KR20140121804A - Method for preparing apatite-coated collagen scaffold - Google Patents

Method for preparing apatite-coated collagen scaffold Download PDF

Info

Publication number
KR20140121804A
KR20140121804A KR20140120154A KR20140120154A KR20140121804A KR 20140121804 A KR20140121804 A KR 20140121804A KR 20140120154 A KR20140120154 A KR 20140120154A KR 20140120154 A KR20140120154 A KR 20140120154A KR 20140121804 A KR20140121804 A KR 20140121804A
Authority
KR
South Korea
Prior art keywords
collagen
hydroxyapatite
support
collagen scaffold
coated
Prior art date
Application number
KR20140120154A
Other languages
Korean (ko)
Inventor
김병수
노승서
강서경
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR20140120154A priority Critical patent/KR20140121804A/en
Publication of KR20140121804A publication Critical patent/KR20140121804A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention relates to a method for manufacturing a hydroxyapatite-coated collagen scaffold by treating a collagen scaffold with simulated body fluid with a higher pH than an isoelectric point of the collagen scaffold. According to the present invention, the hydroxyapatite-coated collagen scaffold is efficiently manufactured in a short time, and is modified to have an osteanagenesis effect, such as excellent biocompatibility, cytocompatibility, osteoconductivity, and bone morphogenetic protein sustained releasability to be used as a medical graft material.

Description

아파타이트가 코팅된 콜라겐 지지체 제조방법{METHOD FOR PREPARING APATITE-COATED COLLAGEN SCAFFOLD}[0001] METHOD FOR PREPARING APATITE-COATED COLLAGEN SCAFFOLD [0002]

본 발명은 우수한 골 재생효능을 갖는 의료용 지지체, 보다 상세하게는 아파타이트로 코팅된 콜라겐 지지체의 제조방법에 관한 것이다.
The present invention relates to a medical support having excellent bone regeneration efficacy, and more particularly, to a method for producing a collagen support coated with apatite.

뼈는 뼈 조직(bone tissue)으로 구성되어 있고 신체의 장기를 지지하고 보호하는 역할을 한다. 뼈 조직을 구성하는 것은 골 조직(osseous tissue)이며 이는 뼈 기관의 강직한 부분을 구성하여 골격계를 이루기 때문에 신체의 중요한 지지적 결합 조직으로 분류된다. 골 조직은 다양한 유기 성분(예: 단백질, 세포)과 무기 성분(예: 아파타이트)으로 이루어진 유-무기 하이브리드(hybrid) 생복합체 물질이다. 예컨대, 천연골의 중요한 화학적 및 기계적 물성은, 칼슘 포스페이트(CaP) 결정인 하이드록시아파타이트[Ca10(PO4)6(OH)2]가 형성되어 콜라겐 피브릴 사이에 공간적으로 배열되는 계층적 구조로부터 유래한다.Bones are made up of bone tissue and they support and protect the organs of the body. Bone tissue is composed of osseous tissue, which constitutes a rigid part of the organs of the bone and forms the skeletal system, so it is classified as an important supportive connective tissue of the body. Bone tissue is a bio-inorganic hybrid biocompatible material composed of various organic components (eg, proteins, cells) and inorganic components (eg, apatite). For example, the important chemical and mechanical properties of natural bone include a hierarchical structure in which calcium phosphate (CaP) crystal hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] is formed and spatially arranged between collagen fibrils Lt; / RTI >

뼈는 신체적 외상으로 인해 균열 또는 분열될 수 있다. 또한 골다공증 또는 뼈를 약화시키는 특정한 의료적 질환으로 인해 생길 수도 있다. 골절 또는 손상된 뼈를 치유하기 위해 인공골과 같은 합성 생물질이 사용되는데, 이러한 합성 생물질을 개질하기 위한 다양한 방법들이 시도되어 왔다.Bones can crack or fracture due to physical trauma. It may also be caused by certain medical conditions that weaken osteoporosis or bone. Synthetic biomaterials such as artificial bone are used to heal broken or damaged bones. Various methods have been attempted to modify such synthetic biomaterials.

구체적인 예로서, 플라즈마 분사법을 이용하여 타겟 재료의 표면에 생체적합성 칼슘 포스페이트 박막을 코팅하는 방법이 비특허문헌 1에 개시되어 있다. 그러나, 이 방법에 의하면, 재료의 안쪽 표면에 균일하게 칼슘 포스페이트 박막을 코팅하기가 어렵고, 플라즈마 방출 시 고온에 고분자 지지체가 노출되기 때문에 지지체가 변형될 수 있다는 단점이 존재한다. As a specific example, a method of coating a biocompatible calcium phosphate thin film on the surface of a target material using a plasma spraying method is disclosed in Non-Patent Document 1. However, according to this method, it is difficult to uniformly coat the calcium phosphate thin film on the inner surface of the material, and there is a disadvantage that the support can be deformed because the polymer support is exposed to the high temperature at the time of plasma discharge.

한편, 지지체를 pH 7의 모사체액 (simulated body fluid: SBF)에 담구어 지지체 표면에 칼슘과 인이 주요 성분인 아파타이트 결정을 코팅하는 방법이 비특허문헌 2 내지 4에 개시되어 있다. 또한 특허문헌 1의 경우에도 pH 6 또는 7의 모사체액에 지지체를 담구어 지지체 표면에 하이드록시아파타이트를 코팅하는 방법을 개시하고 있다. 하지만, 상기 방법들에 의하면, 하이드록시아파타이트의 표면 코팅에 상당한 시간이 소요된다. On the other hand, non-patent documents 2 to 4 disclose a method in which a support is immersed in a simulated body fluid (SBF) having a pH of 7 to coat apatite crystals, which is a main component of calcium and phosphorus, on the surface of the support. Also in the case of Patent Document 1, a support body is immersed in a simulated body fluid having a pH of 6 or 7 to thereby coat the surface of the support with hydroxyapatite. However, according to the above methods, a considerable time is required for coating the surface of hydroxyapatite.

따라서 다양한 의료용 이식재의 필요성이 점점 커짐에 따라, 더욱 우수한 골 재생효능을 갖는 지지체를 보다 효율적으로 제조할 수 있는 기술에 대한 개발이 필요하다.
Therefore, as the necessity of various medical implants grows larger, it is necessary to develop a technique that can more efficiently manufacture a supporter having better bone regeneration efficiency.

일본특허출원공개 제 2004-275533 호Japanese Patent Application Laid-Open No. 2004-275533

J. Biomed. Mater. Res. 48, 741 (1999) J. Biomed. Mater. Res. 48, 741 (1999) J. Biomed. Mater. Res. 24, 721 (1990) J. Biomed. Mater. Res. 24, 721 (1990) Tissue Eng Part A. 17 (17-18):2153-64 (2011) Tissue Eng Part A. 17 (17-18): 2153-64 (2011) J. Biomater. Sci. 23 1659-1671 (2012) J. Biomater. Sci. 23 1659-1671 (2012)

따라서 본 발명은 우수한 골 재생 효능을 갖는 의료용 지지체를 보다 효율적으로 제조할 수 있는 방법을 제공하고자 한다.
Accordingly, the present invention provides a method for efficiently producing a medical support having excellent bone regeneration efficiency.

상기 과제를 달성하기 위하여, 본 발명은 콜라겐 지지체를, 상기 콜라겐 지지체의 등전점보다 높은 pH를 갖는 모사체액으로 처리하여 하이드록시아파타이트가 코팅된 콜라겐 지지체를 제조하는 방법을 제공한다.  
In order to achieve the above object, the present invention provides a method for producing a collagen support coated with hydroxyapatite by treating a collagen support with a simulated body fluid having a pH higher than the isoelectric point of the collagen support.

본 발명은 최적의 pH 및 온도 조건에서 골의 무기 성분인 하이드록시아파타이트를 스폰지 형태의 콜라겐 지지체에 효율적으로 코팅시킬 수 있는 방법에 관한 것으로서, 본 발명에 의한 골 재생용 지지체는 우수한 생체적합성과 골전도성을 나타내고, 골 재생을 촉진시키는 성장인자 단백질인 골형성단백질(bone morphogenetic protein)을 서방형으로 방출시킬 수 있으므로, 골 관련 질환을 치료하기 위한 의료용 이식재 또는 골 재생용 골형성단백질의 전달체로 효과적으로 사용될 수 있다. 뿐만 아니라, 본 발명의 방법에 의하면 콜라겐 지지체의 표면을 비교적 빠른 시간 안에 간편하게 개질시킬 수 있어 매우 유용하다.
The present invention relates to a method for effectively coating a hydroxyapatite, which is an inorganic component of bone, on a collagen support in the form of a sponge under optimal pH and temperature conditions. The support for bone regeneration according to the present invention has excellent biocompatibility and bone And can release bone morphogenetic protein, which is a growth factor protein that promotes bone regeneration, in a sustained release form. Therefore, it can be effectively used as a medical implantable material for treating bone related diseases or as a carrier of osteogenic protein for bone regeneration Can be used. In addition, according to the method of the present invention, the surface of the collagen support can be easily modified in a relatively short time, which is very useful.

도 1은 본 발명의 원리를 설명하기 위한 개괄적인 모식도이다.
도 2 및 도 3은 실시예 및 비교예에 따라 각각 pH와 온도 변화에 따른 콜라겐 지지체 표면에 코팅된 하이드록시아파타이트의 양을 정량적으로 비교한 결과이다.
도 4는 실시예 및 비교예에 따라 콜라겐 지지체 표면에 코팅된 하이드록시아파타이트를 촬영한 SEM 사진이다.
1 is a schematic diagram for explaining the principle of the present invention.
FIGS. 2 and 3 are the results of quantitative comparison of amounts of hydroxyapatite coated on the surface of the collagen supporter according to the pH and temperature changes according to the examples and the comparative examples, respectively.
FIG. 4 is a SEM photograph of hydroxyapatite coated on the surface of a collagen support according to Examples and Comparative Examples. FIG.

이하 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described more specifically.

도 1은 본 발명의 원리를 보여주는 개괄적인 모식도이다. 1 is a schematic diagram showing the principle of the present invention.

본 발명은 NaCl, NaHCO3, KCl, K2HPO4, MgCl2, CaCl2, Na2SO4 등이 용해된 모사체액의 pH를 콜라겐의 등전점인 8 이상으로 조절한 것을 특징으로 한다. 콜라겐의 등전점(PI)을 기준으로 모사체액의 pH가 등전점보다 낮은 pH 범위에서는 콜라겐 표면이 양전하를 띄게 되어서 콜라겐 표면에 하이드록시아파타이트의 주요 성분인 칼슘 이온이 흡착되기 힘들다. 따라서 하이드록시아파타이트 코팅이 적게 이루어진다. 하지만 모사체액의 pH가 등전점보다 높아지면 콜라겐 표면 전하가 음전하를 많이 띄기 때문에 양전하를 띄는 칼슘 이온이 정전기적 인력에 의해 상대적으로 콜라겐에 잘 결합할 것이다. 따라서 모사체액의 pH가 높아질수록 콜라겐 표면에 하이드록시아파타이트가 코팅되는 효율이 극대화된다는 결론을 내릴 수 있다.The present invention is characterized in that the pH of a simulated body fluid in which NaCl, NaHCO 3 , KCl, K 2 HPO 4 , MgCl 2 , CaCl 2 and Na 2 SO 4 are dissolved is adjusted to 8 or more, which is the isoelectric point of collagen. Based on the isoelectric point (PI) of the collagen, the surface of the collagen becomes positively charged at a pH range lower than the isoelectric point of the simulated body fluid, and calcium ions, which are a major component of hydroxyapatite, are hardly adsorbed on the collagen surface. Therefore, less hydroxyapatite coating is achieved. However, when the pH of the simulated body fluid is higher than the isoelectric point, since the surface charge of the collagen is negatively charged, the positively charged calcium ion will be more easily bound to the collagen by the electrostatic attraction. Therefore, it can be concluded that as the pH of the simulated body fluid increases, the efficiency of coating hydroxyapatite on the collagen surface is maximized.

콜라겐 지지체는 콜라겐 스펀지(collagen sponge)인 것이 바람직하다. 콜라겐 스펀지란 콜라겐에 공동이나 공극을 가지는 구조체라면 형상에 특별히 제한은 없고, 구체적으로는 콜라겐 용액 또는 분산액을 동결건조 하여 제조될 수 있다. 동결건조의 방법에 특별히 제한은 없다. The collagen support is preferably a collagen sponge. The collagen sponge is not particularly limited in shape as long as it is a structure having cavities or voids in collagen, and specifically, it can be prepared by freeze-drying a collagen solution or dispersion. The method of freeze-drying is not particularly limited.

콜라겐 지지체 표면에 하이드록시아파타이트 코팅을 실시할 때 콜라겐은 모사체액에 용해되지 않아야 한다. 따라서 필요에 따라 가교시키거나 불용화할 필요가 있다. 구체적으로는 물리적, 화학적 가교를 이용할 수 있고, 구체적으로는 UV 등의 물리적 가교, 글루타르알데히드, 포르말린, 디알데히드 전분 등의 알데히드 화합물, 폴리에틸렌글리콜디글리시딜에테르 등의 수용성 폴리에폭시 화합물, 헥사메틸렌 디이소시아네이트 등의 이소시아네이트 화합물 등의 화학적 가교를 들 수 있다.당연히 가교제 및 가교물은 세포 독성이 없고, 생체 친화성에 우수한 것이라야 할 것이다. When the hydroxyapatite coating is applied to the surface of the collagen support, the collagen should not be dissolved in the simulated body fluids. Therefore, crosslinking or insolubilization is necessary if necessary. Concretely, physical and chemical crosslinking can be used. Specifically, physical crosslinking such as UV, aldehyde compounds such as glutaraldehyde, formalin and dialdehyde starch, water-soluble polyepoxy compounds such as polyethylene glycol diglycidyl ether, Methylene diisocyanate, etc. Of course, the crosslinking agent and the crosslinked product should be free of cytotoxicity and excellent in biocompatibility.

본 발명에서는 콜라겐 지지체의 표면을 모사체액에 용해된 칼슘과 인이 주요 성분인 하이드록시아파타이트로 코팅한다. 상기 표면이란 구체적으로는 콜라겐 지지체 바람직하게는 콜라겐 스펀지의 전체적인 표면 이외에, 지지체에 존재하는 공동, 공극의 표면도 포함된다. 하이드록시아파타이트가 표면 전부에 코팅되어도 좋고, 표면 일부에 부분적으로 코팅되어도 좋다. 코팅 수단은 특별히 한정되는 것이 아니나, 모사체액에 콜라겐 지지체를 침지하는 방법에 의해 이루어지는 것이 바람직하다.In the present invention, the surface of the collagen supporter is coated with hydroxyapatite, which is a major component of calcium and phosphorus dissolved in the simulated body fluid. The surface specifically includes the surfaces of cavities and voids present in the support, in addition to the overall surface of the collagen support, preferably the collagen sponge. The hydroxyapatite may be coated on the entire surface or partially coated on the surface. The coating means is not particularly limited, but is preferably made by a method of immersing the collagen support in the simulated body fluid.

모사체액은, 증류수에 염류가 포함되는 용액을 말한 것이고, 염 성분으로는 NaCl, NaHCO3, KCl, K2HPO4, MgCl2, CaCl2, Na2SO4 등이고, 바람직하게는 NaCl, NaHCO3, K2HPO4, CaCl2 를 함유하는 체액이다. 모사체액의 염 농도는 정상적인 체액의 농도 내지 10 배 농도의 범위이다. Simulated body fluid, will say a solution containing the salts of distilled water, the salt component is NaCl, NaHCO 3, KCl, K 2 HPO 4, MgCl 2, CaCl 2, Na 2 the like SO 4, preferably from NaCl, NaHCO 3 , K 2 HPO 4 , and CaCl 2 . The salt concentration of the simulated body fluid is in the range of normal body fluid concentration to 10-fold concentration.

침지 시간은 1일 이상으로, 길면 길수록 다량의 하이드록시아파타이트를 코팅할 수 있다. 본 발명은 1일이라는 단시간에도 놀라운 코팅효과를 얻을 수 있다. 단시간 내 코팅은 콜라겐 변성을 최소화할 수 있는 장점이 있다. 침지 온도 4~40℃의 범위, 더욱 바람직하게는 20~40℃의 범위이다. 콜라겐이 변성을 일으키지 않는 한 높은 온도일수록 코팅시간을 단축시킬 수 있다. The immersion time is longer than one day, and the longer hydroxyapatite can be coated in a larger amount. The present invention can achieve a remarkable coating effect even in a short time such as one day. A short-time internal coating has the advantage of minimizing collagen denaturation. The immersion temperature is in the range of 4 to 40 占 폚, more preferably 20 to 40 占 폚. As long as the collagen does not cause denaturation, the higher the temperature, the shorter the coating time.

따라서, 본 발명에 따라 하이드록시아파타이트로 코팅처리된 콜라겐 지지체는 단시간에 효율적으로 제조되어, 우수한 생체적합성, 세포적합성 및 골전도성(osteoconductivity) 등과 같은 골 재생효능을 갖도록 개질되어 의료용 이식재로서 유용하게 사용될 수 있다. Therefore, the collagen support coated with hydroxyapatite according to the present invention can be efficiently produced in a short time and modified to have excellent osteoconductive properties such as excellent biocompatibility, cell suitability and osteoconductivity, and is useful as a medical implantable material .

이하, 본 발명을 하기 실시예에 의거하여 더욱 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

실시예 및 비교예Examples and Comparative Examples

우선 소 유래의 콜라겐 타입 1로 이루어진 콜라겐 스펀지를 준비하였다. 다음과 같은 구성의 모사체액을 제조하였다. NaCl (8.0035 g/L), NaHCO3 (0.355 g/L), KCl (0.225 g/L), K2HPO4·3H2O (0.231 g/L), CaCl2 (0.292 g/L), Na2SO4 (0.072 g/L), and MgCl2·6H2O (0.311 g/L)을 증류수에 용해시켰다. First, a collagen sponge made of collagen type 1 derived from cattle was prepared. A simulated body fluid having the following composition was prepared. NaCl (0.355 g / L), NaHCO 3 (0.355 g / L), KCl (0.225 g / L), K 2 HPO 4 .3H 2 O (0.231 g / L), CaCl 2 2 SO 4 (0.072 g / L), and MgCl 2 .6H 2 O (0.311 g / L) were dissolved in distilled water.

위 구성성분의 모사체액에 NaOH 또는 HCl을 첨가하여 pH 범위를 pH 4, 5, 6, 7, 8, 9, 10, 11로 설정하였다. pH 4, 5, 6, 7은 비교예이고, pH 8, 9, 10, 11은 실시예이다. NaOH or HCl was added to the simulated body fluid of the above constituents The pH range was set at pH 4, 5, 6, 7, 8, 9, 10, and 11. pH 4, 5, 6 and 7 are comparative examples, and pH 8, 9, 10 and 11 are examples.

상기 모사체액 각각에 콜라겐 고분자 지지체를 침지시켜 4℃, 20℃, 40℃의 서로 다른 온도 조건에서 24시간 동안 반응시켜, 하이드록시아파타이트가 표면에 코팅된 콜라겐 지지체를 얻었다. 그리고 비교를 위해 아무런 처리를 하지 않은 콜라겐 지지체를 준비하였다. The collagen polymer scaffold was immersed in each of the above simulated body fluids and reacted at different temperature conditions of 4 ° C, 20 ° C and 40 ° C for 24 hours to obtain a collagen support coated with hydroxyapatite on its surface. A collagen support without any treatment was prepared for comparison.

각 온도 조건에서 모사체액의 pH를 4부터 11까지 변화시켜 처리한 콜라겐 지지체의 하이드록시아파타이트 양을 도 2에 나타내었다. 온도 조건에 상관없이 pH가 증가할 수록, 특히 pH 8 이상에서 지지체 표면에 코팅된 하이드록시아파타이트의 양이 확실히 증가하는 것을 확인할 수 있다. 즉 모사체액의 pH가 점점 높아질수록 콜라겐 지지체의 표면 전하가 더 강한 음전하를 띠게 되므로, 양전하를 띠는 칼슘 이온이 정전기적 인력에 의해 콜라겐 지지체 표면에 더욱 잘 결합하게 되는 것을 확인하였다.The amount of hydroxyapatite in the collagen supporter treated with varying pH of the simulated body fluid from 4 to 11 at each temperature condition is shown in Fig. It can be seen that the amount of hydroxyapatite coated on the surface of the support is significantly increased as the pH is increased regardless of the temperature condition, especially at pH 8 or more. That is, as the pH of the simulated body fluid becomes higher, the surface charge of the collagen supporter becomes stronger negative charge. Therefore, it is confirmed that the positively charged calcium ion binds more strongly to the surface of the collagen supporter due to electrostatic attraction.

도 3은 각각의 pH 조건에서 모사체액의 온도 변화(4℃, 20℃, 40℃)에 따른 콜라겐 지지체 표면의 하이드록시아파타이트 양을 나타낸 것이다. 이를 통해, 대체적으로 온도가 높을수록 하이드록시아파타이트의 코팅이 더 잘 되는 것을 확인할 수 있다. 이는 온도가 높아질수록 이온상태의 Ca2+와 음전하를 띠는 콜라겐 지지체의 정전기적 결합 반응 속도가 증가하는 것으로 설명할 수 있다.FIG. 3 shows the amount of hydroxyapatite on the surface of the collagen supporter according to the temperature change (4 ° C, 20 ° C, 40 ° C) of the simulated body fluid at each pH condition. As a result, it can be seen that the higher the temperature is, the better the coating of hydroxyapatite is. It can be explained that the higher the temperature, the higher the electrostatic coupling reaction rate of Ca 2+ in ionic state and the negatively charged collagen support.

도 4는 각 조건에서 콜라겐 표면에 코팅된 하이드록시아파타이트의 양을 보여주는 SEM 이미지이다. SEM 사진으로부터도 모사체액의 pH와 온도가 높을수록 콜라겐 지지체 표면에 코팅된 하이드록시아파타이트의 양이 대폭 증가하는 것을 확인할 수 있다.4 is an SEM image showing the amount of hydroxyapatite coated on the collagen surface under each condition. SEM photographs show that the amount of hydroxyapatite coated on the surface of the collagen supporter is significantly increased as the pH and temperature of the simulated body fluids are increased.

Claims (1)

콜라겐 지지체를, 상기 콜라겐 지지체의 등전점보다 높은 pH를 갖는 모사체액으로 처리하여 하이드록시아파타이트가 코팅된 콜라겐 지지체를 제조하는 방법. Treating the collagen supporter with a simulated body fluid having a pH higher than the isoelectric point of the collagen supporter to produce a hydroxyapatite-coated collagen supporter.
KR20140120154A 2014-09-11 2014-09-11 Method for preparing apatite-coated collagen scaffold KR20140121804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20140120154A KR20140121804A (en) 2014-09-11 2014-09-11 Method for preparing apatite-coated collagen scaffold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20140120154A KR20140121804A (en) 2014-09-11 2014-09-11 Method for preparing apatite-coated collagen scaffold

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130006958A Division KR101449237B1 (en) 2013-01-22 2013-01-22 Method for preparing apatite-coated collagen scaffold

Publications (1)

Publication Number Publication Date
KR20140121804A true KR20140121804A (en) 2014-10-16

Family

ID=51993187

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20140120154A KR20140121804A (en) 2014-09-11 2014-09-11 Method for preparing apatite-coated collagen scaffold

Country Status (1)

Country Link
KR (1) KR20140121804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190051467A (en) * 2017-11-07 2019-05-15 한국기계연구원 Organic-inorganic hybrid biocompatible porous support, and method of manufacturing the same
KR20240002748A (en) 2022-06-30 2024-01-08 한국세라믹기술원 Uncalcination hydroxyapatite nano-sphere with fabrication method thereof
KR20240006362A (en) 2022-07-06 2024-01-15 한국세라믹기술원 Evaluation of in-vitro dissolution properties of uncalcined hydroxyapatite spherical nanostructures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190051467A (en) * 2017-11-07 2019-05-15 한국기계연구원 Organic-inorganic hybrid biocompatible porous support, and method of manufacturing the same
KR20240002748A (en) 2022-06-30 2024-01-08 한국세라믹기술원 Uncalcination hydroxyapatite nano-sphere with fabrication method thereof
KR20240006362A (en) 2022-07-06 2024-01-15 한국세라믹기술원 Evaluation of in-vitro dissolution properties of uncalcined hydroxyapatite spherical nanostructures

Similar Documents

Publication Publication Date Title
Milazzo et al. Additive manufacturing approaches for hydroxyapatite‐reinforced composites
Lin et al. Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration
Gulati et al. Titania nanotubes for orchestrating osteogenesis at the bone–implant interface
Almasi et al. Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review
JP2021137597A (en) Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation
SE1251043A1 (en) Hydrogel coated scaffold
KR101053118B1 (en) Method for preparing silk / hydroxyapatite composite nanofiber support for bone regeneration
Mozafari et al. Thin films for tissue engineering applications
JP2006231056A (en) Bone implant
Tuukkanen et al. Hydroxyapatite as a nanomaterial for advanced tissue engineering and drug therapy
KR101449237B1 (en) Method for preparing apatite-coated collagen scaffold
Hu et al. Carboxylated agarose (CA)-silk fibroin (SF) dual confluent matrices containing oriented hydroxyapatite (HA) crystals: biomimetic organic/inorganic composites for tibia repair
KR20140121804A (en) Method for preparing apatite-coated collagen scaffold
Kurian et al. Surface-engineered hybrid gelatin methacryloyl with nanoceria as reactive oxygen species responsive matrixes for bone therapeutics
Thanh et al. Fabrication of poly (lactic acid)/hydroxyapatite (PLA/HAp) porous nanocomposite for bone regeneration
Pang et al. In vitro and in vivo evaluation of biomimetic hydroxyapatite/whitlockite inorganic scaffolds for bone tissue regeneration
Katsanevakis et al. Biomineralization of polymer scaffolds
PL226891B1 (en) Method for producing bone implant and the bone implant
SE537635C2 (en) Method of producing an alginate coated titanium dioxide scaffold, this titanium dioxide scaffold and medical implant containing scaffold
Shanaghi et al. Enhanced corrosion resistance and reduced cytotoxicity of the AZ91 Mg alloy by plasma nitriding and a hierarchical structure composed of ciprofloxacin‐loaded polymeric multilayers and calcium phosphate coating
JP2011015865A (en) Material for filling bone defect and production method thereof
CN107899088B (en) Porous biological scaffold for preventing re-fracture after internal fixation object removal and preparation thereof
US20110153029A1 (en) Bioresorbable and flexible membranes exhibiting asymmetric osteoconductive behavior in both faces
EP1044694A1 (en) Polymeric material for artificial bone
Douglas et al. Biomimetic mineralization of hydrogel biomaterials for bone tissue engineering

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Withdrawal due to no request for examination