100)의 성능을 조절할 수 있게 된다.
한편, 본 발명의 다른 일 실시 예에 따르면, 픽쳐 결정부(110)는 SAD가 아닌 다른 연산을 수행함으로써 분할 구조를 결정할 수도 있다.
수학식 2는 MSE(Mean Square Error)의 연산 과정을 나타낸다.
수학식 2는 k번째 픽쳐 Fk의 임의의 전체 CU에서 이미 복원된 k-1 번째 픽쳐로부터 최적의 움직임벡터 (mx, my)에서 MSE를 구할 수 있는 식을 나타낸다. 여기서 전체 CU가 LCU(Largest Coding Unit)인 경우, M=64일 수 있다. 또한 수학식 1 에서 i=0와 j=0는 CU의 시작점을 의미할 수 있다.
앞서 설명한 SAD 과정과 유사하게 본 발명의 다른 일 실시 예에 따른 분할 구조 결정 과정이 진행될 수 있다.
픽쳐 결정부(110)는 전체 CU를 4분할하고, 분할된 CU 각각에 대한 SAD를 연산한다. 예를 들어, 픽쳐 결정부(110)는 64x64 LCU를 Quad-tree 구조로 분할한 4개의 32x32 CU 각각을 획득할 수 있다.
픽쳐 결정부(110)는 그리고, 각각의 분할된 CU에 대하여 상기의 수학식 2를 적용하여 최적의 움직임 벡터에 대한 MSE를 구할 수 있다. 본 발명의 실시 예에서 각각 분할된 CU에 대한 MSE는 MSE1, MSE2, MSE3 및 MSE4로 표현될 수 있다. 또한, 전체 CU의 M=64인 경우, 분할된 CU의 M=32일 수 있다.
그리고, 픽쳐 결정부(110)는 (전체 CU의 MSE ?? Threshold) 가 분할된 CU의 MSE 총합보다 작은지 판단한다.
예를 들어, 픽쳐 결정부(110)는 ((MSE-Threshold) < MSE1+MSE2+MSE3+MSE4)인지를 판단할 수 있다. Threshold 값은 미리 설정될 수 있으며, 설정에 따라 가변될 수 있다.
그리고, 픽쳐 결정부(110)는 (전체 CU의 MSE ?? Threshold) 가 분할된 CU의 MSE 총합보다 작은 경우에는 분할하지 않는 것으로 분할 구조를 결정하고, 분할을 종료하며, 결정된 분할 구조를 출력한다.
그러나, 그렇지 않은 경우 픽쳐 결정부(110)는 각각의 CU로 분할하는 것으로 분할 구조를 결정하고, 결정된 분할 구조의 분할된 CU가 8x8인지를 판단한다. 분할된 CU가 8x8인 경우에는 더 이상 분할하지 않고, 분할을 종료한다. 그러나, 8x8이 아닌 경우, 즉 8x8보다 큰 경우에는 분할된 CU 각각을 전체 CU로 설정하고, 각 전체 CU에 대하여 다시 MSE를 이용한 분할 구조 결정 과정을 수행한다.
이상에서 설명한 바와 같이, 본 발명의 실시 예에 따르면, 부호화 장치(100)구현 시 복잡한 계산과정을 요구하는 RDO-Q를 대신하여 간단하게 LCU에 대한 CU 분할을 계산할 수 있으므로 성능에 큰 영향을 주지 않는 선에서 복잡도를 감소시킬 수 있는 효과가 있다.
상술한 본 발명에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상기 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해 되어서는 안될 것이다.
Claims (16)
- 동영상 처리 방법에 있어서,
비디오 신호를 분석하여 픽쳐를 부호화 단위로 분할하는 단계;
상기 부호화 단위별로 예측 부호화를 수행하고, 상기 예측 부호화에 따른 잔차 신호를 변환하는 단계;
상기 잔차 신호에 대한 양자화를 수행하는 단계; 및
상기 양자화된 신호에 대해 엔트로피 부호화를 수행하여 출력하는 단계를 포함하고,
상기 부호화 단위로 분할하는 단계는, 전체 부호화 단위에 대한 움직임 벡터의 절대차 합(Sum of Absolute Difference, SAD), 분할된 부호화 단위에 대한 움직임 벡터의 SAD 및 임계값에 따라 분할하는 단계를 포함하는 동영상 처리 방법. - 제1항에 있어서,
상기 분할하는 단계는,
상기 전체 부호화 단위에 대한 전체 SAD를 연산하는 단계;
상기 분할된 부호화 단위 각각에 대한 SAD의 합을 연산하는 단계; 및
상기 분할된 부호화 단위 각각에 대한 SAD의 합과 상기 전체 SAD와의 차이에 따라 상기 전체 부호화 단위를 분할하는 단계를 포함하는 동영상 처리 방법. - 제2항에 있어서,
상기 전체 부호화 단위를 분할하는 단계는
상기 전체 SAD와 임계값과의 차이보다 상기 분할된 부호화 단위 각각에 대한 SAD의 합이 큰 경우, 상기 분할된 부호화 단위로 분할하는 단계를 포함하는 동영상 처리 방법. - 제2항에 있어서,
상기 분할 여부를 결정하는 단계는
상기 전체 SAD와 임계값과의 차이보다 상기 분할된 부호화 단위 각각에 대한 SAD의 합이 작은 경우, 상기 전체 부호화 단위로 분할하는 단계를 포함하는 동영상 처리 방법. - 동영상 처리 방법에 있어서,
비디오 신호를 분석하여 픽쳐를 부호화 단위로 분할하는 단계;
상기 부호화 단위별로 예측 부호화를 수행하고, 상기 예측 부호화에 따른 잔차 신호를 변환하는 단계;
상기 잔차 신호에 대한 양자화를 수행하는 단계; 및
상기 양자화된 신호에 대해 엔트로피 부호화를 수행하여 출력하는 단계를 포함하고,
상기 부호화 단위로 분할하는 단계는, 전체 부호화 단위에 대한 움직임 벡터의 평균 제곱 오차(Mean Square Error, MSE) 합, 분할된 부호화 단위에 대한 움직임 벡터의 MSE 합 및 임계값에 따라 분할하는 단계를 포함하는 동영상 처리 방법. - 제5항에 있어서,
상기 분할하는 단계는,
상기 전체 부호화 단위에 대한 전체 MSE를 연산하는 단계;
상기 분할된 부호화 단위 각각에 대한 MSE의 합을 연산하는 단계; 및
상기 분할된 부호화 단위 각각에 대한 MSE의 합과 상기 전체 MSE와의 차이에 따라 상기 전체 부호화 단위를 분할하는 단계를 포함하는 동영상 처리 방법. - 제6항에 있어서,
상기 전체 부호화 단위를 분할하는 단계는
상기 전체 MSE와 임계값과의 차이보다 상기 분할된 부호화 단위 각각에 대한 MSE의 합이 큰 경우, 상기 분할된 부호화 단위로 분할하는 단계를 포함하는 동영상 처리 방법. - 제6항에 있어서,
상기 분할 여부를 결정하는 단계는
상기 전체 MSE와 임계값과의 차이보다 상기 분할된 부호화 단위 각각에 대한 MSE의 합이 작은 경우, 상기 전체 부호화 단위로 분할하는 단계를 포함하는 동영상 처리 방법. - 동영상 처리 장치에 있어서,
비디오 신호를 분석하여 픽쳐를 부호화 단위로 분할하는 픽쳐 결정부;
상기 부호화 단위별로 예측 부호화를 수행하고, 상기 예측 부호화에 따른 잔차 신호를 변환하는 변환부;
상기 잔차 신호에 대한 양자화를 수행하는 양자화부; 및
상기 양자화된 신호에 대해 엔트로피 부호화를 수행하여 출력하는 엔트로피 부호화부를 포함하고,
상기 픽쳐 분할부는, 전체 부호화 단위에 대한 움직임 벡터의 평균 제곱 오차(Mean Square Error, MSE) 합, 분할된 부호화 단위에 대한 움직임 벡터의 MSE 합 및 임계값에 따라 분할하는 동영상 처리 장치. - 제9항에 있어서,
상기 픽쳐 분할부는 상기 전체 부호화 단위에 대한 전체 MSE를 연산하고, 상기 분할된 부호화 단위 각각에 대한 MSE의 합을 연산하며, 상기 분할된 부호화 단위 각각에 대한 MSE의 합과 상기 전체 MSE와의 차이에 따라 상기 전체 부호화 단위를 분할하는 동영상 처리 장치. - 제10항에 있어서,
상기 픽쳐 분할부는 상기 전체 MSE와 임계값과의 차이보다 상기 분할된 부호화 단위 각각에 대한 MSE의 합이 큰 경우, 상기 분할된 부호화 단위로 분할하는 동영상 처리 장치. - 제10항에 있어서,
상기 픽쳐 분할부는 상기 전체 MSE와 임계값과의 차이보다 상기 분할된 부호화 단위 각각에 대한 MSE의 합이 작은 경우, 상기 전체 부호화 단위로 분할하는 동영상 처리 장치. - 동영상 처리 장치에 있어서,
비디오 신호를 분석하여 픽쳐를 부호화 단위로 분할하는 픽쳐 결정부;
상기 부호화 단위별로 예측 부호화를 수행하고, 상기 예측 부호화에 따른 잔차 신호를 변환하는 변환부;
상기 잔차 신호에 대한 양자화를 수행하는 양자화부; 및
상기 양자화된 신호에 대해 엔트로피 부호화를 수행하여 출력하는 엔트로피 부호화부를 포함하고,
상기 픽쳐 결정부는 전체 부호화 단위에 대한 움직임 벡터의 절대차 합(Sum of Absolute Difference, SAD), 분할된 부호화 단위에 대한 움직임 벡터의 SAD 및 임계값에 따라 분할하는 동영상 처리 장치. - 제13항에 있어서,
상기 픽쳐 결정부는 상기 전체 부호화 단위에 대한 전체 SAD를 연산하고, 상기 분할된 부호화 단위 각각에 대한 SAD의 합을 연산하며, 상기 분할된 부호화 단위 각각에 대한 SAD의 합과 상기 전체 SAD와의 차이에 따라 상기 전체 부호화 단위를 분할하는 동영상 처리 장치. - 제14항에 있어서,
상기 픽쳐 결정부는 상기 전체 SAD와 임계값과의 차이보다 상기 분할된 부호화 단위 각각에 대한 SAD의 합이 큰 경우, 상기 분할된 부호화 단위로 분할하는 동영상 처리 장치. - 제14항에 있어서,
상기 픽쳐 결정부는 상기 전체 SAD와 임계값과의 차이보다 상기 분할된 부호화 단위 각각에 대한 SAD의 합이 작은 경우, 상기 전체 부호화 단위로 분할하는 동영상 처리 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130054837A KR101659343B1 (ko) | 2013-05-15 | 2013-05-15 | 동영상 처리 방법 및 장치 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130054837A KR101659343B1 (ko) | 2013-05-15 | 2013-05-15 | 동영상 처리 방법 및 장치 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160119053A Division KR101914667B1 (ko) | 2016-09-19 | 2016-09-19 | 동영상 처리 방법 및 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140135855A true KR20140135855A (ko) | 2014-11-27 |
KR101659343B1 KR101659343B1 (ko) | 2016-09-27 |
Family
ID=52456339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130054837A KR101659343B1 (ko) | 2013-05-15 | 2013-05-15 | 동영상 처리 방법 및 장치 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101659343B1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104796721A (zh) * | 2015-04-24 | 2015-07-22 | 宏祐图像科技(上海)有限公司 | 应用memc技术对图像光线变化场景进行运动估计的方法 |
CN108322747A (zh) * | 2018-01-05 | 2018-07-24 | 中国软件与技术服务股份有限公司 | 一种面向超高清视频的编码单元划分优化方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100742772B1 (ko) * | 2005-04-08 | 2007-07-26 | 고려대학교 산학협력단 | 가변 블록 움직임 추정장치 및 그 방법 |
KR100924487B1 (ko) * | 2007-12-17 | 2009-11-03 | 한국전자통신연구원 | 인터 예측에서의 블록 크기 분할 방법 및 장치 |
JP2010016697A (ja) * | 2008-07-04 | 2010-01-21 | Canon Inc | 動きベクトル探索装置及びその制御方法 |
KR101036552B1 (ko) * | 2009-11-02 | 2011-05-24 | 중앙대학교 산학협력단 | 적응적 탐색 영역 및 부분 정합 오차 기반의 고속 움직임 추정 장치 및 방법 |
-
2013
- 2013-05-15 KR KR1020130054837A patent/KR101659343B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100742772B1 (ko) * | 2005-04-08 | 2007-07-26 | 고려대학교 산학협력단 | 가변 블록 움직임 추정장치 및 그 방법 |
KR100924487B1 (ko) * | 2007-12-17 | 2009-11-03 | 한국전자통신연구원 | 인터 예측에서의 블록 크기 분할 방법 및 장치 |
JP2010016697A (ja) * | 2008-07-04 | 2010-01-21 | Canon Inc | 動きベクトル探索装置及びその制御方法 |
KR101036552B1 (ko) * | 2009-11-02 | 2011-05-24 | 중앙대학교 산학협력단 | 적응적 탐색 영역 및 부분 정합 오차 기반의 고속 움직임 추정 장치 및 방법 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104796721A (zh) * | 2015-04-24 | 2015-07-22 | 宏祐图像科技(上海)有限公司 | 应用memc技术对图像光线变化场景进行运动估计的方法 |
CN104796721B (zh) * | 2015-04-24 | 2018-03-16 | 宏祐图像科技(上海)有限公司 | 应用memc技术对图像光线变化场景进行运动估计的方法 |
CN108322747A (zh) * | 2018-01-05 | 2018-07-24 | 中国软件与技术服务股份有限公司 | 一种面向超高清视频的编码单元划分优化方法 |
CN108322747B (zh) * | 2018-01-05 | 2020-07-10 | 中国软件与技术服务股份有限公司 | 一种面向超高清视频的编码单元划分优化方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101659343B1 (ko) | 2016-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11107253B2 (en) | Image processing method, and image decoding and encoding method using same | |
KR20160106022A (ko) | 동영상 부호화 장치 | |
KR101569912B1 (ko) | 영상의 복호화/부호화 방법 및 장치 | |
JP2023105114A (ja) | イントラ予測ベースのビデオ信号処理方法及び装置 | |
KR102354628B1 (ko) | 부호화 트리 유닛 및 부호화 유닛의 처리를 수행하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치 | |
KR101586125B1 (ko) | 영상의 복호화/부호화 방법 및 장치 | |
KR20140129607A (ko) | 동영상 처리 방법 및 장치 | |
KR102657392B1 (ko) | 병렬 처리를 위한 움직임 정보를 처리하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치 | |
KR20230113661A (ko) | 효과적인 차분양자화 파라미터 전송 기반 영상 부/복호화방법 및 장치 | |
KR102520405B1 (ko) | 영상 처리 방법, 그를 이용한 영상 복호화 및 부호화 방법 | |
KR20170132038A (ko) | 영상 처리를 위한 블록 기반 적응적 루프 필터링 방법, 그를 이용한 영상 부호화 및 복호화 방법 | |
KR101659343B1 (ko) | 동영상 처리 방법 및 장치 | |
KR101914667B1 (ko) | 동영상 처리 방법 및 장치 | |
KR20170132036A (ko) | 영상 처리를 위한 블록 분할 방법, 그를 이용한 영상 부호화 및 복호화 방법 | |
KR101609427B1 (ko) | 영상의 복호화/부호화 방법 및 장치 | |
KR20140129632A (ko) | 동영상 처리 방법 및 장치 | |
KR102610188B1 (ko) | 향상된 산술부호화를 제공하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치 | |
KR20140130274A (ko) | 동영상 처리 방법 및 장치 | |
KR20140130269A (ko) | 동영상 처리 방법 및 장치 | |
KR20140130571A (ko) | 동영상 처리 방법 및 장치 | |
KR20140130572A (ko) | 동영상 처리 방법 및 장치 | |
KR20140129629A (ko) | 동영상 처리 방법 및 장치 | |
KR20140130266A (ko) | 동영상 처리 방법 및 장치 | |
KR20140130268A (ko) | 동영상 처리 방법 및 장치 | |
KR20140130573A (ko) | 동영상 처리 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190722 Year of fee payment: 4 |