KR20140118690A - Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof - Google Patents

Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof Download PDF

Info

Publication number
KR20140118690A
KR20140118690A KR1020130164346A KR20130164346A KR20140118690A KR 20140118690 A KR20140118690 A KR 20140118690A KR 1020130164346 A KR1020130164346 A KR 1020130164346A KR 20130164346 A KR20130164346 A KR 20130164346A KR 20140118690 A KR20140118690 A KR 20140118690A
Authority
KR
South Korea
Prior art keywords
alloy
weight
oxide
dispersed
zirconium
Prior art date
Application number
KR1020130164346A
Other languages
Korean (ko)
Other versions
KR101586546B1 (en
Inventor
노상훈
김태규
최병권
한창희
강석훈
김기백
천영범
장진성
정용환
Original Assignee
한국원자력연구원
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원, 한국수력원자력 주식회사 filed Critical 한국원자력연구원
Priority to CN201410056856.0A priority Critical patent/CN104073725A/en
Priority to JP2014044052A priority patent/JP5837636B2/en
Publication of KR20140118690A publication Critical patent/KR20140118690A/en
Application granted granted Critical
Publication of KR101586546B1 publication Critical patent/KR101586546B1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention relates to a ferritic oxide dispersion strengthened alloy having enhanced room temperature and high temperature strength, which includes 12-20 wt% of Cr, 0.1-0.5 wt% of Y_2O_3, 0.1-4 wt% of W, 0.5-2 wt% of Mo, 0.1-0.3 wt% of Ti, 0.02-0.3 wt% of Zr, and a remainder consisting of Fe, and a method of preparing the same. The ferritic oxide dispersion strengthened alloy according to the present invention includes 12-20 wt% of Cr, 0.1-0.5 wt% of Y_2O_3, 0.1-4 wt% of W, 0.5-2 wt% of Mo, 0.1-0.3 wt% of Ti, 0.02-0.3 wt% of Zr, and a remainder consisting of Fe. The sum of Ti and Zr in content is 0.5wt% or less. Accordingly, the ferritic oxide dispersion strengthened alloy has an excellent tensile property at the room temperature and the high temperature, especially at 700°C, so that the ferritic oxide dispersion strengthened alloy is available to power generation Ultra-critical steam generator parts (rotor, shaft, etc.) and a material for engine parts for aircraft (disc, nozzle, etc.). Further, it is expected that the ferritic oxide dispersion strengthened alloy is available to reactor core structural components (nuclear fuel cladding tubes, ducts, wires, such as end caps) of nuclear power systems, such as sodium-cooling fast reactors.

Description

상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금 및 이의 제조 방법{FERRITIC OXIDE DISPERSION STRENGTHENED ALLOY WITH ENHANCED ROOM TEMPERATURE AND HIGH TEMPERATURE STRENGTH AND MANUFACTURING METHOD THEREOF}FIELD OF THE INVENTION [0001] The present invention relates to a ferritic oxide-dispersed reinforcing alloy having improved room temperature and high-temperature strength, and a method of manufacturing the ferritic-

본 발명은 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금 및 이의 제조 방법에 관한 것으로서, 보다 구체적으로는 철(Fe)-크롬(Cr)-이트리아(Y2O3)계의 합금을 기본 조성으로 하고, 이에 고용 강화 원소로 텅스텐(W)과 몰리브덴(Mo)을 포함하고, 미량 합금원소로 티타늄(Ti) 및 지르코늄(Zr)을 포함하는 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금 및 이의 제조 방법에 관한 것이다.Base alloys of yttria (Y 2 O 3) based - the present invention is the room temperature and high temperature strength, an improved ferritic oxide-dispersion strengthened alloys and a method, and more particularly to iron (Fe) - chromium (Cr) And a ferrite-based oxide-dispersed reinforcing alloy (B) containing tungsten (W) and molybdenum (Mo) as the solid solution strengthening elements and titanium (Ti) and zirconium And a method for producing the same.

산화물분산강화(Oxide dispersion strengthened; ODS) 합금은 기지조직 내에 Y2O3등의 산화물을 균일하게 분산시켜 고온강도를 향상시킨 합금으로서, 최근, 소듐냉각고속로와 같은 원자력시스템의 노심 구조부품(핵연료 피복관, 덕트, 와이어 등) 이나 화력발전용 구조부품(가스터빈 블레이드, 사프트 등)의 재료로 사용되고 있다. 이러한 산화물분산강화 합금에서, 나노미터 급의 크기로 미세하게 분산된 산화물은 고온에서 열적 안정성이 우수하며 고온 응력분위기에서 전위의 이동을 방해하여 고온 크리프 강도(creep strength)를 획기적으로 향상시키는 역할을 한다.Oxide dispersion strengthened (ODS) alloy is an alloy that uniformly disperses oxides such as Y 2 O 3 in the matrix to improve the strength at high temperature. Recently, Oxide dispersion strengthened (ODS) Fuel bundles, ducts, wires, etc.) and structural parts for thermal power generation (gas turbine blades, shafts, etc.). In this oxide-dispersed strengthened alloy, finely dispersed oxides of a nanometer-scale size have excellent thermal stability at high temperatures and interfere with the movement of dislocations in a high temperature stress atmosphere, thereby dramatically improving the creep strength at high temperatures do.

하지만, 종래의 산화물분산강화 합금은 상온에서 강도뿐만 아니라 650℃ 이상에서는 급격하게 강도가 감소하여, 장기간 사용하는데 문제점으로 지적되고 있다. However, the conventional oxide-dispersed reinforced alloy has a sudden decrease in strength at 650 ° C or higher as well as strength at room temperature, which is pointed out as a problem in long-term use.

이러한 문제점을 개선하기 위해, 철(Fe)-크롬(Cr)-이트리아(Y2O3)계의 합금에 온도가 상승되어도 연화되지 않는 성질을 발휘하고, 단단하여 마모가 잘 안 되는 특성이 있는 텅스텐(W)을 고용강화원소로 첨가하고, 이에 바나듐(V)이나 니오븀(Nb) 등의 미량합금원소를 첨가시키는 방법(한국 공개특허 10-2012-0118312호 참조) 등의 다양한 방법들이 연구되고 있으나, 상기 개시된 방법들에 제조된 산화물 분산강화 합금의 고온 강도특성 향상효과가 미미한바, 인장강도가 우수한 산화물분산강화 합금에 대한 개발이 필요한 실정이다.In order to solve such a problem, it has been proposed to use a ferrite-chromium (Cr) -yttria (Y 2 O 3 ) alloy which does not soften even when the temperature rises, Various methods such as adding a tungsten (W) as a solid solution strengthening element and adding a trace alloy element such as vanadium (V) or niobium (Nb) thereto (see Korean Patent Laid-Open No. 10-2012-0118312) However, the effect of improving the high-temperature strength characteristics of the oxide-dispersed reinforced alloy produced by the above-described methods is insignificant, and it is necessary to develop an oxide-dispersed reinforcing alloy having excellent tensile strength.

본 발명은 상기와 같은 종래 기술상의 문제점을 해결하기 위해 안출된 것으로, 크롬(Cr) 12~20중량%, 이트리아(Y2O3) 0.1~0.5중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하여 상온 및 고온 강도가 향상된 페라이트계 산화물 분산강화 합금 및 이의 제조 방법을 제공하는 것을 그 목적으로 한다.The present invention has been conceived to solve the problems of the prior art as described above, chromium (Cr) 12 ~ 20% by weight of yttria (Y 2 O 3) 0.1 ~ 0.5 wt%, tungsten (W) 0.1 ~ 4 parts by weight Ferritic oxide having improved tempera- ture at room temperature and high temperature, containing 0.5 to 2 wt% of molybdenum (Mo), 0.1 to 0.3 wt% of titanium (Ti), 0.02 to 0.3 wt% of zirconium (Zr) And a method for producing the same.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

본 발명은 크롬(Cr) 12~20중량%, 이트리아(Y2O3) 0.1~0.5중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하는 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금을 제공한다.The present invention chromium (Cr) 12 ~ 20% by weight of yttria (Y 2 O 3) 0.1 ~ 0.5 wt%, tungsten (W) 0.1 ~ 4 weight%, molybdenum (Mo) 0.5 ~ 2 weight%, titanium (Ti ) Containing 0.1 to 0.3% by weight of zirconium (Zr), 0.02 to 0.3% by weight of zirconium (Zr) and the balance of iron (Fe) at room temperature and high temperature.

본 발명의 일 구현예로, 상기 페라이트계 산화물분산강화 합금은 티타늄(Ti)과 지르코늄(Zr)의 합이 0.5중량% 이하인 것을 특징으로 한다.In one embodiment of the present invention, the ferrite-based oxide-dispersed reinforcing alloy is characterized in that the sum of titanium (Ti) and zirconium (Zr) is 0.5% by weight or less.

본 발명의 다른 구현예로, 상기 페라이트계 산화물분산강화 합금은 화력발전용초초임계압 증기발전기의 로터, 샤프트, 항공기용 엔진의 디스크, 노즐, 고속로용 핵연료 피복관을 포함하는 구조부품 재료로 이용되는 것을 특징으로 한다.In another embodiment of the present invention, the ferrite-based oxide-dispersed reinforcing alloy is used as a structural component material including a rotor, a shaft, an engine disk, a nozzle, and a fuel cladding for a high-speed furnace of a super critical pressure steam generator for thermal power generation .

또한, 본 발명은 하기의 단계를 포함하는 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금 제조 방법을 제공한다:The present invention also provides a method for producing a ferritic oxide-dispersed strengthened alloy having improved strength at room temperature and high temperature, comprising the steps of:

(a) 철(Fe), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 티타늄(Ti) 및 지르코늄(Zr)을 포함하는 금속 분말과 이트리아(Y2O3) 분말을 혼합한 후 기계적 합금화 처리하여 합금분말을 제조하는 단계;(a) a mixture of iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), titanium (Ti) and zirconium metal powder comprising a (Zr) and yttria (Y 2 O 3) powder Followed by mechanical alloying treatment to produce an alloy powder;

(b) 상기 기계적 합금화된 합금분말을 캔 용기에 장입하여 탈가스 처리하는 단계; (b) charging the canned alloy with the mechanically alloyed alloy powder to perform a degassing treatment;

(c) 상기 탈가스 처리된 합금분말을 열간가공하여 산화물분산강화 합금을 제조하는 단계;(c) hot-working the degassed alloy powder to produce an oxide-dispersed enhanced alloy;

(d) 상기 열간가공된 산화물분산강화 합금을 냉간가공하는 단계.(d) cold-working the hot-worked oxide-dispersed reinforcing alloy.

본 발명의 일 구현예로, 상기 단계 (a)에서, 상기 합금분말은 크롬(Cr) 12~20중량%, 이트리아(Y2O3) 0.1~0.5중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하되, 티타늄(Ti)과 지르코늄(Zr)의 합이 0.5중량% 이하인 것을 특징으로 한다.In one embodiment of the present invention, in the step (a), the alloy powder comprises 12 to 20% by weight of chromium (Cr), 0.1 to 0.5% by weight of yttria (Y 2 O 3 ) (Ti) and zirconium (Zr) in an amount of 0.5 to 2 wt%, molybdenum (Mo) 0.5 to 2 wt%, titanium (Ti) 0.1 to 0.3 wt%, zirconium (Zr) Zr) is 0.5% by weight or less.

본 발명의 다른 구현예로, 상기 단계 (c)에서, 상기 열간가공은 열간등방가압, 열간단조, 열간압연 및 열간압출 공정으로 이루어진 군으로부터 선택되는 어느 하나 또는 이의 조합을 통해 수행되는 것을 특징으로 한다.In another embodiment of the present invention, in the step (c), the hot working is performed through any one selected from the group consisting of hot isostatic pressing, hot forging, hot rolling and hot extrusion, or a combination thereof .

본 발명의 또 다른 구현예로, 상기 단계 (d)에서, 상기 냉간 가공은 냉간압연, 냉간드로잉 및 냉간필거링으로 이루어진 군으로부터 선택되는 어느 하나 또는 이의 조합을 통해 수행되는 것을 특징으로 한다.According to another embodiment of the present invention, in the step (d), the cold working is performed through any one selected from the group consisting of cold rolling, cold drawing, and cold peeling, or a combination thereof.

본 발명에 따른 페라이트계 산화물분산강화 합금은 크롬(Cr) 12~20중량%, 이트리아(Y2O3) 0.1~0.5중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하되, 티타늄(Ti)과 지르코늄(Zr)의 합이 0.5중량% 이하로 포함하여 상온 및 고온에서 인장특성이 우수하여 화력발전용 초초임계압 증기발전기 부품 (로터, 샤프트 등), 항공기용 엔진 부품 (디스크, 노즐 등) 재료로 유용하게 사용될 수 있으며, 더 나아가 소듐냉각고속로와 같은 원자력시스템의 노심 구조부품(핵연료 피복관, 덕트, 와이어, 봉단마개 등)의 재료로 유용하게 사용될 수 있을 것으로 기대된다.The ferritic oxide-dispersed strengthening alloy according to the present invention comprises 12 to 20% by weight of chromium (Cr), 0.1 to 0.5% by weight of yttria (Y 2 O 3 ), 0.1 to 4% by weight of tungsten (W) (Ti) and zirconium (Zr) in an amount of 0.5% by weight or less, and the balance being iron (Fe), wherein the sum of titanium (Ti) and zirconium (Zr) (Rotors, shafts, etc.) and aircraft engine parts (disks, nozzles, etc.) due to its excellent tensile properties at room temperature and high temperature, It is expected to be useful as a material for core structural parts (nuclear fuel cladding, duct, wire, seal stopper, etc.) of nuclear power system such as cooling high speed furnace.

도 1은 상온 및 700℃에서 종래의 산화물분산강화 합금과 본 발명에 따른 페라이트계 산화물분산강화 합금과의 인장시험 결과를 나타낸 도면이다.
도 2는 700℃에서 종래의 페라이트계 산화물분산강화 합금과 본 발명에 따른 페라이트계 산화물분산강화 합금과의 크리프 시험 결과를 나타낸 도면이다.
1 is a diagram showing the results of a tensile test of a conventional oxide-dispersed reinforcing alloy and a ferrite-based oxide-dispersed reinforcing alloy according to the present invention at room temperature and 700 ° C.
2 is a graph showing the creep test results of a conventional ferrite-based oxide-dispersed reinforcing alloy and a ferrite-based oxide-dispersed reinforcing alloy according to the present invention at 700 ° C.

본 발명자들은 화력발전용 증기발전기, 항공기용 엔진부품 또는 고속로의 구조부품 재료에 사용되는 산화물분산강화 합금의 상온 및 700℃ 에서 인장특성을 향상시키기 위하여 연구한 결과, 몰리브덴(Mo)을 고용강화원소로 첨가하고 티타늄(Ti) 및 지르코늄(Zr)의 미량 합금원소를 첨가하는 경우에, 종래의 산화물분산강화 합금에 비해 상온 및 고온강도가 향상되었음을 확인하고, 이에 기초하여 본 발명을 완성하게 되었다.
The present inventors have studied to improve tensile properties at room temperature and 700 ° C of an oxide dispersion strengthened alloy used for steam generators for thermal power generation, engine parts for aircraft, and structural parts of high-speed furnaces. As a result, they have found that molybdenum (Ti) and zirconium (Zr) are added as the element and the addition of the trace alloy element of titanium (Ti) and zirconium (Zr), the strength at room temperature and high temperature is improved as compared with the conventional oxide-dispersed strengthened alloy, .

이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 크롬(Cr) 12~20중량%, 이트리아(Y2O3) 0.1~0.5중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하되, 티타늄(Ti)과 지르코늄(Zr)의 합이 0.5중량% 이하인, 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금을 제공한다.The present invention chromium (Cr) 12 ~ 20% by weight of yttria (Y 2 O 3) 0.1 ~ 0.5 wt%, tungsten (W) 0.1 ~ 4 weight%, molybdenum (Mo) 0.5 ~ 2 weight%, titanium (Ti (Ti) and zirconium (Zr) in an amount of 0.1 to 0.3% by weight, zirconium (Zr) in an amount of 0.02 to 0.3% by weight and the balance of iron A ferritic oxide-dispersed strengthened alloy is provided.

크롬(Cr)의 함량이 12중량% 미만일 경우에는 내산화성이 저하되는 문제가 있고, 20중량%를 초과하는 경우에는 가공성이 저하되는 문제가 있는바, 크롬(Cr)의 함량은 12~20중량%가 바람직하며, 보다 바람직하게는 14~18중량%이다.When the content of chromium (Cr) is less than 12% by weight, the oxidation resistance is deteriorated. When it exceeds 20% by weight, the workability is deteriorated. The content of chromium (Cr) %, More preferably from 14 to 18% by weight.

이트리아(Y2O3)의 함량이 0.1중량% 미만일 경우에는 분산강화 효과가 미미하고, 0.5중량%를 초과하는 경우에는 잔류 분산 입자에 의한 분산 강화효과가 커져 가공성이 저하되는 단점이 있는바, 이트리아(Y2O3)의 함량은 0.1~0.5중량%가 바람직하며, 보다 바람직하게는 0.3~0.4중량%이다.When the content of yttria (Y 2 O 3 ) is less than 0.1% by weight, the dispersion strengthening effect is insignificant. When the content is more than 0.5% by weight, the effect of strengthening dispersion due to the residual dispersion particles is increased, , Yttria (Y 2 O 3 ) is preferably from 0.1 to 0.5% by weight, more preferably from 0.3 to 0.4% by weight.

텅스텐(W)은 고온 강도 특성을 위해 첨가되는 고용강화원소로서, 텅스텐(W)의 함량은 0.1~4중량%가 바람직하며, 보다 바람직하게는, 1~2중량%이다.Tungsten (W) is a solid solution strengthening element added for high temperature strength characteristics, and the content of tungsten (W) is preferably 0.1 to 4 wt%, more preferably 1 to 2 wt%.

몰리브덴(Mo)도 고온 강도 특성을 위해 첨가되는 고용강화원소로서, 몰리브덴(Mo)의 함량이 0.5중량% 미만일 경우에는 고온 강도 향상 효과가 미미하고, 2중량%를 초과하는 경우에는 고가의 몰리브덴(Mo)이 다량 함유되어 경제적인 측면에서 단점이 있는바, 몰리브덴(Mo)의 함량은 0.5~2중량%가 바람직하며, 보다 바람직하게는, 1~2중량%이다.Molybdenum (Mo) is also a solid solution strengthening element added for high temperature strength characteristics. When the content of molybdenum (Mo) is less than 0.5% by weight, the effect of improving high temperature strength is insignificant. (Mo) is contained in a large amount, which is disadvantageous from the economical point of view. The content of molybdenum (Mo) is preferably 0.5 to 2% by weight, more preferably 1 to 2% by weight.

티타늄(Ti)의 함량은 0.1~0.3중량%가 바람직하며, 보다 바람직하게는, 0.2~0.3중량%이다. 이러한 티타늄(Ti)은 가열과정에서 이트리아(Y2O3)와 결합해 Y2Ti2O7이나 Y2TiO5와 같은 Y-Ti-O계 복합 산화물을 형성하여 산화물의 고밀도 및 미세 분산에 기여함으로써 강도를 향상시킬 수 있다.The content of titanium (Ti) is preferably 0.1 to 0.3% by weight, more preferably 0.2 to 0.3% by weight. Such titanium (Ti) is combined with yttria (Y 2 O 3 ) during heating to form a Y-Ti-O composite oxide such as Y 2 Ti 2 O 7 or Y 2 TiO 5 , The strength can be improved.

또한, 본 발명에 따른 페라이트계 산화물분산강화 합금은 미량 합금원소로 지르코늄(Zr)을 더 포함할 수 있으며, 보다 구체적으로 지르코늄(Zr)의 함량은 0.02~0.3중량%가 바람직하며, 보다 바람직하게는 0.02~0.25중량%이다. 이러한 지르코늄(Zr) 또한 이트리아(Y2O3)와 결합하여 Y-Zr-O계 복합 산화물을 형성하여 기지 내에 고밀도로 균일 분산됨으로써 강도특성을 더욱 향상시킬 수 있다.In addition, the ferrite-based oxide-dispersed reinforcing alloy according to the present invention may further contain zirconium (Zr) as a trace alloy element, more specifically, the content of zirconium (Zr) is preferably 0.02 to 0.3 wt% Is 0.02 to 0.25% by weight. The zirconium (Zr) also bonds with yttria (Y 2 O 3 ) to form a Y-Zr-O composite oxide, which is homogeneously dispersed at a high density in the matrix, thereby further improving the strength characteristics.

본 발명의 다른 양태로서, 본 발명은 하기의 단계를 포함하는 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금 제조 방법을 제공한다:As another aspect of the present invention, the present invention provides a method for producing a ferritic oxide-dispersed strengthened alloy having improved room temperature and high temperature strength, comprising the steps of:

(a) 철(Fe), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 티타늄(Ti) 및 지르코늄(Zr)을 포함하는 금속 분말과 이트리아(Y2O3) 분말을 혼합한 후 기계적 합금화 처리하여 합금분말을 제조하는 단계;(a) a mixture of iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), titanium (Ti) and zirconium metal powder comprising a (Zr) and yttria (Y 2 O 3) powder Followed by mechanical alloying treatment to produce an alloy powder;

(b) 상기 기계적 합금화된 합금분말을 캔 용기에 장입하여 탈가스 처리하는 단계; (b) charging the canned alloy with the mechanically alloyed alloy powder to perform a degassing treatment;

(c) 상기 탈가스 처리된 합금분말을 열간가공하여 산화물분산강화 합금을 제조하는 단계;(c) hot-working the degassed alloy powder to produce an oxide-dispersed enhanced alloy;

(d) 상기 열간가공된 산화물분산강화 합금을 냉간가공하는 단계. (d) cold-working the hot-worked oxide-dispersed reinforcing alloy.

단계 (a)에서는, 철(Fe), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 티타늄(Ti) 및 지르코늄(Zr)을 포함하는 금속 분말과 이트리아(Y2O3) 분말을 혼합한 후 기계적 합금화 처리하여 합금분말을 제조한다. 이때 합금분말은 크롬(Cr) 12~20중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하되, 티타늄(Ti)과 지르코늄(Zr)의 합이 0.5중량% 이하로 포함되는 것이 바람직하다. 이러한 금속 분말과 이트리아(Y2O3) 분말 0.1~0.5중량%와의 혼합분말을 수평형 볼밀 등과 같은 기계적 합금화 장비를 이용하여 기계적 합금화 처리함으로써 합금분말을 제조한다.Step (a), iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), titanium (Ti) and zirconium metal powder comprising a (Zr) and yttria (Y 2 O 3) powder Are mixed and mechanically alloyed to prepare an alloy powder. At this time, the alloy powder contains 12 to 20 wt% of chromium (Cr), 0.1 to 4 wt% of tungsten (W), 0.5 to 2 wt% of molybdenum (Mo), 0.1 to 0.3 wt% of titanium (Ti) 0.3% by weight and the balance of iron (Fe), and the sum of titanium (Ti) and zirconium (Zr) is preferably 0.5% by weight or less. The powder of the metal powder and 0.1 to 0.5 wt% of yttria (Y 2 O 3 ) powder is mechanically alloyed using a mechanical alloying equipment such as a horizontal ball mill to produce an alloy powder.

단계 (b)에서는, 단계 (a)에 의해 제조된 합금분말을 진공 상태에서 탈가스 처리하며, 보다 구체적으로, 단계 (a)에 의해 제조된 기계적 합금화된 합금 분말을 탄소강이나 스테인리스강 재질의 캔 용기에 충진시켜 밀봉한 후 400~650℃, 10-4torr에서 1~4시간 동안 탈가스 처리한다.In step (b), the alloy powder prepared in step (a) is degassed in a vacuum, and more specifically, the alloyed alloy powder produced by step (a) is impregnated in a can of carbon steel or stainless steel After filling the container, it is sealed and degassed at 400 to 650 ° C and 10 -4 torr for 1 to 4 hours.

단계 (c)에서는, 단계 (b)에 의해 탈가스 처리된 합금 분말을 열간가공하며, 보다 구체적으로는 열간등방가압, 열간단조, 열간압연 및 열간압출 공정으로 이루어진 군으로부터 선택되는 어느 하나 또는 이의 조합을 통해 산화물분산강화 합금을 제조한다.In step (c), the degassed alloy powder is subjected to hot working by the step (b), and more specifically, any one selected from the group consisting of hot isostatic pressing, hot forging, hot rolling and hot extrusion And an oxide dispersion strengthened alloy is produced through a combination thereof.

단계 (d)에서는, 단계 (c)에 의해 제조된 산화물분산강화 합금을 냉간가공하며, 보다 구체적으로 냉간압연, 냉간드로잉 및 냉간필거링으로 이루어진 군으로부터 선택되는 어느 하나 또는 이의 조합을 통해 수행되는 것이 바람직하다.In step (d), the oxide-dispersed reinforced alloy produced by step (c) is subjected to cold working, more specifically, through any one or a combination thereof selected from the group consisting of cold rolling, cold drawing and cold peeling .

본 발명의 일 실시예에서는, 크롬(Cr) 12~20중량%, 이트리아(Y2O3) 0.1~0.5중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하는 페라이트계 산화물분산강화 합금을 제조한 후(실시예 1 참조), 종래의 페라이트계 산화물분산강화 합금과의 고온 강도 및 크리프 특성을 비교한 결과, 본 발명에 따른 페라이트계 산화물분산강화 합금이 종래의 페라이트계 산화물분산강화 합금보다 상온 및 700℃에서 우수한 인장 특성(실시예 2 참조)을 가질 뿐만 아니라 크리프 특성도 함께 우수함을 확인하였다(실시예 3 참조).
In one embodiment of the invention, chromium (Cr) 12 ~ 20% by weight of yttria (Y 2 O 3) 0.1 ~ 0.5 wt%, tungsten (W) 0.1 ~ 4 weight%, molybdenum (Mo) 0.5 ~ 2 wt. 0.1 to 0.3% by weight of titanium (Ti), 0.02 to 0.3% by weight of zirconium (Zr) and the balance of iron (Fe) (see Example 1) Temperature strength and creep characteristics of the ferrite-based oxide-dispersed strengthened alloy according to the present invention showed that the ferrite-based oxide-dispersed strengthened alloy according to the present invention had better tensile properties at room temperature and 700 ° C than the conventional ferrite- (See Example 3), as well as creep properties.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

[실시예][Example]

실시예 1. 페라이트계 산화물분산강화 합금 제조Example 1 Preparation of ferritic-based oxide-dispersed reinforcing alloy

하기의 표 1에 기재된 조성을 갖는 페라이트계 산화물분산강화 합금을 제조하였다.A ferrite-based oxide dispersion strengthening alloy having the composition shown in Table 1 below was prepared.

FeFe CrCr WW MoMo TiTi ZrZr Y2O3 Y 2 O 3 참조합금1Reference alloys 1 Bal.Honey. 1515 22 0.250.25 0.350.35 참조합금2Reference Alloy 2 Bal.Honey. 15.515.5 1One 1.81.8 0.250.25 0.350.35 신합금1 New alloys 1 Bal.Honey. 15.515.5 1One 1.81.8 0.10.1 0.20.2 0.350.35 신합금2New alloys 2 Bal.Honey. 15.515.5 22 1One 0.10.1 0.20.2 0.350.35 신합금3New alloy 3 Bal.Honey. 1414 0.20.2 1One 0.10.1 0.250.25 0.350.35

(단위: 중량%)(Unit: wt%)

즉, 고순도의 원료분말 (Fe, W, Cr, Mo, Ti, Zr, 입도 200mesh 이하, 순도 99%이상) 및 Y2O3 분말 (50nm 이하, 순도 99.9%)을 각 무게비에 따라 혼합하고 수평형 볼밀장치를 사용하여 240rpm, 48h, 초고순도 아르곤(Ar) 분위기에서 기계적 합금화법에 의해 합금분말을 제조한 후, 이를 스테인리스 캔에 충진시켜 밀봉하고, 500℃, 10-4torr이하의 진공도로 3시간 동안 탈가스 처리하였다. 제조된 합금충진 캔을 1150℃, 100MPa의 조건에서 3시간 동안 HIP(Hot isostactic pressing)에 의해 가압 및 가열하여 산화물분산강화 합금을 제조한 후, 1150℃에서 1시간 동안 가열하여 80% 이상의 두께 감소율로 열간압연하여 산화물분산강화 합금을 제조하였다.
(Fe, W , Cr, Mo, Ti, Zr, particle size of 200mesh or less, purity of 99% or more) and Y 2 O 3 Powder (50 nm or less, purity 99.9%) was mixed according to each weight ratio, alloy powder was produced by mechanical alloying in an atmosphere of high purity argon (Ar) at 240 rpm for 48 hours using a horizontal ball mill, And then degassed for 3 hours at a degree of vacuum of 500 DEG C and 10 < -4 > torr or less. The prepared alloy-filled cans were pressurized and heated by hot isostatic pressing (HIP) for 3 hours under the conditions of 1150 DEG C and 100 MPa to prepare an oxide dispersion strengthened alloy, and then heated at 1150 DEG C for 1 hour, To prepare an oxide dispersion strengthened alloy.

실시예 2. 상온 및 고온 강도 특성 비교 실험Example 2. Comparative experiment of strength characteristics at normal temperature and high temperature

실시예 1에서 제조된 다섯 종류의 페라이트계 산화물 분산강화 합금의 상온 및 700℃에서 YS(yield strength), UTS(ultimate tensile strength) 및 TE(total elongation)를 측정하였고, 그 결과를 도 1에 나타내었다.YS (yield strength), ultimate tensile strength (UTS) and total elongation (TE) of the five types of ferrite based dispersion strengthened alloys prepared in Example 1 were measured at room temperature and 700 ° C, .

도 1에 나타낸 바와 같이, 지르코늄(Zr)과 몰리브덴(Mo)을 함유하지 않은 참조합금 1의 항복강도는 상온에서 729MPa 이었고, 700℃에서 181MPa 이었다. 지르코늄(Zr)을 함유하지 않는 참조합금 2의 항복강도는 상온에서 773MPa 이었고 700℃에서는 193MPa으로 나타났다. 이에 비하여, 몰리브덴(Mo)을 고용강화원소로 첨가하고 티타늄(Ti) 및 지르코늄(Zr)의 미량합금원소를 첨가한 본 발명의 신합금 1, 2 및 3의 경우에는 상온에서 항복강도는 798~850MPa, 700℃에서 239~272MPa로 나타났다. As shown in Fig. 1, the yield strength of the reference alloy 1 containing no zirconium (Zr) and molybdenum (Mo) was 729 MPa at room temperature and 181 MPa at 700 캜. The yield strength of reference alloy 2 containing no zirconium (Zr) was 773 MPa at room temperature and 193 MPa at 700 ° C. On the other hand, in the case of the new alloys 1, 2 and 3 of the present invention in which molybdenum (Mo) was added as a solid solution strengthening element and a trace alloy element of titanium (Ti) and zirconium (Zr) was added, the yield strength was 798 ~ 850 MPa and 239 ~ 272 MPa at 700 ℃.

상기 결과로부터, 본 발명에 의한 페라이트계 산화물분산강화 합금은 종래의 참조합금에 비하여 연신율의 저하없이 상온 및 700℃에서 향상된 항복강도를 나타내는 것을 확인할 수 있었다.
From the above results, it was confirmed that the ferrite-based oxide-dispersed reinforcing alloy according to the present invention exhibits improved yield strength at room temperature and 700 ° C without lowering the elongation rate as compared with the conventional reference alloy.

실시예Example 3. 고온 크리프 특성 비교 실험 3. Comparison of creep characteristics at high temperature

실시예 1에서 제조된 다섯 종류의 페라이트계 산화물분산강화 합금에 대하여 700℃에서 크리프(Creep) 시험을 수행하였고, 그 결과를 도 2에 나타내었다.The creep tests were performed at 700 ° C on the five types of ferrite-based oxide-dispersed strengthened alloys prepared in Example 1, and the results are shown in FIG.

도 2에 나타낸 바와 같이, 120, 150MPa의 응력하에서 참조합금 1 및 참조합금 2에 비해 본 발명의 합금(신합금1 내지 3)의 경우 크리프 파단시간이 현저히 증가하는 것을 확인할 수 있었다.As shown in Fig. 2, it was confirmed that the creep rupture time of the alloys of the present invention (new alloys 1 to 3) was significantly increased in comparison with Reference Alloy 1 and Reference Alloy 2 under stress of 120 and 150 MPa.

상기 결과로부터, 본 발명에 따른 페라이트계 산화물분산강화 합금은 종래의 페라이트계 산화물분산강화 합금에 비해 고온 크리프 특성이 우수함을 알 수 있었다.
From the above results, it can be seen that the ferrite-based oxide-dispersed reinforcing alloy according to the present invention is superior to the conventional ferrite-based oxide-dispersed reinforcing alloy at high temperature creep characteristics.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

Claims (7)

크롬(Cr) 12~20중량%, 이트리아(Y2O3) 0.1~0.5중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하는, 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금.
(Cr), 0.1 to 0.5 wt% of yttria (W 2 O 3 ), 0.1 to 4 wt% of tungsten (W), 0.5 to 2 wt% of molybdenum (Mo) 0.3% by weight, zirconium (Zr) in an amount of 0.02 to 0.3% by weight, and the balance of iron (Fe).
제1항에 있어서, 상기 페라이트계 산화물분산강화 합금은 티타늄(Ti)과 지르코늄(Zr)의 합이 0.5중량% 이하인 것을 특징으로 하는, 페라이트계 산화물분산강화 합금.
The ferritic oxide-dispersed reinforced alloy according to claim 1, wherein the sum of titanium (Ti) and zirconium (Zr) is 0.5% by weight or less.
제1항에 있어서, 상기 페라이트계 산화물분산강화 합금은 화력발전용초초임계압 증기발전기의 로터, 샤프트, 항공기용 엔진의 디스크, 노즐, 고속로용 핵연료 피복관을 포함하는 구조부품 재료로 이용되는 것을 특징으로 하는, 페라이트계 산화물분산강화 합금.
The ferritic oxide-dispersed reinforcing alloy according to claim 1, wherein the ferrite-based oxide-dispersed reinforcing alloy is used as a structural component material including a rotor, a shaft, an engine disk, a nozzle, and a fuel cladding for a high-speed furnace of a super critical pressure steam generator for thermal power generation Wherein the ferrite-based oxide dispersion strengthening alloy is characterized by:
하기의 단계를 포함하는 상온 및 고온 강도가 향상된 페라이트계 산화물분산강화 합금 제조 방법:
(a) 철(Fe), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 티타늄(Ti) 및 지르코늄(Zr)을 포함하는 금속 분말과 이트리아(Y2O3) 분말을 혼합한 후 기계적 합금화 처리하여 합금분말을 제조하는 단계;
(b) 상기 기계적 합금화된 합금분말을 캔 용기에 장입하여 탈가스 처리하는 단계;
(c) 상기 탈가스 처리된 합금분말을 열간가공하여 산화물분산강화 합금을 제조하는 단계;
(d) 상기 열간가공된 산화물분산강화 합금을 냉간가공하는 단계.
A ferritic oxide-dispersed strengthened alloy having improved normal temperature and high temperature strength comprising the steps of:
(a) a mixture of iron (Fe), chromium (Cr), molybdenum (Mo), tungsten (W), titanium (Ti) and zirconium metal powder comprising a (Zr) and yttria (Y 2 O 3) powder Followed by mechanical alloying treatment to produce an alloy powder;
(b) charging the canned alloy with the mechanically alloyed alloy powder to perform a degassing treatment;
(c) hot-working the degassed alloy powder to produce an oxide-dispersed enhanced alloy;
(d) cold-working the hot-worked oxide-dispersed reinforcing alloy.
제4항에 있어서, 상기 단계 (a)에서, 상기 합금분말은 크롬(Cr) 12~20중량%, 이트리아(Y2O3) 0.1~0.5중량%, 텅스텐(W) 0.1~4중량%, 몰리브덴(Mo) 0.5~2중량%, 티타늄(Ti) 0.1~0.3중량%, 지르코늄(Zr) 0.02~0.3중량% 및 나머지는 철(Fe)을 포함하되, 티타늄(Ti)과 지르코늄(Zr)의 합이 0.5중량% 이하인 것을 특징으로 하는, 제조 방법.
The method of claim 4, wherein the alloy powder comprises 12 to 20% by weight of chromium (Cr), 0.1 to 0.5% by weight of yttria (Y 2 O 3 ), 0.1 to 4% by weight of tungsten (W) (Ti) and zirconium (Zr) in an amount of 0.5 to 2 wt%, molybdenum (Mo), 0.1 to 0.3 wt% of titanium (Ti), 0.02 to 0.3 wt% of zirconium (Zr) Is not more than 0.5% by weight.
제4항에 있어서, 상기 단계 (c)에서, 상기 열간가공은 열간등방가압, 열간단조, 열간압연 및 열간압출 공정으로 이루어진 군으로부터 선택되는 어느 하나 또는 이의 조합을 통해 수행되는 것을 특징으로 하는 제조 방법.
5. The method according to claim 4, wherein in the step (c), the hot working is performed through any one selected from the group consisting of hot isostatic pressing, hot forging, hot rolling and hot extrusion, or a combination thereof Gt;
제4항에 있어서, 상기 단계 (d)에서, 상기 냉간 가공은 냉간압연, 냉간드로잉 및 냉간필거링으로 이루어진 군으로부터 선택되는 어느 하나 또는 이의 조합을 통해 수행되는 것을 특징으로 하는 제조 방법.5. The method according to claim 4, wherein in the step (d), the cold working is performed through any one selected from the group consisting of cold rolling, cold drawing and cold peeling, or a combination thereof.
KR1020130164346A 2013-03-29 2013-12-26 Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof KR101586546B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410056856.0A CN104073725A (en) 2013-03-29 2014-02-19 Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof
JP2014044052A JP5837636B2 (en) 2013-03-29 2014-03-06 Ferritic oxide dispersion strengthened alloy and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130034719 2013-03-29
KR20130034719 2013-03-29

Publications (2)

Publication Number Publication Date
KR20140118690A true KR20140118690A (en) 2014-10-08
KR101586546B1 KR101586546B1 (en) 2016-01-29

Family

ID=51991483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130164346A KR101586546B1 (en) 2013-03-29 2013-12-26 Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5837636B2 (en)
KR (1) KR101586546B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444962A (en) * 2021-06-10 2021-09-28 湘潭大学 Method for preparing multi-nano-phase reinforced iron-based alloy

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080786A1 (en) * 2018-05-03 2019-11-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives ODS ALLOY POWDER AND PROCESS FOR PRODUCING THE SAME BY PLASMA PROCESSING
KR102324087B1 (en) * 2019-12-18 2021-11-10 한전원자력연료 주식회사 Ferritic Alloy and Method for Manufacturing Nuclear Fuel Cladding Tube Using the Same
CN113477929A (en) * 2021-04-15 2021-10-08 中国工程物理研究院材料研究所 High-flux preparation and component process optimization method of high-strength and high-toughness ODS steel
CN115198163B (en) * 2022-05-24 2023-04-25 北京科技大学 Preparation method of multi-nano-phase reinforced ODS alloy with tensile plasticity
CN115341151B (en) * 2022-08-29 2023-01-31 西安建筑科技大学 Oxide-reinforced non-quenched and tempered steel and production process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129344A (en) * 1988-11-10 1990-05-17 Sumitomo Metal Ind Ltd Oxide-dispersed heat resisting steel and its production
JPH11343526A (en) * 1998-04-07 1999-12-14 Commiss Energ Atom Production of alloy having chromium-containing ferritic oxide-dispersion strengthened structure
JP2000282101A (en) * 1999-04-02 2000-10-10 Hokkaido Univ Manufacture of oxide dispersion-strengthened ferritic steel
JP2002266026A (en) * 2001-03-07 2002-09-18 Japan Nuclear Cycle Development Inst States Of Projects Method for producing chromium-containing oxide dispersion strengthened ferritic iron alloy tube

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07823B2 (en) * 1988-05-11 1995-01-11 住友金属工業株式会社 Sinter-dispersion strengthened heat-resistant steel forming parts
JP2692340B2 (en) * 1990-05-22 1997-12-17 住友金属工業株式会社 Oxide dispersion strengthened ferritic steel
JP5636532B2 (en) * 2010-09-22 2014-12-10 国立大学法人北海道大学 Oxide dispersion strengthened steel and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129344A (en) * 1988-11-10 1990-05-17 Sumitomo Metal Ind Ltd Oxide-dispersed heat resisting steel and its production
JPH11343526A (en) * 1998-04-07 1999-12-14 Commiss Energ Atom Production of alloy having chromium-containing ferritic oxide-dispersion strengthened structure
JP2000282101A (en) * 1999-04-02 2000-10-10 Hokkaido Univ Manufacture of oxide dispersion-strengthened ferritic steel
JP2002266026A (en) * 2001-03-07 2002-09-18 Japan Nuclear Cycle Development Inst States Of Projects Method for producing chromium-containing oxide dispersion strengthened ferritic iron alloy tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113444962A (en) * 2021-06-10 2021-09-28 湘潭大学 Method for preparing multi-nano-phase reinforced iron-based alloy

Also Published As

Publication number Publication date
JP2014198900A (en) 2014-10-23
KR101586546B1 (en) 2016-01-29
JP5837636B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
KR101586546B1 (en) Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof
JP5948382B2 (en) Ferritic / martensitic oxide dispersion strengthened steel and method for producing the same
CN105039857B (en) A kind of oxide dispersion strengthening ferrite/martensite steel and preparation method
CN109570508B (en) Preparation method of oxide dispersion strengthened ferrite steel with double-grain size distribution
JP2585900B2 (en) Manufacturing method of heat-resistant reinforcing member
US6125161A (en) Method for making Zr alloy nuclear reactor fuel cladding having excellent corrosion resistance and creep properties
CN110760760B (en) Preparation method of FeCrAl-based alloy for nuclear reactor structural material
WO2022222225A1 (en) High-temperature alloy having low stacking fault energy, structural member and application thereof
CN109652628A (en) A kind of used by nuclear fuel jacketing FeCrAl alloy and its preparation and crystallite dimension control method
CN110863152A (en) Preparation method of FeCrAl-based ODS alloy for nuclear reactor accident-resistant fuel element cladding
CN109628830A (en) The FeCrSi alloy material and heat treatment method of a kind of nuclear reactor fuel can and involucrum coating
CN110863153A (en) Preparation method of FeCrAl-based ODS alloy material for advanced nuclear fuel element cladding
KR101626125B1 (en) Reduced activation oxide dispersion strengthened steel with excellent tensile and creep strengths and manufacturing method thereof
CN110863148B (en) Preparation method of FeCrAl-based ODS alloy for nuclear reactor cladding
KR20190109008A (en) Self-healable trip superalloys and manufacturing method for the same
CN110747417A (en) Aging strengthening heat treatment method for nickel-based alloy GH4169
KR101626122B1 (en) Ferritic oxide dispersion strengthened alloy with excellent high temperature strength and long-term thermal stability and manufacturing method thereof
CN117403138B (en) Corrosion-resistant oxide dispersion strengthening steel and preparation method thereof
EP1528112B1 (en) Dispersed oxide reinforced martensitic steel excellent in high temperature strength and method for production thereof
KR101769745B1 (en) Ferrite-martensitic oxide dispersion strengthened steel with excellent creep resistance and manufacturing method thereof
CN104073725A (en) Ferritic oxide dispersion strengthened alloy with enhanced room temperature and high temperature strength and manufacturing method thereof
JPH01287252A (en) Sintered dispersion strengthened ferritic heat-resistant steel
CN105239010A (en) Novel Cr-Y-O nanocluster oxide dispersion strengthening reduced activation steel
KR20140118689A (en) Martensitic oxide dispersion strengthened alloy with enhanced high temperature strength and creep property, and manufacturing method thereof
CN114406284A (en) Low-density high-strength high-temperature oxidation resistant Mo-Si-B-Ti alloy

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 5