KR20140124435A - Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof - Google Patents

Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof Download PDF

Info

Publication number
KR20140124435A
KR20140124435A KR1020130041048A KR20130041048A KR20140124435A KR 20140124435 A KR20140124435 A KR 20140124435A KR 1020130041048 A KR1020130041048 A KR 1020130041048A KR 20130041048 A KR20130041048 A KR 20130041048A KR 20140124435 A KR20140124435 A KR 20140124435A
Authority
KR
South Korea
Prior art keywords
group
branched
linear
conductive polymer
organic
Prior art date
Application number
KR1020130041048A
Other languages
Korean (ko)
Other versions
KR101514207B1 (en
Inventor
김봉수
김홍곤
고민재
김진영
이효상
손해정
이도권
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020130041048A priority Critical patent/KR101514207B1/en
Publication of KR20140124435A publication Critical patent/KR20140124435A/en
Application granted granted Critical
Publication of KR101514207B1 publication Critical patent/KR101514207B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention relates to a novel polymer compound with a low band gap, a manufacturing method thereof and a highly efficient organic photovoltaic cell using the same. The conductive polymer as an electron donor with a low ban gap according to the present invention can be used for the development of not only a material for organic photoelectronic devices, which can be applied to various fields such as an organic photodetector (OPD), an organic thin-film transistor (OTFT), an organic light-emitting diode (OLED) and an organic photovoltaic cell, but also an n-type material as the conductive polymer has high photon absorbing capacity and excellent hole mobility.

Description

낮은 밴드갭을 갖는 고분자 화합물, 이를 포함하는 유기태양전지 및 이의 제조방법{Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof} TECHNICAL FIELD [0001] The present invention relates to a polymer compound having a low band gap, an organic solar cell including the same, and a method for manufacturing the same,

본 발명은 고분자 화합물 및 그 제조 방법에 관한 것으로서, 더욱 상세하게는 높은 광자 흡수능 및 향상된 정공이동도를 갖는 신규한 낮은 밴드갭 전자공여체 전도성 고분자 화합물과 그 제조방법 및 이를 포함하는 유기태양전지에 관한 것이다.More particularly, the present invention relates to a novel low bandgap electron donor conductive polymer compound having high photon absorption capacity and improved hole mobility, a process for preparing the same, and an organic solar cell comprising the same will be.

태양광을 이용한 태양전지는 크게 실리콘과 같은 무기물을 이용한 태양전지와 유기물을 사용한 태양전지로 나눌 수 있는데 특히, 고분자를 이용한 유기 박막 태양전지는 유기 재료의 손쉬운 가공성과 다양성, 저렴한 가격으로 인해 기존 태양전지와 비교하여 소자 제작과정이 간단하고 저가형 혹은 차세대 플렉시블 전자 소자의 전력원과 같은 폭넓은 응용이 기대되는 소자이다. 유기박막 태양전지의 효율이 최근 3-4년 사이에 두드러지게 향상되고 있어 이 같은 추세라면 실용화 수준의 효율 달성도 멀지 않은 것처럼 보인다. 그러나, 10% 이상의 에너지 전환효율을 얻기 위해서는 전하 이동속도가 향상된 낮은 밴드갭(low band gap)의 도너(donor) 물질, 그 도너 물질에 최적화된 밴드갭(band gap)을 갖는 억셉터(acceptor) 물질 등의 신재료 개발과, 표면 플라즈몬 공명 현상의 적용, up-conversion이나 down-conversion 등을 통한 광 이용 효율의 향상 등 신개념을 적용한 새로운 형태의 소자 개발 등이 필수적으로 요구되고 있다.Solar cells using solar light can be roughly classified into solar cells using inorganic materials such as silicon and solar cells using organic materials. Particularly, organic thin film solar cells using polymers have a problem in that they are easy to process, Compared with batteries, it is easy to fabricate devices and is expected to be used in a wide range of applications such as power sources for low-cost or next-generation flexible electronic devices. The efficiency of the organic thin film solar cell has been remarkably improved in the last 3-4 years. However, in order to obtain an energy conversion efficiency of 10% or more, a donor material having a low band gap having an improved charge transfer speed, an acceptor having a band gap optimized for the donor material, Development of new types of devices using new concepts such as development of new materials such as materials, application of surface plasmon resonance phenomenon, improvement of light utilization efficiency through up-conversion or down-conversion, and so on.

특히, 고효율을 얻기 위한 낮은 에너지 갭 유기반도체 개발에 있어서 고려하여야 할 조건인 JSC와 VOC 높일 수 있는 방법이 최근에 보고되고 있다. 먼저, JSC를 향상시키기 위해서는 낮은 에너지갭을 가지며 높은 흡광계수를 가지도록 고분자를 설계해야 하고, 가시광선 영역의 빛뿐만 아니라 근적외선 영역의 빛까지 흡수를 하여야 하며 같은 두께에서 더 많은 빛을 흡수할 수 있도록 설계해야 한다. 이러한 낮은 에너지갭 고분자는 현재 전자가 풍부한 구조(Donor)와 부족한 구조(Acceptor)가 교대로 결합된 고분자 사슬을 형성시킴으로써 합성할 수 있다. 그러나, 이렇게 고분자를 합성을 하면 많은 경우 고분자의 HOMO 에너지 레벨이 증가하게 되어 VOC가 감소하는 결과를 초래한다. 또한, VOC를 높이기 위해서는 낮은 에너지갭 고분자의 HOMO 에너지 레벨을 낮추어야 한다. 이는 고분자 사슬에 전자를 당기는 치환체를 도입함으로써 얻을 수 있다.In particular, a method for increasing J SC and V OC , which is a condition to be considered in the development of a low energy gap organic semiconductor for achieving high efficiency, has recently been reported. First, in order to improve J SC , the polymer should be designed to have a low energy gap and a high extinction coefficient, absorb light in the near-infrared region as well as light in the visible region, and absorb more light at the same thickness Should be designed. These low-energy-gap polymers can be synthesized by forming a polymer chain in which electron-rich structures (Donor) and insufficient structures (Acceptor) are alternately combined. However, when the polymer is synthesized in such a manner, the HOMO energy level of the polymer increases in many cases, resulting in a decrease in V OC . In order to increase V OC , the HOMO energy level of the low energy gap polymer should be lowered. This can be obtained by introducing a substituent which attracts electrons to the polymer chain.

그리고, 상기에서 언급한 두 가지의 방법을 혼합하여 낮은 에너지갭 고분자를 합성함으로써 JSC뿐만 아니라 VOC까지 향상을 시키는 많은 연구 결과가 보고되고 있다. 예를 들어 플루오린기나 에스테르기와 같은 치환체를 Donor??Acceptor alternating 고분자에 도입을 하여 7% 이상의 고효율의 유기 태양전지를 구현하였으나, 위와 같이 낮은 에너지갭 고분자 태양전지가 높은 효율 향상에도 불구하고, 태양전지의 성능에 직접적으로 영향을 끼치는 고분자의 분자량, 다분산성(polydispersity) 및 입체 규칙성과 같은 인자들을 재현성있게 균일하게 조절하기 어렵고, 합성이나 정제 과정이 복잡할 뿐만 아니라 전하 이동도가 낮은 문제점들을 가지고 있다.In addition, a number of studies have been reported to improve not only J SC but also V OC by synthesizing low energy gap polymers by mixing the two methods mentioned above. For example, a substitute such as a fluorine group or an ester group is introduced into a donor acceptor alternating polymer to realize an organic solar cell with a high efficiency of 7% or more. However, in spite of high efficiency improvement of the low energy gap polymer solar cell, It is difficult to uniformly control the factors such as the molecular weight, polydispersity and stereoregularity of the polymer directly affecting the performance of the battery, and the synthesis and purification processes are complicated and the charge mobility is low have.

한편, 유기 박막 태양전지의 광변환활성층에 사용되는 대표적인 물질로는 폴리헥실티오펜(poly(3-hexylthiophene), P3HT)이 있으며, P3H와 전자받개 물질 PCBM이 각각 전자 주개와 전자 받개로서의 역할을 하며 약 4-5%대의 비교적 높은 광전환 효율을 보이고 있다. 하지만 약 2.0 eV 정도의 에너지갭을 가지는 P3HT는 광흡수 영역이 약 650 nm까지로 제한되어(G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater., 2005, 4, 864-868, W. L. Ma, C. Y. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct. Mater., 2005, 15, 1617-1622) 많은 태양광을 흡수함에 있어 한계가 있으므로 광전류의 향상을 기대하기 어려운 문제점이 있다. 이에, 유기 태양전지의 실용화를 위해서는 10% 이상의 광전환 효율이 요구되므로 P3HT를 대체할 새로운 유기반도체 물질의 개발이 많이 이루어지고 있다.On the other hand, poly (3-hexylthiophene) and P3HT are typical materials used for the photo-conversion active layer of the organic thin film solar cell, and P3H and the electron acceptor substance PCBM act as electron carriers and electron acceptors, respectively. And exhibits a relatively high light conversion efficiency of about 4-5%. However, P3HT having an energy gap of about 2.0 eV is limited to a light absorption region up to about 650 nm (G. Li, V. Shrotriya, JS Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang 2005, 4, 864-868, WL Ma, CY Yang, X. Gong, K. Lee and AJ Heeger, Adv. Funct. Mater., 2005, 15, 1617-1622) There is a problem in that it is difficult to expect the improvement of the photocurrent. Therefore, since the light conversion efficiency is required to be 10% or more for the practical use of the organic solar cell, a new organic semiconductor material which can replace P3HT has been developed.

이에, 2008년, T. Q. Nguyen 그룹에서 염료 분자구조를 이용한 디케토피롤(diketopyrrole)계열의 저분자인 DPP(TBFu)2와 PC70BM을 혼합하여 4.4%의 효율을 보고한 바 있고, 최근 A. J. Heeger 그룹에서 저분자 물질인 DTS(PTTh2)2와 PC70BM을 혼합한 용액에 DIO를 첨가제로 사용하여 제작한 소자에서 6.7%의 효율이 달성되었음을 보고한 바 있다[유기 태양전지 연구 동향 및 실용화 전략, 이정용, 물리학과 첨단기술 JANUARY/FEBRUARY 2012].In 2008, TQ Nguyen group reported the efficiency of 4.4% by mixing DPP (TBFu) 2 and PC 70 BM, which are small molecules of diketopyrrole family using dye molecular structure. Recently, AJ Heeger group (PTTh 2 ) 2 and PC 70 BM in a solution prepared by using DIO as an additive. [Organic solar cell research trends and practical application strategies, Lee Jung Yong, Physics and Advanced Technology JANUARY / FEBRUARY 2012].

이와 같이, 상기와 같은 문제점을 극복하여 고효율 유기태양전지를 만들기 위해서는 광흡수 영역이 넓고 낮은 밴드갭을 가지고 있으며, 정공이동도가 우수하고, 적절한 분자 준위를 가지는 새로운 고분자의 개발이 절실히 요구되고 있다.Thus, in order to overcome the above-mentioned problems and to make a high-efficiency organic solar cell, it is urgently required to develop a new polymer having a wide absorption region, a low band gap, an excellent hole mobility and an appropriate molecular level .

따라서, 본 발명이 해결하고자 하는 과제는 광흡수 영역이 넓고 낮은 밴드갭을 가지고 있으며, 정공이동도가 우수하고, 적절한 분자 준위를 가지는 새로운 전도성 고분자 화합물 및 그 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a novel conductive polymer having a wide absorption band, a low band gap, a high hole mobility and a suitable molecular level, and a method for producing the same.

또한, 본 발명이 해결하고자 하는 또 다른 과제는 상기 신규한 전도성 고분자 화합물을 포함하는 고효율 유기태양전지를 제공하는 것이다.Another object of the present invention is to provide a high-efficiency organic solar cell comprising the novel conductive polymer.

본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 1]로 표시되는 전도성 고분자를 제공한다.In order to solve the above problems, the present invention provides a conductive polymer represented by the following formula (1).

Figure pat00001
Figure pat00001

상기 [화학식 1]에서, In the above formula (1)

상기 Ar은

Figure pat00002
,
Figure pat00003
,
Figure pat00004
, ,
Figure pat00006
,
Figure pat00007
,
Figure pat00008
,
Figure pat00009
,
Figure pat00010
,
Figure pat00011
,
Figure pat00012
,
Figure pat00013
,
Figure pat00014
,
Figure pat00015
,
Figure pat00016
Figure pat00017
로 이루어지는 군으로부터 선택되는 1종이고,The Ar
Figure pat00002
,
Figure pat00003
,
Figure pat00004
, ,
Figure pat00006
,
Figure pat00007
,
Figure pat00008
,
Figure pat00009
,
Figure pat00010
,
Figure pat00011
,
Figure pat00012
,
Figure pat00013
,
Figure pat00014
,
Figure pat00015
,
Figure pat00016
And
Figure pat00017
And one species selected from the group consisting of

상기 R1 및 R2는 각각 독립적으로 직쇄 또는 측쇄 C1-C20 알킬기, 직쇄 또는 측쇄 C1-C20 알콕시기 또는 C6-C20 아릴기이고;Each of R 1 and R 2 is independently a straight chain or branched C 1 -C 20 alkyl group, a straight chain or branched C 1 -C 20 alkoxy group or a C 6 -C 20 aryl group;

상기 n은 5 내지 100,000의 정수이다.And n is an integer of 5 to 100,000.

또한, 본 발명은 하기 [반응식 1]에 나타낸 바와 같이, 상기 전도성 고분자의 제조방법을 제공한다.In addition, the present invention provides a method for producing the conductive polymer as shown in Reaction Scheme 1 below.

[반응식 1][Reaction Scheme 1]

Figure pat00018
Figure pat00018

상기 [반응식 1]에서의 Ar 및 n의 정의는 상기 [화학식 1]에서의 정의와 동일하다.The definitions of Ar and n in the above-mentioned Reaction Scheme 1 are the same as those in the above Chemical Formula (1).

나아가, 본 발명은 상기 [화학식 1]로 표시되는 전도성 고분자를 포함하는 고효율의 유기태양전지를 제공한다.Further, the present invention provides a high efficiency organic solar cell comprising the conductive polymer represented by the above formula (1).

본 발명에 따른 낮은 밴드갭 전자공여체로서의 전도성 고분자는 높은 광자 흡수능을 갖고, 우수한 정공이동도를 가지므로, 유기 광센서(OPD), 유기박막트랜지스터(OTFT), 유기발광다이오드(OLED), 유기 태양전지 등 다양한 분야에 적용할 수 있는 유기 광전자소자용 재료뿐만 아니라, n형 물질 개발에도 유용하게 사용될 수 있다.The conductive polymer as a low bandgap electron donor according to the present invention has high photon absorption ability and excellent hole mobility and thus can be used as an organic light sensor (OPD), an organic thin film transistor (OTFT), an organic light emitting diode (OLED) The present invention can be used not only for materials for organic optoelectronic devices that can be applied to various fields such as light emitting devices, but also for developing n-type materials.

도 1은 본 발명 실시예 1에 따른 전도성 고분자 화합물에 대한 흡광도를 측정한 결과를 나타내는 그래프이다.
도 2는 본 발명 실시예 1에 따른 전도성 고분자 화합물을 포함하는 유기태양전지의 전류밀도-전압 곡선 그래프이다.
1 is a graph showing the results of measurement of absorbance of a conductive polymer compound according to Example 1 of the present invention.
2 is a graph of current density-voltage curves of an organic solar cell including a conductive polymer according to Example 1 of the present invention.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 측면은 하기 [화학식 1]로 표시되는 전도성 고분자 화합물에 관한 것이다.One aspect of the present invention relates to a conductive polymer compound represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00019
Figure pat00019

상기 [화학식 1]에서,In the above formula (1)

상기 Ar은

Figure pat00020
,
Figure pat00021
,
Figure pat00022
,
Figure pat00023
,
Figure pat00024
,
Figure pat00025
,
Figure pat00026
,
Figure pat00027
,
Figure pat00028
,
Figure pat00029
,
Figure pat00030
,
Figure pat00031
,
Figure pat00032
,
Figure pat00033
,
Figure pat00034
Figure pat00035
로 이루어지는 군으로부터 선택되는 1종이고,The Ar
Figure pat00020
,
Figure pat00021
,
Figure pat00022
,
Figure pat00023
,
Figure pat00024
,
Figure pat00025
,
Figure pat00026
,
Figure pat00027
,
Figure pat00028
,
Figure pat00029
,
Figure pat00030
,
Figure pat00031
,
Figure pat00032
,
Figure pat00033
,
Figure pat00034
And
Figure pat00035
And one species selected from the group consisting of

R1 및 R2는 각각 독립적으로 직쇄 또는 측쇄 C1-C7 알킬기, 직쇄 또는 측쇄 C8-C20 알킬기, 직쇄 또는 측쇄 C1-C7 알콕시기, 직쇄 또는 측쇄 C8-C20 알콕시기 또는 C6-C20 아릴기이고,R 1 and R 2 are each independently a linear or branched C 1 -C 7 alkyl group, a linear or branched C 8 -C 20 alkyl group, a linear or branched C 1 -C 7 alkoxy group, a linear or branched C 8 -C 20 alkoxy group Or a C 6 -C 20 aryl group,

n은 5 내지 100,000의 정수이다.and n is an integer of 5 to 100,000.

본 발명의 바람직한 일 실시예에 의하면, 상기 R1 및 R2는 각각 독립적으로 에틸헥실, 부틸옥틸, 헥실데실, 및 옥틸도데실로 이루어지는 군으로부터 선택되는 1종이고, n은 100 내지 50,000의 정수이며, 이때의 분자량은 500 내지 5,000,000이다.According to a preferred embodiment of the present invention, R 1 and R 2 are each independently selected from the group consisting of ethylhexyl, butyloctyl, hexyldecyl, and octyldodecyl, and n is an integer of 100 to 50,000 , With a molecular weight of 500 to 5,000,000.

본 발명에 따른 전도성 고분자는 후술하는 실험예 1에서 확인된 바와 같이, 밴드갭이 1.6 eV로 측정됨에 따라, 이러한 광전변환 특성을 이용하여 유기 광센서(organic photovoltaic device), 유기발광다이오드(OLED), 유기박막트랜지스터(OTFT) 및 유기 태양전지 중에서 선택되는 어느 하나의 광전자소자용 재료로 유용하게 사용될 수 있다.
The conductive polymer according to the present invention can be used as an organic photovoltaic device, an organic light emitting diode (OLED), or the like using such a photoelectric conversion property as measured in a band gap of 1.6 eV, , An organic thin film transistor (OTFT), and an organic solar cell.

또한, 본 발명의 다른 측면은 하기 [반응식 1]에 나타낸 바와 같이, 상기 [화학식 1]로 표시되는 고분자 화합물을 제조하는 방법에 관한 것으로서, 화학식 2로 표시되는 화합물 및 화학식 3으로 표시되는 화합물을 반응 용매에 용해시킨 후, 팔라듐 촉매를 첨가하여 반응시킨 후, 점도가 커지면 2-브로모티오펜을 첨가하여 반응을 종결하여 [화학식 1]로 표시되는 고분자 화합물을 얻는 단계를 포함하는 것을 특징으로 한다.Another aspect of the present invention relates to a method for producing a polymer represented by the above formula (1), as shown in Reaction Scheme 1 below, wherein a compound represented by the formula (2) and a compound represented by the formula Dissolving the compound in a reaction solvent, adding a palladium catalyst and reacting, and then adding 2-bromothiophene to the reaction mixture to increase the viscosity, thereby obtaining a polymer represented by Formula 1 .

[반응식 1][Reaction Scheme 1]

Figure pat00036
Figure pat00036

상기 [반응식 1]에서,In the above Reaction Scheme 1,

상기 Ar은

Figure pat00037
,
Figure pat00038
,
Figure pat00039
,
Figure pat00040
,
Figure pat00041
,
Figure pat00042
,
Figure pat00043
,
Figure pat00044
,
Figure pat00045
,
Figure pat00046
,
Figure pat00047
,
Figure pat00048
,
Figure pat00049
,
Figure pat00050
,
Figure pat00051
Figure pat00052
로 이루어지는 군으로부터 선택되는 1종이고,The Ar
Figure pat00037
,
Figure pat00038
,
Figure pat00039
,
Figure pat00040
,
Figure pat00041
,
Figure pat00042
,
Figure pat00043
,
Figure pat00044
,
Figure pat00045
,
Figure pat00046
,
Figure pat00047
,
Figure pat00048
,
Figure pat00049
,
Figure pat00050
,
Figure pat00051
And
Figure pat00052
And one species selected from the group consisting of

R1 및 R2는 각각 독립적으로 직쇄 또는 측쇄 C1-C7 알킬기, 직쇄 또는 측쇄 C8-C20 알킬기, 직쇄 또는 측쇄 C1-C7 알콕시기, 직쇄 또는 측쇄 C8-C20 알콕시기 또는 C6-C20 아릴기이고,R 1 and R 2 are each independently a linear or branched C 1 -C 7 alkyl group, a linear or branched C 8 -C 20 alkyl group, a linear or branched C 1 -C 7 alkoxy group, a linear or branched C 8 -C 20 alkoxy group Or a C 6 -C 20 aryl group,

n은 5 내지 100,000의 정수이다.and n is an integer of 5 to 100,000.

본 발명에 따른 제조방법에 있어서, 상기 반응 용매는 물, 톨루엔, 아세톤, 메탄올, 에탄올, 테트라하이드로퓨란(THF), 클로로벤젠 및 디메틸포름아미드(DMF)으로 이루어지는 군으로부터 선택되는 1종 또는 이의 혼합물이고, 바람직하게는 톨루엔 및 물을 혼합하여 사용할 수 있다.In the production method according to the present invention, the reaction solvent is at least one selected from the group consisting of water, toluene, acetone, methanol, ethanol, tetrahydrofuran (THF), chlorobenzene and dimethylformamide (DMF) , Preferably toluene and water.

또한, 상기 팔라듐 촉매는 PdCl2, Pd(OAc)2, Pd(CH3CN)2Cl2, Pd(PhCN)2Cl2, Pd2dba3CHCl3 및 Pd(PPh3)4로 이루어지는 군으로부터 선택되는 1종이다.
In addition, the palladium catalysts include PdCl 2, Pd (OAc) 2 , Pd (CH 3 CN) 2 Cl 2, Pd (PhCN) from 2 Cl 2, Pd 2 dba 3 CHCl 3 , and the group consisting of Pd (PPh 3) 4 One species is selected.

보다 구체적으로, 화학식 2로 표시되는 화합물 및 화학식 3으로 표시되는 화합물을 동일한 몰(mol)로 혼합한 후, 진공펌프로 잔여용매를 제거한 후, 톨루엔 및 물을 10:1로 혼합한 용매에 용해시킨 후, 팔라듐 촉매를 첨가하여 가열 반응시킨 후, 상기 반응물의 점도가 커지면, 2-브로모티오펜을 첨가하여 반응시키고, 반응이 종결된 후, 상기 반응물을 메탄올 및 물을 4:1로 혼합한 용매에 첨가하여 고분자를 얻을 수 있다.
More specifically, the compound represented by the general formula (2) and the compound represented by the general formula (3) are mixed in the same molar amount, the remaining solvent is removed by a vacuum pump, and then dissolved in a mixed solvent of toluene and water in a ratio of 10: After the completion of the reaction, the reaction mixture was mixed with methanol and water at a ratio of 4: 1. After the completion of the reaction, 2-bromothiophene was added to the reaction mixture, It can be added to a solvent to obtain a polymer.

본 발명의 또 다른 측면은 하기 [화학식 1]로 표시되는 고분자 화합물을 포함하는 유기태양전지에 관한 것이다.Another aspect of the present invention relates to an organic solar cell comprising a polymer compound represented by the following formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00053
Figure pat00053

상기 [화학식 1]에서,In the above formula (1)

상기 Ar은

Figure pat00054
,
Figure pat00055
,
Figure pat00056
,
Figure pat00057
,
Figure pat00058
,
Figure pat00059
,
Figure pat00060
,
Figure pat00061
,
Figure pat00062
,
Figure pat00063
,
Figure pat00064
,
Figure pat00065
, ,
Figure pat00067
,
Figure pat00068
Figure pat00069
로 이루어지는 군으로부터 선택되는 1종이고,The Ar
Figure pat00054
,
Figure pat00055
,
Figure pat00056
,
Figure pat00057
,
Figure pat00058
,
Figure pat00059
,
Figure pat00060
,
Figure pat00061
,
Figure pat00062
,
Figure pat00063
,
Figure pat00064
,
Figure pat00065
, ,
Figure pat00067
,
Figure pat00068
And
Figure pat00069
And one species selected from the group consisting of

R1 및 R2는 각각 독립적으로 직쇄 또는 측쇄 C1-C20 알킬기, 직쇄 또는 측쇄 C1-C20 알콕시기 또는 C6-C20 아릴기이고,R 1 and R 2 are each independently a straight chain or branched C 1 -C 20 alkyl group, a straight chain or branched C 1 -C 20 alkoxy group or a C 6 -C 20 aryl group,

n은 5 내지 100,000의 정수이다.
and n is an integer of 5 to 100,000.

유기태양전지는 높은 에너지전환효율을 충족해야 하는데, 높은 에너지전환효율을 얻기 위해서는 많은 양의 광자를 광흡수층에서 흡수해야하고, 흡수되어 여기된 여기자가 도너와 억셉터의 계면으로 이동하여 정공과 전자로 효과적인 분리가 이루어져야 하고, 분리된 정공과 전자가 양극과 음극으로 손실 없이 이동시키기 위하여 많은 연구자들이 노력하여 종래 유기태양전지는 높은 에너지전환효율을 나타내었으나, 태양전지의 성능에 직접적으로 영향을 끼치는 고분자의 분자량, 다분산성(polydispersity) 및 입체 규칙성과 같은 인자들을 재현성 있게 균일하게 조절하기 어렵고, 합성이나 정제 과정이 복잡할 뿐만 아니라 전하 이동도가 낮은 문제점들을 가지고 있다.Organic solar cells must meet high energy conversion efficiency. In order to obtain high energy conversion efficiency, a large amount of photons must be absorbed in the light absorbing layer, and excited excited excitons migrate to the interface between donor and acceptor, , And many researchers have tried to move the separated holes and electrons losslessly to the anode and the cathode. Thus, the conventional organic solar cell showed high energy conversion efficiency, but it has a direct effect on the performance of the solar cell It is difficult to uniformly control the factors such as the molecular weight, polydispersity and stereoregularity of the polymer, and the synthesis and purification processes are complicated and the charge mobility is low.

그러나, 본 발명의 유기태양전지용 낮은 밴드갭 전자공여체로서의 전도성 고분자는 높은 광자 흡수능 및 정공이동도가 우수할 뿐만 아니라(실험예 1 및 2 참조), 합성 및 정제과정이 간단하므로(실시예 1 참조), 유기 광센서(OPD), 유기박막트랜지스터(OTFT), 유기발광다이오드(OLED), 유기 태양전지 등의 분야에 적용할 수 있는 유기 광전자소자용 재료에 유용하게 사용될 수 있을 뿐만 아니라, 본 발명에 따른 전도성 고분자에 전자를 당겨주는 디케토피롤로피롤 단량체를 함께 도입함으로써 고분자를 장파장 영역으로 이동시켜 낮은 밴드갭을 갖는 고분자 물질을 획득할 수 있고, 이러한 특성에 따라, n-형 물질인 C60플러렌 유도체 또는 C70플러렌 유도체와 함께 사용하여 벌크헤테로정션 타입(Bulk heterojunction type) 광전변환층을 구성하여 유기태양전지에 적용할 수 있다.
However, since the conductive polymer as the low bandgap electron donor for organic solar cells of the present invention has high photon absorption capacity and hole mobility (see Experimental Examples 1 and 2), the synthesis and purification process is simple (see Example 1) The present invention can be effectively applied to materials for organic optoelectronic devices that can be applied to fields such as organic light emitting diodes (OLEDs), organic light sensors (OPD), organic thin film transistors (OTFT), organic light emitting diodes (OLED) in accordance moved in the long wavelength area with the polymer by introducing the diketopyrrolopyrrole monomer to pull electrons to the conductive polymer and to obtain a polymer material having a lower band gap, according to this aspect, the n- type material C 60 in combination with the fullerene derivative or a C 70 fullerene derivative constituting the photoelectric conversion layer, a bulk hetero junction type (bulk heterojunction type) in an organic solar cell enemy Can.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않고, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It will be clear to those who have knowledge.

<제조예 1> 2,5-비스(트리메틸스테닐)티에노[2,3-PREPARATION EXAMPLE 1 Synthesis of 2,5-bis (trimethylstannyl) thieno [2,3- bb ]티오펜의 제조] Thiophene

[반응식 1][Reaction Scheme 1]

Figure pat00070
Figure pat00070

250 mL 둥근바닥 플라스크를 3회 이상 플레임 드라잉한 후, 테트라하이드로퓨란(60 mL)에 녹인 티에노 [2,3-b]티오펜(0.950 g, 6.775 mmol)을 첨가하고, 3회 이상 가스를 제거(degassing)한 후, 드라이아이스를 사용하여 -78 ℃ 이하로 온도를 낮추고, n-부틸리튬(1.0849 g, 16.936 mmol)을 한 방울씩 서서히 떨어뜨린 후 TMEDA(1.9680 g, 16.936 mmol)을 첨가한다. 상온에서 30분 이상 교반한 후, 드라이아이스를 사용하여 -78 ℃ 이하로 온도를 낮춘다. 트리메틸틴클로라이드(3.3071 g, 16.936 mmol)를 한 방울씩 서서히 첨가한 후 상온에서 2시간 이상 교반한 후 반응을 종결한다. 분별 깔대기를 이용하여 물과 클로로포름용액으로 추출한 후, 클로로포름 층의 용매를 증발시켜 메탄올로 재침전하여 목적화합물을 1.37g(43.5 %) 얻었다.A 250 mL round bottom flask was flame dried three or more times and then thieno [2,3- b ] thiophene (0.950 g, 6.775 mmol) dissolved in tetrahydrofuran (60 mL) (1.0849 g, 16.936 mmol) was slowly added dropwise to the solution, followed by the addition of TMEDA (1.9680 g, 16.936 mmol) to a solution of . After stirring at room temperature for 30 minutes or longer, the temperature is lowered to -78 ° C or lower using dry ice. Trimethyltin chloride (3.3071 g, 16.936 mmol) is slowly added dropwise, followed by stirring at room temperature for 2 hours or longer, and the reaction is terminated. The mixture was extracted with water and chloroform solution using a separatory funnel. The solvent of the chloroform layer was evaporated and the residue was redissolved in methanol to obtain 1.37 g (43.5%) of the target compound.

1H-NMR(400 MHz, CDCl3) δ 7.24(s, 2H), 0.41(s, 18H)
1 H-NMR (400 MHz, CDCl 3 )? 7.24 (s, 2H), 0.41 (s, 18H)

<제조예 2> 3,6-비스(5-브로모-테트라하이드로티오펜-2-일)-옥타하이드로-2,5-비스(2-옥틸도데실)피롤로[3,4-c]필롤-1,4-다이올의 제조Preparation Example 2 Synthesis of 3,6-bis (5-bromo-tetrahydrothiophen-2-yl) -octahydro-2,5-bis (2-octyldodecyl) pyrrolo [ Preparation of pilol-1,4-diol

[반응식 2][Reaction Scheme 2]

Figure pat00071
Figure pat00071

상기 반응식 2에 나타낸 바와 같이, 상기 화학식 4로 표시되는 화합물은 문헌[G.-Y Chen etal.J.Polym.Sci.PartA:Poly.Chem. 2010, 48, 1669-1675]에 기재된 방법에 따라 제조하였다.
As shown in Reaction Scheme 2, the compound represented by Formula 4 is prepared by the method described in G.-Y Chen et al., J. Polym. Sci. 2010, 48 , 1669-1675.

<실시예 1> pDPPT2TTi-OD의 제조Example 1 Preparation of pDPPT2TTi-OD

[반응식 3][Reaction Scheme 3]

Figure pat00072
Figure pat00072

제조예 1에서 얻은 화학식 2로 표시되는 화합물(0.30 g, 0.6440 mmol) 및 제조예 2에서 얻은 화학식 4로 표시되는 화합물(0.6564 g, 0.6440 mmol)을 12 시간 이상 진공펌프를 이용하여 잔여 용매를 제거한 후, 가스를 제거(degassing)한 톨루엔(10 mL)과 물(1 mL)에 용해시킨 후, 테트라키스(트리페닐포스핀)말라듐(0)(Pd(PPh3)4)(0.0223 g, 0.0193 mmol)을 첨가하고, 상온에서 교반한 다음, 60 ℃까지 천천히 가열하여 온도를 올려주었다. 2시간 경과 후, 100 ℃까지 천천히 가열하며 온도를 올려준 후, 1시간 경과 후, 110 ℃까지 온도를 올려 20시간 이상 교반하며 반응시켰다. 점도가 커지면 2-브로모티오펜(0.1247 mL, 1.2880 mmol)을 첨가하여 3시간 이상 반응시킨 후, 반응을 종결하였다. 상기 반응 혼합물을 메탄올:물(4:1)용액에 부은 후, 생성된 고분자를 다시 메탄올로 재침전 시키고, 침전된 화합물을 메탄올, 헥산 및 아세톤을 이용하여 속슬렛 추출법(Soxhlet method)으로 정제하였다. 그 다음 남은 고분자를 클로로포름에 용해시키고, 진공 하에서 건조시켜 목적 고분자 화합물을 0.38 g(59.75 %)으로 얻었다.(0.30 g, 0.6440 mmol) obtained in Preparation Example 1 and the compound represented by Chemical Formula 4 (0.6564 g, 0.6440 mmol) obtained in Preparation Example 2 were subjected to removal of the remaining solvent using a vacuum pump for 12 hours or longer then, the dissolved gas removal (degassing) of toluene (10 mL) and water (1 mL), tetrakis (triphenylphosphine) end of Pd (0) (Pd (PPh 3 ) 4) (0.0223 g, 0.0193 mmol), stirred at room temperature, and slowly heated to 60 &lt; 0 &gt; C to raise the temperature. After 2 hours, the mixture was slowly heated to 100 deg. C and the temperature was raised. After 1 hour, the temperature was elevated to 110 deg. C and the reaction was carried out with stirring for 20 hours or more. When the viscosity increased, 2-bromothiophene (0.1247 mL, 1.2880 mmol) was added and reacted for 3 hours or longer, and the reaction was terminated. After the reaction mixture was poured into a methanol: water (4: 1) solution, the resulting polymer was reprecipitated again with methanol, and the precipitated compound was purified by Soxhlet method using methanol, hexane and acetone . The remaining polymer was dissolved in chloroform and dried under vacuum to obtain 0.38 g (59.75%) of the target polymer compound.

1H-NMR(400 MHz, CDCl3) δ 9.32-8.69(s, 2H), 7.63-6.48(m, 4H), 4.37-3.22(m, 4H), 2.28-0.59(m, 78H)
1 H-NMR (400 MHz, CDCl 3 )? 9.32-8.69 (s, 2H), 7.63-6.48 (m, 4H), 4.37-3.22 (m, 4H), 2.28-0.59

<실시예 2> pDPPT2TTi-OD를 이용한 유기태양전지의 제조Example 2 Preparation of Organic Solar Cell Using pDPPT2TTi-OD

본 발명에 따른 실시예 1에서 얻은 화학식 1로 표시되는 전도성 고분자 pDPPT2TTi-OD를 이용한 태양전지를 하기와 같이 제조하였다.A solar cell using the conductive polymer pDPPT2TTi-OD represented by the formula 1 obtained in Example 1 according to the present invention was prepared as follows.

이때, 인듐-틴-옥사이드(ITO) 기판은 이소프로필 알코올에서 10분, 아세톤에서 10분, 이소프로필알코올에서 10분 동안 세척한 후, 건조시켜 사용하였다.At this time, the indium-tin-oxide (ITO) substrate was washed with isopropyl alcohol for 10 minutes, acetone for 10 minutes, isopropyl alcohol for 10 minutes, and dried.

먼저, 상기에서 건조된 ITO 기판 상에 폴리(3,4-에틸렌디옥시티오펜) 폴리(스티렌설포네이트)(PEDOT:PSS) 용액을 메탄올에 1:1의 비율로 희석시켜 스핀 코팅한 후, 110 ℃ 에서 10분간 건조시켰다. 건조된 기판 위에 클로로벤젠과 1,2-디요오도부탄(1,2-diiodobutane)을 97:3비율의 혼합용액 1 ml에 본 발명에 따른 실시예 1에서 얻은 고분자 pDPPTTi-OD(8 mg)와 (6,6)-페닐-C70-부틸산메틸 에스터(PC70BM)(16mg)를 1:1.5비율로 혼합하여 얻은 혼합용액을 1000 rpm 의 속도로 스핀코팅 한 후, 알루미늄 전극을 100 nm 두께로 증착하여 ITO/PEDOT:PSS/pDPPT2TTi-OD:PC70BM(1:2)/Al구조의 태양전지를 얻었다.
First, a poly (3,4-ethylenedioxythiophene) poly (styrene sulfonate) (PEDOT: PSS) solution was diluted in methanol at a ratio of 1: 1 and spin-coated on the ITO substrate thus dried, Lt; 0 &gt; C for 10 minutes. The polymer pDPPTTi-OD (8 mg) obtained in Example 1 according to the present invention was added to 1 ml of a 97: 3 mixed solution of chlorobenzene and 1,2-diiodobutane on a dried substrate, And a mixture of (6,6) -phenyl-C 70 -butyric acid methyl ester (PC 70 BM) (16 mg) in a ratio of 1: 1.5 was spin-coated at a rate of 1000 rpm. nm thick ITO / PEDOT: PSS / pDPPT2TTi-OD: PC 70 BM (1: 2) / Al structure.

<실험예 1> 전도성 고분자의 광학적 밴드갭 측정EXPERIMENTAL EXAMPLE 1 Measurement of Optical Bandgap of Conductive Polymer

본 발명에 따른 전도성 고분자의 광학적 밴드갭을 측정하기 위하여 하기 실험을 수행하였다.The following experiment was conducted to measure the optical bandgap of the conductive polymer according to the present invention.

흡광도 측정은 분광 광도계(UV-vis spectrometer)를 이용하여 측정하였으며, 용액상에서는 클로로포름 용액에 10-5 M/cm(repeating unit 기준)으로 녹인 후 흡광도를 측정하였고, 고체상(즉, 필름)은 클로로포름 용액에 녹인 후 유리 기판에 스핀코팅하여 흡광도를 측정하였다.The absorbance was measured using a UV-vis spectrometer. The solution was dissolved in chloroform solution at 10 -5 M / cm (repeating unit basis) and absorbance was measured. The solid phase (ie, film) was dissolved in chloroform solution , And the absorbance was measured by spin coating on a glass substrate.

구분 division 용액(λmax)Solution (λ max ) 필름(λmax)The film (? Max ) 광학적 밴드갭(Eg,opt)The optical bandgap (E g, opt ) 실시예 1
(pDPPT2TTi-OD)
Example 1
(pDPPT2TTi-OD)
706 nm706 nm 723 nm723 nm 1.6 eV1.6 eV

상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1의 전도성 고분자는 광학적 밴드갭이 1.6 eV로 측정되었으며, 본 발명에 따른 전도성 고분자는 용액 상태보다 필름상태에서 고분자체인간 패킹을 통해 광학적 밴드갭이 줄어들었음을 확인하였다(도 1 참조).As shown in Table 1, the conductive polymer of Example 1 according to the present invention had an optical band gap of 1.6 eV, and the conductive polymer according to the present invention exhibited an optical band- It was confirmed that the gap was reduced (see FIG. 1).

따라서, 이러한 광전변환 특성을 이용하여 유기 광센서(organic photovoltaic device), 유기발광다이오드(OLED), 유기박막트랜지스터(OTFT) 및 유기 태양전지 중에서 선택되는 어느 하나의 광전자소자용 재료로 유용하게 사용될 수 있다.
Therefore, it can be used effectively as a material for any one optoelectronic device selected from an organic photovoltaic device, an organic light emitting diode (OLED), an organic thin film transistor (OTFT) have.

<실험예 2> 전도성 고분자를 포함하는 유기태양전지의 특성 평가<Experimental Example 2> Evaluation of characteristics of organic solar cell including conductive polymer

본 발명에 따른 전도성 고분자를 포함하는 유기태양전지의 특성을 알아보기 위하여 하기 실험을 수행하였다.The following experiment was conducted to examine the characteristics of the organic solar cell including the conductive polymer according to the present invention.

상기 실시예 2에서 제조된 유기태양전지 소자에 대하여 전기 화학적 특성 중, 필 팩터 및 에너지 전환효율은 하기 수학식 1 및 수학식 2에 의해 계산되었다. 그 결과를 하기 표 2 및 도 2에 나타내었다.Of the electrochemical characteristics of the organic solar cell device prepared in Example 2, the fill factor and the energy conversion efficiency were calculated by the following equations (1) and (2). The results are shown in Table 2 and FIG.

[수학식 1][Equation 1]

Figure pat00073
Figure pat00073

상기에서, Vmp는 최대 전력점에서 전압값이고, Imp는 최대 전력점에서의 전류값이고, Voc는 광개방 전압이고, Isc는 광 단락 전류이다.V mp is the voltage value at the maximum power point, I mp is the current value at the maximum power point, V oc is the optical open-circuit voltage, and I sc is the optical short-circuit current.

[수학식 2]&Quot; (2) &quot;

Figure pat00074
Figure pat00074

상기에서, Jsc는 광 단락 전류밀도이고, Voc는 광개방 전압이다.In the above, J sc is the optical short-circuit current density and V oc is the optical open-circuit voltage.

구분 division 광개방 전압(Voc)
(V)
Open-circuit voltage (V oc )
(V)
광단락 전류(Jsc)
(mA/cm2)
The optical short-circuit current (J sc )
(mA / cm 2 )
필팩터(FF)Fill factor (FF) 에너지 변환 효율
(PCE)(%)
Energy conversion efficiency
(PCE) (%)
실시예 2Example 2 0.790.79 7.177.17 0.510.51 2.902.90

표 2에 나타낸 바와 같이, 본 발명에 따른 유기태양전지의 전류밀도-전압 측정 결과, 광단락 전류 및 필팩터가 각각 7.17 mA/cm2및 0.51 FF로 확인되었으며, 에너지 변환효율이 2.9 %로 우수한 것으로 확인되었다.As shown in Table 2, the results of the current density-voltage measurement of the organic solar cell according to the present invention show that the short-circuit current and the fill factor are 7.17 mA / cm 2 and 0.51 FF, respectively, and the energy conversion efficiency is 2.9% Respectively.

이러한 결과는 본 발명의 전도성 고분자가 유기 태양전지용 고분자로서 적합하고, 특히, 광자 흡수능이 높아졌을 뿐만 아니라, 정공 이동도의 향상되었음을 확인하는 결과이다.These results indicate that the conductive polymer of the present invention is suitable as a polymer for organic solar cells, and that not only the photon absorption capacity is improved but also the hole mobility is improved.

따라서, 상기에서 살펴본 바와 같이 본 발명에 따른 전도성 고분자는 유기태양전지용 낮은 밴드갭 전자공여체로서 유용하게 사용될 수 있을 뿐만 아니라, 높은 광자 흡수능 및 정공이동도가 향상되었으므로 유기 광센서(OPD), 유기박막트랜지스터(OTFT), 유기발광다이오드(OLED), 유기 태양전지 등의 분야에 적용할 수 있는 유기 광전자소자용 재료로 사용될 수 있으며, 에너지전환효율이 향상된 유기 태양전지로 유용하게 사용될 수 있다.Accordingly, as described above, the conductive polymer according to the present invention can be effectively used as a low-bandgap electron donor for organic solar cells, and has improved photon absorption and hole mobility. Therefore, Can be used as a material for organic optoelectronic devices that can be applied to fields such as a transistor (OTFT), an organic light emitting diode (OLED), and an organic solar cell, and can be effectively used as an organic solar cell with improved energy conversion efficiency.

Claims (9)

하기 [화학식 1]로 표시되는 전도성 고분자 화합물:
[화학식 1]
Figure pat00075

상기 [화학식 1]에서,
상기 Ar은
Figure pat00076
,
Figure pat00077
,
Figure pat00078
,
Figure pat00079
,
Figure pat00080
,
Figure pat00081
,
Figure pat00082
,
Figure pat00083
,
Figure pat00084
,
Figure pat00085
,
Figure pat00086
,
Figure pat00087
,
Figure pat00088
,
Figure pat00089
,
Figure pat00090
Figure pat00091
로 이루어지는 군으로부터 선택되는 1종이고,
R1 및 R2는 각각 독립적으로 직쇄 또는 측쇄 C1-C7 알킬기, 직쇄 또는 측쇄 C8-C20 알킬기, 직쇄 또는 측쇄 C1-C7 알콕시기, 직쇄 또는 측쇄 C8-C20 알콕시기 또는 C6-C20 아릴기이고;
상기 n은 5 내지 100,000의 정수이다.
A conductive polymer compound represented by the following Chemical Formula 1:
[Chemical Formula 1]
Figure pat00075

In the above formula (1)
The Ar
Figure pat00076
,
Figure pat00077
,
Figure pat00078
,
Figure pat00079
,
Figure pat00080
,
Figure pat00081
,
Figure pat00082
,
Figure pat00083
,
Figure pat00084
,
Figure pat00085
,
Figure pat00086
,
Figure pat00087
,
Figure pat00088
,
Figure pat00089
,
Figure pat00090
And
Figure pat00091
And one species selected from the group consisting of
R 1 and R 2 are each independently a linear or branched C 1 -C 7 alkyl group, a linear or branched C 8 -C 20 alkyl group, a linear or branched C 1 -C 7 alkoxy group, a linear or branched C 8 -C 20 alkoxy group Or a C 6 -C 20 aryl group;
And n is an integer of 5 to 100,000.
제1항에 있어서,
상기 R1은 및 R2는 각각 독립적으로 에틸헥실, 부틸옥틸, 헥실데실, 및 옥틸도데실로 이루어지는 군으로부터 선택되는 1종이고,
상기 n은 100 내지 50,000의 정수인 것을 특징으로 하는 전도성 고분자 화합물.
The method according to claim 1,
Wherein R 1 and R 2 are each independently selected from the group consisting of ethylhexyl, butyloctyl, hexyldecyl, and octyldodecyl,
And n is an integer of 100 to 50,000.
제1항에 있어서,
상기 전도성 고분자 화합물은 밴드갭 1.4 내지 2.0 eV을 충족하는 유기 태양전지용 낮은 밴드갭 전자공여체인 것을 특징으로 하는 전도성 고분자 화합물.
The method according to claim 1,
Wherein the conductive polymer compound is a low bandgap electron donor for an organic solar cell that satisfies a band gap of 1.4 to 2.0 eV.
하기 [반응식 1]에 따라 하기 화학식 2로 표시되는 화합물 및 화학식 3으로 표시되는 화합물을 반응 용매에 용해시킨 후, 팔라듐 촉매를 첨가하여 반응시키는 단계를 포함하는 하기 화학식 1로 표시되는 전도성 고분자 화합물의 제조방법:
[반응식 1]
Figure pat00092

상기 [반응식 1]에서,
상기 Ar은
Figure pat00093
,
Figure pat00094
,
Figure pat00095
,
Figure pat00096
,
Figure pat00097
,
Figure pat00098
,
Figure pat00099
,
Figure pat00100
,
Figure pat00101
,
Figure pat00102
,
Figure pat00103
,
Figure pat00104
,
Figure pat00105
,
Figure pat00106
,
Figure pat00107
Figure pat00108
로 이루어지는 군으로부터 선택되는 1종이고,
R1 및 R2는 각각 독립적으로 직쇄 또는 측쇄 C1-C7 알킬기, 직쇄 또는 측쇄 C8-C20 알킬기, 직쇄 또는 측쇄 C1-C7 알콕시기, 직쇄 또는 측쇄 C8-C20 알콕시기 또는 C6-C20 아릴기이고,
n은 5 내지 100,000의 정수이다.
(1), which comprises reacting a compound represented by the following general formula (2) and a compound represented by the general formula (3) in a reaction solvent according to the following reaction scheme 1, Manufacturing method:
[Reaction Scheme 1]
Figure pat00092

In the above Reaction Scheme 1,
The Ar
Figure pat00093
,
Figure pat00094
,
Figure pat00095
,
Figure pat00096
,
Figure pat00097
,
Figure pat00098
,
Figure pat00099
,
Figure pat00100
,
Figure pat00101
,
Figure pat00102
,
Figure pat00103
,
Figure pat00104
,
Figure pat00105
,
Figure pat00106
,
Figure pat00107
And
Figure pat00108
And one species selected from the group consisting of
R 1 and R 2 are each independently a linear or branched C 1 -C 7 alkyl group, a linear or branched C 8 -C 20 alkyl group, a linear or branched C 1 -C 7 alkoxy group, a linear or branched C 8 -C 20 alkoxy group Or a C 6 -C 20 aryl group,
and n is an integer of 5 to 100,000.
제4항에 있어서,
상기 반응 용매는 물, 톨루엔, 아세톤, 메탄올, 에탄올, 테트라하이드로퓨란(THF), 클로로벤젠, 및 디메틸포름아미드(DMF)으로 이루어지는 군으로부터 선택되는 1종 또는 이의 혼합물인 것을 특징으로 하는 전도성 고분자 화합물의 제조방법.
5. The method of claim 4,
Wherein the reaction solvent is at least one selected from the group consisting of water, toluene, acetone, methanol, ethanol, tetrahydrofuran (THF), chlorobenzene, and dimethylformamide (DMF) &Lt; / RTI &gt;
제4항에 있어서,
상기 팔라듐 촉매는 PdCl2, Pd(OAc)2, Pd(CH3CN)2Cl2, Pd(PhCN)2Cl2, Pd2dba3CHCl3 및 Pd(PPh3)4로 이루어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 전도성 고분자 화합물의 제조방법.
5. The method of claim 4,
The palladium catalysts include PdCl 2, Pd (OAc) 2 , Pd (CH 3 CN) 2 Cl 2, Pd (PhCN) 2 Cl 2, Pd 2 dba 3 CHCl 3 and Pd (PPh 3) selected from the group consisting of 4 Lt; RTI ID = 0.0 &gt; 1. &Lt; / RTI &gt;
제1항에 따른 [화학식 1]로 표시되는 전도성 고분자를 포함하는 유기태양전지.An organic solar cell comprising a conductive polymer represented by formula (1) according to claim 1. 제7항에 있어서,
상기 [화학식 1]로 표시되는 전도성 고분자는 광변환활성층에 포함되는 것을 특징으로 하는 유기태양전지.
8. The method of claim 7,
Wherein the conductive polymer represented by Formula 1 is contained in the photo-conversion active layer.
제8항에 있어서,
상기 광변환활성층에 플러렌 유도체를 더 포함하는 것을 특징으로 하는 유기태양전지.
9. The method of claim 8,
Wherein the photo-conversion active layer further comprises a fullerene derivative.
KR1020130041048A 2013-04-15 2013-04-15 Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof KR101514207B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130041048A KR101514207B1 (en) 2013-04-15 2013-04-15 Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130041048A KR101514207B1 (en) 2013-04-15 2013-04-15 Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof

Publications (2)

Publication Number Publication Date
KR20140124435A true KR20140124435A (en) 2014-10-27
KR101514207B1 KR101514207B1 (en) 2015-06-05

Family

ID=51994645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130041048A KR101514207B1 (en) 2013-04-15 2013-04-15 Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof

Country Status (1)

Country Link
KR (1) KR101514207B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190019255A (en) 2017-08-16 2019-02-27 재단법인대구경북과학기술원 Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
US10312446B2 (en) 2016-06-30 2019-06-04 Daegu Gyeongbuk Institute Of Science And Technology Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998514B2 (en) 2017-12-01 2021-05-04 Samsung Electronics Co., Ltd. Photoelectric devices and image sensors and electronic devices
KR102491496B1 (en) 2018-01-05 2023-01-20 삼성전자주식회사 Photoelectronic device and image sensor and electronic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008000664A1 (en) * 2006-06-30 2008-01-03 Ciba Holding Inc. Diketopyrrolopyrrole polymers as organic semiconductors
WO2010049321A1 (en) * 2008-10-31 2010-05-06 Basf Se Diketopyrrolopyrrole polymers for use in organic field effect transistors
JP5658633B2 (en) * 2011-08-19 2015-01-28 株式会社クラレ Composition for organic semiconductor and photoelectric conversion element using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312446B2 (en) 2016-06-30 2019-06-04 Daegu Gyeongbuk Institute Of Science And Technology Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
KR20190019255A (en) 2017-08-16 2019-02-27 재단법인대구경북과학기술원 Conductive polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof

Also Published As

Publication number Publication date
KR101514207B1 (en) 2015-06-05

Similar Documents

Publication Publication Date Title
Cui et al. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution
Li et al. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells
Wang et al. Extending π-conjugation system with benzene: an effective method to improve the properties of benzodithiophene-based polymer for highly efficient organic solar cells
Zhou et al. Synthesis of Thieno [3, 4-b] pyrazine-Based and 2, 1, 3-Benzothiadiazole-Based Donor− Acceptor Copolymers and their Application in Photovoltaic Devices
Shen et al. Enhancing photovoltaic performance of copolymers containing thiophene unit with D–A conjugated side chain by rational molecular design
KR101946076B1 (en) Photovoltaic cell containing novel photoactive polymer
Jiang et al. Crystalline low-band gap polymers comprising thiophene and 2, 1, 3-benzooxadiazole units for bulk heterojunction solar cells
Zhang et al. Synthesis and photovoltaic properties of two-dimension-conjugated D–A copolymers based on benzodithiophene or benzodifuran units
Liu et al. New alkylthienyl substituted benzo [1, 2-b: 4, 5-b′] dithiophene-based polymers for high performance solar cells
Zhao et al. Polymer electron acceptors with conjugated side chains for improved photovoltaic performance
Chen et al. Side-chain-promoted benzodithiophene-based conjugated polymers toward striking enhancement of photovoltaic properties for polymer solar cells
JP2014512100A (en) Electro-optic device active material and electro-optic device
CN102725331B (en) Cyclopentadienedithiophene-quinoxaline conjugated polymer and preparation method and uses thereof
WO2010036494A1 (en) Active materials for photoelectric devices
Zhu et al. Rational design of asymmetric benzodithiophene based photovoltaic polymers for efficient solar cells
KR20130090736A (en) Heteroaromatic compound and organic solar cell comprising the same
Qiu et al. Effect of fluorine substitution on photovoltaic properties of alkoxyphenyl substituted benzo [1, 2-b: 4, 5-b′] dithiophene-based small molecules
KR101853395B1 (en) Electron donating polymer and solar cell including the same
Kim et al. Synthesis and photovoltaic properties of benzo [1, 2-b: 4, 5-b′] dithiophene derivative-based polymers with deep HOMO levels
Chen et al. Side-chain engineering of benzodithiophene–thiophene copolymers with conjugated side chains containing the electron-withdrawing ethylrhodanine group
Ong et al. Design and synthesis of benzothiadiazole–oligothiophene polymers for organic solar cell applications
KR101514207B1 (en) Low band gap polymers, the organic photovoltaic cell comprising the same, and the synthesis thereof
KR101595147B1 (en) Aromatic compound and organic solar cell comprising the same
Tong et al. Synthesis of modified benzothiadiazole-thiophene-cored acceptor and carbazole/indolocarbazole alternating conjugated polymers and their photovoltaic applications
Pan et al. Influence of 2, 2-bithiophene and thieno [3, 2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190415

Year of fee payment: 5