KR20140134560A - A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same - Google Patents

A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same Download PDF

Info

Publication number
KR20140134560A
KR20140134560A KR20130054621A KR20130054621A KR20140134560A KR 20140134560 A KR20140134560 A KR 20140134560A KR 20130054621 A KR20130054621 A KR 20130054621A KR 20130054621 A KR20130054621 A KR 20130054621A KR 20140134560 A KR20140134560 A KR 20140134560A
Authority
KR
South Korea
Prior art keywords
catalyst
group
compound
polymerization
carbon atoms
Prior art date
Application number
KR20130054621A
Other languages
Korean (ko)
Other versions
KR101495423B1 (en
Inventor
양춘병
박준려
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR20130054621A priority Critical patent/KR101495423B1/en
Publication of KR20140134560A publication Critical patent/KR20140134560A/en
Application granted granted Critical
Publication of KR101495423B1 publication Critical patent/KR101495423B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a catalyst for olefin polymerization and co-polymerization, and a method for olefin polymerization or co-polymerization using the same, and more specifically, to a high molecular weight catalyst for polyolefin polymerization and co-polymerization, wherein a catalyst component is prepared by using an aluminoxane and metallocene compound supported on a carrier so as to have an excellent catalytic activity and control molecular weight of a polymer greatly, and to a method for olefin polymerization or copolymerization using the same.

Description

올레핀 중합 및 공중합용 촉매 및 이를 사용하는 올레핀 중합 또는 공중합 방법{A CATALYST FOR OLEFIN POLYMERIZATION AND CO-POLYMERIZATION AND A METHOD FOR OLEFIN POLYMERIZATION AND CO-POLYMERIZATION WITH USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a catalyst for olefin polymerization and copolymerization, and a process for olefin polymerization or copolymerization using the same. BACKGROUND ART < RTI ID = 0.0 >

본 발명은 올레핀 중합 및 공중합용 촉매 및 이를 사용하는 올레핀 중합 또는 공중합 방법에 관한 것으로서, 좀더 상세하게는 다공성 무기 지지체에 메틸알루미녹산과 메탈로센 화합물을 담지시켜 촉매 성분을 제조함으로써 촉매활성이 보다 우수하며, 중합체의 분자량이 크게 조절되는 고분자량의 폴리올레핀 중합 및 공중합용 촉매를 제공하고, 이를 사용하는 올레핀 중합 또는 공중합 방법에 관한 것이다.The present invention relates to olefin polymerization and copolymerization catalysts and olefin polymerization or copolymerization methods using the catalysts. More particularly, the present invention relates to a catalyst for olefin polymerization or copolymerization, The present invention relates to a high molecular weight polyolefin polymerization and copolymerization catalyst which is excellent in the molecular weight of the polymer and whose molecular weight is largely controlled, and relates to an olefin polymerization or copolymerization method using the same.

메탈로센은 일반적으로 실험식 LnMQp로 표시될 수 있는데, 여기서 M은 IIIB족, IVB족, VB족 또는 VIB족의 금속이고; Q는 1~20개의 탄소 원자를 갖는 하이드로카르빌기 또는 할로겐이며; p는 M의 원자가-2이고, L은 금속 M과 결합한 리간드이다. 이 메탈로센 화합물을 조촉매인 메틸알루미녹산(MAO)과 병용하여 올레핀 중합체 또는 공중합체를 제조한다. 메틸알루미녹산류(이하 호환적으로 "MAO"라 칭함)는 선형 및/또는 시클릭 메틸알루미녹산 올리고머를 포함하며, 상기 메틸알루미녹산은, 선형 메틸알루미녹산 올리고머인 경우 화학식 R-(Al(R)-O)n-AlR2로 표시되고, 시클릭 메틸알루미녹산 올리고머인 경우에는 화학식 (-Al(R)-O-)m으로 표시되며, 여기서 R은 C1~C8알킬기, 바람직하게는 메틸이고, n은 1~40, 바람직하게는 10~20이고, m은 3~40, 바람직하게는 3~20이다. 메틸알루미녹산은 통상 트리메틸알루미늄을 물과 반응시키거나, 수화된 무기 염류, 예컨대 CuSO4ㆍH2O 또는 Al2(SO4)3ㆍH2O와 반응시킴으로써 제조된다. 또한 메틸알루미녹산은 중합 반응기에 트리메틸알루미늄과 물 또는 함수 무기 염류를 첨가함으로써 중합 반응기내 동일계상에서 생성시킬 수도 있다. 메틸알루미녹산은 분자량 분포가 매우 넓은 올리고머들의 혼합물이며, 통상 평균 분자량은 약 900~1200이다. 메틸알루미녹산은 대개 톨루엔 중에서 용액으로 유지된다. The metallocenes can generally be represented by the empirical formula L n MQ p , where M is a metal of group IIIB, IVB, VB or VIB; Q is a hydrocarbyl group having 1 to 20 carbon atoms or halogen; p is the valence of M-2, and L is the ligand bound to the metal M. The metallocene compound is used in combination with a promoter, methylaluminoxane (MAO), to prepare an olefin polymer or copolymer. Methyl aluminoxanes (hereinafter referred to as " MAO ") include linear and / or cyclic methyl aluminoxane oligomers, wherein methylaluminoxane is linear methyl aluminoxane oligomer, ) -O) n- AlR 2 , and when it is a cyclic methylaluminoxane oligomer, it is represented by the formula (-Al (R) -O-) m , wherein R is a C 1 -C 8 alkyl group, preferably methyl , n is 1 to 40, preferably 10 to 20, and m is 3 to 40, preferably 3 to 20. Methyl aluminoxane is usually prepared by reacting trimethyl aluminum with water or by reacting with hydrated inorganic salts such as CuSO 4 .H 2 O or Al 2 (SO 4 ) 3 .H 2 O. Methylaluminoxane can also be produced in situ in a polymerization reactor by adding trimethylaluminum and water or hydrated inorganic salts to the polymerization reactor. Methyl aluminoxane is a mixture of oligomers having a very high molecular weight distribution, and usually has an average molecular weight of about 900 to 1200. Methyl aluminoxane is usually maintained in solution in toluene.

상기 메탈로센 촉매는 유동층 반응기 또는 슬러리 반응기에서 사용되기 위해서는 적절한 지지체 위에 담지되어야 하며, 또한 메탈로센이 담지된 개개의 촉매 입자는 충분한 활성을 나타내어야 촉매 지지체 잔사로 인한 문제를 일으키지 않는다. 현재 개발되어 사용되고 있는 대표적인 메탈로센 담지 촉매의 제조 방법중 하나는 메탈로센 촉매를 메틸알루미녹산과 함께 실리카에 담지시키는 방법이다(미국특허 제4,808,561호, 미국특허 제4,897,455호, 미국 특허 제5,240,894호  참조). The metallocene catalyst should be supported on a suitable support for use in a fluidized bed reactor or slurry reactor, and the individual catalyst particles carrying the metallocene should exhibit sufficient activity to avoid problems due to catalyst support residues. One of the typical methods for preparing metallocene supported catalyst that is currently being developed and used is a method in which a metallocene catalyst is supported on silica together with methylaluminoxane (U.S. Patent No. 4,808,561, U.S. Patent No. 4,897,455, U.S. Patent No. 5,240,894 See also

이 방법은 실리카의 히드록시기와 메틸알루미녹산을 반응하게 하여 실리카 표면에 메틸알루미녹산을 담지시키고, 메탈로센 촉매를 담지된 메틸알루미녹산에 담지되게 하는 방법이다. 메탈로센 촉매 성분은 메틸알루미녹산과 동시에 담지되거나, 메틸알루미녹산이 담지된 후에 추가적인 반응을 통하여 담지되기도 한다. 담지된 촉매의 활성은 담지된 메탈로센 성분의 양에 비례하며, 또한 메탈로센 촉매 성분의 담지를 도와주는 메틸알루미녹산의 담지량에도 비례한다. 메틸알루미녹산은 메탈로센 촉매의 담지를 도와줄 뿐만 아니라 메탈로센 촉매 성분을 촉매 독으로부터 보호하는 역할을 수행하게 된다. 따라서 메틸알루미녹산의 담지량은 촉매의 활성에 직접적으로 영향을 미치게 된다.This method is a method in which a hydroxyl group of silica is reacted with methylaluminoxane to support methylaluminoxane on the surface of silica, and the metallocene catalyst is supported on the supported methylaluminoxane. The metallocene catalyst component may be carried at the same time as methylaluminoxane, or may be carried through additional reaction after methylaluminoxane is supported. The activity of the supported catalyst is proportional to the amount of metallocene component supported and also proportional to the loading of methylaluminoxane to assist in supporting the metallocene catalyst component. Methylaluminoxane not only helps to support the metallocene catalyst but also protects the metallocene catalyst component from the catalyst poison. Therefore, the loading amount of methylaluminoxane directly affects the activity of the catalyst.

담지된 메탈로센 촉매의 활성은 촉매의 경제성에 직접적으로 영향을 미치는 주요한 요인이다. 그러나 대개의 경우 상기와 같은 방법으로 담지시킬 경우에 메탈로센 촉매는 비담지 촉매에 비해서는 촉매활성이 많이 줄어든다. 따라서 담지 메탈로센 촉매는 촉매의 종류에 따라서 촉매의 경제성을 만족시키기 어려운 촉매도 많이 있다. 또한 담지 메탈로센 촉매의 유용성의 주요한 다른 요인중의 하나는 담지 촉매를 사용하여 중합시에 상업운전 조건하에서 필요한 고분자량을 생산할 수 있는가에 있다. 많은 메탈로센 촉매의 경우에 상업 운전 조건하에서, 특히 분자량 조절을 위한 수소의 존재하에서, 필요한 충분한 고분자량의 폴리올레핀을 제조할 수 없는 경우가 있다. 이 경우에는 촉매의 경제성이 우수하여도 촉매로서의 가치는 현저히 떨어질 수 밖에 없다.The activity of the supported metallocene catalyst is a major factor directly affecting the economics of the catalyst. However, in most cases, when the catalyst is supported in the above manner, the catalytic activity of the metallocene catalyst is much lower than that of the non-supported catalyst. Therefore, there are many catalysts that do not satisfy the economical efficiency of the catalyst depending on the type of the catalyst. In addition, one of the major factors in the availability of supported metallocene catalysts is the ability to produce the high molecular weight required under commercial operating conditions during polymerization using a supported catalyst. In the case of many metallocene catalysts, it may not be possible to produce the required high molecular weight polyolefin necessary under commercial operating conditions, especially in the presence of hydrogen for molecular weight control. In this case, even if the economical efficiency of the catalyst is excellent, the value as a catalyst is inevitably lowered.

이러한 담지 메탈로센 촉매의 촉매활성을 증가시키기 위하여 많은 연구가 진행되어 왔다. 예를 들어, 유기실리콘 화합물을 실리카와 반응시켜 기능성 실리카 담체를 제조하고, 여기에 MAO와 메탈로센 화합물을 반응시켜 촉매를 제조하는 방법 (미국특허 제 4874734호, 미국특허 제 5206199호, Makromol. Chem., 1993, 194, 3499, J. Mol. Cat.A:Chem., 2000, 154, 103, J. Mol. Cat.A:Chem., 2003, 197, 233), 유기주석 화합물을 실리카와 반응시켜 기능성 실리카 담체를 제조하고, 여기에 MAO와 메탈로센 화합물을 반응시켜 촉매를 제조하는 방법(미국특허 제 6908876호, 유럽특허 제1613667호 A2, WO 2004094480 A2, Makromol. Reaction  Eng., 2008, 2, 339, J. Appl. Polym. Sci. 2007, 106, 3149), 실리콘 테트라클로라이드(SiCl4)와 실리카를 반응시켜 기능성 실리카 담체를 제조하고, 여기에 MAO와 메탈로센 화합물을 반응시켜 촉매를 제조하는 방법(Makromol. Rapid Commun., 2002, 23, 672), MAO와 Diol(Bisphenol A)을 반응시킨 혼합물을 실리카에 담지시켜 이를 메탈로센 촉매의 담지체로 사용하는 방법(유럽특허 제 0685494호) 등이 보고되어 왔다. 이러한 방법들에 의하여 개선된 메탈로센 담지 촉매를 제조하면, 사용한 유기실리콘 화합물이나 유기주석 화합물의 루이스 산성도에 따라서 촉매의 활성이 개선되는 경우가 많이 있으나, 그 산성도의 영향에 따라서 사슬성장 반응의 속도보다 사슬정지 반응의 속도가 증가하여 생성된 분자량이 감소하는 경향이 나타난다. 따라서 분자량  조절을 위한 수소의 존재하에서 진행되는 상업운전 조건하에서는 필요한 충분한 고분자량의 폴리올레핀을 제조하기가 어려워지는 단점이 있다.Many studies have been conducted to increase the catalytic activity of such supported metallocene catalysts. For example, a method of reacting an organosilicon compound with silica to prepare a functional silica carrier and then reacting the MAO with a metallocene compound to prepare a catalyst (U.S. Patent No. 4874734, U.S. Patent No. 5206199, Makromol. Chem., 2003, 197, 233), an organotin compound is reacted with silica and a catalyst, A method of preparing a functional silica support by reacting MAO with a metallocene compound to prepare a catalyst (US Patent No. 6,908,876, European Patent No. 1613667 A2, WO 2004094480 A2, Makromol. Reaction Eng., 2008 , 2, 339, J. Appl. Polym. Sci., 2007, 106, 3149), silicon tetrachloride (SiCl 4 ) with silica to prepare a functional silica carrier, which is then reacted with a metallocene compound (Makromol. Rapid Commun., 2002, 23, 672), a mixture of MAO and Diol (Bisphenol A) The like have been reported by the use of body-supported metallocene catalyst in this metal supported on silica (European Patent No. 0685494). When an improved metallocene supported catalyst is prepared by these methods, the activity of the catalyst is improved depending on the Lewis acidity of the organosilicon compound or the organotin compound used. However, depending on the influence of the acidity, The rate of chain termination reaction increases rather than the rate, so that the molecular weight produced tends to decrease. Therefore, it is disadvantageous in that it is difficult to produce a polyolefin having a sufficient high molecular weight, which is necessary under a commercial operating condition in the presence of hydrogen for molecular weight control.

한편으로는, 메탈로센 촉매를 루이스 베이스인 유기화합물과 MAO의 중합 반응시에 첨가함으로써 촉매성능을 개선하는 연구가 진행되어 왔다. 예를 들어, 테트라히드로퓨란(Tetrahydrofuran), 에틸벤조에이트(Ethyl benzoate), 아세토니트릴(Acetonitrile)의 중합반응시에 MAO와 함께 투입하는 방법(J. Polym. Sci., Part A: Polym. Chem. 1991, 29, 1595),  tBuMe2SiH, Et3SiH, 폴리(히드로메틸실록산)과 같은 하이드로실란(Hydrosilane)의 중합반응시에 MAO와 함께 투입하는 방법(미국특허 제6939930호, 미국특허 제6642326호) 등이 발표되었다. 이 방법들은 촉매의 분자량을 증가시키는 부분에서는 효과적인 것으로 보고되었지만, 촉매의 활성을 감소시켜 촉매의 경제성을 약화시키는 단점이 있다. On the other hand, studies have been made to improve the catalytic performance by adding a metallocene catalyst at the time of polymerization reaction of an organic compound as a Lewis base and MAO. For example, a method of charging with MAO in the polymerization reaction of tetrahydrofuran, ethyl benzoate, and acetonitrile (J. Polym. Sci., Part A: Polym. Chem. (US Pat. No. 6,933,930, US Pat. Nos. 6,642,326 (1991), 29, 1595), a method of charging with hydrosilane such as tBuMe 2 SiH, Et 3 SiH, and poly (hydromethylsiloxane) And so on. Although these methods have been reported to be effective in increasing the molecular weight of the catalyst, they have the disadvantage of reducing the activity of the catalyst and thus reducing the economics of the catalyst.

이러한 담지 메탈로센 촉매의 활성 및 분자량을 개선하는 문제는 메탈로센 촉매 자체의 근원적인 문제로 활성이 우수하고, 분자량이 크게 나오는 메탈로센 촉매 자체를 디자인하여 합성하면 해결이 가능하다. 그러나 이같이 신규 메탈로센 촉매를 디자인 및 합성하는 것은 많은 시간과 노력이 필요하며, 그 성공 가능성은 매우 낮다고 할 수 있다. 따라서 담지 메탈로센 촉매를 적절히 개선하여 촉매의 활성과 분자량을 증가시키는 개선된 촉매 및 촉매 제조 방법이 요구되고 있다고 할 수 있다.The problem of improving the activity and the molecular weight of the supported metallocene catalyst can be solved by designing and synthesizing the metallocene catalyst itself, which has excellent activity due to the problem of the metallocene catalyst itself and has a large molecular weight. However, designing and synthesizing such a new metallocene catalyst requires a great deal of time and effort, and its success rate is very low. Accordingly, there is a need for an improved catalyst and a catalyst production method for appropriately improving the supported metallocene catalyst to increase the activity and the molecular weight of the catalyst.

본 발명은 상기와 같은 문제를 해결하기 위한 것으로, 본 발명의 목적은 매우 간단한 공정을 통해 제조되면서도 촉매활성이 우수한 올레핀 중합 및 공중합용 촉매를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a catalyst for olefin polymerization and copolymerization which is produced through a very simple process and has excellent catalytic activity.

본 발명의 또 다른 목적은 본 발명의 촉매를 이용하므로써 고분자량의 올레핀 중합체 및 공중합체를 제조할 수 있는 올레핀 중합 또는 공중합 방법을 제공하는 것이다.It is still another object of the present invention to provide an olefin polymerization or copolymerization method capable of producing high molecular weight olefin polymers and copolymers by using the catalyst of the present invention.

본 발명에 따른 올레핀 중합 및 공중합용 촉매는 다음의 단계들을 포함하는 제조방법에 의해 제조되는 것을 특징으로 한다:The catalyst for olefin polymerization and copolymerization according to the invention is characterized in that it is prepared by a process comprising the steps of:

(1) 담체에, 알루미녹산, 알콕시실란 화합물, 메탈로센 화합물, 및 티타노센 화합물 또는 하프 티타노센 화합물을 담지시키는 단계,(1) a step of supporting an aluminoxane, an alkoxysilane compound, a metallocene compound, and a titanocene compound or a half-titanocene compound on a carrier,

(2) 상기 (1) 단계에서 얻어진 담지 촉매를 유기용매로 세척하는 단계; 및(2) washing the supported catalyst obtained in the step (1) with an organic solvent; And

(3) 상기 (2) 단계에서 세척된 촉매를 건조시킨 후 촉매 분말로서 회수하는 단계.(3) drying the catalyst washed in the step (2) and recovering it as a catalyst powder.

본 발명에 있어서, 상기 (1) 단계의 담지 과정은 알콕시실란 화합물과 반응시킨 알루미녹산 용액에, 메탈로센 화합물과 티타노센 화합물 또는 하프 티타노센 화합물을 용해시켜 얻어진 용액을 담체 슬러리에 첨가하고, 교반시켜 수행될 수 있다(담지 (a) 과정),In the present invention, in the carrying process of the step (1), a solution obtained by dissolving a metallocene compound, a titanocene compound or a half-titanocene compound in an aluminoxane solution reacted with an alkoxysilane compound is added to the carrier slurry, (Carrying (a) process),

또는 상기 (1) 단계의 담지 과정은 알콕시실란 화합물과 반응시킨 알루미녹산 용액을 담체 슬러리에 첨가하여, 교반시켜 알루미녹산과 알콕시실란 화합물을 담지시킨 다음, 메탈로센 화합물과 티타노센 화합물 또는 하프 티타노센 화합물을 첨가하여 교반시켜 메탈로센 성분과 티타노센 화합물 또는 하프 티타노센 화합물을 담지시키도록 수행될 수도 있다(담지 (b) 과정).Alternatively, in the carrying process of the step (1), the aluminoxane solution reacted with the alkoxysilane compound is added to the carrier slurry and stirred to carry the aluminoxane and the alkoxysilane compound, and then the metallocene compound and the titanocene compound or the half- (B)), and the mixture is stirred to carry the metallocene component and the titanocene compound or the half-titanocene compound (supporting process (b)).

상기 (1) 단계에서 사용되는 메탈로센 화합물은, 그 종류에 특별히 제한은 없으나, 바람직한 예로서 디시클로펜타디에닐 메탈로센 또는 다리결합 메탈로센 또는 모노시클로펜타디에닐 메탈로센을 들 수 있다.The metallocene compound to be used in the step (1) is not particularly limited, but a preferable example is a dicyclopentadienyl metallocene or a bridged metallocene or a monocyclopentadienyl metallocene. .

먼저, 디시클로펜타디에닐 메탈로센은 다음의 일반식(1)로 나타낼 수 있다.First, dicyclopentadienyl metallocene can be represented by the following general formula (1).

(CpRn)(CpR'm)MLq ‥‥‥ (1)(CpR n ) (CpR ' m ) ML q (1)

여기에서 Cp는 시클로펜타디에닐, 인데닐, 또는 플루오레닐이고,Wherein Cp is cyclopentadienyl, indenyl, or fluorenyl,

R과 R'는 각각 독립적으로 수소, 알킬, 알킬에테르(alkylether), 알릴에테르(allylether), 포스핀(phosphine) 또는 아민(amine)을 나타내고,R and R 'each independently represent hydrogen, alkyl, alkylether, allylether, phosphine or amine,

L은 알킬, 알릴, 아릴알킬, 아마이드(amide), 알콕시 또는 할로겐(halogen)을 나타내고,L represents alkyl, allyl, arylalkyl, amide, alkoxy or halogen,

M은 주기율표의 4족 또는 5족의 전이금속(Transition metal)을 나타내고,M represents a transition metal of Group 4 or Group 5 of the periodic table,

n은 0 ≤ n < 5,  m은 0 ≤ m < 5, q는 1 ≤ q ≤ 4를 만족하는 정수이다.n is an integer satisfying 0? n <5, m is 0? m <5, and q is 1? q? 4.

다리결합 메탈로센은 다음의 일반식(2)로 나타낼 수 있다.The bridge-bound metallocene can be represented by the following general formula (2).

Q(CpRn)(CpR'm)MLq ‥‥‥ (2)Q (CpR n ) (CpR ' m ) ML q (2)

여기서 Cp, R, R', M, L은 상기 일반식(1)과 동일한 의미를 가지며, Q는 C고리 사이의 다리결합으로서, 디알킬(Dialkyl), 알킬아릴(Alkylaryl), 디아릴실리콘(Diaryl silicon), 또는 탄소수 1~20의 탄화수소기를 나타내며,  n은 0 ≤ n < 4,  m은 0 ≤ m <4, q는 1 ≤ q ≤ 4를 만족하는 정수이다.Q is a bridging bond between the C rings and may be a divalent linkage such as dialkyl, alkylaryl (Alkylaryl), diarylsilyl ( Diaryl silicon or a hydrocarbon group of 1 to 20 carbon atoms, n is an integer satisfying 0? N <4, m is 0? M <4, and q is 1? Q?

모노시클로펜타디에닐 메탈로센은 다음의 일반식(3)으로 표시할 수 있다.The monocyclopentadienyl metallocene can be represented by the following general formula (3).

Figure pat00001
   ‥‥‥ (3)
Figure pat00001
(3)

여기에서 (C5H5 -y- xRx)는 시클로펜타디에닐에 붙어있는 치환기의 수를 나타내는 것으로, x는 0, 1, 2, 3 또는 4이며, y는 0 또는 1이다. R은 수소, 탄소수 1~20의 탄화수소기, 실릴기, 게르밀기, 시아노기, 할로겐 또는 이들의 복합기로 이루어진 1 내지 20개의 비수소 원자를 갖는 치환기를 나타내고, Y'는 -O-, -S-, -NR*-, 또는 -PR*-를 나타내고(R*는 수소, 탄소수 1~12의 탄화수소기), 탄소수 1~8의 히드로카르빌옥시기, 실릴기, 탄소수 1~8의 할로겐화 알킬기, 탄소수 6~20의 할로겐화 아릴기 또는 이들의 복합기를 나타내고, Z는 SiR*2, CR*2, SiR*2SiR*2, CR*2CR*2, CR*=CR*, CR*2SiR*2 또는 GeR*2를 나타내며, R*는 상기에서 정의한 바와 같고, L은 각각 독립적으로 할라이드, 탄소수 1~20의 탄화수소기, 탄소수 1~18의 히드로카르빌옥시기, 탄소수 1~19의 히드로카르빌아미노기, 탄소수 1~18의 히드로카르빌아미드기, 탄소수 1~18의 히드로카르빌포스피드기, 탄소수 1~18의 히드로카르빌설피드기, 및 이들의 복합기로 이루어진 군에서 선택되는 1 내지 20개의 비수소 치환기를 갖는 치환기를 나타내거나, 또는 2개의 치환기 L이 함께 탄소수 1~30의 중성 공액 디엔 또는 2가의 기를 나타내고, M은 주기율표의 4족 또는 5족의 전이금속(Transition metal)을 나타낸다.(C 5 H 5 -y- x R x ) represents the number of substituents attached to the cyclopentadienyl, x is 0, 1, 2, 3 or 4, and y is 0 or 1. R represents a substituent having 1 to 20 non-hydrogen atoms consisting of hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, a silyl group, a germyl group, a cyano group, a halogen or a multifunctional group thereof, Y 'represents -O-, -S -, -NR * -, or -PR * - (wherein R * represents hydrogen, a hydrocarbon group having 1 to 12 carbon atoms), a hydrocarbyloxy group having 1 to 8 carbon atoms, a silyl group, a halogenated alkyl group having 1 to 8 carbon atoms, of 6 to 20 carbon atoms halogenated an aryl group or a all-in-one, Z is SiR * 2, CR * 2, SiR * 2 SiR * 2, CR * 2 CR * 2, CR * = CR *, CR * 2 SiR * 2 or GeR * 2 , R * is as defined above, L is independently selected from the group consisting of halide, hydrocarbon group of 1 to 20 carbon atoms, hydrocarbyloxy group of 1 to 18 carbon atoms, hydrocarbyl of 1 to 19 carbon atoms An amino group, a hydrocarbyl amide group having 1 to 18 carbon atoms, a hydrocarbyl phosphide group having 1 to 18 carbon atoms, a hydrocarbylsulfide group having 1 to 18 carbon atoms, Or two substituents L together represent a neutral conjugated diene or a divalent group having 1 to 30 carbon atoms, M represents a group of a group 4 or 5 of the periodic table, It represents a transition metal.

상기 일반식(1)로 표시되는 디시클로펜타디에닐 메탈로센의 종류에는, 비스(시클로펜타디에닐)지르코늄디메틸, 비스(메틸시클로펜타디에닐)지르코늄디메틸, 비스(n-부틸시클로펜타디에닐)지르코늄디메틸, 비스(인데닐)지르코늄디메틸, 비스(1,3-디메틸시클로펜타디에닐)지르코늄디메틸, (펜타메틸시클로펜타디에닐)(시클로펜타디에닐)지르코늄디메틸, 비스(펜타메틸시클로펜타디에닐)지르코늄디메틸, 비스(플루오레닐)지르코늄디메틸, 비스(2-메틸인데닐)지르코늄디메틸, 비스(2-페닐인데닐)지르코늄디메틸, 시클로펜타디에닐(2-페닐인데닐)지르코늄디메틸 등과 같은 비스시클로펜타디에닐 메탈로센을 들 수 있고,Examples of the dicyclopentadienyl metallocene represented by the general formula (1) include bis (cyclopentadienyl) zirconium dimethyl, bis (methylcyclopentadienyl) zirconium dimethyl, bis (n-butylcyclopentadiene (Pentamethylcyclopentadienyl) zirconium dimethyl, bis (indenyl) zirconium dimethyl, bis (1,3-dimethylcyclopentadienyl) zirconium dimethyl, (2-phenylindenyl) zirconium dimethyl, cyclopentadienyl (2-phenylindenyl) zirconium dimethyl, bis (fluorenyl) zirconium dimethyl, bis Bis-cyclopentadienyl metallocene such as dimethyl, etc.,

상기 일반식(2)로 표시되는 다리결합 메탈로센으로는, 디메틸실릴비스(1-인데닐)지르코늄디메틸, 디메틸실릴(9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 디메틸실릴비스(1-시클로펜타디에닐)지르코늄디메틸, 디메틸실릴(9-플루오레닐)(1-인데닐)지르코늄디메틸, 디메틸실릴비스(1-인데닐)하프늄디메틸, 디메틸실릴(9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 디메틸실릴비스(1-시클로펜타디에닐)하프늄디메틸, 디메틸실릴(9-플루오레닐)(1-인데닐)하프늄디메틸, 에틸렌비스(1-시클로펜타디에닐)지르코늄디메틸, 에틸렌비스(1-인데닐)지르코늄디메틸, 에틸렌비스(4,5,6,7-테트라히드로-1-인데닐)지르코늄디메틸, 에틸렌비스(4-메틸-1-인데닐)지르코늄디메틸, 에틸렌비스(5-메틸-1-인데닐)지르코늄디메틸, 에틸렌비스(6-메틸-1-인데닐)지르코늄디메틸, 에틸렌비스(7-메틸-1-인데닐)지르코늄디메틸, 에틸렌비스(4-페닐-1-인데닐)지르코늄디메틸, 에틸렌비스(5-메톡시-1-인데닐)지르코늄디메틸, 에틸렌비스(2,3-디메틸-1-인데닐)지르코늄디메틸, 에틸렌비스(4,7-디메틸-1-인데닐)지르코늄디메틸, 에틸렌비스(4,7-디메톡시-1-인데닐)지르코늄디메틸, 에틸렌비스(트리메틸시클로펜타디에닐)지르코늄디메틸, 에틸렌비스(5-디메틸아미노-1-인데닐)지르코늄디메틸, 에틸렌비스(6-디프로필아미노-1-인데닐)지르코늄디메틸, 에틸렌비스(4,7-비스(디메틸아미노)-1-인데닐)지르코늄디메틸, 에틸렌비스(5-디페닐포스피노-1-인데닐)지르코늄디메틸, 에틸렌(1-디메틸아미노-9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 에틸렌(4-부틸티오-9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 에틸렌(9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 에틸렌비스(9-플루오레닐)지르코늄디메틸, 에틸렌비스(1-시클로펜타디에닐)하프늄디메틸, 에틸렌비스(1-인데닐)하프늄디메틸, 에틸렌비스(4,5,6,7-테트라히드로-1-인데닐)하프늄디메틸, 에틸렌비스(4-메틸-1-인데닐)하프늄디메틸, 에틸렌비스(5-메틸-1-인데닐)하프늄디메틸, 에틸렌비스(6-메틸-1-인데닐)하프늄디메틸, 에틸렌비스(7-메틸-1-인데닐)하프늄디메틸, 에틸렌비스(4-페닐-1-인데닐)하프늄디메틸, 에틸렌비스(5-메톡시-1-인데닐)하프늄디메틸, 에틸렌비스(2,3-디메틸-1-인데닐)하프늄디메틸, 에틸렌비스(4,7-디메틸-1-인데닐)하프늄디메틸, 에틸렌비스(4,7-디메톡시-1-인데닐)하프늄디메틸, 에틸렌비스(트리메틸시클로펜타디에닐)하프늄디메틸, 에틸렌비스(5-디메틸아미노-1-인데닐)하프늄디메틸, 에틸렌비스(6-디프로필아미노-1-인데닐)하프늄디메틸, 에틸렌비스(4,7-비스(디메틸아미노)-1-인데닐)하프늄디메틸, 에틸렌비스(5-디페닐포스피노-1-인데닐)하프늄디메틸, 에틸렌(1-디메틸아미노-9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 에틸렌(4-부틸티오-9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 에틸렌(9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 에틸렌비스(9-플루오레닐)하프늄디메틸, 2,2-프로필비스(1-시클로펜타디에닐)지르코늄디메틸, 2,2-프로필비스(1-인데닐)지르코늄디메틸, 2,2-프로필비스(4,5,6,7-테트라히드로-1-인데닐)지르코늄디메틸, 2,2-프로필비스(4-메틸-1-인데닐)지르코늄디메틸, 2,2-프로필비스(5-메틸-1-인데닐)지르코늄디메틸, 2,2-프로필비스(6-메틸-1-인데닐)지르코늄디메틸, 2,2-프로필비스(7-메틸-1-인데닐)지르코늄디메틸, 2,2-프로필비스(4-페닐-1-인데닐)지르코늄디메틸, 2,2-프로필비스(5-메톡시-1-인데닐)지르코늄디메틸, 2,2-프로필비스(2,3-디메틸-1-인데닐)지르코늄디메틸, 2,2-프로필비스(4,7-디메틸-1-인데닐)지르코늄디메틸, 2,2-프로필비스(4,7-디메톡시-1-인데닐)지르코늄디메틸, 2,2-프로필비스(트리메틸시클로펜타디에닐)지르코늄디메틸, 2,2-프로필비스(5-디메틸아미노-1-인데닐)지르코늄디메틸, 2,2-프로필비스(6-디프로필아미노-1-인데닐)지르코늄디메틸, 2,2-프로필비스(4,7-비스(디메틸아미노)-1-인데닐)지르코늄디메틸, 2,2-프로필비스(5-디페닐포스피노-1-인데닐)지르코늄디메틸, 2,2-프로필(1-디메틸아미노-9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 2,2-프로필(4-부틸티오-9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 2,2-프로필(9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 2,2-프로필비스(9-플루오레닐)지르코늄디메틸, 2,2-프로필비스(1-시클로펜타디에닐)하프늄디메틸, 2,2-프로필비스(1-인데닐)하프늄디메틸, 2,2-프로필비스(4,5,6,7-테트라히드로-1-인데닐)하프늄디메틸, 2,2-프로필비스(4-메틸-1-인데닐)하프늄디메틸, 2,2-프로필비스(5-메틸-1-인데닐)하프늄디메틸, 2,2-프로필비스(6-메틸-1-인데닐)하프늄디메틸, 2,2-프로필비스(7-메틸-1-인데닐)하프늄디메틸, 2,2-프로필비스(4-페닐-1-인데닐)하프늄디메틸, 2,2-프로필비스(5-메톡시-1-인데닐)하프늄디메틸, 2,2-프로필비스(2,3-디메틸-1-인데닐)하프늄디메틸, 2,2-프로필비스(4,7-디메틸-1-인데닐)하프늄디메틸, 2,2-프로필비스(4,7-디메톡시-1-인데닐)하프늄디메틸, 2,2-프로필비스(트리메틸시클로펜타디에닐)하프늄디메틸, 2,2-프로필비스(5-디메틸아미노-1-인데닐)하프늄디메틸, 2,2-프로필비스(6-디프로필아미노-1-인데닐)하프늄디메틸, 2,2-프로필비스(4,7-비스(디메틸아미노)-1-인데닐)하프늄디메틸, 2,2-프로필비스(5-디페닐포스피노-1-인데닐)하프늄디메틸, 2,2-프로필(1-디메틸아미노-9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 2,2-프로필(4-부틸티오-9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 2,2-프로필(9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 2,2-프로필비스(9-플루오레닐)하프늄디메틸, 디페닐메틸비스(1-시클로펜타디에닐)지르코늄디메틸, 디페닐메틸비스(1-인데닐)지르코늄디메틸, 디페닐메틸비스(4,5,6,7-테트라히드로-1-인데닐)지르코늄디메틸, 디페닐메틸비스(4-메틸-1-인데닐)지르코늄디메틸, 디페닐메틸비스(5-메틸-1-인데닐)지르코늄디메틸, 디페닐메틸비스(6-메틸-1-인데닐)지르코늄디메틸, 디페닐메틸비스(7-메틸-1-인데닐)지르코늄디메틸, 디페닐메틸비스(4-페닐-1-인데닐)지르코늄디메틸, 디페닐메틸비스(5-메톡시-1-인데닐)지르코늄디메틸, 디페닐메틸비스(2,3-디메틸-1-인데닐)지르코늄디메틸, 디페닐메틸비스(4,7-디메틸-1-인데닐)지르코늄디메틸, 디페닐메틸비스(4,7-디메톡시-1-인데닐)지르코늄디메틸, 디페닐메틸비스(트리메틸시클로펜타디에닐)지르코늄디메틸, 디페닐메틸비스(5-디메틸아미노-1-인데닐)지르코늄디메틸, 디페닐메틸비스(6-디프로필아미노-1-인데닐)지르코늄디메틸, 디페닐메틸비스(4,7-비스(디메틸아미노)-1-인데닐)지르코늄디메틸, 디페닐메틸비스(5-디페닐포스피노-1-인데닐)지르코늄디메틸, 디페닐메틸(1-디메틸아미노-9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 디페닐메틸(4-부틸티오-9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 디페닐메틸(9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 디페닐메틸비스(9-플루오레닐)지르코늄디메틸, 디페닐메틸비스(1-시클로펜타디에닐)하프늄디메틸, 디페닐메틸비스(1-인데닐)하프늄디메틸, 디페닐메틸비스(4,5,6,7-테트라히드로-1-인데닐)하프늄디메틸, 디페닐메틸비스(4-메틸-1-인데닐)하프늄디메틸, 디페닐메틸비스(5-메틸-1-인데닐)하프늄디메틸, 디페닐메틸비스(6-메틸-1-인데닐)하프늄디메틸, 디페닐메틸비스(7-메틸-1-인데닐)하프늄디메틸, 디페닐메틸비스(4-페닐-1-인데닐)하프늄디메틸, 디페닐메틸비스(5-메톡시-1-인데닐)하프늄디메틸, 디페닐메틸비스(2,3-디메틸-1-인데닐)하프늄디메틸, 디페닐메틸비스(4,7-디메틸-1-인데닐)하프늄디메틸, 디페닐메틸비스(4,7-디메톡시-1-인데닐)하프늄디메틸, 디페닐메틸비스(트리메틸시클로펜타디에닐)하프늄디메틸, 디페닐메틸비스(5-디메틸아미노-1-인데닐)하프늄디메틸, 디페닐메틸비스(6-디프로필아미노-1-인데닐)하프늄디메틸, 디페닐메틸비스(4,7-비스(디메틸아미노)-1-인데닐)하프늄디메틸, 디페닐메틸비스(5-디페닐포스피노-1-인데닐)하프늄디메틸, 디페닐메틸(1-디메틸아미노-9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 디페닐메틸(4-부틸티오-9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 디페닐메틸(9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 디페닐메틸비스(9-플루오레닐)하프늄디메틸, 디페닐실릴비스(1-시클로펜타디에닐)지르코늄디메틸, 디페닐실릴비스(1-인데닐)지르코늄디메틸, 디페닐실릴비스(4,5,6,7-테트라히드로-1-인데닐)지르코늄디메틸, 디페닐실릴비스(4-메틸-1-인데닐)지르코늄디메틸, 디페닐실릴비스(5-메틸-1-인데닐)지르코늄디메틸, 디페닐실릴비스(6-메틸-1-인데닐)지르코늄디메틸, 디페닐실릴비스(7-메틸-1-인데닐)지르코늄디메틸, 디페닐실릴비스(4-페닐-1-인데닐)지르코늄디메틸, 디페닐실릴비스(5-메톡시-1-인데닐)지르코늄디메틸, 디페닐실릴비스(2,3-디메틸-1-인데닐)지르코늄디메틸, 디페닐실릴비스(4,7-디메틸-1-인데닐)지르코늄디메틸, 디페닐실릴비스(4,7-디메톡시-1-인데닐)지르코늄디메틸, 디페닐실릴비스(트리메틸시클로펜타디에닐)지르코늄디메틸, 디페닐실릴비스(5-디메틸아미노-1-인데닐)지르코늄디메틸, 디페닐실릴비스(6-디프로필아미노-1-인데닐)지르코늄디메틸, 디페닐실릴비스(4,7-비스(디메틸아미노)-1-인데닐)지르코늄디메틸, 디페닐실릴비스(5-디페닐포스피노-1-인데닐)지르코늄디메틸, 디페닐실릴(1-디메틸아미노-9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 디페닐실릴(4-부틸티오-9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 디페닐실릴(9-플루오레닐)(1-시클로펜타디에닐)지르코늄디메틸, 디페닐실릴비스(9-플루오레닐)지르코늄디메틸, 디페닐실릴비스(1-시클로펜타디에닐)하프늄디메틸, 디페닐실릴비스(1-인데닐)하프늄디메틸, 디페닐실릴비스(4,5,6,7-테트라히드로-1-인데닐)하프늄디메틸, 디페닐실릴비스(4-메틸-1-인데닐)하프늄디메틸, 디페닐실릴비스(5-메틸-1-인데닐)하프늄디메틸, 디페닐실릴비스(6-메틸-1-인데닐)하프늄디메틸, 디페닐실릴비스(7-메틸-1-인데닐)하프늄디메틸, 디페닐실릴비스(4-페닐-1-인데닐)하프늄디메틸, 디페닐실릴비스(5-메톡시-1-인데닐)하프늄디메틸, 디페닐실릴비스(2,3-디메틸-1-인데닐)하프늄디메틸, 디페닐실릴비스(4,7-디메틸-1-인데닐)하프늄디메틸, 디페닐실릴비스(4,7-디메톡시-1-인데닐)하프늄디메틸, 디페닐실릴비스(트리메틸시클로펜타디에닐)하프늄디메틸, 디페닐실릴비스(5-디메틸아미노-1-인데닐)하프늄디메틸, 디페닐실릴비스(6-디프로필아미노-1-인데닐)하프늄디메틸, 디페닐실릴비스(4,7-비스(디메틸아미노)-1-인데닐)하프늄디메틸, 디페닐실릴비스(5-디페닐포스피노-1-인데닐)하프늄디메틸, 디페닐실릴(1-디메틸아미노-9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 디페닐실릴(4-부틸티오-9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 디페닐실릴(9-플루오레닐)(1-시클로펜타디에닐)하프늄디메틸, 디페닐실릴비스(9-플루오레닐)하프늄디메틸을 들 수 있고,Examples of the bridged metallocene represented by the general formula (2) include dimethylsilylbis (1-indenyl) zirconium dimethyl, dimethylsilyl (9-fluorenyl) (1-cyclopentadienyl) zirconium dimethyl, dimethyl Dimethylsilylbis (1-indenyl) zirconium dimethyl, dimethylsilyl (9-fluorenyl) (1-indenyl) zirconium dimethyl, dimethylsilylbis (1- cyclopentadienyl) hafnium dimethyl, dimethylsilylbis (1-cyclopentadienyl) hafnium dimethyl, dimethylsilyl (9-fluorenyl) (1-indenyl) hafnium dimethyl, ethylene bis Zirconium dimethyl, ethylenbis (1-indenyl) zirconium dimethyl, ethylenebis (4,5,6,7-tetrahydro-1-indenyl) zirconium dimethyl, ethylenebis Indenyl) zirconium dimethyl, ethylene bis (5-methyl-1-indenyl) zirconium dimethyl, ethylene bis (6-methyl- Zirconium dimethyl, ethylenbis (4-phenyl-1-indenyl) zirconium dimethyl, ethylenebis (5-methoxy-1-indenyl) zirconium dimethyl, ethylenebis (4,7-dimethoxy-1-indenyl) zirconium dimethyl, ethylene bis (4,7-dimethyl-1-indenyl) zirconium dimethyl, ethylene bis Dimethyl bis (trimethylcyclopentadienyl) zirconium dimethyl, ethylene bis (5-dimethylamino-1-indenyl) zirconium dimethyl, ethylene bis (6-dipropylamino-1-indenyl) zirconium dimethyl, 1-indenyl) zirconium dimethyl, ethylenbis (5-diphenylphosphino-1-indenyl) zirconium dimethyl, ethylene (1-dimethylamino-9-fluorenyl) (1-cyclopentadienyl) zirconium dimethyl, ethylene (9-fluorenyl) (1-cyclopentadienyl) zirconium dimethyl, ethylene (4-butylthio- (1-cyclopentadienyl) hafnium dimethyl, ethylene bis (1-indenyl) hafnium dimethyl, ethylene bis (4,5-dienyl) zirconium dimethyl, ethylene bis (9-fluorenyl) zirconium dimethyl, Indenyl) hafnium dimethyl, ethylenbis (4-methyl-1-indenyl) hafnium dimethyl, ethylene bis (5-methyl- Methyl-1-indenyl) hafnium dimethyl, ethylenbis (7-methyl-1-indenyl) hafnium dimethyl, ethylenebis (4,7-dimethyl-1-indenyl) hafnium dimethyl, ethylene bis (4,7-dimethoxy-indenyl) hafnium dimethyl, ethylene bis (1-indenyl) hafnium dimethyl, ethylene bis (trimethylcyclopentadienyl) hafnium dimethyl, ethylene bis (5-dimethylamino-1-indenyl) hafnium dimethyl, ethylene bis (Dimethylamino) hafnium dimethyl, ethylenbis (5-diphenylphosphino-1-indenyl) hafnium dimethyl, ethylene (1-dimethylamino) 9-fluorenyl) (1-cyclopentadienyl) hafnium dimethyl, ethylene (4-butylthio-9-fluorenyl) (1- cyclopentadienyl) hafnium dimethyl, ethylene (1- cyclopentadienyl) hafnium dimethyl, ethylene bis (9-fluorenyl) hafnium dimethyl, 2,2-propyl bis (1-cyclopentadienyl) zirconium dimethyl, 2,2- (4-methyl-1-indenyl) zirconium dimethyl, 2,2-bis (4,5,6,7-tetrahydro-1-indenyl) zirconium dimethyl, Propylbis (7-methyl-1-indenyl) zirconium dimethyl, 2,2-propylbis - indenyl) zirconium dimethyl, 2,2-propylbis (4-phenyl-1-indenyl ) Dimethylzirconium dimethyl, 2,2-propylbis (5-methoxy-1-indenyl) zirconium dimethyl, (4,7-dimethoxy-1-indenyl) zirconium dimethyl, 2,2-propylbis (trimethylcyclopentadienyl) Zirconium dimethyl, 2,2-propylbis (5-dimethylamino-1-indenyl) zirconium dimethyl, 2,2- Bis (dimethylamino) -1-indenyl) zirconium dimethyl, 2,2-propylbis (5-diphenylphosphino-1-indenyl) zirconium dimethyl, 2-propyl (4-butylthio-9-fluorenyl) (1-cyclopentadienyl) zirconium dimethyl, 2, 2-propyl (9-fluorenyl) (1-cyclopentadienyl) zirconium dimethyl, (1-cyclopentadienyl) hafnium dimethyl, 2,2-propylbis (1-indenyl) hafnium dimethyl, 2,2-propylbis (4-methyl-1-indenyl) hafnium dimethyl, 2,2-propylbis (5-methyl-1-indenyl) hafnium dimethyl, 2,2- -Indenyl) hafnium dimethyl, 2,2-propylbis (6-methyl-1-indenyl) hafnium dimethyl, 2,2- (5-methoxy-1-indenyl) hafnium dimethyl, 2,2-propylbis (2,3-dimethyl- 2-propylbis (4,7-dimethoxy-1-indenyl) hafnium dimethyl, 2,2-dimethylbiphenyl, 2-propylbis (trimethylcyclopentadienyl) hafnium dimethyl, 2,2-propylbis (5-dimethylamino-1-indenyl) hafnium dimethyl, (Dimethylamino) -1-indenyl) hafnium dimethyl, 2,2-propylbis (5-diphenylphosphino-1 (1-dimethylamino-9-fluorenyl) (1-cyclopentadienyl) hafnium dimethyl, 2,2-propyl (4-butylthio-9-fluoro (1-cyclopentadienyl) hafnium dimethyl, 2,2-propylbis (9-fluorenyl) hafnium dimethyl, (1-cyclopentadienyl) zirconium dimethyl, diphenylmethylbis (1-indenyl) zirconium dimethyl, diphenylmethylbis (4,5,6,7-tetrahydro-1-indenyl (1-indenyl) zirconium dimethyl, diphenylmethylbis (4-methyl-1-indenyl) zirconium dimethyl, diphenylmethylbis Dimethyl) zirconium dimethyl, diphenylmethylbis (7-methyl-1-indenyl) zirconium Dimethyl-1-indenyl) zirconium dimethyl, diphenylmethylbis (4-phenyl-1-indenyl) zirconium dimethyl, diphenylmethylbis Indenyl) zirconium dimethyl, diphenylmethylbis (4,7-dimethyl-1-indenyl) zirconium dimethyl, diphenylmethylbis (4,7-dimethoxy- Diphenylmethyl-bis (6-dipropylamino-1-indenyl) zirconium dimethyl, diphenylmethylbis (5-dimethylamino-1-indenyl) zirconium dimethyl, (1-dimethylamino-9-naphthyl) zirconium dimethyl, diphenylmethylbis (5-diphenylphosphino-1-indenyl) zirconium dimethyl, diphenylmethyl Dimethylcyclopentadienyl) zirconium dimethyl, diphenylmethyl (4-butylthio-9-fluorenyl) (1-cyclopentadienyl) zirconium dimethyl, diphenylmethyl (1-cyclopentadienyl) zirconium dimethyl, diphenylmethylbis (9-fluorenyl) zirconium dimethyl, diphenylmethylbis (1-cyclopentadienyl) hafnium dimethyl, diphenylmethylbis Indenyl) hafnium dimethyl, diphenylmethylbis (4,5,6,7-tetrahydro-1-indenyl) hafnium dimethyl, diphenylmethylbis (4-methyl- Diphenylmethylbis (7-methyl-1-indenyl) hafnium dimethyl, diphenylmethylbis (6-methyl-1-indenyl) hafnium dimethyl, diphenylmethylbis (5-methoxy-1-indenyl) hafnium dimethyl, diphenylmethylbis (2,3-dimethyl-1-indenyl) hafnium (4,7-dimethoxy-1-indenyl) hafnium dimethyl, diphenylmethylbis (trimethylcyclopentadienyl) hafnium dimethyl, diphenylmethylbis Yl) hafnium dimethyl, di (Dimethylamino) hafnium dimethyl, diphenylmethylbis (6-dipropylamino-1-indenyl) hafnium dimethyl, diphenylmethylbis (4,7-bis Diphenylmethylphosphino-1-indenyl) hafnium dimethyl, diphenylmethyl (1-dimethylamino-9-fluorenyl) (1- (1-cyclopentadienyl) hafnium dimethyl, diphenylmethyl (4-butylthio-9-fluorenyl) (1-cyclopentadienyl) hafnium dimethyl, diphenylmethyl (1-cyclopentadienyl) zirconium dimethyl, diphenylsilylbis (1-indenyl) zirconium dimethyl, diphenylsilylbis (4-methylcyclopentadienyl) zirconium dimethyl, diphenylmethylbis (5-methyl-1-indenyl) zirconium dimethyl, diphenylsilylbis (4-methyl-1-indenyl) zirconium dimethyl, diphenylsilylbis Dimethyl, Diphenylsilylbis (4-phenyl-1-indenyl) zirconium dimethyl, diphenylsilylbis (7-methyl-1-indenyl) zirconium dimethyl, diphenylsilylbis , Diphenylsilylbis (5-methoxy-1-indenyl) zirconium dimethyl, diphenylsilylbis (2,3-dimethyl-1-indenyl) zirconium dimethyl, diphenylsilylbis (4,7-dimethoxy-1-indenyl) zirconium dimethyl, diphenylsilylbis (trimethylcyclopentadienyl) zirconium dimethyl, diphenylsilylbis (5-dimethylamino Diphenylsilylbis (4,7-bis (dimethylamino) -1-indenyl) zirconium dimethyl (diphenylsilylbis (1-dimethylamino-9-fluorenyl) (1-cyclopentadienyl) zirconium dimethyl, diphenylsilylbis (5-diphenylphosphino-1-indenyl) zirconium dimethyl, diphenylsilyl (1-cyclopentadienyl) zirconium dimethyl, diphenylsilyl (9-fluorenyl) (1-cyclopentadienyl) zirconium dimethyl, diphenylsilylbis (9-fluorenyl) zirconium dimethyl, diphenylsilylbis (1-cyclopentadienyl) hafnium dimethyl, diphenylsilylbis (1-indenyl) hafnium dimethyl, diphenylsilylbis (5-methyl-1-indenyl) hafnium dimethyl, diphenylsilylbis (4-methyl-1-indenyl) hafnium dimethyl, diphenylsilylbis (4-phenyl-1-indenyl) hafnium dimethyl, diphenylsilylbis (7-methyl-1-indenyl) hafnium dimethyl, diphenylsilylbis Diphenylsilylbis (2,3-dimethyl-1-indenyl) hafnium dimethyl, diphenylsilylbis (4,7-dimethyl-1-indenyl) Hafnium dimethyl, diphenylsilylbis (4,7-dimethy (5-dimethylamino-1-indenyl) hafnium dimethyl, diphenylsilylbis (trimethylcyclopentadienyl) hafnium dimethyl, diphenylsilylbis 1-indenyl) hafnium dimethyl, diphenylsilylbis (4,7-bis (dimethylamino) -1-indenyl) hafnium dimethyl, diphenylsilylbis (5-diphenylphosphino- ) Hafnium dimethyl, diphenylsilyl (1-dimethylamino-9-fluorenyl) (1-cyclopentadienyl) hafnium dimethyl, diphenylsilyl (4-butylthio-9-fluorenyl) Dienyl) hafnium dimethyl, diphenylsilyl (9-fluorenyl) (1-cyclopentadienyl) hafnium dimethyl, diphenylsilylbis (9-fluorenyl) hafnium dimethyl,

상기 일반식(3)으로 표시되는 모노시클로펜타디에닐 메탈로센의 예로는, [(N-t-부틸아미드)(테트라메틸-η5-시클로펜타디에닐)-1,2-에탄디일]티타늄디메틸, [(N-t-부틸아미드)(테트라메틸-η5-시클로펜타디에닐)-디메틸실란]티타늄디메틸, [(N-메틸아미드)(테트라메틸-η5-시클로펜타디에닐)-1,2-에탄디일]티타늄디메틸, [(N-메틸아미드)(테트라메틸-η5-시클로펜타디에닐)-디메틸실란]티타늄디메틸, [(N-페닐아미드)(테트라메틸-η5-시클로펜타디에닐)-디메틸실란]티타늄디메틸, [(N-벤질아미드)(테트라메틸-η5-시클로펜타디에닐)-디메틸실란]티타늄디메틸, (N-메틸아미드)(η5-시클로펜타디에닐)-1,2-에탄디일]티타늄디메틸, [(N-메틸아미드)(η5-시클로펜타디에닐)-디메틸실란]티타늄디메틸, [(N-t-부틸아미드)(η5-인데닐)-디메틸실란]티타늄디메틸, [(N-벤질아미드)(η5-인데닐)-디메틸실란]티타늄디메틸, 디메틸실릴테트라메틸 시클로펜타디에닐-tert-부틸아미도 지르코늄디메틸, 디메틸실릴테트라메틸 시클로펜타디에닐-tert-부틸아미도 하프늄디메틸, 디메틸실릴 tert-부틸 시클로펜타디에닐-tert-부틸아미도 지르코늄디메틸, 디메틸실릴 tert-부틸 시클로펜타디에닐-tert-부틸아미도 하프늄디메틸, 디메틸실릴 트리메틸실릴 시클로펜타디에닐-tert-부틸아미도 지르코늄디메틸, 디메틸실릴테트라메틸 시클로펜타디에닐-페닐아미도 지르코늄디메틸, 디메틸실릴테트라메틸 시클로펜타디에닐-페닐아미도 하프늄디메틸, 메틸페닐실릴 테트라메틸 시클로펜타디에닐-페닐아미도 지르코늄디메틸, 메틸페닐실릴 테트라메틸 시클로펜타디에닐-페닐아미도 하프늄디메틸, 메틸페닐실릴 tert-부틸 시클로펜타디에닐-tert-부틸아미도 지르코늄디메틸, 메틸페닐실릴 tert-부틸 시클로펜타디에닐-tert-부틸아미도 하프늄디메틸, 디메틸실릴테트라메틸 시클로펜타디에닐-p-n-페닐아미도 지르코늄디메틸, 디메틸실릴테트라메틸 시클로펜타디에닐-p-n-페닐아미도 하프늄디메틸, 디브로모비스트리페닐포스핀니켈, 디클로로비스트리페닐포스핀니켈, 디브로모디아세토니트릴니켈, 디브로모디벤조니트릴니켈, 디브로모(1,2-비스디페닐포스피노에탄)니켈, 디브로모(1,3-비스디페닐포스피노에탄)니켈, 디브로모(1,1'-디페닐비스포스피노페로센)니켈, 디메틸비스디페닐포스핀니켈, 디메틸(1,2-비스디페닐포스피노에탄)니켈, 메틸(1,2-비스디페닐포스피노에탄)니켈 테트라플루오로보레이트, (2-디페닐포스피노-1-페닐에틸렌옥시)페닐피리딘니켈, 디클로로비스트리페닐포스핀팔라듐, 디클로로디아세토니트릴팔라듐, 디클로로(1,2-비스디페닐포스피노에탄)팔라듐, 비스트리페닐포스핀팔라듐 비스테트라플루오로보레이트, 비스(2,2'-비피리딘)메틸 철 테트라플루오로보레이트 에테레이트 등과, 또한 상기에서 열거된 각 티타늄, 지르코늄, 및 하프늄 화합물의 "디메틸" 부분을 -디클로로, -디브로모, -디요오드, -디에틸, -디부틸, -디벤질, -디페닐, -비스-2-(N,N-디메틸아미노)벤질, -2-부텐-1,4-디일, -s-트랜스-η4-1,4-디페닐-1,3-부타디엔,  -s-트랜스-η4-3-메틸-1,3-펜타디엔, -s-트랜스-η4-1,4-디벤질-1,3-부타디엔, -s-트랜스-η4-2,4-헥사디엔, -s-트랜스-η4-1,3-펜타디엔, -s-트랜스-η4-1,4-디톨릴-1,3-부타디엔, -s-트랜스-η4-1,4-비스(트리메틸실릴)-1,3-부타디엔, -s-시스-η4-1,4-디페닐-1,3-부타디엔, -s-시스-η4-3-메틸-1,3-펜타디엔, -s-시스-η4-1,4-디벤질-1,3-부타디엔, -s-시스-η4-2,4-헥사디엔, -s-시스-η4-1,3-펜타디엔, -s-시스-η4-1,4-디톨릴-1,3-부타디엔, -s-시스-η4-1,4-비스(트리메틸실릴)-1,3-부타디엔 등의 화합물로 대체한 화합물을 예로 들 수 있다.Examples of the monocyclopentadienyl metallocene represented by the general formula (3) include [(Nt-butylamide) (tetramethyl-? 5-cyclopentadienyl) -1,2-ethanediyl] titanium dimethyl, [(Nt-butylamide) (tetramethyl-? 5-cyclopentadienyl) -dimethylsilane] titanium dimethyl, [(N-methylamide) (tetramethyl-? 5-cyclopentadienyl) -1,2-ethanediyl ] Tetramethyl-η5-cyclopentadienyl) -dimethylsilane] titanium dimethyl, [(N-phenylamide) (tetramethyl- eta 5 -cyclopentadienyl) ] Dimethyldimethyl, [(N-benzylamide) (tetramethyl-? 5-cyclopentadienyl) -dimethylsilane] titanium dimethyl, (N-methylamido) (? 5-cyclopentadienyl) [(N-butylamido) (η5-indenyl) -dimethylsilane] titanium dimethyl, [(N-methylamido) (η5-cyclopentadienyl) -dimethylsilane] titanium dimethyl, Benzylamide) (eta &lt; 5 &gt; - Dimethylsilyltetramethylcyclopentadienyl-tert-butylamido hafnium dimethyl, dimethylsilyl tert-butylcyclopentane, dimethylsilyltrimethylcyclopentadienyl-tert-butylamidozirconium dimethyl, dimethylsilyltetramethylcyclopentadienyl- Diethyl-tert-butylamidozirconium dimethyl, dimethylsilyl tert-butylcyclopentadienyl-tert-butylamido hafnium dimethyl, dimethylsilyltrimethylsilylcyclopentadienyl-tert-butylamidozirconium dimethyl, dimethylsilyltetramethyl Cyclopentadienyl-phenylamidozirconium dimethyl, dimethylsilyl tetramethylcyclopentadienyl-phenylamido hafnium dimethyl, methylphenylsilyl tetramethylcyclopentadienyl-phenylamidozirconium dimethyl, methylphenylsilyl tetramethylcyclopentadienyl- Phenylamido hafnium dimethyl, methylphenylsilyl tert-butyl cyclopentadienyl -tert-butylamidosyl Dimethyldimethyl, methylphenylsilyl tert-butylcyclopentadienyl-tert-butylamido hafnium dimethyl, dimethylsilyltetramethylcyclopentadienylpn-phenylamidozirconium dimethyl, dimethylsilyltetramethylcyclopentadienylpn-phenyl Amido hafnium dimethyl, dibromobis triphenylphosphine nickel, dichlorobistriphenylphosphine nickel, dibromodiacetonitrile nickel, dibromodibenzonitrile nickel, dibromo (1,2-bisdiphenylphosphinoethane ) Nickel, dibromo (1,3-bisdiphenylphosphinoethane) nickel, dibromo (1,1'-diphenylbisphosphinoferrocene) nickel, dimethylbis diphenylphosphine nickel, Bis (diphenylphosphino) ethane) nickel, methyl (1,2-bisdiphenylphosphinoethane) nickel tetrafluoroborate, (2-diphenylphosphino-1- phenylethyleneoxy) phenylpyridine nickel, dichlorobis Triphenylphosphine palladium, dichlorodiacetonitrile Palladium, bis (triphenylphosphine) palladium, bis (triphenylphosphine) palladium bis (tetrafluoroborate), bis (2,2'-bipyridine) methyl iron tetrafluoroborate etherate, The "dimethyl" portion of each of the titanium, zirconium, and hafnium compounds listed above is referred to as -dichloro, -dibromo, -diiodide, -diethyl, -dibutyl, -dibenzyl, -diphenyl, - (N, N-dimethylamino) benzyl, 2-butene-1,4-diyl, -s-trans-eta4-1,4-diphenyl-1,3-butadiene, -Methyl-1,3-pentadiene, -s-trans-eta4-1,4-dibenzyl-1,3-butadiene, -s- trans-eta4-2,4-hexadiene, -S-trans-eta4-1,4-ditolyl-1,3-butadiene, -s-trans-eta4-1,4-bis (trimethylsilyl) -1,3-butadiene -s-cis-? 4-1,4-diphenyl-1,3-butadiene, -s-cis-? 4-3-methyl-1,3-pentadiene, Dibenzyl-1,3-butadiene, -s-cis- Cis-η4-1,3-pentadiene, -s-cis-η4-1,4-ditolyl-1,3-butadiene, -s-cis-η4-1,4-bis (trimethyl Silyl) -1,3-butadiene, and the like.

본 발명의 촉매계는 상기와 같은 메탈로센 촉매 성분을 사용하지만, 전술한 바와 같은 메탈로센 촉매 성분을 1종 이상 포함할 수 있다. 또한, 추가의 촉매, 필요할 경우, 예컨대 본 발명에 의한 메탈로센 촉매 성분 이외에 기타 공지의 촉매 성분을 더 포함할 수 있다.The catalyst system of the present invention uses the metallocene catalyst component as described above, but may include at least one metallocene catalyst component as described above. In addition, additional catalysts and, if necessary, further catalyst components other than the metallocene catalyst component according to the present invention may be further included.

본 발명에 사용되는 메탈로센 화합물은 이미 잘 알려진 문헌의 방법에 의하여 제조되거나, mCAT GmBH(www.mcat.de 참조) 또는 Strem(www.strem.com 참조) 또는 Boulder Scientific(www.bouldersci.com 참조)사에서 상업적으로 판매되고 있는 것을 사용할 수 있다.The metallocene compounds used in the present invention may be prepared by methods well known in the art or may be prepared by methods such as mCAT GmBH (see www.mcat.de) or Strem (see www.strem.com) or Boulder Scientific (see www.bouldersci.com ) Can be used.

본 발명의 상기 (1) 단계에서 사용되는 티타노센 화합물 또는 하프 티타노센 화합물은 수소화 반응 성능을 가진 화합물이다. 수소화 반응 성능을 가진 화합물은 중합반응계에서 에틸렌 또는 사용하는 α-올레핀을 수소 첨가하여 중합반응기내에서 수소농도를 저하시키는 화합물이다. 그리고 이들 화합물은 중합반응을 방해하여 촉매의 성능을 저하시키지 않는 것이 유리하다. 이러한 수소화 반응성능을 가진 화합물은 니켈, 팔라듐, 루테늄, 백금 등을 함유하는 화합물이나, 간단한 구조의 메탈로센 화합물이 알려져 있다. 본 발명에서는 중합 온도에서 충분한 수소화 반응 성능을 가진 티타노센 화합물이나 하프 티타노센 화합물이 유리하다. 상기의 티타노센 화합물 또는 하프 티타노센 화합물은 단독으로 사용할 수도 있고, 유기 알루미늄, 유기 리튬, 유기 마그네슘 등의 유기금속 화합물과 반응시켜 사용할 수도 있다.The titanocene compound or the half titanocene compound used in the step (1) of the present invention is a compound having hydrogenation performance. Compounds having hydrogenation performance are compounds which lower the hydrogen concentration in a polymerization reactor by hydrogenating ethylene or an -olefin used in the polymerization system. It is advantageous that these compounds inhibit the polymerization reaction and do not deteriorate the performance of the catalyst. A compound having such hydrogenation reaction performance is a compound containing nickel, palladium, ruthenium, platinum or the like, or a metallocene compound having a simple structure. In the present invention, a titanocene compound or a half-titanocene compound having a sufficient hydrogenation reaction performance at a polymerization temperature is advantageous. The titanocene compound or the half titanocene compound may be used alone or in combination with an organometallic compound such as organoaluminum, organolithium, or organomagnesium.

본 발명에서 사용하는 수소화 반응 성능을 가진 화합물의 양은 상기 담지 고체 촉매에 포함되는 전이금속 화합물 몰당 0.03몰에서 300몰 이하이다. 수소화 반응 성능을 가진 화합물의 양이 0.03몰 미만이면 충분한 분자량 증가의 효과를 얻기가 어렵고, 300몰 이상이면 중합활성이 크게 저하되고 분자량이 너무 크게 나타난다. The amount of the compound having the hydrogenation reaction property used in the present invention is 0.03 to 300 moles per mole of the transition metal compound contained in the supported solid catalyst. When the amount of the compound having the hydrogenation reaction performance is less than 0.03 mol, it is difficult to obtain the effect of increasing the molecular weight sufficiently, and when it exceeds 300 mol, the polymerization activity is largely lowered and the molecular weight becomes too large.

본 발명에서 사용되는, 충분한 수소화 반응 성능을 갖는 화합물인 티타노센 화합물이나 하프 티타노센 화합물은, 다음의 일반식 (4)로 나타낼 수 있다.The titanocene compound or the half titanocene compound, which is a compound having a sufficient hydrogenation reaction property, used in the present invention, can be represented by the following general formula (4).

(CpRn)(CpR'm)TiLq ‥‥‥ (4)(CpR n ) (CpR ' m ) TiL q (4)

여기에서 Cp는 시클로펜타디에닐, 인데닐, 테트라히드로인데닐 또는 플루오레닐을 나타내고,Wherein Cp represents cyclopentadienyl, indenyl, tetrahydroindenyl or fluorenyl,

R과 R'는 각각 독립적으로 수소, 탄소수 1~20의 탄화수소기, 알킬에테르(alkylether), 알킬실릴, 알릴에테르(allylether), 알콕시알킬, 포스핀(phosphine) 또는 아민(amine)을 나타내고,R and R 'each independently represent hydrogen, a hydrocarbon group having 1 to 20 carbon atoms, an alkylether, an alkylsilyl, an allylether, an alkoxyalkyl, a phosphine or an amine,

L은 알킬, 알릴, 아릴알킬, 아마이드(amide), 알콕시 또는 할로겐(halogen)을 나타내고,L represents alkyl, allyl, arylalkyl, amide, alkoxy or halogen,

n은 0 ≤ n < 5,  m은 0 ≤ m <5, q는 1≤ q≤ 4를 만족하는 정수이다.n is an integer satisfying 0? n <5, m is 0? m <5, and q is 1? q? 4.

상기의 일반식 (4)를 만족하는 티타노센 또는 하프 티타노센 화합물의 종류에는 비스(시클로펜타디에닐)티타늄디클로라이드,  비스(메틸시클로펜타디에닐)티타늄디클로라이드, 비스(n-부틸시클로펜타디에닐)티타늄디클로라이드, 비스(1,3-디메틸시클로펜타디에닐)티타늄디클로라이드, 비스(펜타메틸시클로펜타디에닐)티타늄디클로라이드, 비스(테트라메틸시클로펜타디에닐)티타늄디클로라이드, 비스(트리메틸실릴시클로펜타디에닐)티타늄디클로라이드, 비스(1,3-비스트리메틸시클로펜타디에닐)티타늄디클로라이드, 비스(인데닐)티타늄디클로라이드, 비스(4,5,6,7-테트라히드로-1-인데닐)티타늄디클로라이드, 비스(5-메틸-1-인데닐)티타늄디클로라이드, 비스(6-메틸-1-인데닐)티타늄디클로라이드, 비스(7-메틸-1-인데닐)티타늄디클로라이드, 비스(5-메톡시-1-인데닐)티타늄디클로라이드, 비스(2,3-디메틸-1-인데닐)티타늄디클로라이드, 비스(4,7-디메틸-1-인데닐)티타늄디클로라이드, 비스(2,3-디메톡시-1-인데닐)티타늄디클로라이드, 비스(플루오레닐)티타늄디클로라이드 등과 Examples of the titanocene or half titanocene compound that satisfies the above general formula (4) include bis (cyclopentadienyl) titanium dichloride, bis (methylcyclopentadienyl) titanium dichloride, bis (n-butylcyclopenta (Pentamethylcyclopentadienyl) titanium dichloride, bis (tetramethylcyclopentadienyl) titanium dichloride, bis (trimethylcyclopentadienyl) titanium dichloride, bis (Trimethylsilylcyclopentadienyl) titanium dichloride, bis (1,3-bistrimethylcyclopentadienyl) titanium dichloride, bis (indenyl) titanium dichloride, bis (4,5,6,7-tetrahydro Indenyl) titanium dichloride, bis (6-methyl-1-indenyl) titanium dichloride, bis (7-methyl-1-indenyl) titanium dichloride, ) Titanium dichloride, bis (5-methoxy Indenyl) titanium dichloride, bis (2,3-dimethyl-1-indenyl) titanium dichloride, bis (4,7- Dimethoxy-1-indenyl) titanium dichloride, bis (fluorenyl) titanium dichloride and the like

(펜타메틸시클로펜타디에닐)(시클로펜타디에닐)티타늄디클로라이드,  (플루오레닐)(시클로펜타디에닐)티타늄디클로라이드, (플루오레닐)(펜타메틸시클로펜타디에닐)티타늄디클로라이드, (인데닐)(펜타메틸시클로펜타디에닐)티타늄디클로라이드, (인데닐)(플루오레닐)티타늄디클로라이드, (테트라히드로인데닐)(시클로펜타디에닐)티타늄디클로라이드, (테트라히드로인데닐)(펜타메틸시클로펜타디에닐)티타늄디클로라이드, (테트라히드로인데닐)(플루오레닐)티타늄디클로라이드, (시클로펜타디에닐)(1,3-비스트리메틸실릴시클로펜타디에닐)티타늄디클로라이드, (펜타메틸시클로펜타디에닐)(1,3-비스트리메틸실릴시클로펜타디에닐)티타늄디클로라이드, (인데닐)(1,3-비스트리메틸실릴시클로펜타디에닐)티타늄디클로라이드, (플루오레닐)(1,3-비스트리메틸실릴시클로펜타디에닐)티타늄디클로라이드 등을 들 수 있다.(Cyclopentadienyl) titanium dichloride, (fluorenyl) (cyclopentadienyl) titanium dichloride, (fluorenyl) (pentamethylcyclopentadienyl) titanium dichloride, (Pentamethylcyclopentadienyl) titanium dichloride, (indenyl) (fluorenyl) titanium dichloride, (tetrahydroindenyl) (cyclopentadienyl) titanium dichloride, (tetrahydroindenyl) ) (Pentamethylcyclopentadienyl) titanium dichloride, (tetrahydroindenyl) (fluorenyl) titanium dichloride, (cyclopentadienyl) (1,3-bistrimethylsilylcyclopentadienyl) titanium dichloride , (1,3-bistrimethylsilylcyclopentadienyl) titanium dichloride, (indenyl) (1,3-bistrimethylsilylcyclopentadienyl) titanium dichloride, (fluorene Nyl) (1,3-bis Methylsilylcyclopentadienyl) titanium dichloride, and the like.

또한 상기에서 열거된 티타늄 화합물의 "디클로라이드" 부분을, -디브로모, -디요오드, -디메틸, -디에틸, -디부틸, -디벤질, -디페닐, -디메톡시, -메톡시클로라이드, -비스-2-(N,N-디메틸아미노)벤질, -2-부텐-1,4-디일, -s-트랜스-η4-1,4-디페닐-1,3-부타디엔,  -s-트랜스-η4-3-메틸-1,3-펜타디엔, -s-트랜스-η4-1,4-디벤질-1,3-부타디엔, -s-트랜스-η4-2,4-헥사디엔, -s-트랜스-η4-1,3-펜타디엔, -s-트랜스-η4-1,4-디톨릴-1,3-부타디엔, -s-트랜스-η4-1,4-비스(트리메틸실릴)-1,3-부타디엔, -s-시스-η4-1,4-디페닐-1,3-부타디엔, -s-시스-η4-3-메틸-1,3-펜타디엔, -s-시스-η4-1,4-디벤질-1,3-부타디엔, -s-시스-η4-2,4-헥사디엔, -s-시스-η4-1,3-펜타디엔, -s-시스-η4-1,4-디톨릴-1,3-부타디엔, -s-시스-η4-1,4-비스(트리메틸실릴)-1,3-부타디엔 등의 화합물로 대체한 화합물을 예로 들 수 있다.The "dichloride" moiety of the titanium compounds enumerated above can also be prepared by reacting a "dichloride" moiety of the titanium compound listed above with a dibromo-diiodide, -dimethyl, -diethyl, -dibutyl, -dibenzyl, (N, N-dimethylamino) benzyl, 2-butene-1,4-diyl, -s-trans-eta4-1,4-diphenyl-1,3-butadiene, -s -Trans-eta4-1-dibenzyl-1,3-butadiene, -s-trans-eta4-2,4-hexadiene, -s-trans-? 4-1,3-pentadiene, -s-trans-? 4-1,4-ditolyl-1,3-butadiene, -1,3-butadiene, -s-cis-? 4-1,4-diphenyl-1,3-butadiene, -s- cis-? 4-3-methyl-1,3-pentadiene, cis-cis-cis-? 4-cis-? 4-dibenzyl-1,3-butadiene, 1,4-ditolyl-1,3-butadiene, -s-cis-eta4-1,4-bis (trimethylsilyl) -1,3-butadiene and the like.

본 발명에서 사용되는 하프 티타노센 화합물로는 시클로펜타디에닐티타늄 트리클로라이드, 시클로펜타디에닐티타늄 트리플로라이드, 시클로펜타디에닐티타늄 트리브로마이드, 시클로펜타디에닐티타늄 트리요오다이드, 시클로펜타디에닐티타늄 메틸디클로라이드, 시클로펜타디에닐티타늄디메틸클로라이드,  시클로펜타디에닐티타늄 에톡시디클로라이드, 시클로펜타디에닐티타늄 디에톡시클로라이드, 시클로펜타디에닐티타늄 페녹시드디클로라이드, 시클로펜타디에닐티타늄 디페녹시드클로라이드, 시클로펜타디에닐티타늄 트리메틸, 시클로펜타디에닐티타늄 트리에틸, 시클로펜타디에닐티타늄 트리이소프로필, 시클로펜타디에닐티타늄 트리-n-부틸, 시클로펜타디에닐티타늄 트리-sec-부틸, 시클로펜타디에닐티타늄 트리메톡시드, 시클로펜타디에닐티타늄 트리에톡시드, 시클로펜타디에닐티타늄 트리이소푸로폭시드, 시클로펜타디에닐티타늄 트리부톡시드, 시클로펜타디에닐티타늄 트리페닐, 시클로펜타디에닐티타늄 트리벤질, 시클로펜타디에닐티타늄 트리-m-톨릴, 시클로펜타디에닐티타늄 트리-p-톨릴, 시클로펜타디에닐티타늄 트리-m,p-크실릴, 시클로펜타디에닐티타늄 트리-4-에틸페닐, 시클로펜타디에닐티타늄 트리-4-헥실페닐, 시클로펜타디에닐티타늄 트리-4-메톡시페닐, 시클로펜타디에닐티타늄 트리-4-에톡시페닐, 시클로펜타디에닐티타늄 트리페녹시드,  시클로펜타디에닐티타늄 트리-디메틸아미드, 시클로펜타디에닐티타늄 트리-디에틸아미드, 시클로펜타디에닐티타늄 트리-디이소풀로필아미드, 시클로펜타디에닐티타늄 트리-디-sec-부틸아미드, 시클로펜타디에닐티타늄 트리-디-tert-부틸아미드, 시클로펜타디에닐티타늄 트리-디트리에틸실릴아미드 등을 들 수 있다. Examples of the half titanocene compound used in the present invention include cyclopentadienyl titanium trichloride, cyclopentadienyl titanium tripleride, cyclopentadienyl titanium tribromide, cyclopentadienyl titanium triiodide, cyclopentadienyl Titanium dichloride, titanium methyldichloride, cyclopentadienyl titanium dimethyl chloride, cyclopentadienyl titanium ethoxydichloride, cyclopentadienyl titanium diethoxy chloride, cyclopentadienyl titanium phenoxide dichloride, cyclopentadienyl titanium diphenoxide chloride , Cyclopentadienyltitanium trimethyl, cyclopentadienyltitanium triethyl, cyclopentadienyltitanium triisopropyl, cyclopentadienyltitanium tri-n-butyl, cyclopentadienyltitanium tri-sec-butyl, cyclopentadienyl Nyltitanium trimethoxide, cyclopenta Cyclopentadienyltitanium tributoxide, cyclopentadienyltitanium triphenyl, cyclopentadienyltitanium tribenzyl, cyclopentadienyltitanium tributoxide, cyclopentadienyltitanium tributoxide, cyclopentadienyltitanium tributoxide, cyclopentadienyltitanium tribenzoxide, cyclopentadienyltitanium tributoxide, -m-tolyl, cyclopentadienyltitaniumtri-p-tolyl, cyclopentadienyltitaniumtri-m, p-xylyl, cyclopentadienyltitaniumtri-4-ethylphenyl, cyclopentadienyltitaniumtri- Cyclopentadienyl titanium tri-4-methoxyphenyl, cyclopentadienyl titanium tri-4-ethoxyphenyl, cyclopentadienyl titanium triphenoxide, cyclopentadienyl titanium tri-dimethyl amide, cyclopentadienyl titanium tri- Pentadienyl titanium tri-diethyl amide, cyclopentadienyl titanium tri-diisopropyl amide, cyclopentadienyl titanium tri-di-sec-butyl amide, cyclopentadienyl titanium tri- Di-tert-butyl amide, cyclopentadienyl titanium tri-ditriethylsilyl amide, and the like.

또한 상기에서 열거된 티타늄 화합물의 "시클로펜타디에닐" 부분을 메틸시클로펜타디에닐, n-부틸시클로펜타디에닐, 1,3-디메틸시클로펜타디에닐, 펜타메틸시클로펜타디에닐, 테트라메틸펜타디에닐, 트리메틸실릴시클로펜타디에닐, 1,3-비스트리메틸실릴시클로펜타디에닐, 인데닐, 4,5,6,7-테트라히드로-1-인데닐, 5-메틸-1-인데닐, 6-메틸-1-인데닐, 7-메틸-1-인데닐, 5-메톡시-1-인데닐, 2,3-디메틸-1-인데닐, 4,7-디메틸-1-인데닐, 4,7-디메톡시-1-인데닐, 플루오레닐 등으로 대체한 화합물을 예로 들 수 있다.The "cyclopentadienyl" moiety of the titanium compounds enumerated above is also referred to as methylcyclopentadienyl, n-butylcyclopentadienyl, 1,3-dimethylcyclopentadienyl, pentamethylcyclopentadienyl, Dienyl, trimethylsilylcyclopentadienyl, 1,3-bistrimethylsilylcyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, 5-methyl- Indenyl, 5-methoxy-1-indenyl, 2,3-dimethyl-1-indenyl, 4,7-dimethyl- 4,7-dimethoxy-1-indenyl, fluorenyl, and the like.

그리고 다음의 하프 티타노센 화합물도 예로 들 수 있다. The following half-titanocene compounds are also exemplified.

[(N-t-부틸아미드)(테트라메틸-η5-시클로펜타디에닐)-1,2-에탄디일]티타늄디클로라이드, [(N-t-부틸아미드)(테트라메틸-η5-시클로펜타디에닐)-디메틸실란]티타늄디클로라이드, [(N-메틸아미드)(테트라메틸-η5-시클로펜타디에닐)-1,2-에탄디일]티타늄디클로라이드, [(N-메틸아미드)(테트라메틸-η5-시클로펜타디에닐)-디메틸실란]티타늄디클로라이드, [(N-페닐아미드)(테트라메틸-η5-시클로펜타디에닐)-디메틸실란]티타늄디클로라이드, [(N-벤질아미드)(테트라메틸-η5-시클로펜타디에닐)-디메틸실란]티타늄디클로라이드, (N-메틸아미드)(η5-시클로펜타디에닐)-1,2-에탄디일]티타늄디클로라이드, [(N-메틸아미드)(η5-시클로펜타디에닐)-디메틸실란]티타늄디클로라이드, [(N-t-부틸아미드)(η5-인데닐)-디메틸실란]티타늄디클로라이드, [(N-벤질아미드)(η5-인데닐)-디메틸실란]티타늄디클로라이드 등이다.[(Nt-butylamide) (tetramethyl-? 5-cyclopentadienyl) -1,2-ethanediyl] titanium dichloride, [(Nt-butylamide) Silane] titanium dichloride, [(N-methylamido) (tetramethyl-? 5-cyclopentadienyl) -1,2-ethanediyl] titanium dichloride, [ Dimethylsilane] titanium dichloride, [(N-benzylamide) (tetramethyl-η5 (cyclopentadienyl) -dimethylsilane] - (cyclopentadienyl) -dimethylsilane] titanium dichloride, (N-methylamido) (? 5-cyclopentadienyl) -1,2-ethanediyl] titanium dichloride, [ Dimethylsilane] titanium dichloride, [(N-benzylamide) (? 5-indenyl) -dimethylsilyl] titanium dichloride, [ It is] such as a titanium dichloride.

또한 상기에서 열거된 하프 티타노센 화합물의 "디클로라이드" 부분을 -디브로모, -디요오드, -디메틸, -디에틸, -디부틸, -디벤질, -디페닐, -디메톡시, -메톡시클로라이드, -비스-2-(N,N-디메틸아미노)벤질, -2-부텐-1,4-디일, -s-트랜스-η4-1,4-디페닐-1,3-부타디엔,  -s-트랜스-η4-3-메틸-1,3-펜타디엔, -s-트랜스-η4-1,4-디벤질-1,3-부타디엔, -s-트랜스-η4-2,4-헥사디엔, -s-트랜스-η4-1,3-펜타디엔, -s-트랜스-η4-1,4-디톨릴-1,3-부타디엔, -s-트랜스-η4-1,4-비스(트리메틸실릴)-1,3-부타디엔, -s-시스-η4-1,4-디페닐-1,3-부타디엔, -s-시스-η4-3-메틸-1,3-펜타디엔, -s-시스-η4-1,4-디벤질-1,3-부타디엔, -s-시스-η4-2,4-헥사디엔, -s-시스-η4-1,3-펜타디엔, -s-시스-η4-1,4-디톨릴-1,3-부타디엔, -s-시스-η4-1,4-비스(트리메틸실릴)-1,3-부타디엔 등으로 대체한 화합물을 예로 들 수 있다.The "dichloride" moiety of the half titanocene compounds enumerated above may also be substituted with one or more substituents selected from the group consisting of dibromo, -diiodo, -dimethyl, -diethyl, -dibutyl, -dibenzyl, -diphenyl, -dimethoxy, (N, N-dimethylamino) benzyl, 2-butene-1,4-diyl, -s-trans-eta4-1,4-diphenyl-1,3-butadiene, trans-eta4-3-methyl-1,3-pentadiene, -s-trans-eta4-1,4-dibenzyl-1,3-butadiene, -s- -s-trans-? 4-1,3-pentadiene, -s-trans-? 4-1,4-ditolyl-1,3-butadiene, -s- -1,3-butadiene, -s-cis-? 4-1,4-diphenyl-1,3-butadiene, -s- cis-? 4-3-methyl-1,3-pentadiene, -1,4-dibenzyl-1,3-butadiene, -s-cis-? 4-2,4-hexadiene, -s- cis-? 4-1,3-pentadiene, -1,4-ditolyl-1,3-butadiene, -s-cis-? 4-1,4-bis (trimethylsilyl) -1,3-butadiene and the like.

상기한 티타노센 화합물 및 하프 티타노센 화합물은 단독 또는 조합으로 사용할 수 있다. 또한  상기한 티타노센 화합물 또는 하프 티타노센 화합물은 유기 알루미늄, 유기 리튬, 유기 마그네슘과 반응시켜 사용할 수도 있다. The titanocene compound and the half titanocene compound may be used alone or in combination. The above-mentioned titanocene compound or half-titanocene compound may be reacted with organoaluminum, organolithium and organomagnesium.

상기 티타노센 화합물 또는 하프 티타노센 화합물과 반응시켜 사용할 수 있는 유기 알루미늄으로는 트리알킬알루미늄, 디알킬알루미늄 할라이드, 알킬알루미늄 디할라이드 등을 들 수 있으며, 구체적인 예로는 트리메틸 알루미늄, 트리에틸 알루미늄, 트리부틸 알루미늄, 트리이소부틸 알루미늄, 트리헥실 알루미늄, 트리옥틸 알루미늄, 트리데실 알루미늄, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 에틸알루미늄 디클로라이드, 디에틸에톡시알루미늄 등을 들 수 있다.Examples of the organoaluminum which can be used by reacting with the titanocene compound or the half titanocene compound include trialkylaluminum, dialkylaluminum halide, alkylaluminum dihalide and the like. Specific examples thereof include trimethylaluminum, triethylaluminum, tributyl Aluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum, dimethylaluminum chloride, diethylaluminum chloride, ethylaluminum dichloride, diethylethoxyaluminum and the like.

상기 티타노센 화합물 또는 하프 티타노센 화합물과 반응시켜 사용할 수 있는 유기 리튬으로는 일반식 RLi(R은 탄소수 1~10의 알킬기, 알콕시기, 알킬아미드기, 탄소수 6~12의 알릴기, 알릴옥시기, 아릴아미드기, 탄소수 7~20의 알킬알릴기, 알킬알릴옥시기, 알킬알릴아미드기, 아릴알콕시기,아릴알킬아미드기, 탄소수 2~20의 알케닐기로 이루어진 탄화수소기)을 만족하는 리튬을 들 수 있으며, 구체적인 예로는 메틸리튬, 에틸리튬, 이소프로필리튬, n-부틸리튬, sec-부틸리튬, tert-부틸리튬, 메톡시리튬, 이소프로폭시리튬, 부톡시리튬, 디메틸아미드리튬, 디에틸아미드리튬, 디이소프로필아미드리튬, 디부틸아미드리튬, 디페닐아미드리튬, 페닐리튬, m-톨릴리튬, p-톨릴리튬, 크실릴리튬, 메톡시페닐리튬, 페녹시리튬, 벤질리튬 등을  들 수 있다.Examples of the organolithium that can be used by reacting with the titanocene compound or the half-titanocene compound include compounds represented by the general formula RLi wherein R is an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an alkylamido group, an allyl group having 6 to 12 carbon atoms, , An arylamido group, an alkyl allyl group having 7 to 20 carbon atoms, an alkyl allyloxy group, an alkyl allyl amide group, an arylalkoxy group, an arylalkyl amide group, and an alkenyl group having 2 to 20 carbon atoms) Specific examples thereof include methyl lithium, ethyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, methoxy lithium, isopropoxy lithium, butoxy lithium, dimethyl amide lithium, There may be mentioned lithium, lithium, lithium, lithium, lithium, lithium, lithium, ethylamidium, diisopropylamide lithium, dibutylamidithium, diphenylamidithium, phenyllithium, m-tolylithium, p-tolylithium, xylylithium, methoxyphenyllithium, .

상기 티타노센 화합물 또는 하프 티타노센 화합물과 반응시켜 사용할 수 있는 유기 마그네슘으로는 디알킬마그네슘, 알킬마그네슘 할라이드 등을 들 수 있으며, 구체적인 예로는 디메틸 마그네슘, 디에틸 마그네슘, 디부틸 마그네슘, 디이소부틸 마그네슘, 디헥실 마그네슘, 디옥틸 마그네슘, 메틸마그네슘 브로마이드, 메틸마그네슘 클로라이드, 에틸마그네슘 브로마이드, 에틸마그네슘 클로라이드, 부틸마그네슘 브로마이드, 부틸마그네슘 클로라이드,  헥실마그네슘 브로마이드, 헥실마그네슘 클로라이드, 페닐마그네슘 브로마이드, 페닐마그네슘 클로라이드, 알릴마그네슘 브로마이드, 알릴마그네슘 클로라이드 등을 들 수 있다.Examples of organomagnesium which can be used by reacting with the titanocene compound or the half titanocene compound include dialkylmagnesium and alkylmagnesium halide. Specific examples thereof include dimethylmagnesium, diethylmagnesium, dibutylmagnesium, diisobutylmagnesium Diethyl magnesium bromide, ethyl magnesium bromide, ethyl magnesium chloride, butyl magnesium bromide, butyl magnesium chloride, hexyl magnesium bromide, hexyl magnesium chloride, phenyl magnesium bromide, phenyl magnesium chloride, allyl chloride, ethylmagnesium chloride, ethylmagnesium bromide, Magnesium bromide, allyl magnesium chloride, and the like.

본 발명의 상기 (1) 단계에서 사용되는 메탈로센 촉매 성분과 티타노센 화합물 또는 하프 티타노센 화합물의 사용양은 몰비로 0.05:1~10:1인 것이 바람직한데, 0.05:1 미만인 경우에는 중합활성이 크게 저하되고 분자량이 너무 크게 나타나므로 바람직하지 않고, 10:1을 초과하면 충분한 분자량 증가의 효과를 얻기가 어려워 바람직하지 않다.The amount of the metallocene catalyst component and the amount of the titanocene compound or the half titanocene compound used in the step (1) of the present invention is preferably 0.05: 1 to 10: 1 by molar ratio. When the amount is less than 0.05: 1, Is too large and the molecular weight is too large. If it exceeds 10: 1, it is difficult to obtain the effect of increasing the molecular weight sufficiently.

본 발명의 상기 (1) 단계에서 사용되는 알콕시실란 화합물은 R-O-Si- 결합을 가진 실리콘 화합물로서, 다음의 일반식(5)로 나타낼수 있다.  The alkoxysilane compound used in the step (1) of the present invention is a silicone compound having an R-O-Si-bond and can be represented by the following general formula (5).

(R'O)4-n(R)nSi ‥‥‥ (5)(R'O) 4-n (R) n Si (5)

여기에서 R'와 R은 탄소수 1~20의 탄화수소(Hydrocarbon)기를 나타내며, 같거나 서로 다를 수 있으며, n은 1, 2 또는 3이다Wherein R 'and R represent a hydrocarbon group of 1 to 20 carbon atoms, which may be the same or different from each other, and n is 1, 2 or 3

상기의 일반식을 만족하는 R-O-Si- 결합을 가진 실리콘 화합물의 종류에는  메틸트리메톡시실란, 디메틸디메톡시실란, 트리메틸메톡시실란, 에틸트리메톡시실란, 디에틸디메톡시실란, 트리에틸메톡시실란, 이소푸로필트리메톡시실란, 디이소푸로필디메톡시실란, 트리이소푸로필메톡시실란, 부틸트리메톡시실란, 디부틸디메톡시실란, 트리부틸메톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 트리페닐메톡시실란, 시클로헥실메틸디메톡시실란 , 디시클로헥실디메톡시실란, 메틸트리에톡시실란, 디메틸디에톡시실란, 메틸트리에톡시실란, 에틸트리에톡시실란, 디에틸디에톡시실란, 에틸트리에톡시실란, 이소푸로필트리에톡시실란, 디이소푸로필디에톡시실란, 트리이소푸로필에톡시실란, 부틸트리에톡시실란, 디부틸디에톡시실란, 트리부틸에톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 트리페닐에톡시실란, 비릴트리에톡시실란, 메틸트리부톡시실란, 디메틸디부톡시실란, 메틸트리부톡시실란, 에틸트리부톡시실란, 디에틸디부톡시실란, 에틸트리부톡시실란, 이소푸로필트리부톡시실란, 디이소푸로필디부톡시실란, 트리이소푸로필부톡시실란, 부틸트리부톡시실란, 디부틸디부톡시실란, 트리부틸부톡시실란, 페닐트리부톡시실란, 디페닐디부톡시실란, 트리페닐부톡시실란 등이 있다.Examples of the silicon compound having an RO-Si-bond satisfying the above general formula include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, ethyltrimethoxysilane, diethyldimethoxysilane, triethylmethoxysilane, Butoxymethylsilane, diphenylmethoxysilane, dipropyldimethoxysilane, dipropyldimethoxysilane, dipropyldimethoxysilane, dipropyldimethoxysilane, dipropyldimethoxysilane, dipropyldimethoxysilane, dipropyldimethoxysilane, Examples of the silane coupling agent include diphenyldimethoxysilane, triphenylmethoxysilane, cyclohexylmethyldimethoxysilane, dicyclohexyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, di Ethyl triethoxysilane, ethyl triethoxysilane, isopropyl phosphite triethoxysilane, diisopropyl phosphite diethoxysilane, triisopropyl phosphine ethoxysilane, butyl triethoxysilane, dibutyl diethoxysilane, tri But are not limited to, trimethylsilane, trimethylsilane, trimethylsilane, trimethylsilane, trimethylsilane, trimethylsilane, trimethylsilane, trimethylsilanedimethoxy silane, Silane, diethyldibutoxysilane, ethyltributoxysilane, isopropylpolybutoxysilane, diisopropyldibutoxysilane, triisofluoropropyltoxysilane, butyltributoxysilane, dibutyldibutoxysilane, tri Butylbutoxysilane, phenyltributoxysilane, diphenyldibutoxysilane, triphenylbutoxysilane, and the like.

상기 (1) 단계에서 사용되는 R-O-Si- 결합을 가진 실리콘 화합물의 양은 담지 고체 촉매에 포함되는 메탈로센 촉매 성분 몰당 0.05~10몰인 것이 바람직한데, 0.05몰 미만이면 충분한 활성증가의 효과를 얻기가 어려워 바람직하지 않고, 10몰을 초과하면 중합활성이 크게 저하되고 분자량이 크게 저하되어 바람직하지 않다.The amount of the RO-Si-bonded silicon compound used in the step (1) is preferably 0.05 to 10 moles per mole of the metallocene catalyst component contained in the supported solid catalyst. When the amount is less than 0.05 mole, And when it exceeds 10 moles, the polymerization activity is greatly lowered and the molecular weight is greatly lowered, which is not preferable.

상기 (1) 단계에서 사용되는 알루미녹산은 직쇄 및 시클릭 알루미녹산 올리고머로부터 1종 이상 선택되며, 상기 알루미녹산이 직쇄 알루미녹산 올리고머인 경우, 화학식 R-(Al(R)-O)n-AlR2로 표시되고, 시클릭 알루미녹산 올리고머인 경우에는, 화학식 (-Al(R)-O-)m으로 표시되며, 여기에서 R은 C1~C8 알킬기, 바람직하게는 메틸이고, n은 1~40, 바람직하게는 10~20이고, m은 3~40, 바람직하게는 3~20이다. 상기 알루미녹산은 분자량 분포가 매우 넓은 올리고머들의 혼합물이며, 통상 평균 분자량은 약 800~1200이다. 상기 알루미녹산 용액은 용매로서 방향족 탄화수소, 지방족 탄화수소 또는 지방족 고리 탄화수소를 포함할 수 있는데, 바람직하게는 주로 톨루엔 중의 용액으로 사용되고, 그 구체예로서, Albemarle사에서 제조되는 10% 또는 30% 메틸알루미녹산 등이 있다.The aluminoxane used in the step (1) is at least one selected from linear and cyclic aluminoxane oligomers. When the aluminoxane is a straight chain aluminoxane oligomer, the aluminoxane represented by the formula R- (Al (R) -O) n -AlR 2 , and in the case of cyclic aluminoxane oligomers, is represented by the formula (-Al (R) -O-) m , wherein R is a C1 to C8 alkyl group, preferably methyl, and n is an integer from 1 to 40 , Preferably 10 to 20, and m is 3 to 40, preferably 3 to 20. The aluminoxane is a mixture of oligomers having a very large molecular weight distribution, and usually has an average molecular weight of about 800 to 1200. The aluminoxane solution may contain an aromatic hydrocarbon, an aliphatic hydrocarbon or an aliphatic cyclic hydrocarbon as a solvent, and is preferably used mainly as a solution in toluene. As an example thereof, 10% or 30% methyl aluminoxane produced by Albemarle .

상기 (1) 단계가 상기 담지과정(a)에 의해 수행되는 경우, (1) 단계에서 얻어진 용액에 있어서, 알루미녹산의 농도는 5~30중량%이고, 메탈로센 촉매성분의 농도는 금속 원소(M)로서 계산하여 0.001~1.0중량%인 것이 바람직한데, 각 성분의 농도가 상기 범위를 벗어나는 경우에는 촉매활성이 너무 낮거나 너무 높아서 바람직하지 않다.When the step (1) is carried out by the supporting step (a), the concentration of the aluminoxane in the solution obtained in the step (1) is 5 to 30% by weight, (M) is preferably 0.001 to 1.0% by weight. When the concentration of each component is out of the above range, the catalytic activity is too low or too high.

본 발명에 따른 폴리올레핀 촉매 및 촉매의 제조방법에 있어서, 상기 (1) 단계에서 사용되는 담체는, 고체 미립상의 다공성, 바람직하게는 무기물질, 예를 들면 실리콘 및/또는 알루미늄 옥사이드이고, 가장 바람직하게는 구형입자, 예를 들면 분무건조방법에 의해 얻어지는 입자의 형태로 존재하고, OH기 또는 활성 수소 원자를 함유하는 다른 작용기를 가진 실리카가 가장 바람직하다.In the process for producing a polyolefin catalyst and a catalyst according to the present invention, the carrier used in the step (1) is a solid particulate porous material, preferably an inorganic material such as silicon and / or aluminum oxide, Is most preferably in the form of spherical particles, for example particles obtained by a spray drying method, and OH groups or other functional groups containing active hydrogen atoms.

상기 담체는 평균 입도가 10~250㎛, 바람직하게는 평균 입도가 10~150㎛이고, 평균 직경이 50~500Å인 미세기공을 가지고, 미세기공 부피는 0.1~10㎖/g이고, 바람직하게는 0.5~5㎖/g이고, 상기 담체의 표면적은 5~1000㎡/g, 바람직하게는 50~600㎡/g이다.The carrier preferably has an average particle size of 10 to 250 占 퐉, preferably an average particle size of 10 to 150 占 퐉, an average diameter of 50 to 500 占 and a micropore volume of 0.1 to 10 ml / g, 0.5 to 5 ml / g, and the surface area of the carrier is 5 to 1,000 m 2 / g, preferably 50 to 600 m 2 / g.

상기 담체로서 실리카가 사용되는 경우, 적어도 일부의 활성 히드록시[OH]기를 가져야 하는데, 히드록시기 농도는 상기 실리카 1g당 0.5~2.5mmole 이상인 것이 바람직하고, 0.7~1.6mmole/g인 것이 더욱 바람직한데, 상기 히드록시기 농도가 0.5mmole 미만이면 알루미녹산의 담지량이 감소하여 활성이 저하되어 바람직하지 않고, 2.5mmol을 초과하면 히드록시기에 의하여 촉매성분이 비활성화되어  바람직하지 않다.When silica is used as the carrier, at least a part of the active hydroxy [OH] group should be used. The concentration of the hydroxy group is preferably 0.5 to 2.5 mmole or more per 1 g of the silica, more preferably 0.7 to 1.6 mmole / g, If the concentration of the hydroxyl group is less than 0.5 mmole, the amount of aluminoxane supported decreases and the activity decreases. If the concentration is more than 2.5 mmol, the catalyst component is inactivated due to the hydroxyl group, which is not preferable.

상기 실리카의 히드록시기는 IR 분광 분석에 의해 검출할 수 있고, 실리카상의 히드록시기 농도의 정량은 실리카 샘플을 메틸마그네슘브로마이드와 접촉시켜, 메탄 발포량을 측정(압력 측정에 의함)함으로써 이루어진다.The hydroxyl groups of the silica can be detected by IR spectroscopy, and the determination of the hydroxyl group concentration on the silica is carried out by bringing the silica sample into contact with methylmagnesium bromide and measuring the amount of methane foaming (by pressure measurement).

본 발명에 적합한 [OH]농도 및 물리적 특성을 가진 실리카로는, 표면적 300㎡/g, 기공 부피 1.6㎖/g인, W.R. 그레이스 앤드 컴파니의 Davison 케미칼 디비젼에서 구입가능한 상품명 XPO-2402, XPO-2410, XPO-2411 및 XPO-2412 등을 사용할 수 있고, 또한 상품명 Davision 948, 952 및 955 등의 탈수 전 실리카를 구매하여 가열과정을 거쳐 원하는 [OH]농도로 조절하여 사용할 수도 있다.As the silica having the [OH] concentration and the physical properties suitable for the present invention, a silica having a surface area of 300 m &lt; 2 &gt; / g and a pore volume of 1.6 ml / XPO-2410, XPO-2411 and XPO-2412 available from Davison Chemicals Division of Grace &amp; Company, Inc., and dehydrated silica such as Davision 948, 952 and 955 can be used. The desired OH concentration can be used.

상기 (1) 단계에서 담지 과정은, 바람직하게는 알루미녹산이 담체에 담지된 후, 메탈로센이 담지되는데, 상기 (1) 단계에서 담체로서 실리카가 사용된 경우 실리카의 히드록시기는 산소가 없는 무수 조건하에서, 알루미녹산과 반응하여 알루미녹산을 담지시켜 메탈로센이 담지될 위치(site)를 제공함과 동시에 외부 촉매독에 매우 민감하게 반응하여 활성을 잃어버리기 쉬운 메탈로센을 보호하는 역할을 한다. 따라서, 알루미녹산의 담지량이 높을수록 메탈로센의 담지량은 높아지고, 외부 촉매독에 피독되지 않는 확률이 높아져 활성이 높아질 수 있다.In the step (1), when the alumoxane is supported on the support, the metallocene is supported. When the silica is used as the support in the step (1), the hydroxyl group of the silica is anhydrous Under the conditions, it reacts with aluminoxane to support the aluminoxane to provide the site where the metallocene is to be carried, and at the same time, it acts to protect the metallocene, which is liable to lose its activity by being very sensitive to external catalyst poison . Therefore, the higher the amount of supported aluminoxane, the higher the loading of metallocene, the higher the probability of not poisoning by the external catalyst poison, and the higher the activity.

상기 (1) 단계에서 담체는 담체 슬러리로서 사용되는데, 이는 탄화수소 용매 또는 탄화수소 용매 혼합물에 담체를 현탁시켜 제조된다.In the step (1), the carrier is used as a carrier slurry, which is prepared by suspending a carrier in a hydrocarbon solvent or a hydrocarbon solvent mixture.

상기 (1) 단계의 담지과정의 온도는 40~160℃인 것이 바람직하고, 80~120℃인 것이 더욱 바람직한데, 상기 온도범위를 벗어나면 활성이 저하되고 반응기내에서 고분자 뭉침현상이 발생하여 바람직하지 않고, 담지 시간은 30분~4시간인 것이 바람직하고, 1~2시간이 더욱 바람직한데, 상기 시간 범위를 벗어나면 경제성이 떨어지거나 반응이 충분하지 않아서 촉매로서 기능이 충분하지 못하여 바람직하지 않다.The temperature of the supporting process in the step (1) is preferably from 40 to 160 ° C., more preferably from 80 to 120 ° C. If the temperature is outside the above range, the activity decreases and polymer aggregation occurs in the reactor , It is preferable that the holding time is from 30 minutes to 4 hours, more preferably from 1 to 2 hours. If the time is out of the above range, economical efficiency is poor or the reaction is not sufficient, .

상기 (1) 단계의 담지 과정이 완료된 담지 촉매 용액에는 미반응 알루미녹산과 미담지 메탈로센 촉매가 미량 존재하고, 이들은 건조과정 전에 제거될 필요가 있는데, 미반응 알루미녹산이 제거되지 않을 경우, 담지 촉매들은 서로 달라붙게 되어 촉매를 건조된 형태로 중합 반응기로 주입시 주입불량문제를 일으키게 되며, 덩어리진 촉매의 주입은 반응기 내에서 국부적인 과반응이 진행되어 시트(sheet) 및 덩어리 형성의 문제를 일으키게 된다. 또한 미담지 메탈로센은 중합 반응시 담지체로부터 쉽게 분리되어 매우 미세한 입자의 중합체를 형성하여 반응기 파울링의 문제를 일으키게 된다. In the supported catalyst solution of the step (1), there is a small amount of unreacted aluminoxane and a non-supported metallocene catalyst, and they need to be removed before the drying process. If the unreacted aluminoxane is not removed, The supported catalysts are adhered to each other, causing a problem of poor injection when the catalyst is injected into the polymerization reactor in a dry form. Injection of the agglomerated catalyst causes a local overaction in the reactor to cause problems of sheet and lump formation . In addition, the metallocene is easily separated from the support during the polymerization reaction to form a very fine particle polymer, thereby causing a problem of fouling of the reactor.

이러한 미담지 물질의 제거를 목적으로, 상기 (2) 단계에서는 담지 촉매를 세척하는데, 방향족 탄화수소 용매 및 지방족 탄화수소 용매 등의 유기용매로 2차에 걸쳐 세척하는 것이 바람직하다. 1차 세척 단계에서 미담지 메탈로센과 알루미녹산을 제거하게 되는데, 이 단계에서 담지된 메탈로센의 탈착이 일어나게 되면 담지 촉매의 활성을 떨어뜨리는 요소로 작용하게 되므로, 본 발명에서는 이를 방지하기 위하여 저온의 1차 세척 단계를 수행하여 담지된 메탈로센과 알루미녹산 성분의 고착을 심화시킴으로써, 이후 진행되는 2차 세척과정에서 담지된 메탈로센 성분의 탈착을 방지하게 해준다. 상기 1차 세척 온도는 -10~60℃인 것이 바람직하다.For the purpose of removing such unreformed materials, it is preferable to wash the supported catalyst in the step (2) by an organic solvent such as an aromatic hydrocarbon solvent and an aliphatic hydrocarbon solvent. In the first washing step, the metallocene and aluminoxane are removed. When the supported metallocene is desorbed at this stage, it acts as a factor that lowers the activity of the supported catalyst. Therefore, in order to prevent this, By performing a low-temperature first washing step, the adhesion of the supported metallocene and the aluminoxane component is intensified, thereby preventing detachment of the supported metallocene component in the subsequent secondary washing process. The primary washing temperature is preferably -10 to 60 ° C.

상기 (3) 단계에서의 건조는 통상의 건조과정을 이용하여 수행될 수 있다. The drying in the step (3) may be carried out using a conventional drying process.

상기와 같은 본 발명의 방법에 따라 제조된 메탈로센 담지 촉매내의 Al함량은 10중량% 이상이다.The Al content in the metallocene supported catalyst produced according to the method of the present invention is 10% by weight or more.

 본 발명에 따른 제조방법에 의해 제조된 폴리올레핀 중합용 촉매를 이용한 폴리올레핀 중합방법은, 주촉매로서 상기한 바와 같이 제조된 메탈로센 담지 촉매의 존재 하에서, 수소, 올레핀, 필요에 따라 공단량체를 포함하여 이루어지는 기상중합용 조성물을 반응시켜, 올레핀을 중합 또는 올레핀과 공단량체를 공중합하여 올레핀 중합체 또는 공중합체를 제조한다.The polyolefin polymerization method using the catalyst for polyolefin polymerization produced by the production method according to the present invention is characterized in that hydrogen, olefin and, if necessary, comonomer And then olefin is polymerized or an olefin and a comonomer are copolymerized to prepare an olefin polymer or a copolymer.

상기 올레핀의 일예로는 에틸렌을 들 수 있고, 이 경우 상기 공단량체로는 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐 등과 같은 에틸렌 이외의 알파-올레핀이 바람직하며, 상기 공단량체와 상기 에틸렌의 함량비는 공단량체/에틸렌이 몰비로 0.005~0.02이고, 바람직하게는 0.008~0.015인 것이 더욱 바람직하다. 이 경우, 공단량체/에틸렌 몰비가 0.005 미만이거나 0.02를 초과하면, 목적하는 수준의 공중합체를 얻을 수 없어 바람직하지 않다. Examples of the olefin include ethylene. In this case, the comonomer is preferably an alpha-olefin other than ethylene such as propylene, 1-butene, 1-hexene and 4-methyl-1-pentene, The content ratio of the monomer to the ethylene is preferably 0.005 to 0.02, and more preferably 0.008 to 0.015 in terms of the molar ratio of the comonomer / ethylene. In this case, when the molar ratio of comonomer / ethylene is less than 0.005 or exceeds 0.02, a desired level of copolymer can not be obtained, which is not preferable.

이러한 올레핀 (공)중합체 제조방법에 있어서, 메탈로센 촉매는 1종 이상의 활성화제와 배합되어 올레핀 중합 촉매 시스템을 형성한다. 이 때 사용되는 바람직한 활성화제에는 알킬알루미늄 화합물(예컨대, 디에틸알루미늄 클로라이드), 알루미녹산, 변형 알루미녹산, 중성 또는 이온성 이온화 활성화제, 비배위 음이온, 비배위 13족 금속 또는 메탈로이드 음이온, 보란, 붕산염 등이 있다. In such an olefin (co) polymer preparation process, the metallocene catalyst is combined with at least one activator to form an olefin polymerization catalyst system. Preferred activating agents to be used herein include alkyl aluminum compounds such as diethyl aluminum chloride, aluminoxanes, modified aluminoxanes, neutral or ionic ionizing activators, non-coordinating anions, non-coordinating Group 13 metals or metaloid anions, , And borates.

상기 알킬알루미늄 화합물로는, 일반식 AlRnX(3-n)(여기에서, R은 탄소수 1~16의 알킬기이고, X는 할로겐 원소이며, 1≤n≤3이다)으로 표시되는 알킬알루미늄 화합물을 사용할 수 있다. 상기 알킬알루미늄 화합물의 구체적인 예로는, 바람직하게는, 트리에틸알루미늄, 트리메틸알루미늄, 트리노말프로필알루미늄, 트리노말부틸알루미늄, 트리이소부틸알루미늄, 트리노말헥실알루미늄, 트리노말옥틸알루미늄, 트리2-메틸펜틸알루미늄 등이 사용되며, 특히 바람직하게는, 트리이소부틸알루미늄, 트리에틸알루미늄, 트리노말헥실알루미늄 또는 트리노말옥틸알루미늄이 사용된다.The alkyl aluminum compound is preferably an alkyl aluminum compound represented by the general formula AlR n X (3-n) (wherein R is an alkyl group having 1 to 16 carbon atoms and X is a halogen element and 1? N? 3 ) Can be used. Specific examples of the alkylaluminum compound include trialkylaluminums such as triethylaluminum, trimethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum, tri-2-methylpentyl Aluminum and the like are used. Particularly preferably, triisobutylaluminum, triethylaluminum, trinormalhexylaluminum or trinormaloctylaluminum is used.

상기 알킬알루미늄 화합물은, 원하는 고분자 특성에 따라서 다음과 같은 몰비로 기상 중합시에 사용하는 것이 바람직하다.The alkylaluminum compound is preferably used in gas phase polymerization at the following molar ratio depending on the desired polymer properties.

1 ≤ 알킬알루미늄 화합물/주촉매 중의 전이금속 ≤ 10001 ≤ alkyl aluminum compound / transition metal in main catalyst ≤ 1000

보다 바람직하게는More preferably,

10 ≤ 알킬알루미늄 화합물/주촉매 중의 전이금속 ≤ 30010 ≤ alkyl aluminum compound / transition metal in main catalyst ≤ 300

상기 알킬알루미늄 화합물/주촉매 중의 전이금속의 몰비가 1 미만이면 충분한 중합활성을 얻을 수 없고, 1000을 초과하면 오히려 중합활성이 낮아지는 역효과가 나타난다.If the molar ratio of the transition metal in the alkylaluminum compound / main catalyst is less than 1, sufficient polymerization activity can not be obtained. On the other hand, if it exceeds 1000, the polymerization activity is adversely affected.

상기와 같은 올레핀 (공)중합체 제조방법에 있어서, 중합반응은 탄화수소용매의 부재하에서 60~120℃에서 수행되는 것이 바람직하고, 65~100℃인 것이 더욱 바람직하며, 70~80℃인 것이 가장 바람직하며, 2~40기압에서 수행되는 것이 바람직하고, 10~30기압에서 수행되는 것이 더욱 바람직하다.In the above-mentioned olefin (co) polymer production method, the polymerization reaction is preferably carried out at 60 to 120 ° C in the absence of a hydrocarbon solvent, more preferably at 65 to 100 ° C, most preferably at 70 to 80 ° C And is preferably carried out at 2 to 40 atm, more preferably at 10 to 30 atm.

반응기에서의 상기 중합온도가 60℃ 미만인 경우에는, 충분한 중합효율을 얻을 수 없어 바람직하지 않고, 120℃를 초과하는 경우에는, 중합체 덩어리가 생성되기 쉽다는 문제점이 있어 바람직하지 않다. 또한, 반응기에서의 상기 운전압력이 2기압 미만인 경우에는, 에틸렌 분압이 낮아 충분한 중합 효율을 얻을 수 없어 바람직하지 않고, 40기압을 초과하는 경우에는 반응의 제어가 어려워지고, 반응기에 무리를 가하게 되어 바람직하지 않다.When the polymerization temperature in the reactor is lower than 60 DEG C, sufficient polymerization efficiency can not be obtained, which is undesirable. If it exceeds 120 DEG C, a polymer mass tends to be easily generated. When the operating pressure in the reactor is lower than 2 atmospheres, the ethylene partial pressure is too low to obtain sufficient polymerization efficiency. When the pressure is higher than 40 atmospheres, it is difficult to control the reaction, It is not preferable.

본 발명의 주촉매로서 상기에서 제조된 메탈로센 담지 촉매 성분은 중합 반응에 성분으로 사용되기 전에 에틸렌 또는 α-올레핀으로 전중합하여 사용할 수 있다. 전중합은 헥산과 같은 탄화수소 용매 존재하에서 충분히 낮은 온도와 에틸렌 또는 α-올레핀 압력 조건에서 상기의 촉매 성분과 트리이소부틸알루미늄과 같은 유기알루미늄 화합물의 존재하에서 행할 수 있다. 전중합은 촉매 입자를 폴리머로 둘러싸서 촉매 형상을 유지시켜 중합후에 폴리머의 형상을 좋게 하는데 도움을 준다. 전중합 후의 폴리머/촉매의 무게비는 대개 0.1:1 내지 200:1이다. 바람직한 유기금속 화합물로는 트리에틸알루미늄, 트리이소부틸알루미늄과 같은 탄소수 1~6의 알킬기를 가진 트리알킬알루미늄과 이들의 혼합물이 유익하다. 경우에 따라서는 에틸알루미늄디클로라이드, 디에틸알루미늄클로라이드, 에틸알루미늄세스퀴클로라이드, 디이소부틸알루미늄히드리드와 같은 한개 이상의 할로겐 또는 히드리드기를 갖는 유기알루미늄 화합물이 사용될 수 있다.The metallocene supported catalyst component prepared above as the main catalyst of the present invention can be used in the prepolymerized state with ethylene or an? -Olefin before being used as a component in the polymerization reaction. The prepolymerization can be carried out in the presence of a hydrocarbon solvent such as hexane at a sufficiently low temperature and in the presence of the catalyst component and an organoaluminum compound such as triisobutylaluminum under ethylene or alpha-olefin pressure conditions. Pre-polymerization helps wrap the catalyst particles around the polymer to maintain the catalyst shape and improve the shape of the polymer after polymerization. The weight ratio of polymer / catalyst after pre-polymerization is usually from 0.1: 1 to 200: 1. Preferred organometallic compounds include trialkylaluminums having alkyl groups of 1 to 6 carbon atoms, such as triethylaluminum and triisobutylaluminum, and mixtures thereof. In some cases, an organoaluminum compound having at least one halogen or hydride group such as ethylaluminum dichloride, diethylaluminum chloride, ethylaluminum sesquichloride, diisobutylaluminum hydride and the like can be used.

본 발명에 의하면 메탈로센 촉매성분과 티타노센 또는 하프 티타노센 화합물을 사용하고, 알루미녹산을 알콕시실란 화합물과 반응시켜 메탈로센 담지 촉매 성분을 제조함으로써 촉매활성이 더욱더 우수하며, 고분자량의 폴리올레핀 중합 및 공중합체를 제조할 수 있다.According to the present invention, a metallocene supported catalyst component is prepared by using a metallocene catalyst component, a titanocene or a half titanocene compound, and reacting the aluminoxane with an alkoxysilane compound to further improve catalytic activity and to produce a high molecular weight polyolefin Polymerization and copolymers can be prepared.

또한, 본 발명에서는 상업조건에 근접한 중합조건, 특히 분자량 조절제인 수소를 사용하여 중합 또는 공중합시에도 분자량을 크게 유지 조절할 수 있는 촉매를 제공할 수 있고, 본 발명의 촉매를 이용한 중합방법에서 얻어진 생성물은 고체의 고분자량의 폴리올레핀 단독중합체 또는 공중합체이며, 중합체의 수율도 충분히 높아서 촉매 잔사의 제거가 필요하지 않고, 우수한 겉보기 밀도와 유동성을 갖고 있다.In addition, in the present invention, it is possible to provide a catalyst capable of largely maintaining and controlling the molecular weight even under polymerization conditions close to commercial conditions, in particular, in the polymerization or copolymerization using hydrogen as a molecular weight regulator, and the product obtained in the polymerization method using the catalyst of the present invention Is a solid high molecular weight polyolefin homopolymer or copolymer, and the yield of the polymer is sufficiently high to eliminate the need for removal of the catalyst residue, and has excellent apparent density and fluidity.

이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 이들 실시예들은 예시적인 목적일 뿐 본 발명이 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to examples. However, these embodiments are for illustrative purposes only, and the present invention is not limited to these embodiments.

 

[원료][Raw material]

이하, 실시예에서 사용되는 메탈로센 촉매 성분은  이미 잘 알려진 문헌의 방법에 의하여 생성되거나, mCAT GmBH(www.mcat.de 참조) 또는 Strem(www.strem.com 참조) 또는 Boulder Scientific(www.bouldersci.com 참조)사에서 상업적으로 판매되고 있는 것을 사용하였다.
Hereinafter, the metallocene catalyst component used in the examples may be produced by the method of the already well-known literature, or may be produced by mCAT GmBH (see www.mcat.de) or Strem (see www.strem.com) or Boulder Scientific (see www. bouldersci.com) were used.

[[ 메탈로센Metallocene 담지 촉매의 제조] Preparation of Supported Catalyst]

실시예Example 1 One

메틸알루미녹산 용액(10중량%) 50ml를 메스실린더에서 정량하고, 여기에 알콕시실란인 시클로헥실메틸디메톡시실란(시클로헥실메틸디메톡시실란/메탈로센=0.6몰/몰)을 주입한 후, 상온에서 30분 이상 교반하여 반응시켰다. 상품명 XPO-2402(평균입도 ~50㎛, 표면적 300㎡/g, 미세기공 부피 1.6ml/g, OH농도 1mmol/g, Grace사, 미국)의 탈수 실리카를 무수조건하에서 5g 정량하고, 톨루엔 20ml를 사용하여 슬러리 상태로 교반시켰다. 이를 교반기와 냉각 응축기가 구비된 1L 반응기에 주입하였다. 상기에서 알콕시실란과 반응시킨 메틸알루미녹산 용액(10중량%, Toluene, Albemarle사,미국) 50ml를 메스실린더에서 정량한 후, 250ml 쉬렌크(schlenk)에 미리 정량된 메탈로센 촉매성분 Et(IND)2ZrCl2(메탈로센/실리카= 140μmol/g 실리카)와 티타노센 화합물 Cp2TiCl2 (Cp2TiCl2/실리카= 30μmol/g 실리카)를 5~10℃에서 혼합하고, 15분간 교반하여 고체 메탈로센 촉매와 Cp2TiCl2를 용해시킴과 동시에 반응시켰다. 얻어진 메틸알루미녹산-메탈로센 용액을 상기 반응기의 온도를 상온으로 유지한 상태에서 상기 반응기에 첨가하였다. 이후 교반과 동시에 반응 온도를 110℃로 승온시켰다. 이 온도에서 담지 반응을 90분 동안 진행시켰다. 반응 종료 후, 반응물을 쉬렌크 용기로 이송 후, 상부 용액을 따라냈다(decantation). 반응물을 교반한 후, 상온에 도달하면 10분간 정치 후 상부 용액을 따라내고, 상온에서 톨루엔 100ml를 사용하여 반응물을 1차 세척하였다. 반응물을 교반한 후, 상온에 도달하면 정치 후 상부 용액을 따라내고, 상온의 톨루엔 100ml로 2차 세척하였다. 그 후, 얻어진 촉매계는 정제 헥산으로 세척한 후, 온화한 진공 하에서 건조시켰다. 제조된 담지 촉매의 양은 9.4g이었다. 50 ml of a methylaluminoxane solution (10% by weight) was quantitatively measured in a measuring cylinder, and cyclohexylmethyldimethoxysilane (cyclohexylmethyldimethoxysilane / metallocene = 0.6 mol / mol), which is an alkoxysilane, The reaction was carried out at room temperature for 30 minutes or more. 5 g of dehydrated silica of the trade name XPO-2402 (average particle size to 50 탆, surface area 300 m 2 / g, micropore volume 1.6 ml / g, OH concentration 1 mmol / g, Grace, USA) was quantitated under anhydrous conditions and 20 ml of toluene And the mixture was stirred in a slurry state. This was injected into a 1 L reactor equipped with a stirrer and a cooling condenser. 50 ml of a methylaluminoxane solution (10 wt%, Toluene, Albemarle Company, USA) reacted with the alkoxysilane was quantitatively measured in a measuring cylinder, and then a metallocene catalyst component Et (IND) preliminarily quantified in 250 ml Schlenk ) 2 to the ZrCl 2 (metallocene / silica = 140μmol / g silica), and titanocene compound Cp 2 TiCl 2, (Cp 2 TiCl 2 / Si = 30μmol / g silica) with mixing at 5 ~ 10 ℃, and stirred for 15 minutes The solid metallocene catalyst and Cp 2 TiCl 2 were dissolved and reacted. The resulting methylaluminoxane-metallocene solution was added to the reactor while maintaining the temperature of the reactor at room temperature. Then, the reaction temperature was elevated to 110 캜 with stirring. At this temperature, the support reaction was allowed to proceed for 90 minutes. After the completion of the reaction, the reaction product was transferred to a Schlenk vessel, and then the upper solution was decanted. After the reaction mixture was stirred at room temperature, the reaction mixture was allowed to stand for 10 minutes and then the upper solution was discharged. The reaction mixture was firstly washed with 100 ml of toluene at room temperature. After the reaction mixture was stirred at room temperature, the reaction mixture was poured into the upper solution and washed with 100 ml of toluene at room temperature. The resulting catalyst system was then washed with purified hexane and then dried under mild vacuum. The amount of the supported catalyst prepared was 9.4 g.

 

비교예Comparative Example 1 One

실시예 1에서, 알콕시실란을 사용하지 않고, 실시예 1과 동일한 조건으로 촉매를 제조하였다.In Example 1, a catalyst was prepared under the same conditions as in Example 1 without using alkoxysilane.

 

실시예Example 2 2

실시예 1에서 메탈로센 촉매 성분 Et(IND)2ZrCl2를 (IND)2ZrCl2로 교체하여 사용한 것 이외에는 실시예 1과 동일한 조건으로 촉매를 제조하였다.In Example 1, the metallocene catalyst component Et (IND) 2 ZrCl 2 a (IND) was used to replace it with a 2 ZrCl 2 was prepared except that the catalyst in the same conditions as in Example 1.

 

비교예Comparative Example 2 2

실시예 2에서, 알콕시실란을 사용하지 않고, 실시예 2와 동일한 조건으로 촉매를 제조하였다.In Example 2, a catalyst was prepared under the same conditions as in Example 2 without using alkoxysilane.

 

실시예Example 3 3

실시예 1에서 메탈로센 촉매 성분 Et(IND)2ZrCl2를 (nBuCp)2ZrCl2로 교체하여 사용한 것 이외에는 실시예 1과 동일한 조건으로 촉매를 제조하였다.In Example 1, the metallocene catalyst component Et (IND) 2 was used to replace the ZrCl 2 (nBuCp) 2 ZrCl 2 in other than the A catalyst was prepared in the same conditions as in Example 1.

 

비교예Comparative Example 3 3

실시예 3에서, 알콕시실란을 사용하지 않고, 실시예 3과 동일한 조건으로 촉매를 제조하였다.
In Example 3, a catalyst was prepared under the same conditions as in Example 3 without using alkoxysilane.

실시예Example 4 4

실시예 1에서 메탈로센 촉매 성분 Et(IND)2ZrCl2를 (1,3-Et,MeCp)2ZrCl2로 교체하여 사용한 것 이외에는 실시예 1과 동일한 조건으로 촉매를 제조하였다.Example 1 In the metallocene catalyst component to metal Et (IND) 2 ZrCl 2 a (1,3-Et, MeCp) was used to replace it with a 2 ZrCl 2 was prepared except that the catalyst in the same conditions as in Example 1.

비교예Comparative Example 4 4

실시예 4에서, 알콕시실란을 사용하지 않고, 실시예 4와 동일한 조건으로 촉매를 제조하였다.In Example 4, a catalyst was prepared under the same conditions as in Example 4, without using alkoxysilane.

 

비교예Comparative Example 5 5

실시예 1에서, Et(IND)2ZrCl2를 사용하지 않고, 실시예 1과 동일한 조건으로 촉매를 제조하였다.In Example 1, a catalyst was prepared under the same conditions as in Example 1, except that Et (IND) 2 ZrCl 2 was not used.

 

비교예Comparative Example 6 6

실시예 1에서, Et(IND)2ZrCl2를 사용하지 않고, Cp2TiCl2 (Cp2TiCl2/실리카= 200μmol/g실리카)를 사용하여 실시예 1과 동일한 조건으로 촉매를 제조하였다.In Example 1, a catalyst was prepared under the same conditions as in Example 1 except that Cp 2 TiCl 2 (Cp 2 TiCl 2 / silica = 200 μmol / g silica) was used instead of Et (IND) 2 ZrCl 2 .

 

[중합체의 제조][Preparation of Polymer]

실시예Example 5 5

[중합방법][Polymerization method]

표 1에 나타낸 조건으로, 제조된 메탈로센 담지 촉매를 이용하여 다음의 방법으로 중합을 실시하였다. 2L의 스테인레스스틸 중합반응기 전단에 압력용기를 설치하고, 표 1에 나타낸 양의 수소를 채우고, 나머지 압력을 에틸렌을 혼합하여 전체압력이 330psig로 유지된 혼합가스를 제조하였다.Polymerization was carried out in the following manner using the supported metallocene supported catalyst under the conditions shown in Table 1. A pressure vessel was placed on the front of a 2 L stainless steel polymerization reactor, filled with hydrogen as shown in Table 1, and the remaining pressure was mixed with ethylene to prepare a mixed gas having a total pressure of 330 psig.

상기 반응기에 1000ml의 정제된 헥산과 표 1에 나타낸 양의 1-헥센을 주입하였다. 다음으로, 촉매독 제거제로서 트리이소부틸알루미늄(TiBA)의 1M 헥산 희석액 1.0cc를 반응기에 주입하고 교반하며 65℃로 승온 후, 교반을 중지하였다. 주촉매로서 상기 실시예 1에서 제조된 메탈로센 담지 촉매 15~25mg을 글러브 박스에서 정량하여 5ml 실린지에 옮긴 후, 활성화제로 트리이소부틸알루미늄(TiBA)의 1M 헥산 희석액 1.0cc를 취했다. 활성화된 촉매 슬러리는 반응기로 옮겨져 65℃의 반응기에 주입하였다. 이어서, 반응기 온도를 80℃까지 상승시켰다. 반응기의 전체압력이 200psig가 되도록 수소/에틸렌 혼합가스를 공급한 다음, 1000rpm으로 교반함으로써 반응을 시작하였다. 반응이 진행되는 동안 반응기의 전체 압력이 200psig로 일정하게 유지될 수 있도록 에틸렌/수소 혼합가스를 충분히 공급하면서, 20분 동안 중합반응을 수행하였다. 20분의 중합반응 후, 에틸렌/수소 혼합가스 주입을 중단하여 반응을 종결시키고, 결과 중합체를 얻었다. 얻어진 결과 중합체를 여과기로 분리하고, 충분히 건조하여 중합체를 얻었다. 중합결과는 표 1에 나타내었다.
The reactor was charged with 1000 ml of purified hexane and 1-hexene in the amount shown in Table 1. Next, 1.0 cc of a 1 M hexane dilution of triisobutylaluminum (TiBA) as a catalyst poisoning agent was introduced into the reactor, stirred, elevated to 65 캜, and stirring was stopped. 15 to 25 mg of the metallocene supported catalyst prepared in Example 1 as the main catalyst was quantitatively measured in a glove box and transferred to a 5 ml syringe. 1.0 cc of 1 M hexane dilution of triisobutylaluminum (TiBA) as an activator was taken. The activated catalyst slurry was transferred to the reactor and injected into the reactor at 65 ° C. The reactor temperature was then raised to 80 占 폚. The reaction was started by feeding a hydrogen / ethylene mixed gas such that the total pressure of the reactor was 200 psig and then stirring at 1000 rpm. During the reaction, the polymerization reaction was carried out for 20 minutes while supplying a sufficient ethylene / hydrogen mixed gas so that the total pressure of the reactor could be kept constant at 200 psig. After the polymerization for 20 minutes, the injection of the ethylene / hydrogen mixed gas was stopped to terminate the reaction, and the resulting polymer was obtained. The resulting polymer was separated by a filter and sufficiently dried to obtain a polymer. The polymerization results are shown in Table 1.

[중합체 분석][Polymer analysis]

상기에서 얻은 중합체에 대하여 다음의 분석을 실시하였다.The polymer obtained above was subjected to the following analysis.

1) 밀도(Density, g/mL) : ASTM1505를 기준으로 분석을 실시하였다.1) Density (g / mL): Analysis was performed based on ASTM1505.

2) 용융지수(Melt Index(MI), 190℃, 2.16Kg, g/10min.) : ASTM1238을 기준으로 하여 분석을 실시하였다.
2) Melt Index (MI), 190 DEG C, 2.16 Kg, g / 10 min.): Analysis was carried out on the basis of ASTM1238.

실시예Example 6 6

실시예 2의 촉매를 사용하는 것을 제외하고는 실시예 5와 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.Polymerization was carried out under the same conditions as in Example 5, except that the catalyst of Example 2 was used. The polymerization conditions and polymerization results are shown in Table 1.

 

실시예Example 7 7

실시예 3의 촉매를 사용하는 것을 제외하고는 실시예 5와 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.
Polymerization was carried out under the same conditions as in Example 5 except that the catalyst of Example 3 was used. The polymerization conditions and polymerization results are shown in Table 1.

실시예Example 8 8

실시예 4의 촉매를 사용하는 것을 제외하고는 실시예 5와 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.
Polymerization was carried out under the same conditions as in Example 5 except that the catalyst of Example 4 was used. The polymerization conditions and polymerization results are shown in Table 1.

비교예Comparative Example 7 7

비교예 1의 촉매를 사용하는 것을 제외하고는 실시예 5와 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.
Polymerization was carried out under the same conditions as in Example 5 except that the catalyst of Comparative Example 1 was used. The polymerization conditions and polymerization results are shown in Table 1.

비교예Comparative Example 8 8

비교예 2의 촉매를 사용하는 것을 제외하고는 비교예 7과 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.Polymerization was carried out under the same conditions as in Comparative Example 7, except that the catalyst of Comparative Example 2 was used. The polymerization conditions and polymerization results are shown in Table 1.

 

비교예Comparative Example 9 9

비교예 3의 촉매를 사용하는 것을 제외하고는 비교예 7과 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.
Polymerization was carried out under the same conditions as in Comparative Example 7, except that the catalyst of Comparative Example 3 was used. The polymerization conditions and polymerization results are shown in Table 1.

비교예Comparative Example 10 10

비교예 4의 촉매를 사용하는 것을 제외하고는 비교예 7과 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.Polymerization was carried out under the same conditions as in Comparative Example 7, except that the catalyst of Comparative Example 4 was used. The polymerization conditions and polymerization results are shown in Table 1.

 

비교예Comparative Example 11 11

비교예 5의 촉매를 사용하는 것을 제외하고는 비교예 7과 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.Polymerization was carried out under the same conditions as in Comparative Example 7, except that the catalyst of Comparative Example 5 was used. The polymerization conditions and polymerization results are shown in Table 1.

 

비교예Comparative Example 12 12

비교예 6의 촉매를 사용하는 것을 제외하고는 비교예 7과 동일한 조건으로 중합을 실시하였다. 중합조건 및 중합결과는 표 1에 나타내었다.Polymerization was carried out under the same conditions as in Comparative Example 7 except that the catalyst of Comparative Example 6 was used. The polymerization conditions and polymerization results are shown in Table 1.

 

실시예Example 9 9

    실시예 1에서, 알콕시실란인 시클로헥실메틸디메톡시실란 대신에 디이소프로필디메톡시실란 (디이소프로필디메톡시실란/메탈로센=0.6 몰/몰)을 사용하여 실시예 1과 동일한 조건으로 촉매를 제조하였고, 실시예 5와 동일한 조건으로 중합을 실시하였다. 그 결과는 표 1에 나타내었다.      In the same manner as in Example 1, except that diisopropyldimethoxysilane (diisopropyldimethoxysilane / metallocene = 0.6 mol / mol) was used instead of cyclohexylmethyldimethoxysilane, which is an alkoxysilane, And polymerization was carried out under the same conditions as in Example 5. [ The results are shown in Table 1.

 

실시예Example 10 10

알콕시실란인 시클로헥실메틸디메톡시실란 대신에 이소부틸트리에톡시실란(이소부틸트리에톡시실란/메탈로센=0.6몰/몰)을 사용하는 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하였고, 실시예 5와 동일한 조건으로 중합을 실시하였다. 그 결과는 표 1에 나타내었다.
A catalyst was prepared under the same conditions as in Example 1, except that isobutyltriethoxysilane (isobutyltriethoxysilane / metallocene = 0.6 mol / mol) was used instead of cyclohexylmethyldimethoxysilane, which is an alkoxysilane , And the polymerization was carried out under the same conditions as in Example 5. The results are shown in Table 1.

실시예Example 11 11

알콕시실란인 시클로헥실메틸디메톡시실란 대신에 디페닐디메톡시실란 (디페닐디메톡시실란/메탈로센=0.6 몰/몰)을 사용하는 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하였고, 실시예 5와 동일한 조건으로 중합을 실시하였다. 그 결과는 표 1에 나타내었다.
A catalyst was prepared under the same conditions as in Example 1, except that diphenyldimethoxysilane (diphenyldimethoxysilane / metallocene = 0.6 mol / mol) was used instead of cyclohexylmethyldimethoxysilane which was an alkoxysilane , And the polymerization was carried out under the same conditions as in Example 5. The results are shown in Table 1.

실시예Example 12 12

알콕시실란인 시클로헥실메틸디메톡시실란 대신에 메틸트리메톡시실란 (메틸트리메톡시실란/메탈로센=0.6 몰/몰)을 사용하는 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하였고, 실시예 5와 동일한 조건으로 중합을 실시하였다. 그 결과는 표 1에 나타내었다.
A catalyst was prepared under the same conditions as in Example 1, except that methyltrimethoxysilane (methyltrimethoxysilane / metallocene = 0.6 mol / mol) was used instead of cyclohexylmethyldimethoxysilane, which is an alkoxysilane, , And the polymerization was carried out under the same conditions as in Example 5. The results are shown in Table 1.

실시예Example 13 13

알콕시실란인 시클로헥실메틸디메톡시실란 대신에 페닐트리에톡시실란 (페닐트리에톡시실란/메탈로센=0.6 몰/몰)을 사용하는 것을 제외하고는 실시예 1과 동일한 조건으로 촉매를 제조하였고, 실시예 5와 동일한 조건으로 중합을 실시하였다. 그 결과는 표 1에 나타내었다.A catalyst was prepared under the same conditions as in Example 1, except that phenyltriethoxysilane (phenyltriethoxysilane / metallocene = 0.6 mol / mol) was used instead of cyclohexylmethyldimethoxysilane which was an alkoxysilane , And the polymerization was carried out under the same conditions as in Example 5. The results are shown in Table 1.

 

촉매catalyst C6
(mL)
C6
(mL)
수소량
(mL)
Amount of hydrogen
(mL)
활성
(g중합체/g촉매/hr)
activation
(g polymer / g catalyst / hr)
용융지수
(2.16Kg, g/10min.)
Melt Index
(2.16 Kg, g / 10 min.)
밀도
(g/mL)
density
(g / mL)
실시예5Example 5 실시예1Example 1 5050 3030 1520015200 1.41.4 0.9170.917 비교예7Comparative Example 7 비교예1Comparative Example 1 5050 3030 68006800 1.51.5 0.9170.917 실시예6Example 6 실시예2Example 2 7070 5050 82008200 0.170.17 0.9170.917 비교예8Comparative Example 8 비교예2Comparative Example 2 7070 5050 40004000 0.160.16 0.9180.918 실시예7Example 7 실시예3Example 3 7070 5050 1140011400 0.090.09 0.9160.916 비교예9Comparative Example 9 비교예3Comparative Example 3 7070 5050 58005800 0.100.10 0.9170.917 실시예8Example 8 실시예4Example 4 7070 5050 57005700 0.060.06 0.9190.919 비교예10Comparative Example 10 비교예4Comparative Example 4 7070 5050 28002800 0.070.07 0.9180.918 비교예11Comparative Example 11 비교예5Comparative Example 5 7070 5050 N.A.N.A. -- -- 비교예12Comparative Example 12 비교예6Comparative Example 6 7070 5050 N.A.N.A. -- -- 실시예9Example 9 실시예9Example 9 7070 5050 1350013500 1.21.2 0.9170.917 실시예10Example 10 실시예10Example 10 7070 5050 1370013700 1.31.3 0.9180.918 실시예11Example 11 실시예11Example 11 7070 5050 1580015800 1.21.2 0.9160.916 실시예12Example 12 실시예12Example 12 7070 5050 1270012700 1.11.1 0.9170.917 실시예13Example 13 실시예13Example 13 7070 5050 1460014600 1.31.3 0.9160.916

*) N.A.= No Activity
*) NA = No Activity

표 1에서 나타낸 바와 같이, 실시예 1~4의 알콕시실란 화합물과 반응시킨 알루미녹산을 사용하여 제조한 촉매는 알콕시실란 화합물을 사용하지 않은 비교예 1~4의 촉매와 비교하여 분자량 지수인 용융지수(MI)도 낮게 유지되고(용융지수가 낮을수록 분자량이 높음), 촉매활성이 매우 우수함을 알 수 있다. 추가적으로 밀도 (Density)측면에서도 실시예 1~4의 담지 촉매가 비교예 1~4의 촉매와 유사하게 유지됨을 알 수 있다. 실시예 9~13에서 다양한 종류의 알콕시실란 화합물과 반응시킨 알루미녹산을 사용한 경우에도 분자량 지수인 용융지수(MI)도 낮게 유지되고, 촉매활성이 보다 우수함을 알 수 있다. 한편, 비교예 11~12의 경우에는 촉매활성이 나타나지 않는 것을 알 수 있다. 즉 상기의 메탈로센 성분을 사용하지 않고 티타늄 화합물만을 사용한 경우에는 유용한 촉매가 형성되지 않음을 알 수 있다.As shown in Table 1, the catalysts prepared using aluminoxane reacted with the alkoxysilane compounds of Examples 1 to 4 had a melt index (Mw), which is a molecular weight index, as compared with the catalysts of Comparative Examples 1 to 4 in which no alkoxysilane compound was used (MI) is also kept low (the lower the melt index, the higher the molecular weight) and the catalyst activity is very good. In addition, it can be seen that the supported catalysts of Examples 1 to 4 are maintained similar to the catalysts of Comparative Examples 1 to 4 in terms of density. Even when aluminoxane reacted with various kinds of alkoxysilane compounds was used in Examples 9 to 13, the melt index (MI), which is a molecular weight index, was kept low and the catalytic activity was more excellent. On the other hand, in the case of Comparative Examples 11 to 12, it can be seen that no catalytic activity is observed. That is, it can be seen that no useful catalyst is formed when only the titanium compound is used without using the above metallocene component.

Claims (8)

다음의 단계들을 포함하는 방법에 따라 제조되는 올레핀 중합 또는 공중합용 촉매 :
(1) 담체에, 알루미녹산, 알콕시실란 화합물, 메탈로센 화합물, 및 티타노센 화합물 또는 하프 티타노센 화합물을 담지시키는 단계,
여기에서, 상기 메탈로센 화합물은 다음의 일반식(1) 내지 (3)으로 표시되는 화합물들로부터 선택되고, 상기 티타노센 화합물 또는 하프 티타노센 화합물은 다음의 일반식 (4)로 표시되는 화합물들로부터 선택되며, 상기 알콕시실란 화합물은 다음의 일반식 (5)로 표시되는 화합물들로부터 선택된다:
(CpRn)(CpR'm)MLq ‥‥‥ (1)
여기에서 Cp는 시클로펜타디에닐, 인데닐, 또는 플루오레닐이고,
R과 R'는 각각 독립적으로 수소, 알킬, 알킬에테르, 알릴에테르, 포스핀 또는 아민을 나타내고,
L은 알킬, 알릴, 아릴알킬, 아마이드, 알콕시 또는 할로겐을 나타내고,
M은 주기율표의 4족 또는 5족의 전이금속을 나타내고,
n은 0 ≤ n < 5,  m은 0 ≤ m < 5, q는 1 ≤ q ≤ 4를 만족하는 정수이다;
Q(CpRn)(CpR'm)MLq ‥‥‥ (2)
여기서 Cp, R, R', M, L은 상기 일반식(1)과 동일한 의미를 가지며, Q는 C고리 사이의 다리결합으로서, 디알킬, 알킬아릴, 디아릴실리콘, 또는 탄소수 1~20의 탄화수소기를 나타내며,  n은 0 ≤ n < 4,  m은 0 ≤ m <4, q는 1 ≤ q ≤ 4를 만족하는 정수이다;
Figure pat00002
   ‥‥‥ (3)
여기에서 x는 0, 1, 2, 3 또는 4이며, y는 0 또는 1이고, R은 수소, 탄소수 1~20의 탄화수소기, 실릴기, 게르밀기, 시아노기, 할로겐 또는 이들의 복합기로 이루어진 1 내지 20개의 비수소 원자를 갖는 치환기를 나타내고, Y'는 -O-, -S-, -NR*-, 또는 -PR*-를 나타내고(R*는 수소, 탄소수 1~12의 탄화수소기), 탄소수 1~8의 히드로카르빌옥시기, 실릴기, 탄소수 1~8의 할로겐화 알킬기, 탄소수 6~20의 할로겐화 아릴기 또는 이들의 복합기를 나타내고, Z는 SiR*2, CR*2, SiR*2SiR*2, CR*2CR*2, CR*=CR*, CR*2SiR*2 또는 GeR*2를 나타내며, R*는 상기에서 정의한 바와 같고, L은 각각 독립적으로 할라이드, 탄소수 1~20의 탄화수소기, 탄소수 1~18의 히드로카르빌옥시기, 탄소수 1~19의 히드로카르빌아미노기, 탄소수 1~18의 히드로카르빌아미드기, 탄소수 1~18의 히드로카르빌포스피드기, 탄소수 1~18의 히드로카르빌설피드기, 및 이들의 복합기로 이루어진 군에서 선택되는 1 내지 20개의 비수소 치환기를 갖는 치환기를 나타내거나, 또는 2개의 치환기 L이 함께 탄소수 1~30의 중성 공액 디엔 또는 2가의 기를 나타내고, M은 주기율표의 4족 또는 5족의 전이금속을 나타낸다;
(CpRn)(CpR'm)TiLq ‥‥‥ (4)
여기에서 Cp는 시클로펜타디에닐, 인데닐, 테트라히드로인데닐 또는 플루오레닐을 나타내고, R과 R'는 각각 독립적으로 수소, 탄소수 1~20의 탄화수소기, 알킬에테르, 알킬실릴, 알릴에테르, 알콕시알킬, 포스핀 또는 아민을 나타내고, L은 알킬, 알릴, 아릴알킬, 아마이드, 알콕시 또는 할로겐을 나타내고, n은 0 ≤ n < 5,  m은 0 ≤ m <5, q는 1≤ q≤ 4를 만족하는 정수이다;
(R'O)4-n(R)nSi ‥‥‥ (5)
여기에서 R'와 R은 탄소수 1~20의 탄화수소기를 나타내며, 같거나 서로 다를 수 있으며, n은 1, 2 또는 3이다;
(2) 상기 (1) 단계에서 얻어진 담지 촉매를 유기용매로 세척하는 단계; 및
(3) 상기 (2) 단계에서 세척된 촉매를 건조시킨 후 촉매 분말로서 회수하는 단계.
A catalyst for olefin polymerization or copolymerization prepared according to a process comprising the steps of:
(1) a step of supporting an aluminoxane, an alkoxysilane compound, a metallocene compound, and a titanocene compound or a half-titanocene compound on a carrier,
Here, the metallocene compound is selected from compounds represented by the following general formulas (1) to (3), and the titanocene compound or the half-titanocene compound is a compound represented by the following general formula (4) And the alkoxysilane compound is selected from compounds represented by the following general formula (5)
(CpR n ) (CpR ' m ) ML q (1)
Wherein Cp is cyclopentadienyl, indenyl, or fluorenyl,
R and R 'are each independently hydrogen, alkyl, alkyl ether, allyl ether, phosphine or amine,
L represents alkyl, allyl, arylalkyl, amide, alkoxy or halogen,
M represents a transition metal of Group 4 or Group 5 of the periodic table,
n is an integer satisfying 0? n <5, m is 0? m <5, q is 1? q? 4;
Q (CpR n ) (CpR ' m ) ML q (2)
Wherein Q is a bridging bond between the C rings and is a dialkyl, alkylaryl, diarylsilyl, or a divalent linking group having 1 to 20 carbon atoms A hydrocarbon group, n is 0? N <4, m is 0? M <4, q is an integer satisfying 1? Q? 4;
Figure pat00002
(3)
Wherein x is 0, 1, 2, 3 or 4, y is 0 or 1, and R is selected from the group consisting of hydrogen, a hydrocarbon group of 1 to 20 carbon atoms, a silyl group, a germyl group, a cyano group, Y 'represents -O-, -S-, -NR * -, or -PR * - (wherein R * represents hydrogen, a hydrocarbon group of 1 to 12 carbon atoms) , A hydrocarbyloxy group having 1 to 8 carbon atoms, a silyl group, a halogenated alkyl group having 1 to 8 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms, or a compound thereof, Z is SiR * 2 , CR * 2 , SiR * 2 SiR * 2 , CR * 2 CR * 2 , CR * = CR *, CR * 2 SiR * 2 or GeR * 2 , R * is as defined above, L is independently selected from halide, A hydrocarbyloxy group having 1 to 18 carbon atoms, a hydrocarbylamino group having 1 to 19 carbon atoms, a hydrocarbylamide group having 1 to 18 carbon atoms, a hydrocarbyl phosphide group having 1 to 18 carbon atoms, a carbon A hydrocarbylsulfide group having 1 to 18 carbon atoms and a multifunctional group thereof, or two substituents L together form a neutral conjugated diene having 1 to 30 carbon atoms or And M represents a transition metal of Group 4 or Group 5 of the periodic table;
(CpR n ) (CpR ' m ) TiL q (4)
Cp represents cyclopentadienyl, indenyl, tetrahydroindenyl or fluorenyl; R and R 'each independently represent hydrogen, a hydrocarbon group of 1 to 20 carbon atoms, an alkyl ether, an alkylsilyl, an allyl ether, N is an integer of 0 to n <5, m is 0 to m <5, and q is an integer of 1 to q? 4 Lt; / RTI &gt;;
(R'O) 4-n (R) n Si (5)
Wherein R 'and R represent a hydrocarbon group of 1 to 20 carbon atoms, which may be the same or different, and n is 1, 2 or 3;
(2) washing the supported catalyst obtained in the step (1) with an organic solvent; And
(3) drying the catalyst washed in the step (2) and recovering it as a catalyst powder.
제 1항에 있어서, 상기 메탈로센 촉매 성분과 티타노센 화합물 또는 하프 티타노센 화합물의 사용양은 몰비로 0.05:1~10:1인 것을 특징으로 하는 올레핀 중합 또는 공중합용 촉매.The catalyst for olefin polymerization or copolymerization according to claim 1, wherein the amount of the metallocene catalyst component and the amount of the titanocene compound or the half titanocene compound used is in the range of 0.05: 1 to 10: 1. 제 1항에 있어서, 상기 알콕시실란 화합물의 사용양은 메탈로센 성분 몰당 0.05~10몰인 것을 특징으로 하는 올레핀 중합 또는 공중합용 촉매.The olefin polymerization or copolymerization catalyst according to claim 1, wherein the amount of the alkoxysilane compound used is 0.05 to 10 moles per mole of the metallocene component. 제 1항에 있어서, 상기 (1) 단계의 담지 과정은, 알콕시실란 화합물을 반응시킨 알루미녹산의 용액에, 메탈로센 화합물과 티타노센 화합물 또는 하프 티타노센 화합물을 용해시켜 얻어진 용액을 담체 슬러리에 첨가하고, 교반시키므로써 수행되는 것을 특징으로 하는 올레핀 중합 또는 공중합용 촉매.The method according to claim 1, wherein the supporting step of (1) is carried out by adding a solution obtained by dissolving a metallocene compound, a titanocene compound or a half-titanocene compound to a solution of aluminoxane reacted with an alkoxysilane compound, And then stirring the mixture. The catalyst for olefin polymerization or copolymerization according to claim 1, 제 1항에 있어서, 상기 (1) 단계의 담지 과정은, 알콕시실란 화합물과 반응시킨 알루미녹산 용액을 담체 슬러리에 첨가하고, 교반시켜 얻어진 담체 슬러리에 메탈로센 화합물과 티타노센 화합물 또는 하프 티타노센 화합물을 첨가하여 교반시키므로써 수행되는 것을 특징으로 하는 올레핀 중합 또는 공중합용 촉매.The method according to claim 1, wherein the supporting step of (1) is carried out by adding an aluminoxane solution reacted with an alkoxysilane compound to a carrier slurry, stirring the resulting slurry, and adding a metallocene compound and a titanocene compound or a half titanocene compound Wherein the reaction is carried out by adding a compound and stirring.  제 1항에 있어서, 상기 담체는 평균 입도가 10 ~ 250㎛이고, 평균직경이 50~500Å인 미세기공을 가지고, 미세기공 부피는 0.1~10㎖/g이고, 표면적은 5~1000㎡/g인 실리카인 것을 특징으로 하는 올레핀 중합 또는 공중합용 촉매.2. The method of claim 1, wherein the support has micropores having an average particle size of 10 to 250 占 퐉, an average diameter of 50 to 500 占 and a micropore volume of 0.1 to 10 ml / g and a surface area of 5 to 1000 m2 / g Lt; RTI ID = 0.0 &gt; olefin &lt; / RTI &gt; 제 1항에 있어서, 상기 알루미녹산은 직쇄 알루미녹산 올리고머 및 시클릭 알루미녹산 올리고머로부터 선택되는 것을 특징으로 하는 올레핀 중합 또는 공중합용 촉매.The catalyst for olefin polymerization or copolymerization according to claim 1, wherein the aluminoxane is selected from linear aluminoxane oligomers and cyclic aluminoxane oligomers. 제 1항 내지 제 7항 중 어느 한 항에 따른 촉매를 사용하여  올레핀을 중합 또는 올레핀과 공단량체를 공중합하는 것을 포함하는 올레핀 중합 또는 공중합 방법.A process for olefin polymerization or copolymerization comprising polymerizing an olefin using a catalyst according to any one of claims 1 to 7 or copolymerizing an olefin with a comonomer.
KR20130054621A 2013-05-14 2013-05-14 A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same KR101495423B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130054621A KR101495423B1 (en) 2013-05-14 2013-05-14 A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130054621A KR101495423B1 (en) 2013-05-14 2013-05-14 A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same

Publications (2)

Publication Number Publication Date
KR20140134560A true KR20140134560A (en) 2014-11-24
KR101495423B1 KR101495423B1 (en) 2015-02-24

Family

ID=52455592

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130054621A KR101495423B1 (en) 2013-05-14 2013-05-14 A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same

Country Status (1)

Country Link
KR (1) KR101495423B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160091004A (en) * 2015-01-23 2016-08-02 한화토탈 주식회사 Ethylene-Olefin Copolymer and preparation thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850985B1 (en) 2015-06-15 2018-04-20 주식회사 엘지화학 Method for preparing supported metallocene catalyst
BR112020010518B1 (en) 2017-12-18 2023-11-28 Dow Global Technologies Llc Method for making a polyethylene composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI96866C (en) 1993-11-05 1996-09-10 Borealis As Support olefin polymerization catalyst, its preparation and use
US5587439A (en) * 1995-05-12 1996-12-24 Quantum Chemical Corporation Polymer supported catalyst for olefin polymerization
KR101116699B1 (en) * 2010-03-08 2012-03-13 주식회사 엘지화학 Hybrid Supported Metallocene Catalyst, Method for Preparing the Same, and Method for Preparing Polyolefin using the Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160091004A (en) * 2015-01-23 2016-08-02 한화토탈 주식회사 Ethylene-Olefin Copolymer and preparation thereof
CN105820280A (en) * 2015-01-23 2016-08-03 韩华道达尔有限公司 Ethylene-olefin copolymer and preparation thereof

Also Published As

Publication number Publication date
KR101495423B1 (en) 2015-02-24

Similar Documents

Publication Publication Date Title
JP5889429B2 (en) Olefin polymerization and copolymerization catalyst and olefin polymerization or copolymerization method using the same
EP0927201B1 (en) Catalyst system for (co)polymerization of olefins and process for the preparation of olefin (co)polymers using the catalyst system
CA2387877C (en) Catalyst systems and their use in a polymerization process
US6346586B1 (en) Method for preparing a supported catalyst system and its use in a polymerization process
RU2479593C2 (en) Method of controlling bimodal catalyst activity during polymerisation
TW557314B (en) Process for the preparation of homogeneous filled polymer composites
US20050203260A1 (en) Catalyst composition for polymerization of olefins and polymerization process using the same
KR101689456B1 (en) Ethylene-Olefin Copolymer and preparation thereof
KR101495423B1 (en) A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same
KR101474114B1 (en) Linear low density polyethylene resin with excellent processability
AU2001294810B2 (en) A method for preparing a catalyst system and its use in a polymerization process
JP2009173896A (en) Olefin polymerization catalyst, and production method for olefinic polymer
KR20100025078A (en) Preparation method of a catalyst for polyolefin copolymerization and method for polymerizing polyolefin using a catalyst produced by the same
WO2002046243A2 (en) Polymerization process
EP1115760A1 (en) Monocyclopentadienyl metal catalyst composition for the polymerization of olefins
KR101339474B1 (en) A catalyst for olefin polymerization and co-polymerization and a method for olefin polymerization and co-polymerization with using the same
KR101718239B1 (en) A catalyst for olefin polymerization and co-polymerization, a method for preparing the same and an olefin polymerization and co-polymerization using the same
JP2022512099A (en) Method for preparing catalyst for olefin polymerization
US6281320B1 (en) Use of chelatable phenols with metallocene- aluminoxane catalyst systems
US20020107344A1 (en) Supprt materials for use with polymerization catalysts
JP5256166B2 (en) Olefin polymerization catalyst and process for producing olefin polymer
KR101849475B1 (en) Ethylene-Olefin Copolymer
JP2013155371A (en) Method for producing olefinic polymer
JP4051156B2 (en) Process for producing olefin polymerization catalyst
KR101793388B1 (en) Process for ethylene/alpha-olefin copolymer using new transition metal compound

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171222

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191212

Year of fee payment: 6