KR20140102441A - Anti-inflammatory composition comprising 14-3-3 sigma gene and protein - Google Patents

Anti-inflammatory composition comprising 14-3-3 sigma gene and protein Download PDF

Info

Publication number
KR20140102441A
KR20140102441A KR1020130015715A KR20130015715A KR20140102441A KR 20140102441 A KR20140102441 A KR 20140102441A KR 1020130015715 A KR1020130015715 A KR 1020130015715A KR 20130015715 A KR20130015715 A KR 20130015715A KR 20140102441 A KR20140102441 A KR 20140102441A
Authority
KR
South Korea
Prior art keywords
sigma
expression
gene
inflammatory
compound
Prior art date
Application number
KR1020130015715A
Other languages
Korean (ko)
Other versions
KR101473980B1 (en
Inventor
김병철
전우광
홍해영
최신욱
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020130015715A priority Critical patent/KR101473980B1/en
Publication of KR20140102441A publication Critical patent/KR20140102441A/en
Application granted granted Critical
Publication of KR101473980B1 publication Critical patent/KR101473980B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to an anti-inflammatory composition comprising 14-3-3 sigma gene and/or protein as an active ingredient. The 14-3-3 sigma gene is preferred to be composed of a base sequence of SEQ ID NO.1; and provided in the present invent is an anti-inflammatory composition comprising a 14-3-3 sigma protein as an active ingredient. In an embodiment of the present invention, the 14-3-3 sigma protein is preferred to be composed of a base sequence of SEQ ID NO. 2, but is not limited to the same; and provided in the present invention is an expression vector controlling inflammatory cytokine comprising the 14-3-3 sigma gene composed of SEQ ID NO.1 as an active ingredient.

Description

14-3-3 시그마 유전자 및/또는 단백질을 유효성분으로 포함하는 항염증용 조성물{Anti-inflammatory composition comprising 14-3-3 sigma gene and protein}An anti-inflammatory composition comprising a 14-3-3 sigma gene and / or a protein as an active ingredient.

본 발명은 14-3-3 시그마 유전자 및/또는 단백질을 유효성분으로 포함하는 항염증용 조성물에 관한 것이다.The present invention relates to an anti-inflammatory composition comprising a 14-3-3 sigma gene and / or a protein as an active ingredient.

선천면역 및 염증은 병원체에 대응하는 일차적 방어기전이다. 이러한 방어기전을 담당하는 선천면역 및 염증반응의 비정상적인 조절은 패혈증, 천식, 자가면역질환 등 다양한 면역관련 질병의 원인으로 알려져 있다. 또한 선천면역 및 염증반응의 해소가 정확히 이루어지지 않으면 지속적인 세포손상이 일어나게 되고 이는 궁극적으로 암, 당뇨와 같은 만성질환의 중요한 원인을 제공하게 된다.Congenital immunity and inflammation are the primary defense mechanisms against pathogens. Abnormal control of innate immune and inflammatory responses responsible for these defenses is known to be responsible for various immune related diseases such as sepsis, asthma, and autoimmune diseases. In addition, if the innate immune and inflammatory responses are not precisely resolved, persistent cell damage will occur and ultimately provide an important cause of chronic diseases such as cancer and diabetes.

따라서 선천면역 및 염증제어 기술은 병원체의 감염성 질환 및 면역질환뿐만 아니라 만성 염증성 질환의 치료 및 예방을 위한 핵심 기술이다.Thus, innate immunity and inflammation control technology is a key technology for the treatment and prevention of chronic inflammatory diseases as well as infectious diseases and immune diseases of pathogens.

최근의 연구동향은 염증반응을 크게 두 가지 형태로 구분하고 있다. 즉 선천면역등이 관여하는 therapeutic inflammation과 만성적 염증반응에 의한 pathological inflammation으로 구분하고 있다. 즉 병원체의 침입 등에 의한 방어기전으로서 세포에 도움이 되는 therapeutic inflammation과 지속적이고 반복적인 염증반응에 의한 세포손상이 유발되어 당뇨나 암등을 유발하는 pathological inflammation으로 구분되어 연구되고 있다(Aggawal et al., Biochem Pharmacol. 2006).Recent research trends distinguish two types of inflammatory reactions. In other words, it is classified into therapeutic inflammation involving innate immunity and pathological inflammation caused by chronic inflammatory reaction. In other words, it has been studied as a pathological inflammation that induces cellular inflammation and cell damage by continuous and repeated inflammatory reaction, which is beneficial to the cell as a defense mechanism due to invasion of pathogens (Aggawal et al. Biochem Pharmacol., 2006).

실제 이러한 연구방향은 세포손상 및 질환의 발병 측면에서 상당한 타당성이 있는 것으로서 연구자들에게 받아 들여지고 있다. 그리고 이러한 개념은 실제 염증반응의 엄격한 조절이 질병의 예방에 중요한 역할을 할 것이라는 것을 시사하고 있으며 따라서 염증반응을 해소하는 항염증 신호가 어떻게 조절되는가 또는 염증반응에서 항염증으로 shift되는 근본적인 key protein들은 무엇인가가 중요한 이슈가 되고 있다.In fact, this research direction has been accepted by researchers as having considerable relevance in terms of the pathogenesis of cell damage and disease. This concept suggests that strict regulation of the actual inflammatory response will play an important role in the prevention of disease, and therefore fundamental key proteins that are altered in response to the anti-inflammatory signal that resolves the inflammatory response or that are shifted from inflammatory to anti- Something is becoming an important issue.

최근 2010년 Cell 3월호에 이러한 inflammation과 anti-inflammation에 대한 review paper들을 종합적으로 제시하였고 그 중 하나가 "Anti-inflammatory agents: Present and Future"라는 제목으로 항염증매개 물질의 개발에 대한 중요성을 다루었다. 이러한 학문적 동향은 염증과 관련된 질환의 예방 및 치료를 위해 항염증 반응 기전의 연구가 중요함을 강력히 시사하는 것이다.Recently, in the March 2010 issue of Cell 2010, review papers on such inflammation and anti-inflammation were comprehensively presented, and one of them addressed the importance of developing anti-inflammatory medicines under the heading "Anti-inflammatory agents: Present and Future" All. These academic trends strongly suggest that the study of anti-inflammatory mechanisms is important for the prevention and treatment of inflammation-related diseases.

염증반응은 일차적인 생체의 방어기작임과 동시에 tissue damage를 일으키는 양면성을 가지고 있다. 일반적으로 염증반응의 해소(resolution)는 inflammatory mediator의 short-half life, reactive oxygen intermediates의 변화, 혹은 anti-inflammatory signal을 포함한 여러 가지 기전에 의해서 이루어진다.Inflammation reaction is the primary defense mechanism of the living body and has both sides that cause tissue damage. In general, resolution of the inflammatory response is mediated by several mechanisms, including short-half life of the inflammatory mediator, changes in reactive oxygen intermediates, or anti-inflammatory signals.

문제는 이러한 염증반응의 해소가 이루어지지 않는 경우 즉 nonresolving inflammation의 경우는 만성염증의 토양이 됨으로 인해 다양한 질환의 원인으로 널리 받아들여지고 있다(Nathan and Ding., Cell 2010).(Nathan and Ding., Cell 2010). In the absence of inflammatory response, nonresolving inflammation is a chronic inflammatory disease.

nonresolving inflammation이 일어나는 원인은 미생물의 지속적 감염과 같은 염증유발 인자의 지속적인 자극과 더불어 anti-inflammatory mechanism 자체의 결핍에 의해서도 일어날 수 있다고 보고되고 있다.It has been reported that nonresolving inflammation can be caused by the continuous stimulation of inflammatory factors such as persistent infection of microorganisms, as well as by the deficiency of the anti-inflammatory mechanism itself.

이러한 nonresolving inflammation의 개념과 질병과의 연관성은 2010년 Cell" 3월호 vol. 140, Issue 6, 전부를 inflammation에 관한 Essay들과 Leading Edge Review에 할애한 것을 보면 만성염증반응 즉 nonresolving inflammation을 해결하는 것이 가장 중요한 질병치료의 핵심이라는 것을 시사하고 있다.The concept of this nonresolving inflammation and its link to disease have been addressed in Essays and Leading Edge Review on inflammation in 2010, Cell 140, Issue 6, Vol. 140, Issue 6, all of which address chronic inflammatory or nonresolving inflammation Suggesting that it is the core of the most important disease treatments.

최근의 연구결과에 따르면 지속적 염증반응은 단순히 microbial infection만이 아니라 microbial infection이 없음에도 불구하고 숙주세포의 necrotic cell death 혹은 세포외 기질 손상에 의해 방출된 host product에 의한 염증반응 수용체의 자극에 의해서도 발생함을 제시하고 있다. 이러한 개념은 단순한 외부감염만이 아니라 개체내에 가해진 세포손상 자극 등이 내재적인 염증반응을 유발하고 이들이 nonresolving inflammation을 유발함으로서 질병 발생의 토대를 제공하는 것으로 이해되고 있다(Nathan and Ding. Cell. 2010, 140:871-882).Recent studies have shown that sustained inflammation is caused not only by microbial infection but also by stimulation of the inflammatory response receptor by the host product released by necrotic cell death or extracellular matrix damage in host cells, despite the absence of microbial infection . This concept is understood not only in external infections, but also in cell-damaging stimuli, which are implicated in individuals, induce intrinsic inflammatory responses and cause nonresolving inflammation, thereby providing the basis for disease development (Nathan and Ding. 140: 871-882).

이러한 nonresolving inflammation의 해소에 기여하는 mediator들이 보고되고 있으며 이러한 resolution 과정의 중요한 factor중의 하나가 항염증 사이토카인인 TGF-β이다.Mediators that contribute to the resolution of nonresolving inflammation have been reported, and TGF-β, an anti-inflammatory cytokine, is an important factor in this resolution process.

TGF-β는 대부분의 세포에서 분비되면서 세포의 성장억제, 분화, 그리고 세포사멸 등에 관여하는 것으로 알려져 있으나(Roberts and Sporn, Growth Factor, 1993), TGF-β 신호전달 관련 유전자들의 유전자 적중(Gene Knock-Out) 마우스들의 phenotype을 보면 TGF-가 항염증을 매개하는 강력한 사이토카인임을 보여주고 있다. TGF-β가 적중된 쥐의 경우 전체적으로 염증반응이 유발되어 조기 사망하며, Smad3 유전자가 적중된 쥐의 경우 점막표면에서 염증 반응이 일어난다는 것이 알려져 있다(Geiser et al., PNAS, 1993; Yang et al., EMBO J., 1993). 또한 최근 연구결과들은 TGF-β가 항염증 활성뿐만 아니라, Antigen Presenting Cell (APC), mast cell, Natural killer(NK) cell, CD4+, CD8+ T cell들의 발생과 생존, 항상성 유지, 그리고 self-reactive T cell의 억제등 세포내 면역반응에 중추적 역할을 담당하고 있다는 것을 보여주고 있다(Wahl, Curr. Opin. Immunol., 2007). TGF-β is known to be involved in cell growth inhibition, differentiation, and apoptosis in most cells (Roberts and Sporn, Growth Factor, 1993) -Out) The phenotype of mice shows that TGF- is a potent cytokine that mediates anti-inflammation. It is known that mice that have TGF- [beta] are prematurely killed by inducing inflammation as a whole, and that inflammatory responses occur in the mucosal surface of mice that have been infected with Smad3 gene (Geiser et al., PNAS, 1993; al., EMBO J., 1993). Recent studies have shown that TGF-β induces anti-inflammatory activity as well as the development and survival of the antigen presenting cell (APC), mast cell, natural killer (NK), CD4 +, CD8 + T cells, (Wahl, Curr. Opin. Immunol., 2007).

TGF-β가 면역반응에서 수행하는 역할은 아직도 많은 연구가 필요하지만 TGF-β 신호전달 시스템을 이용하여 선천면역을 비롯한 인체 내 면역작용을 제어하고자 하는 것은 상당히 흥미로운 주제가 될 것으로 사료된다.Although the role of TGF-β in the immune response is still required, it will be a very interesting subject to control the immune function in the body including innate immunity using the TGF-β signaling system.

TGF-β 신호전달 시스템을 구성하는 억제 Smad 단백질을 이용한 인체 내 면역작용 제어의 이론적 근거가 되는 결과가 국내 연구진에 의해 보고된 바 있다(Choi et al., Nat. Immunol. 2006; Hong et al., Nat. Immunol. 2007). 항염증을 유발하는 사이토카인 중의 하나인 TGF-β가 억제 Smad 단백질(Smad6와 Smad7)을 통해 선천면역(IL-1R/TLR) 및 TNF-alpha 신호전달을 억제하는 분자적 기전이 처음으로 제시된 바 있다(Choi et al., Nature Immunol., 2006; Hong et al., Nature Immunol., 2007). In addition, the TGF-β signal transduction system has been reported to be a rationale for the control of immune function in the human body using inhibitory Smad proteins (Choi et al., 2006). , Nat. Immunol., 2007). The molecular mechanism by which TGF-β, one of the anti-inflammatory cytokines, inhibits innate immunity (IL-1R / TLR) and TNF-alpha signaling through inhibitory Smad proteins (Smad6 and Smad7) (Choi et al., Nature Immunol., 2006; Hong et al., Nature Immunol., 2007).

관련 선행특허로 유럽특허 1 127 942(2001.08.29)는 14-3-3 sigma의 다운 조절에 의한 keratinocytes의 immortalization에 관한 것이 기재되어 있다.Related Prior Art European Patent 1 127 942 (Aug. 29, 2001) describes the immortalization of keratinocytes by down-regulation of 14-3-3 sigma.

본 발명은 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 신규한 항염증용 조성물을 제공하는 것이다.The present invention has been made in view of the above needs, and an object of the present invention is to provide a novel anti-inflammatory composition.

본 발명의 다른 목적은 신규한 항염증용 화합물을 스크리닝하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for screening novel anti-inflammatory compounds.

상기의 목적을 달성하기 위하여 본 발명은 14-3-3 시그마 유전자를 유효성분으로 포함하는 항염증용 조성물을 제공한다.In order to accomplish the above object, the present invention provides an anti-inflammatory composition comprising the 14-3-3 sigma gene as an active ingredient.

본 발명의 일 구현예에 있어서, 상기 14-3-3 시그마 유전자는 서열번호 1의 염기서열로 이루어진 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the 14-3-3 sigma gene is preferably composed of the nucleotide sequence of SEQ ID NO: 1, but is not limited thereto.

또 본 발명은 14-3-3 시그마 단백질을 유효성분으로 포함하는 항염증용 조성물을 제공한다.The present invention also provides an anti-inflammatory composition comprising 14-3-3 sigma protein as an active ingredient.

본 발명의 일 구현예에 있어서, 상기 14-3-3 시그마 단백질은 서열번호 2의 아미노산 서열로 이루어진 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the 14-3-3 sigma protein is preferably composed of the amino acid sequence of SEQ ID NO: 2, but is not limited thereto.

또 본 발명은 서열번호 1의 염기서열로 이루어진 14-3-3 시그마 유전자를 유효성분으로 포함하는 염증성 사이토카인 억제용 발현벡터를 제공한다.The present invention also provides an expression vector for inflammatory cytokine inhibition comprising the 14-3-3 sigma gene consisting of the nucleotide sequence of SEQ ID NO: 1 as an active ingredient.

본 발명의 일 구현예에 있어서, 상기 발현벡터는 도 4의 개열지도를 가지는 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the expression vector has a cleavage map shown in FIG. 4, but is not limited thereto.

본 발명은 또한 본 발명에 따른 하나 이상의 폴리뉴클레오티드를 함유하는 재조합 백터를 그의 목적으로 한다.The invention is also directed to a recombinant vector containing one or more polynucleotides according to the invention.

예를 들어, 염색체, 에피솜 및 유도된 바이러스와 같은, 수많은 발현 시스템이 사용될 수 있다. 보다 특히, 사용된 재조합 벡터는 세균성 플라스미드, 트랜스포손, 효모 에피솜, 삽입 인자, 효모 염색체 인자, 바큘로바이러스와 같은 바이러스, SV40과 같은 유두종 바이러스, 백신 바이러스, 아데노바이러스, 계두 바이러 스, 가성광견병 바이러스, 레트로바이러스로부터 유래될 수 있다.A number of expression systems can be used, such as, for example, chromosomes, episomes and induced viruses. More particularly, the recombinant vector used may be a bacterial plasmid, a transposon, a yeast episome, an insertion factor, a yeast chromosome factor, a virus such as baculovirus, a papilloma virus such as SV40, a vaccine virus, an adenovirus, Rabies virus, retrovirus.

이들 재조합 벡터는 또한 코스미드 또는 파지미드 유도체일 수 있다. 뉴클레오티드 서열은, 예를 들어, 문헌 [MOLECULAR CLONING: A LABORATORY MANUAL, Sambrook et al ., 2 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001]에 기재된 바와 같이, 당업자에게 익히 공지되어 있는 방법들에 의해 재조합 발현 벡터에 삽입될 수 있다.These recombinant vectors may also be cosmid or phagemid derivatives. The nucleotide sequence is known to those skilled in the art as described, for example, in MOLECULAR CLONING: A LABORATORY MANUAL, Sambrook et al., 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Lt; RTI ID = 0.0 > recombinant < / RTI > expression vector.

재조합 벡터는 폴리뉴클레오티드 발현의 조절을 제어하는 뉴클레오티드 서열뿐만 아니라 본 발명의 폴리뉴클레오티드의 발현 및 전사 및 본 발명의 폴리펩티드의 해독을 가능하게 하는 뉴클레오티드 서열을 포함할 수 있고, 이들 서열은 사용된 숙주 세포에 따라서 선택된다.The recombinant vector may comprise a nucleotide sequence that controls the regulation of polynucleotide expression as well as a nucleotide sequence that enables the expression and transcription of the polynucleotides of the invention and the decoding of the polypeptides of the invention, .

따라서, 예를 들어, 적합한 분비 시그널이 재조합 벡터에 통합될 수 있으므로, 본 발명의 폴리뉴클레오티드에 의해 코딩되는 폴리펩티드가 세포질 망상의 내강으로, 원형질막 주위 공간으로, 세포막 상에 또는 세포외 환경으로 지시될 것이다.Thus, for example, a suitable secretion signal can be incorporated into the recombinant vector, so that the polypeptide encoded by the polynucleotides of the invention is directed to the lumen of the cytoplasmic network, to the periplasmic space, to the cell membrane, or to the extracellular environment will be.

본 발명은 또한 본 발명에 따른 재조합 벡터를 포함하는 숙주 세포를 목적으로 한다.숙주 세포에 재조합 벡터의 도입은 인산칼슘에 의한 형질감염, DEAE 덱스트란에 의한 형질감염, 미세주사에 의한 형질감염, 양이온성 지질에 의한 형질감염, 전기천공법, 형질도입 또는 감염과 같이, 문헌 [BASIC METHODS IN MOLECULAR BIOLOGY, Davis et al ., 1986] 및 문헌 [MOLECULAR CLONING: A LABORATORY MANUAL, 상동]에 기재된 바와 같은 당업자에게 익히 공지되어 있는 방법들에 따라 수행될 수 있다.The introduction of the recombinant vector into the host cell may be accomplished by transfection with calcium phosphate, transfection with DEAE dextran, transfection with microinjection, Such as those described in BASIC METHODS IN MOLECULAR BIOLOGY, Davis et al., 1986, and MOLECULAR CLONING: A LABORATORY MANUAL, Same as Transfection by cationic lipid, electroporation, transduction or infection Can be carried out according to methods well known to those skilled in the art.

숙주 세포는, 예를 들어, 스트렙토코커스 (streptococci), 스타필로코커스 (staphylococci), 이. 콜라이 ( E. coli ) 또는 바실러스 서브틸리스 ( Bacillus subtilis )와 같은 세균 세포, 효모 세포 및 아스페르길루스 ( Aspergillus ), 스트렙토마이세스 ( Streptomyces )의 세포와 같은 진균류의 세포, 드로소필리아 ( Drosophilia ) S2 및 스포도프테라 (Spodoptera ) Sf9의 세포와 같은 곤충 세포, CHO, COS, HeLa, C127, BHK, HEK 293 세포 및 치료할 대상체의 인간 세포와 같은 동물 세포 또는 식물 세포일 수 있다.Host cells include, for example, streptococci, staphylococci, Bacterial cells such as E. coli or Bacillus subtilis, yeast cells and cells of fungi such as Aspergillus, Streptomyces cells, Drosophila ) S2 and Spodoptera Sf9, CHO, COS, HeLa, C127, BHK, HEK 293 cells and human cells of the subject to be treated.

숙주 세포는, 예를 들어, 본 발명의 폴리펩티드를 발현시키기 위해 또는 제약 조성물에서의 활성 산물로서 사용될 수 있다.Host cells can be used, for example, to express the polypeptides of the invention or as active products in pharmaceutical compositions.

또 본 발명은 인 비트로 세포에 14-3-3 시그마 유전자와 NF-kB를 포함하는 플라즈미드를 코트랜스팩션하여서 인 비트로에서 NF-kB 활성을 감소시키는 방법을 제공한다.The present invention also provides a method of co-transfection of a plasmid containing 14-3-3 sigma gene and NF-kB into an in vitro cell to reduce NF-kB activity in vitro.

또한 본 발명은 인 비트로 세포에 14-3-3 시그마 유전자를 처리하여서 인 비트로에서 p65/RelA 단백질 발현을 감소시키는 방법을 제공한다.The present invention also provides a method for reducing p65 / RelA protein expression in in vitro by treating 14-3-3 sigma gene in vitro cells.

또한 본 발명은 마크로파지에 14-3-3 시그마 유전자를 트랜스팩션시킨 후 배양하는 단계;이러한 트랜스팩션 단계 전, 트랜스팩션 중 또는 트랜스팩션 후에, 상기 세포를 스크리닝하고자 하는 화합물과 접촉하는 단계;상기 세포에서 14-3-3 시그마 유전자의 발현을 측정하는 단계; 및 상기 스크리닝하고자 하는 화합물 중 화합물과 접촉에 의하여 14-3-3 시그마 유전자의 발현을 증가시키는 화합물은 선도 화합물로서 채택하고 14-3-3 시그마 유전자 발현을 증가시키지 않는 화합물은 거부하는 단계를 포함하는 항염증 치료 또는 예방에 유용한 화합물을 동정하기 위한 화합물을 스크리닝하는 방법을 제공한다.The present invention also relates to a method for preparing a recombinant vector comprising the steps of transfecting a 14-3-3 sigma gene into a macrophage and then culturing the transformed cell, contacting the cell with a compound to be screened before, during, or after the transfection step, Measuring the expression of the 14-3-3 sigma gene; And a step of rejecting the compound which increases the expression of the 14-3-3 sigma gene by contacting with the compound in the compound to be screened, as a lead compound and does not increase the expression of the 14-3-3 sigma gene A method for screening a compound for identifying a compound useful for the treatment or prevention of anti-inflammatory activity.

본 발명은 또한 제약상 허용가능한 부형제를 함유하는 제약 조성물을 목적으로 한다.The present invention is also directed to pharmaceutical compositions containing pharmaceutically acceptable excipients.

이들 제약 조성물에 있어서, 활성제는 유리하게는 생리학적으로 유효한 투여량으로 존재한다.In these pharmaceutical compositions, the active agent is advantageously present in a physiologically effective dose.

이들 제약 조성물은, 예를 들어, 고형 또는 액상일 수 있고, 예를 들어, 단순 또는 피복된 정제, 젤캡, 과립제, 카라멜,좌제 및 바람직하게는 주사가능한 제제 및 주사용 분말과 같이 인간 의학에서 최근에 사용되는 제약 형태로 존재할 수 있다. 이들 제약 형태는 통상적인 방법에 따라 제조될 수 있다.These pharmaceutical compositions may be, for example, solid or liquid, and may be in the form of, for example, tablets, capsules, granules, caramels, suppositories, Lt; / RTI > These constraint forms can be prepared according to conventional methods.

활성제(들)는 탈크, 아라비아 고무, 락토스, 전분, 덱스트로스, 글리세롤, 에탄올, 스테아르산마그네슘, 코코아 버터,수성 또는 비-수성 비히클, 동물성 또는 식물성 지방산 물질, 파라핀 유도체, 글리콜, 각종 습윤제, 분산제 또는 유화제, 방부제와 같은 제약 조성물에 통상적으로 사용되는 부형제와 혼입될 수 있다.The active agent (s) may be selected from the group consisting of talc, gum arabic, lactose, starch, dextrose, glycerol, ethanol, magnesium stearate, cocoa butter, aqueous or non-aqueous vehicles, animal or vegetable fatty acid materials, Or an excipient commonly used in pharmaceutical compositions such as emulsifying and preservative agents.

본 발명에 따른 활성제(들)는 단독으로 사용되거나, 예를 들어, 인터루킨 또는 인터페론과 같은 기타 시토킨과 같은 치료 화합물처럼 기타 화합물들과 배합하여 이용될 수 있다.The active agent (s) according to the present invention may be used alone or in combination with other compounds such as therapeutic compounds such as, for example, interleukins or other cytokines such as interferon.

제약 조성물의 상이한 제형은 투여 방식에 따라서 적용된다.The different formulations of the pharmaceutical composition are applied according to the mode of administration.

제약 조성물은 당업자에게 공지되어 있는 상이한 경로의 투여법에 의해 투여될 수 있다.The pharmaceutical compositions may be administered by a different route of administration known to those skilled in the art.

본 발명의 약학적 조성물은 쥐, 마우스, 가축, 인간 등의 포유동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 피부, 경구, 직장, 정맥, 복강, 근육, 피하, 자궁내 경막 또는 뇌혈관 내(intracerebroventricular) 주사에 의해 투여될 수 있다.The pharmaceutical composition of the present invention can be administered to mammals such as rats, mice, livestock, humans, and the like in various routes. All modes of administration may be expected, for example, by injection into the skin, oral, rectal, intravenous, intraperitoneal, muscle, subcutaneous, intra-uterine or intracerebroventricular.

상기 투여는 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다. 투여를 위해서는 추가로 약제학적으로 허용 가능한 담체를 1종 이상 포함할 수 있다. 약제학적으로 허용 가능한 담체는 식염수,멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주입용 제형, 산제, 정제, 캡슐제, 환, 과립 또는 주사액제로 제제화 할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack Publishing Company, Easton PA, 18th,1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.The administration may contain one or more active ingredients which exhibit the same or similar functions. For administration, one or more additional pharmaceutically acceptable carriers may be included. The pharmaceutically acceptable carrier may be a mixture of saline, sterilized water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol and one or more of these components. If necessary, an antioxidant, Other conventional additives such as a bacteriostatic agent may be added. In addition, diluents, dispersants, surfactants, binders and lubricants can be additionally added to formulations for injection, powders, tablets, capsules, rings, granules or injection solutions such as aqueous solutions, suspensions and emulsions. Further, it can be suitably formulated according to each disease or ingredient, using the method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990) in a suitable manner in the art.

상기 투여는 투여 방법에 따라 비경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 적용)하거나 경구투여할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 그 범위가 다양하다. 본 발명의 조성물의 일일 투여량은 0.0001~100 mg/kg으로, 바람직하게는 0.001~10 mg/kg의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다.The dosage may be administered parenterally (for example, intravenously, subcutaneously, intraperitoneally or topically) or orally, depending on the method of administration, and the dose may vary depending on the patient's body weight, age, sex, The range varies depending on time, method of administration, excretion rate, and severity of the disease. The daily dose of the composition of the present invention may be administered in an amount of 0.0001 to 100 mg / kg, preferably 0.001 to 10 mg / kg, once or several times a day.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

Peritoneal macrophages에서 TGF-beta1의 항염증 효과Anti-inflammatory effect of TGF-beta1 in peritoneal macrophages

마우스 복강으로부터 분리한 peritoneal macrophages를 대상으로 TGF-beta1 (5 ng/ml)을 30분 동안 선 처리 또는 선 처리 하지 않은 조건에서 LPS (0.1 mg/ml)를 24 시간 반응 시킨 후, 염증성 사이토카인인 interleukin-6 (IL-6), IL-1beta 및 cycloxygenase-2 (COX-2) mRNA의 발현 수준을 비교하였다. LPS에 의해 유도되는 염증성 사이토카인의 발현들이 TGF-beta1이 선 처리된 조건에서 현저히 감소하였다 (도면 1). 이러한 결과는 peritoneal macrophages에서 TGF-beta1의 항염증 효과를 보여주고 있다.
Peritoneal macrophages isolated from rat peritoneal macrophages were treated with LPS (0.1 mg / ml) for 24 hours in the absence of pretreatment or pretreatment of TGF-beta1 (5 ng / ml) for 30 min. (IL-6), IL-1beta and cyclooxygenase-2 (COX-2) mRNA were compared between the two groups. Expression of inflammatory cytokines induced by LPS was significantly reduced under conditions in which TGF-beta1 was pretreated (FIG. 1). These results demonstrate the anti-inflammatory effects of TGF-beta1 in peritoneal macrophages.

Peritoneal macrophages에서 TGF-beta1에 의한 14-3-3 sigma 발현 증가Increased expression of 14-3-3 sigma by TGF-beta1 in peritoneal macrophages

마우스 복강으로부터 분리한 peritoneal macrophages를 대상으로 TGF-beta1 (5 ng/ml) 처리 시, 14-3-3 sigma 발현에 미치는 효과를 조사하였다. 시간별 TGF-beta1 처리 시, 1시간에서 14-3-3 sigma mRNA의 발현 수준이 최대로 증가하였고 12시간까지 증가가 유지되었다(도면 2a). 14-3-3 sigma 유전자 발현의 증가가 TGF-beta1에 특이적으로 일어난 결과인지를 검증하기 위하여 TGF-beta 유형 1 수용체의 저해제인 SB431542를 처리하여 그 효과를 조사하였다. SB431542를 농도별 (1, 5, 10 uM) 선 처리 한 후, TGF-beta1을 1시간 동안 반응 시킨 조건에서 14-3-3 sigma의 발현 증가가 SB431542 농도 의존적으로 감소하였다(도면 2 b). The effects of peritoneal macrophages isolated from mouse peritoneal cavity on 14-3-3 sigma expression in TGF-beta1 (5 ng / ml) were investigated. At the time of TGF-beta1 treatment, the expression level of 14-3-3 sigma mRNA was maximally increased at 1 hour and increased up to 12 hours (Fig. 2a). To investigate whether the increase of 14-3-3 sigma gene expression was specific to TGF-beta1, the effect of SB431542, an inhibitor of TGF-beta type 1 receptor, was investigated. The increase in the expression of 14-3-3 sigma decreased SB431542 concentration (Fig. 2b) under the condition that SB431542 was treated with 1, 5 and 10 uM of TGF-beta1 for 1 hour.

TGF-beta1에 의한 14-3-3 sigma의 발현 증가가 전사 또는 전사 후 수준에서 일어나는지를 확인하기 위하여 전사 (transcription) 저해제인 actinomycin D (ActD)와 번역 (translation) 저해제인 cyclohexamide (CHX)를 사용하여 결정하였다. TGF-beta1에 의한 14-3-3 sigma mRNA의 발현 증가가 ActD 선 처리에 의해서는 완벽하게 저해되었으나 CHX 선 처리에 의해서는 저해되지 않았다(도면 2 c). 이러한 결과는 TGF-beta1에 의한 14-3-3 sigma의 발현 증가가 전사 단계에서 이루어지고 있음을 보여준다. The transcription inhibitor actinomycin D (ActD) and the translation inhibitor cyclohexamide (CHX) were used to determine whether the increased expression of 14-3-3 sigma by TGF-beta1 occurs at transcriptional or post-transcriptional levels Respectively. The increased expression of 14-3-3 sigma mRNA by TGF-beta1 was completely inhibited by ActD irradiation, but not by CHX treatment (FIG. 2c). These results show that the expression of 14-3-3 sigma by TGF-beta1 is increased in the transcription stage.

14-3-3 family를 구성하는 isoform은 포유류에서 현재까지 7 종류가 알려져 있다. TGF-beta1에 의한 14-3-3 sigma의 발현 증가가 다른 isoform과 비교하여 선택적인지를 확인하기 위하여 시간별 처리 후, mRNA의 발현 증가를 분석하였다. 도면 3에서 보듯이, TGF-beta1에 의한 14-3-3 isoform의 발현 증가는 14-3-3 sigma에서만 확인되었고 14-3-3 epsilon은 발현이 감소되었으며 나머지 isoform들은 크게 영향 받지 않았다.
The isoforms that make up the 14-3-3 family are known from mammals to the present day. In order to confirm that the expression of 14-3-3 sigma by TGF-beta1 is increased in comparison with other isoforms, the expression of mRNA was analyzed after treatment with time. As shown in FIG. 3, the increase in expression of 14-3-3 isoform by TGF-beta1 was confirmed only in 14-3-3 sigma, 14-3-3 epsilon expression was decreased, and the remaining isoforms were not significantly affected.

Peritoneal macrophages에서 LPS에 의해 유도되는 염증성 사이토카인의 발현에 있어서 14-3-3 sigma의 억제 효과Inhibitory effect of 14-3-3 sigma on the expression of LPS-induced inflammatory cytokines in peritoneal macrophages

마우스 복강으로부터 분리한 peritoneal macrophages를 대상으로 LPS에 의해 발현이 유도되는 염증성 사이토카인 유전자들의 발현에 미치는 14-3-3 sigma의 작용 효과를 분석하였다. 14-3-3 sigma의 작용효과를 분석하기 위하여 14-3-3 sigma 유전자 서열이 도입된 두 종류의 lentiviral 재조합 플라스미드를 제작하였다. HIV에서 유래한 letivirus vector는 분열하지 않는 세포에도 감염률이 매우 높기 때문에 관심사의 유전자를 외부로부터 세포에 도입시켜서 발현을 증가시키거나 억제 시키는 데 매우 효율적인 백터 시스템이다. 14-3-3 sigma 유전자의 과잉발현을 peritoneal macrophages에 유도하기 위하여 lentivirus vector인 pCAG의 EcoRI과 KpnI 제한 효소 부위에 mouse 14-3-3 sigma 유전자 cDNA를 도입한 새로운 재조합 플라스미드를 제작하였다(도면 4). 14-3-3 sigma 과잉발현 lentiviral 재조합 플라스미드를 virus 숙주세포인 293T 세포주에 transfection하여 viral soup을 배지로부터 얻은 후, peritoneal macrophages에 infection 시켰다. 도면 5에서 보듯이, 14-3-3 sigma의 발현 (lane 7 & 8)이 세포 내 endogenous 14-3-3 sigma level (lane 1 to 4)보다 현저히 증가함을 확인 할 수 있다. 다른 한 편으로 세포 내 14-3-3 sigma의 발현을 억제하기 위하여 14-3-3 sigma 유전자 서열 일부를 포함하는 small hairpin (sh) RNA lentiviral 플라스미드를 제작하였다(도면 5). pLKO1 lentiviral vector는 U6 RNA promoter를 포함하고 있으며 small hairpin 14-3-3 sigma RNA를 생성시킨다. 이러한 shRNA 14-3-3 sigma는 세포내에서 dicer system에 의해 조각이 나고 단일가닥의 형태로 만들어져서 세포 내 original 14-3-3 sigma mRNA의 상보적 서열에 결합하여 부분적 이중나선 RNA를 만들어낸다. 이러한 형태의 RNA는 결국 분해가 되어 세포 내 14-3-3 sigma의 발현이 감소되는 결과를 초래한다. pLKO1-14-3-3 sigma lentivirus를 감염시킨 peritoneal macrophages의 경우, 세포 내 14-3-3 sigma의 기본 발현 양이 완벽하게 감소함을 확인할 수 있다 (도면 6, lane 5 & 6). 이러한 14-3-3 sigma lentivirus를 감염시킨 peritoneal macrophages에서 LPS 처리에 의해 유도되는 염증성 사이토카인 유전자들의 발현을 분석하였다. LPS에 의한 IL-6, IL1-beta 및 COX-2의 발현 증가가 14-3-3 sigma를 과잉발현 시킨 조건에서 거의 억제됨을 확인하였다(도면 6, lane 1 to 4와 lane 7 & 8을 비교). 반면, shRNA 14-3-3 sigma를 발현 시킨 조건에서는 LPS에 의한 이러한 염증성 사이토카인 유전자들의 발현 양이 더욱 증가하였다(lane 1 to 4와 lane 5 & 6을 비교). 이러한 결과로부터 TGF-beta1에 의해 유도되는 14-3-3 sigma는 염증성 사이토카인의 생성을 저해하는 항염증 효과가 있음을 확인할 수 있었다.
We analyzed the effect of 14-3-3 sigma on the expression of inflammatory cytokine genes induced by LPS in peritoneal macrophages isolated from mouse peritoneal cavity. To analyze the effect of 14-3-3 sigma, two kinds of lentiviral recombinant plasmids with 14-3-3 sigma gene sequences were constructed. The HIV-derived letivirus vector is a very efficient vector system for increasing or suppressing expression by introducing the gene of interest into the cell because it is highly infectious even in non-dividing cells. In order to induce overexpression of 14-3-3 sigma gene into peritoneal macrophages, a new recombinant plasmid was constructed by introducing mouse 14-3-3 sigma gene cDNA into the EcoRI and KpnI restriction sites of the lentivirus vector pCAG (Fig. 4 ). The 14-3-3 sigma overexpressing lentiviral recombinant plasmid was transfected into 293T cell line, a virus host cell, and viral soup was obtained from the medium and then infected into peritoneal macrophages. As shown in FIG. 5, it can be seen that the expression of 14-3-3 sigma (lane 7 & 8) is significantly increased than that of endogenous 14-3-3 sigma level (lane 1 to 4) in the cells. On the other hand, a small hairpin (sh) RNA lentiviral plasmid containing a part of the 14-3-3 sigma gene sequence was constructed to inhibit the expression of 14-3-3 sigma in the cell (FIG. 5). The pLKO1 lentiviral vector contains the U6 RNA promoter and produces small hairpin 14-3-3 sigma RNA. This shRNA 14-3-3 sigma is fragmented by the dicer system in the cell and is made into a single strand form, which binds to the complementary sequence of the original 14-3-3 sigma mRNA in the cell to produce partial double-stranded RNA . This type of RNA eventually degrades and results in a decrease in the expression of 14-3-3 sigma in the cells. In the case of peritoneal macrophages infected with pLKO1-14-3-3 sigma lentivirus, the basic expression level of intracellular 14-3-3 sigma is completely reduced (FIG. 6, lane 5 & 6). The expression of inflammatory cytokine genes induced by LPS treatment was analyzed in peritoneal macrophages infected with 14-3-3 sigma lentivirus. It was confirmed that the expression of IL-6, IL1-beta and COX-2 by LPS was almost suppressed under the condition of overexpressing 14-3-3 sigma (Fig. 6, lane 1 to 4 and lane 7 & 8 ). In contrast, the expression of these inflammatory cytokine genes by LPS was further increased under shRNA 14-3-3 sigma expression (lane 1 to 4 vs. lane 5 & 6). These results suggest that 14-3-3 sigma induced by TGF-beta1 has an anti-inflammatory effect that inhibits the production of inflammatory cytokines.

Peritoneal macrophages에서 LPS에 의해 유도되는 NF-kB 활성에 미치는 14-3-3 sigma의 억제 효과Inhibitory effect of 14-3-3 sigma on LPS-induced NF-kB activity in peritoneal macrophages

마우스 복강으로부터 분리한 peritoneal macrophages를 배양하여 NF-kB-Luc reporter plasmid와 14-3-3 sigma를 co-transfection 시킨 후, LPS를 24시간 처리하여 luciferase 활성을 분석하였다. NF-kB는 LPS에 의해 유도되는 염증성 사이토카인 유전자 발현을 매개하는 핵심 전사조절 인자로서 알려져 있다. LPS만 처리한 조건에서 NF-kB-Luc 활성이 12배 증가하였으나 14-3-3 sigma를 함께 발현시킨 조건에서 LPS에 의한 NF-kB-Luc 활성이 5.4배로 현저히 감소하였다(도면 7a). 중요한 작용 기전으로 TGF-beta를 처리한 peritoneal macrophages에서 NF-kB family의 핵심 구성원인 p65/RelA의 발현이 mRNA 수준에서는 변화가 없었으나 단백질 수준에서 감소함을 확인하였다(도면 7b). Lentivirus shRNA 14-3-3 sigma를 감염시켜 14-3-3 sigma 발현을 저해시킨 조건에서는 TGF-beta에 의한 p65/RelA 단백질 감소의 현저한 효과가 없었다(도면 7c). 더 나아가, TGF-beta를 처리하지 않고 14-3-3 sigma만 발현시킨 조건에서 p65/RelA 단백질의 감소가 일어났으며 이러한 효과는 다른 14-3-3 isotype에서는 관측되지 않았다(도면 7d).
Peritoneal macrophages isolated from mouse abdominal cavity were cultured, co-transfected with NF-kB-Luc reporter plasmid and 14-3-3 sigma, and treated with LPS for 24 hours to analyze luciferase activity. NF-kB is known as a key transcriptional regulator that mediates LPS-induced inflammatory cytokine gene expression. The activity of NF-kB-Luc was increased 12-fold under LPS-treated condition, but the activity of NF-kB-Luc by LPS was significantly reduced to 5.4-fold under the condition of expressing 14-3-3 sigma together (FIG. In the peritoneal macrophages treated with TGF-beta as an important mechanism, the expression of p65 / RelA, a key member of the NF-kB family, was not changed at the mRNA level but decreased at the protein level (FIG. Lentivirus shRNA 14-3-3 sigma infected with 14-3-3 sigma inhibited the expression of p65 / RelA protein by TGF-beta (Fig. 7c). Furthermore, a decrease in p65 / RelA protein was observed under conditions in which only 14-3-3 sigma was expressed without TGF-beta treatment, and this effect was not observed in other 14-3-3 isotypes (FIG. 7d).

TGF-beta는 강력한 항염증 활성을 지닌 세포 내 사이토카인 중 하나이다. 염증 반응은 외부로부터의 바이러스 또는 세균의 침입에 의해 손상되거나 감염된 세포를 제거하기 위한 생체방어 시스템이지만 적절히 조절되지 않고 지속적으로 유지되면 만성염증으로 이어져 암을 포함한 다양한 질환 발생의 유발원이 된다. 따라서 TGF-beta의 새로운 타겟을 발굴하고 이에 의해 매개되는 항염증 반응의 작용기전을 규명하는 것은 염증에 의해 유발되는 다양한 질환의 치료제를 탐색하고 발굴하는데 매우 중요하다. 본 발명의 결과에서 14-3-3 sigma는 항염증 활성을 매개하는 TGF-beta의 새로운 타겟 유전자로서 그 자체만을 발현시켜도 p65/RelA 단백질 분해를 유도하여 염증성 사이토카인 유전자들의 발현을 억제 시키는 염증 억제 기능을 보여 주었다. 따라서 14-3-3 sigma 유전자 발현의 이용은 항염증 소재를 탐색하고 발굴하기 위한 매우 효율적인 시스템이 될 수 있다. TGF-beta is one of intracellular cytokines with potent anti-inflammatory activity. Inflammation reaction is a biological defense system to remove injured or infected cells by invasion of virus or germs from the outside, but if it is not properly controlled and maintained continuously, it leads to chronic inflammation, which is a source of various diseases including cancer. Thus, identifying novel targets of TGF-beta and identifying the mechanism of action of the anti-inflammatory responses mediated by it is crucial in the search for and the discovery of therapeutic agents for various diseases caused by inflammation. In the results of the present invention, 14-3-3 sigma is a new target gene of TGF-beta that mediates anti-inflammatory activity. Even when expressed alone, it induces p65 / RelA protein degradation and inhibits inflammation suppressing the expression of inflammatory cytokine genes Function. Thus, the use of 14-3-3 sigma gene expression can be a very efficient system for exploring and discovering anti-inflammatory materials.

도 1은 LPS에 의하여 유도되는 염증성 사이토카인 발현증가에 있어서 TGF-beta1의 저해효과를 나타낸 도면;
도 2는 TGF-beta1에 의한 14-3-3 sigma 유전자 발현 증가를 나타낸 도면;
도 3은 TGF-beta1에 의한 14-3-3 sigma 유전자 발현의 선택적 증가를 나타낸 도면;
도 4는 마우스 14-3-3 sigma 과발현을 위한 lentiviral vector 제조를 나타낸 도면;
도 5는 마우스 14-3-3 sigma 발현억제를 위한 shRNA lentiviral vector 제조를 나타낸 도면;
도 6은 LPS에 의한 염증성 사이토카인의 발현에 미치는 14-3-3 sigma의 억제효과를 나타낸 도면;
도 7은 LPS에 의한 p65/R elA 활성 및 발현에 미치는 14-3-3 sigma의 억제효과를 나타낸 도면이다.
Figure 1 shows the inhibitory effect of TGF-beta1 on LPS-induced inflammatory cytokine expression;
Figure 2 shows the increase in 14-3-3 sigma gene expression by TGF-beta1;
Figure 3 shows the selective increase of 14-3-3 sigma gene expression by TGF-beta1;
Figure 4 shows the preparation of a lentiviral vector for mouse 14-3-3 sigma overexpression;
Figure 5 shows shRNA lentiviral vector preparation for mouse 14-3-3 sigma expression inhibition;
6 shows the inhibitory effect of 14-3-3 sigma on the expression of inflammatory cytokines by LPS;
FIG. 7 is a graph showing the inhibitory effect of 14-3-3 sigma on p65 / R elA activity and expression by LPS.

이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재된 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.
The present invention will now be described in more detail by way of non-limiting examples. The following examples are intended to illustrate the invention and the scope of the invention is not to be construed as being limited by the following examples.

실시예 1:마우스로부터 peritoneal macrophages 분리 및 배양Example 1: Isolation and culture of peritoneal macrophages from mice

Peritoneal macrophage는 경추만 탈골하는 방법을 사용하여 마우스 복강으로부터 분리하였다. Mouse의 표피를 잘라내고 복강 내부로 10 ml 주사기에 담은 8~10 ml 정도의 RPMI와 10% FBS를 함유하는 complete media를 내막의 혈관이 있는 부위를 피하여 주입하였다. Media 주입으로 인해 부풀어 오른 복강으로부터 벽에 붙어있는 세포가 잘 떨어지도록 하기 위해 5분 정도 손으로 마사지 한 후 주사기를 재주입하여 세포를 포함한 media를 수거하였다. 추출한 세포(1x107개)를 media로 2번 세척하고 complete media를 이용하여 6-well culture plate에 seeding 한 후 24 시간 배양하였다.
Peritoneal macrophages were separated from mouse abdominal cavity using cervical dislocation. The epidermis of the mouse was cut and complete medium containing 8 ~ 10 ml of RPMI and 10% FBS in a 10 ml syringe was injected into the peritoneal cavity, avoiding the area of the intimal lining. In order to allow the cells attached to the wall to fall off well from the inflated abdominal cavity due to the media injection, the hands were massaged for 5 minutes and then the syringe was re-injected to collect the media containing the cells. The extracted cells (1 × 10 7 ) were washed twice with media, seeded in 6-well culture plate using complete media, and cultured for 24 hours.

실시예 2: 14-3-3 sigma lentivirus expression vector 제조Example 2: Preparation of 14-3-3 sigma lentivirus expression vector

Mouse peritoneal macrophages로부터 mRNA를 정제하여 reverse transcription-polymerase chain reaction (RT-PCR) 방법으로 14-3-3 sigma cDNA를 얻어 내었다. mRNA 추출은 세포에 TRIzol reagent를 첨가하여 상온에서 3분간 방치하고 Chloroform을 넣어 15초간 섞어주고 12,000 g에서 15분간 원심분리하였다. 상층액을 새로운 tube에 옮겨 담고 Isopropyl alcohol을 넣어 RNA를 침전시킨 후, 75% 에탄올로 세척하였다. RNA 침전물은 DEPC 용액을 넣어 녹여서 사용 전까지 냉동 보관하였다. RT-PCR은 추출한 RNA 2 ug을 사용하여 20 ul 용량으로 역전사를 시행하였다. RNA 2 ug, oligo-(dT) 18 primer를 넣어 70℃에서 10분간을 각각 반응시켜 oligo-(dT)를 RNA에 접합시키고 2.5 mM dNTP, 50 mM KCl, 10 mM Tris-HCl, 5 mM MgCl2, reverse transcriptase를 넣어 42℃에서 60분, 70℃에서 15분간을 각각 반응시켜 14-3-3 sigma cDNA를 합성하였다. 14-3-3 sigma cDNA 합성에 사용된 primer 염기서열은 다음과 같다: Forward 서열 5'-ctt cat cgc a gt cat gga ga-3', Reward 서열 5'-cca cat ctg aag cag cgg aa-3'MRNA was purified from mouse peritoneal macrophages and 14-3-3 sigma cDNA was obtained by reverse transcription-polymerase chain reaction (RT-PCR). For mRNA extraction, TRIzol reagent was added to the cells, and the mixture was allowed to stand at room temperature for 3 minutes, mixed with Chloroform for 15 seconds, and centrifuged at 12,000 g for 15 minutes. The supernatant was transferred to a new tube and Isopropyl alcohol was added to precipitate the RNA, followed by washing with 75% ethanol. RNA precipitates were dissolved in DEPC solution and stored frozen until use. RT-PCR was performed using 2 ug of extracted RNA and reverse transcription at a volume of 20 μl. (DT) 18 primer was added to each well and reacted at 70 ° C for 10 minutes. The oligonucleotide (dT) was ligated to the RNA and reacted with 2.5 mM dNTP, 50 mM KCl, 10 mM Tris-HCl, 5 mM MgCl 2, Reverse transcriptase was added to the reaction mixture at 42 ° C for 60 minutes and at 70 ° C for 15 minutes to synthesize 14-3-3 sigma cDNA. The primer sequences used in the synthesis of 14-3-3 sigma cDNA are as follows: Forward sequence 5'-ctt cat cgc a gt cat gga ga-3 ', Reward sequence 5'-cca cat ctg aag cag cgg aa-3 '

14-3-3 sigma cDNA 단편을 agarose gel로부터 정제한 후, EcoRI과 KpnI 제한효소로 이중절단하였다. 이 조각을 lentivirus vector인 pCAG의 EcoRI과 KpnI 클로닝 부위에 삽입시켜 새로운 재조합 플라스미드인 pCAG-14-3-3 sigma를 제조하였다. 재조합 플라스미드에 내재된 14-3-3 sigma cDNA는 동종의 제한효소 절단과 DNA 염기서열 방법을 통해 최종 확인하였다.
The 14-3-3 sigma cDNA fragment was purified from agarose gel and then double digested with EcoRI and KpnI restriction enzymes. This fragment was inserted into the EcoRI and KpnI cloning sites of the lentivirus vector pCAG to construct a new recombinant plasmid, pCAG-14-3-3 sigma. The 14-3-3 sigma cDNA contained in the recombinant plasmid was finally confirmed by homologous restriction enzyme cleavage and DNA sequencing.

실시예 3: shRNA 14-3-3 sigma lentivirus expression vector 제조Example 3: Preparation of shRNA 14-3-3 sigma lentivirus expression vector

14-3-3 sigma 발현을 억제하기 위한 시스템으로 small hairpin형태의 14-3-3 sigma RNA (shRNA 14-3-3 sigma)를 생산할 수 있는 lentivirus vector를 제조하였다. pLKO1 lentivirus vctor는 RNA polymerase III에 의해 small nuclear 전사물이 생성될 수 있는 U6 RNA promoter를 지니고 있어 shRNA 생성물을 만드는데 적합하다. Mouse 14-3-3 sigma (coding 시작부위로부터 46에서 56 (적색) 부분을 표적)으로 하는 shRNA 14-3-3 sigma oligonucleotide를 제작하였다. sence 5'-ccgggccgaacggtatgaagacatgctcgagcatgtcttcataccgttcggctttttg-3'A lentivirus vector capable of producing 14-3-3 sigma RNA (shRNA 14-3-3 sigma) in the form of a small hairpin was prepared as a system to suppress 14-3-3 sigma expression. The pLKO1 lentivirus vctor has a U6 RNA promoter capable of producing small nuclear transcripts by RNA polymerase III, making it suitable for producing shRNA products. We constructed shRNA 14-3-3 sigma oligonucleotides with Mouse 14-3-3 sigma (target 46 to 56 (red) from coding start site). sence 5'-ccgggccgaacggtatgaagacatgctcgagcatgtcttcataccgttcggctttttg-3 '

anti-sence 5'-aattcaaaaagccgaacggtatgaagacatgctcgagcatgtcttcataccgttcggc-3'anti-sence 5'-aattcaaaaagccgaacggtatgaagacatgctcgagcatgtcttcataccgttcggc-3 '

두 종류의 oligonucleotides (10 mM)를 annealing buffer에 각각 5 ml씩 넣은 후, 95℃에서 4분간 반응시킨 후, 30℃ 이하로 서서히 온도를 내려서 annealing 시켰다. Annealed oligonucleotide를 EcoRI과 AgeI 제한효소로 절단한 pLKO1 lentivirus vector에 접합시켰다. 재조합된 pLKO1-shRNA 14-3-3 sigma 플라스미드는 DNA 염기서열 방법을 통해 최종 확인하였다.
Two types of oligonucleotides (10 mM) were added to the annealing buffer (5 ml each), reacted at 95 ° C for 4 minutes, and annealed at a temperature of 30 ° C or lower. Annealed oligonucleotides were ligated to pLKO1 lentivirus vector digested with EcoRI and AgeI restriction enzymes. The recombinant pLKO1-shRNA 14-3-3 sigma plasmid was finally identified by DNA sequencing.

실시예 4: Lentivirus infectionExample 4: Lentivirus infection

제조한 14-3-3 sigma lentivirus를 생산하기 위하여 바이러스 생산 숙주 세포인 HEK293T 세포주를 사용하였다. 2 X 105 cells/6-well plate에 pCAG-14-3-3 sigma를 virus packaging plasmids인 pMDLg/pRRE, pRSV-Rev, 및 pMD2.VSVG와 함께 lipofectamin 2000 방법으로 co-transfection하였다. pLKO1-shRNA 14-3-3 sigma의 경우, paPAX2와 pMD2.VSVG packaging plasmid로 Transfection 후, 72 시간에 세포배지로부터 virus soup을 수거하여 0.45 mM filter를 사용하여 정제하였다. 정제한 virus를 8 mg/ml polybrene과 함께 peritoneal macrophages (5 x 105 cells/6-well plate)에 처리하는데 8 시간 간격으로 세 번 반복하였다. Virus를 감염시킨 후, 24 시간 동안 더 배양하고 세포 추출물을 수거하여 14-3-3 sigma 유전자 발현에 미치는 효과를 RT-PCR 방법으로 분석하였다.
To produce the 14-3-3 sigma lentivirus, HEK293T cell line, a virus production host cell, was used. PCAG-14-3-3 sigma was co-transfected with the virus packaging plasmids pMDLg / pRRE, pRSV-Rev, and pMD2.VSVG in 2 × 10 5 cells / 6-well plate by lipofectamin 2000 method. In the case of pLKO1-shRNA 14-3-3 sigma, the virus soup was collected from the cell culture medium at 72 hours after transfection with paPAX2 and pMD2.VSVG packaging plasmids and purified using a 0.45 mM filter. The purified virus was treated with 8 mg / ml polybrene in peritoneal macrophages (5 × 10 5 cells / 6-well plate) three times at 8-hour intervals. Virus was cultured for 24 hours, and cell extracts were collected and analyzed for the effect of 14-3-3 sigma gene expression by RT-PCR.

실시예 5: RT-PCRExample 5: RT-PCR

RT-PCR은 Acess RT-PCR system (Promega, Madison, WI)을 사용하였다. 사용된 각각의 primer 염기서열은 다음과 같다: RT-PCR was performed using the Access RT-PCR system (Promega, Madison, Wis.). Each primer sequence used was as follows:

mouse COX-2; forward 5'-caa tga gta ccg caa acg ct-3', reverse 5'-agg tgc tcg gct tcc agt at-3', mouse IL-1beta; forward 5'-gtt gac gga ccc caa aa at-3', reverse 5'-aag gtc cac ggg gac ac-3', mouse IL-6; forward 5'-ttg gga ctg atg ctg gtg ac-3'; reverse 5'-tgc aag tgc atc atc gtt gt-3', mouse 14-3-3 sigma primers; forward 5'-CCT GCT GGA CTC GCA CCT CA-3' and reverse, 5'-TGT CGG CTG TCC ACA GCG TC-3', mouse 14-3-3 beta primers; forward 5'-GAG CGC TAC GAC GAC ATG GCC-3' and reverse, 5'-AAT TCC AGG ACC GTG GTG CAG ATG-3', mouse 14-3-3 ε primers; forward 5'-GAG CGA TAC GAC GAA ATG GTG-3' and reverse 5'-CCT TGG ACT CGC CAG TGT TAG-3', mouse 14-3-3 η primers; forward 5'-CTG GCG GAG CAG GCG GAG CGC-3'and reverse 5'-CTG TCT CCA GCT CCT TTT CAA TCT TCT CCC-3', mouse γ 14-3-3 primers; forward 5'-CCG GGA GAA GAT CGA GAA GGA GT-3'and revere 5'-CTG CAT GAT CAG AGT GGA GTC CTT G-3', mouse 14-3-3 τ primers; forward 5'-GCA GCT GAT CAA GGA CTA TCG GG-3' and reverse5'-GCC TCT TGG TAG GCT CCT TGG G-3', mouse 14-3-3 ζ primers; forward 5'-CCC ACT CCG GAC ACA GAA TAT CAG-3' and reverse 5'-CTC TGT ATT CTC GAG CCA TCT GCT G-3', 그리고 mouse beta-actin은 다음과 같은 프라이머를 사용하여 대조군으로 증폭되었다; forward, 5'-ACG TTG CTA TCC AGG CTG TG-3', and reverse, 5'-GCG ACG TAG CAC AGC TTC TC-3'. PCR 증폭 조건은 아래와 같음; 25 사이클의 94℃에서 30 s, 55℃에서 1 분 및 72℃에서 1 분.
mouse COX-2; forward 5'-caa tga gta ccg caa acg ct-3 ', reverse 5'-agg tgc tcg gct tcc agt at-3', mouse IL-1beta; forward 5'-gtt gac gga ccc caa aa at-3 ', reverse 5'-aag gtc cac ggg gac ac-3', mouse IL-6; forward 5'-ttg gga ctg atg ctg gtg ac-3 '; reverse 5'-tgc aag tgc atc atc gtt gt-3 ', mouse 14-3-3 sigma primers; forward 5'-CCT GCT GGA CTC GCA CCT CA-3 'and reverse, 5'-TGT CGG CTG TCC ACA GCG TC-3', mouse 14-3-3 beta primers; forward 5'-GAG CGC TAC GAC GAC ATG GCC-3 'and reverse, 5'-AAT TCC AGG ACC GTG GTG CAG ATG-3', mouse 14-3-3 ε primers; forward 5'-GAG CGA TAC GAC GAA ATG GTG-3 'and reverse 5'-CCT TGG ACT CGC CAG TGT TAG-3', mouse 14-3-3 η primers; forward 5'-CTG GCG GAG CAG GCG GAG CGC-3'and reverse 5'-CTG TCT CCA GCT CCT TTT CAA TCT TCT CCC-3 ', mouse gamma 14-3-3 primers; forward 5'-CCG GGA GAA GAT CGA GAA GGA GT-3'and revere 5'-CTG CAT GAT CAG AGT GGA GTC CTT G-3 ', mouse 14-3-3 τ primers; forward 5'-GCA GCT GAT CAA GGA CTA TCG GG-3 'and reverse 5'-GCC TCT TGG TAG GCT CCT TGG G-3', mouse 14-3-3 ζ primers; forward 5'-CCC ACT CCG GAC ACA GAA TAT CAG-3 'and reverse 5'-CTC TGT ATT CTC GAG CCA TCT GCT G-3' and mouse beta-actin were amplified as a control using the following primers ; forward, 5'-ACG TTG CTA TCC AGG CTG TG-3 ', and reverse, 5'-GCG ACG TAG CAC AGC TTC TC-3'. PCR amplification conditions are as follows; 25 cycles of 94 ° C for 30 s, 1 min at 55 ° C, and 1 min at 72 ° C.

실시예 7: Reporter gene assayExample 7: Reporter gene assay

HEK293 세포주를 5 x 105 cells/6-well plate로 seeding 한 후, 0.5 mg/ml NF-kB-Luciferase reporter plasmid, 0.2 mg/ml CMV-b-galactosidase plasmid, 0.5 mg/ml pHMV6 또는 pHMV6-14-3-3 sigma co-transfection하였다. Transfection 후, 24 시간 후, LPS를 24 시간 처리한 후 세포 추출물을 수거하여 luciferase 활성을 분석하였다. Reporter 활성 수치는 Luciferin을 기질로 사용하여 luminometer 장비를 통해 측정하였다. CMV-beta-galactosidase는 transfection 효율을 보정하기 위하여 사용하였다.
The HEK293 cell line was seeded in a 5 x 10 5 cells / 6-well plate and then treated with 0.5 mg / ml NF-kB-Luciferase reporter plasmid, 0.2 mg / ml CMV-b-galactosidase plasmid, 0.5 mg / ml pHMV6 or pHMV6-14 -3-3 sigma co-transfected. After 24 hours of transfection, the cells were treated with LPS for 24 hours and luciferase activity was analyzed. Reporter activity levels were measured by luminometer using Luciferin as substrate. CMV-beta-galactosidase was used to correct transfection efficiency.

실시예 8: Western blottingExample 8: Western blotting

단백질의 발현을 분석하기 위하여 사용하였다. 14-3-3 sigma, HA, p65/ReA 항체는 Santa Cruz Biotechology 사의 제품을 사용하였으며, beta-actin 항체는 Sigma 회사 제품을 사용하였다.
Was used to analyze the expression of the protein. 14-3-3 sigma, HA, p65 / ReA antibodies were purchased from Santa Cruz Biotechology, and beta-actin antibodies were purchased from Sigma.

참고문헌references

Aggarwal, B.B. et al. (2006) Inflammation and cancer: How hot is the link? Biochem. Pharmacol. 72:1605-1621Aggarwal, BB et al. (2006) Inflammation and cancer: How hot is the link? Biochem. Pharmacol. 72: 1605-1621

Chang et al., (2009) Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat. Immunol. 10:1089-95Chang et al., (2009) Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat. Immunol. 10: 1089-95

Chen, W. et al. (2003) Conversion of peripheral CD4+CD25- nave T cells to CD4+CD25+ regulatory T cells by TGF- induction of transcription factor FoxP3. J. Exp. Med. 198:1875-1886Chen, W. et al. (2003) Conversion of peripheral CD4 + CD25- nave T cells to CD4 + CD25 + regulatory T cells by TGF-induction of transcription factor FoxP3. J. Exp. Med. 198: 1875-1886

Choi et al., (2006) Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adaptor Pellino-1. Nat. Immunol. 10:1057-1065Choi et al., (2006) Smad6 negatively regulates interleukin 1-receptor-Toll-like receptor signaling through direct interaction with the adapter Pellino-1. Nat. Immunol. 10: 1057-1065

Cook et al., (2004) Toll-like receptors in the pathogenesis of human disease. Nature Immunol. 5:975-79Cook et al., (2004) Toll-like receptors in the pathogenesis of human disease. Nature Immunol. 5: 975-79

Covic, L. et al., (2002) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat. Med. 8:1161-1165Covic, L. et al., (2002) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat. Med. 8: 1161-1165

Cummings, C.J. et al. (1999) Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J. Immunol. 162:2341-2346Cummings, CJ et al. (1999) Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J. Immunol. 162: 2341-2346

Derynck and Zhang. (2003) Smad-dependent and Smad-independent pathways in TGF- family signaling. Nature 425:577-84Derynck and Zhang. (2003) Smad-dependent and Smad-independent pathways in TGF-family signaling. Nature 425: 577-84

Edlund et al., (2003) Transforming growth factor-beta1 (TGF-)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF--activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol. Biol. Cell 14:529-44Activation of p38 by TGF-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol. J. , Edlund et al., (2003) Transforming growth factor-beta1 (TGF) -induced apoptosis of prostate cancer cells . Biol. Cell 14: 529-44

Geiser, A.G. et al. (1993) Transforming growth factor-beta1 controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-1 null mouse phenotype. Proc. Natl. Acad. Sci. USA. 90:9944-9948Geiser, AG et al. (1993) Transforming growth factor-beta1 controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-1 null mouse phenotype. Proc. Natl. Acad. Sci. USA. 90: 9944-9948

Grosshans et al., (1999) Oligomerisation of Tube and Pelle leads to nuclear localisation of dorsal. Mech. Dev. 81:127-38Grosshans et al., (1999) Oligomerisation of Tube and Pelle leads to nuclear localization of dorsal. Mech. Dev. 81: 127-38

Hata et al., (1998) Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12:186-97Hata et al., (1998) Smad6 inhibits BMP / Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12: 186-97

Hayashi et al., (1997) The MAD-Related Protein Smad7 Associates with the TGF Receptor and Functions as an Antagonist of TGF Signaling. Cell 89:116573Hayashi et al., (1997) The MAD-Related Protein Smad7 Associates with the TGF Receptor and Functions as an Antagonist of TGF Signaling. Cell 89: 116573

Holm et al., (2011) Noncanonical TGF- signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332:358-61Holm et al., (2011) Noncanonical TGF-signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332: 358-61

Hong et al., (2007) Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adpator TRAF2. Nat. Immunol. 8:504-13Hong et al., (2007) Smad7 binds to the adapters TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adpator TRAF2. Nat. Immunol. 8: 504-13

Hotchkiss, R.S. & Nicholson, D. W. (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol. 6:813-822Hotchkiss, RS & Nicholson, DW (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat. Rev. Immunol. 6: 813-822

Hotchkiss, R.S. et al. (1999) Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl. Acad. Sci. USA 96:14541-14546Hotchkiss, RS et al. (1999) Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc. Natl. Acad. Sci. USA 96: 14541-14546

Imamura et al., (1997) Smad6 inhibits signalling by the TGF- superfamily. Nature 389:622-6Imamura et al., (1997) Smad6 inhibits signaling by the TGF-superfamily. Nature 389: 622-6

Jiang et al., (2003) Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J. Biol. Chem. 278:10952-56 Jiang et al. IL-1 receptor-associated kinase 4 (IRAK4) -IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) mediated signaling through its interaction with IL- complex. J. Biol. Chem. 278: 10952-56

Kavsak et al., (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Molecular Cell 6:1365-75Kavsak et al., (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Molecular Cell 6: 1365-75

Kayagaki, N. et al. (1999) Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: A novel mechanism for the antitumor effects of type I IFNs. J. Exp. Med. 189:1451-1460Kayagaki, N. et al. (1999) Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: a novel mechanism for the antitumor effects of type I IFNs. J. Exp. Med. 189: 1451-1460

Kleiter et al., (2010) Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 133:1067-81Kleiter et al., (2010) Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 133: 1067-81

Lee et al., (2010) Smad7 and Smad6 bind to discrete regions of Pellin-1 via their MH2 domains to mediate TGF-1-induced negative regulation of IL-1R/TLR signaling. Biochem. Biophys. Res. Commun. 393:836-43 Lee et al., (2010) Smad7 and Smad6 bind to discrete regions of Pellin-1 via their MH2 domains to mediate TGF-1-induced negative regulation of IL-1R / TLR signaling. Biochem. Biophys. Res. Commun. 393: 836-43

Lee et al., (2011) Smad6-specific recruitment of Smurf E3 ligases mediates TGF-1-induced degradation of MyD88 in TLR4 signaling. Nat. Commun. 2:460 doi: 10.1038/ncomms1469 Lee et al., (2011) Smad6-specific recruitment of Smurf E3 ligases mediates TGF-1-induced degradation of MyD88 in TLR4 signaling. Nat. Commun. 2: 460 doi: 10.1038 / ncomms1469

Loniewski, K. et al., (2008) Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages. Mol. Immunol. 45:2312-2322Loniewski, K. et al., (2008) Toll-like receptors differentially regulate GPCR kinases and arrestins in primary macrophages. Mol. Immunol. 45: 2312-2322

Moynagh PN. (2009) The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol. 30:33-42Moynagh PN. (2009) The Pellino family: IRAK E3 ligases with emerging roles in innate immune signaling. Trends Immunol. 30: 33-42

Mu et al., (2012) Non-Smad signaling pathways. Cell Tissue Res. 347:11-20Mu et al., (2012) Non-Smad signaling pathways. Cell Tissue Res. 347: 11-20

Nakao et al., (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF- signalling. Nature 389:631-5.Nakao et al., (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-signaling. Nature 389: 631-5.

Nathan and Ding. (2010) Nonresolving inflammtion. Cell 140:871-82Nathan and Ding. (2010) Nonresolving inflammtion. Cell 140: 871-82

Nishimura et al., (2010) Inhibitory Smad proteins promote the differentiation of mouse embryonic stem cells into ependymal-like ciliated cells. Biochem. Biophys. Res. Commun. 401:1-6Nishimura et al. , (2010) Inhibitory Smad proteins promote differentiation of mouse embryonic stem cells into ependymal-like ciliated cells. Biochem. Biophys. Res. Commun. 401: 1-6

Park, S.H. (2005) Fine tunning and cross-talking of TGF-β signal by inhibitory Smads. J. Biochem . Mol . Biol . 38:9-16Park, SH (2005) Fine tuning and cross-talking of TGF-β signal by inhibitory Smads. J. Biochem . Mol . Biol . 38: 9-16

Roberts, A.B. and Sporn, M.B. (1993) Physiological actions and clinical applications of transforming growth factor-beta. Growth Factors. 8:1-9Roberts, AB and Sporn, MB (1993) Physiological actions and clinical applications of transforming growth factor-beta. Growth Factors. 8: 1-9

Smith et al., (2011) The role of TBK1 and IKKepsilon in the expression and activation of Pellino 1. Biochem. J. 434:537-548Smith et al., (2011) The role of TBK1 and IKKepsilon in expression and activation of Pellino 1. Biochem. J. 434: 537-548

Sorrentino et al., (2008) The type I TGF- receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10:1199-207Sorrentino et al., (2008) The type I TGF-receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat. Cell Biol. 10: 1199-207

Takeuchi and Akira. (2010) Pattern recognition receptors and inflammation. Cell 140:805-820Takeuchi and Akira. (2010) Pattern recognition receptors and inflammation. Cell 140: 805-820

Tojo et al., (2012) Smad7-deficient mice show growth retardation with reduced viability. J. Biochem. [Epub ahead of print]Tojo et al. (2012) Smad7-deficient mice show growth retardation with reduced viability. J. Biochem. [Epub ahead of print]

Tsujimoto, H. et al. (2008) Role of Toll-like receptors in the development of sepsis. Shock 29:315-321 Tsujimoto, H. et al. (2008) Role of Toll-like receptors in the development of sepsis. Shock 29: 315-321

Unsinger, J. et al. (2010) Sepsis-induced apoptosis leads to active suppression of delayed-type hypersensitivity by CD8+ regulatory T cells through a TRAIL-dependent mechanism. J. Immunol. 184:6766-6772Unsinger, J. et al. (2010) Sepsis-induced apoptosis leads to active suppression of delayed-type hypersensitivity by CD8 + regulatory T cells through a TRAIL-dependent mechanism. J. Immunol. 184: 6766-6772

Wahl, S.M. (2007) Transforming growth factor-beta: innately bipolar. Curr. Opin. Immunol. 19:55-62Wahl, SM (2007) Transforming growth factor-beta: innately bipolar. Curr. Opin. Immunol. 19: 55-62

Weighardt, H. & Holzmann, B. (2007) Role of Toll-like receptor responses for sepsis pathogenesis. Immunobiology 212:715-722Weighardt, H. & Holzmann, B. (2007) Role of Toll-like receptor responses for sepsis pathogenesis. Immunobiology 212: 715-722

Wittebole, X. et al., (2010) Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators Inflamm. 2010, 568396Wittebole, X. et al., (2010) Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators Inflamm. 2010, 568396

Yamashita et al., (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Molecular Cell 31:918-24
Yamashita et al. , (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Molecular Cell 31: 918-24

<110> KNU-Industry Cooperation Foundation <120> Anti-inflammatory composition comprising 14-3-3 sigma gene and protein <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 747 <212> DNA <213> Mouse <400> 1 atggagagag ccagtctgat ccagaaggcc aagttggctg aacaggccga acggtatgaa 60 gacatggcag ctttcatgaa gagcgccgtg gaaaagggcg aggagctctc ctgcgaggag 120 cgaaacctgc tttccgtagc ttacaagaac gtggtgggcg gccagagagc ggcctggagg 180 gtcctgtcca gcatcgagca gaagagcaac gaggaggggt cagaagagaa gggccccgag 240 gtgaaagagt accgggagaa ggtagagacc gagctcagag gtgtgtgcga caccgtactc 300 ggcctgctgg actcgcacct catcaaaggg gctggagatg cagagagccg cgtcttctac 360 ctgaagatga agggtgacta ctaccgctac ctagccgagg tggccactgg cgatgacaag 420 aagcgcatca tcgattctgc ccggtcagcc taccaggagg ccatggacat cagcaagaag 480 gagatgccgc ctaccaaccc catccgcctg ggcctggccc tgaacttttc agtcttccac 540 tacgagatag ccaacagccc cgaggaggcc atctcgctgg ccaagaccac cttcgacgag 600 gccatggccg acctgcacac cctcagtgag gactcctaca aggacagcac cctcatcatg 660 cagctcctga gagacaacct gacgctgtgg acagccgaca gtgctgggga agagggtggt 720 gaggctccgg aggagcccca gagctga 747 <210> 2 <211> 248 <212> PRT <213> Mouse <400> 2 Met Glu Arg Ala Ser Leu Ile Gln Lys Ala Lys Leu Ala Glu Gln Ala 1 5 10 15 Glu Arg Tyr Glu Asp Met Ala Ala Phe Met Lys Ser Ala Val Glu Lys 20 25 30 Gly Glu Glu Leu Ser Cys Glu Glu Arg Asn Leu Leu Ser Val Ala Tyr 35 40 45 Lys Asn Val Val Gly Gly Gln Arg Ala Ala Trp Arg Val Leu Ser Ser 50 55 60 Ile Glu Gln Lys Ser Asn Glu Glu Gly Ser Glu Glu Lys Gly Pro Glu 65 70 75 80 Val Lys Glu Tyr Arg Glu Lys Val Glu Thr Glu Leu Arg Gly Val Cys 85 90 95 Asp Thr Val Leu Gly Leu Leu Asp Ser His Leu Ile Lys Gly Ala Gly 100 105 110 Asp Ala Glu Ser Arg Val Phe Tyr Leu Lys Met Lys Gly Asp Tyr Tyr 115 120 125 Arg Tyr Leu Ala Glu Val Ala Thr Gly Asp Asp Lys Lys Arg Ile Ile 130 135 140 Asp Ser Ala Arg Ser Ala Tyr Gln Glu Ala Met Asp Ile Ser Lys Lys 145 150 155 160 Glu Met Pro Pro Thr Asn Pro Ile Arg Leu Gly Leu Ala Leu Asn Phe 165 170 175 Ser Val Phe His Tyr Glu Ile Ala Asn Ser Pro Glu Glu Ala Ile Ser 180 185 190 Leu Ala Lys Thr Thr Phe Asp Glu Ala Met Ala Asp Leu His Thr Leu 195 200 205 Ser Glu Asp Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln Leu Leu Arg 210 215 220 Asp Asn Leu Thr Leu Trp Thr Ala Asp Ser Ala Gly Glu Glu Gly Gly 225 230 235 240 Glu Ala Pro Glu Glu Pro Gln Ser 245 <110> KNU-Industry Cooperation Foundation <120> Anti-inflammatory composition comprising 14-3-3 sigma gene and          protein <160> 2 <170> Kopatentin 1.71 <210> 1 <211> 747 <212> DNA <213> Mouse <400> 1 atggagagag ccagtctgat ccagaaggcc aagttggctg aacaggccga acggtatgaa 60 gacatggcag ctttcatgaa gagcgccgtg gaaaagggcg aggagctctc ctgcgaggag 120 cgaaacctgc tttccgtagc ttacaagaac gtggtgggcg gccagagagc ggcctggagg 180 gtcctgtcca gcatcgagca gaagagcaac gaggaggggt cagaagagaa gggccccgag 240 gtgaaagagt accgggagaa ggtagagacc gagctcagag gtgtgtgcga caccgtactc 300 ggcctgctgg actcgcacct catcaaaggg gctggagatg cagagagccg cgtcttctac 360 ctgaagatga agggtgacta ctaccgctac ctagccgagg tggccactgg cgatgacaag 420 aagcgcatca tcgattctgc ccggtcagcc taccaggagg ccatggacat cagcaagaag 480 gagatgccgc ctaccaaccc catccgcctg ggcctggccc tgaacttttc agtcttccac 540 tacgagatag ccaacagccc cgaggaggcc atctcgctgg ccaagaccac cttcgacgag 600 gccatggccg acctgcacac cctcagtgag gactcctaca aggacagcac cctcatcatg 660 cagctcctga gagacaacct gacgctgtgg acagccgaca gtgctgggga agagggtggt 720 gaggctccgg aggagcccca gagctga 747 <210> 2 <211> 248 <212> PRT <213> Mouse <400> 2 Met Glu Arg Ala Ser Leu Ile Gln Lys Ala Lys Leu Ala Glu Gln Ala   1 5 10 15 Glu Arg Tyr Glu Asp Met Ala Ala Phe Met Lys Ser Ala Val Glu Lys              20 25 30 Gly Glu Glu Leu Ser Cys Glu Glu Arg Asn Leu Leu Ser Val Ala Tyr          35 40 45 Lys Asn Val Val Gly Gly Gln Arg Ala Ala Trp Arg Val Leu Ser Ser      50 55 60 Ile Glu Gln Lys Ser Asn Glu Glu Gly Ser Glu Glu Lys Gly Pro Glu  65 70 75 80 Val Lys Glu Tyr Arg Glu Lys Val Glu Thr Glu Leu Arg Gly Val Cys                  85 90 95 Asp Thr Val Leu Gly Leu Leu Asp Ser His Leu Ile Lys Gly Ala Gly             100 105 110 Asp Ala Glu Ser Arg Val Phe Tyr Leu Lys Met Lys Gly Asp Tyr Tyr         115 120 125 Arg Tyr Leu Ala Glu Val Ala Thr Gly Asp Asp Lys Lys Arg Ile Ile     130 135 140 Asp Ser Ala Arg Ser Ala Tyr Gln Glu Ala Met Asp Ile Ser Lys Lys 145 150 155 160 Glu Met Pro Pro Thr Asn Pro Ile Arg Leu Gly Leu Ala Leu Asn Phe                 165 170 175 Ser Val Phe His Tyr Glu Ile Ala Asn Ser Pro Glu Glu Ala Ile Ser             180 185 190 Leu Ala Lys Thr Thr Phe Asp Glu Ala Met Ala Asp Leu His Thr Leu         195 200 205 Ser Glu Asp Ser Tyr Lys Asp Ser Thr Leu Ile Met Gln Leu Leu Arg     210 215 220 Asp Asn Leu Thr Leu Trp Thr Ala Asp Ser Ala Gly Glu Glu Gly Gly 225 230 235 240 Glu Ala Pro Glu Glu Pro Gln Ser                 245

Claims (12)

14-3-3 시그마 유전자를 유효성분으로 포함하는 항염증용 조성물.A composition for anti-inflammation comprising 14-3-3 sigma gene as an active ingredient. 제 1항에 있어서, 상기 14-3-3 시그마 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 항염증용 조성물.2. The anti-inflammatory composition according to claim 1, wherein the 14-3-3 sigma gene comprises the nucleotide sequence of SEQ ID NO: 1. 14-3-3 시그마 단백질을 유효성분으로 포함하는 항염증용 조성물.14. An antiinflammatory composition comprising 14-3-3 sigma protein as an active ingredient. 제 3항에 있어서, 상기 14-3-3 시그마 단백질은 서열번호 2의 아미노산 서열로 이루어진 것을 특징으로 하는 항염증용 조성물.4. The anti-inflammatory composition according to claim 3, wherein the 14-3-3 sigma protein comprises the amino acid sequence of SEQ ID NO: 2. 서열번호 1의 염기서열로 이루어진 14-3-3 시그마 유전자를 유효성분으로 포함하는 염증성 사이토카인 억제용 발현벡터.An expression vector for inflammatory cytokine inhibition comprising the 14-3-3 sigma gene consisting of the nucleotide sequence of SEQ ID NO: 1 as an active ingredient. 제 5항에 있어서, 상기 발현벡터는 도 4의 개열지도를 가지는 것을 특징으로 하는 염증성 사이토카인 억제용 발현벡터.6. The inflammatory cytokine inhibitory expression vector according to claim 5, wherein the expression vector has a cleavage map of Fig. 인 비트로 세포에 14-3-3 시그마 유전자와 NF-kB를 포함하는 플라즈미드를 코트랜스팩션하여서 인 비트로에서 NF-kB 활성을 감소시키는 방법.Wherein the NF-kB activity is reduced in vitro by cotransfection of a plasmid comprising the 14-3-3 sigma gene and NF-kB into the in vitro cell. 제 7항에 있어서, 상기 14-3-3 시그마 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 인 비트로에서 NF-kB 활성을 감소시키는 방법.8. The method according to claim 7, wherein the 14-3-3 sigma gene consists of the nucleotide sequence of SEQ ID NO: 1. 인 비트로 세포에 14-3-3 시그마 유전자를 처리하여서 인 비트로에서 p65/RelA 단백질 발현을 감소시키는 방법.A method of reducing p65 / RelA protein expression in vitro by treating 14-3-3 sigma genes in vitro. 제 9항에 있어서, 상기 14-3-3 시그마 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 인 비트로에서 p65/RelA 단백질 발현을 감소시키는 방법.10. The method according to claim 9, wherein the 14-3-3 sigma gene consists of the nucleotide sequence of SEQ ID NO: 1. 마크로파지에 14-3-3 시그마 유전자를 트랜스팩션시킨 후 배양하는 단계;
이러한 트랜스팩션 단계 전, 트랜스팩션 중 또는 트랜스팩션 후에, 상기 세포를 스크리닝하고자 하는 화합물과 접촉하는 단계;
상기 세포에서 14-3-3 시그마 유전자의 발현을 측정하는 단계; 및
상기 스크리닝하고자 하는 화합물 중 화합물과 접촉에 의하여 14-3-3 시그마 유전자의 발현을 증가시키는 화합물은 선도 화합물로서 채택하고 14-3-3 시그마 유전자 발현을 증가시키지 않는 화합물은 거부하는 단계를 포함하는 항염증 치료 또는 예방에 유용한 화합물을 동정하기 위한 화합물을 스크리닝하는 방법.
Transforming the 14-3-3 sigma gene into macrophages and then culturing them;
Contacting the cell with a compound to be screened before, during, or after the transfection step;
Measuring the expression of the 14-3-3 sigma gene in the cell; And
Wherein the compound that increases the expression of the 14-3-3 sigma gene by contact with the compound in the compound to be screened is adopted as the lead compound and the compound that does not increase the expression of the 14-3-3 sigma gene is rejected A method for screening a compound for identifying a compound useful for the treatment or prevention of inflammation.
제 11항에 있어서,
상기 14-3-3 시그마 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 항염증 치료 또는 예방에 유용한 화합물을 동정하기 위한 화합물을 스크리닝하는 방법.
12. The method of claim 11,
Wherein the 14-3-3 sigma gene is composed of the nucleotide sequence of SEQ ID NO: 1. 2. A method for screening a compound for identifying a compound useful for the treatment or prevention of anti-inflammatory activity.
KR1020130015715A 2013-02-14 2013-02-14 Anti-inflammatory composition comprising 14-3-3 sigma gene and protein KR101473980B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130015715A KR101473980B1 (en) 2013-02-14 2013-02-14 Anti-inflammatory composition comprising 14-3-3 sigma gene and protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130015715A KR101473980B1 (en) 2013-02-14 2013-02-14 Anti-inflammatory composition comprising 14-3-3 sigma gene and protein

Publications (2)

Publication Number Publication Date
KR20140102441A true KR20140102441A (en) 2014-08-22
KR101473980B1 KR101473980B1 (en) 2014-12-17

Family

ID=51747242

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130015715A KR101473980B1 (en) 2013-02-14 2013-02-14 Anti-inflammatory composition comprising 14-3-3 sigma gene and protein

Country Status (1)

Country Link
KR (1) KR101473980B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912705A (en) * 2019-04-09 2019-06-21 贵州大学 A kind of sorghum 14-3-3 Protein G F14c gene and its recombinant vector and expression
KR102170961B1 (en) 2020-01-23 2020-10-29 하나엔지니어링 주식회사 Force touch type touch screen device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6335156B1 (en) 1997-12-18 2002-01-01 The Johns Hopkins University School Of Medicine 14-3-3σ arrests the cell cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109912705A (en) * 2019-04-09 2019-06-21 贵州大学 A kind of sorghum 14-3-3 Protein G F14c gene and its recombinant vector and expression
KR102170961B1 (en) 2020-01-23 2020-10-29 하나엔지니어링 주식회사 Force touch type touch screen device

Also Published As

Publication number Publication date
KR101473980B1 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
Fiala et al. From thymus to periphery: molecular basis of effector γδ‐T cell differentiation
JP5646997B2 (en) Novel siRNA structure
Valanne et al. Iap2 is required for a sustained response in the Drosophila Imd pathway
Qiu et al. Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong scallop Chlamys farreri
Quynh et al. The cytosolic sensor, DDX41, activates antiviral and inflammatory immunity in response to stimulation with double-stranded DNA adherent cells of the olive flounder, Paralichthys olivaceus
KR101959237B1 (en) Use of a novel transmembrane protein of Lrig-1 in a regulatory T cell
KR101473980B1 (en) Anti-inflammatory composition comprising 14-3-3 sigma gene and protein
Han et al. Molecular characterization, expression and functional analysis of IRAK1 and IRAK4 in Nile tilapia (Oreochromis niloticus)
Siebler et al. IL-28A Is a Key Regulator of T-Cell–Mediated Liver Injury via the T-Box Transcription Factor T-Bet
Tian et al. C-type lectin OCILRP2/Clr-g and its ligand NKRP1f costimulate T cell proliferation and IL-2 production
Koide et al. Embryonic lethality of fortilin-null mutant mice by BMP-pathway overactivation
KR102067402B1 (en) Use of a novel transmembrane protein of Lrig-1 in a regulatory T cell
Xiao et al. Cloning of common carp SOCS-3 gene and its expression during embryogenesis, GH-transgene and viral infection
García-Álvarez et al. Regulation and distribution of European sea bass perforins point to their role in the adaptive cytotoxic response against NNV
Iordanskiy et al. B-oligomer of pertussis toxin inhibits HIV-1 LTR-driven transcription through suppression of NF-κB p65 subunit activity
KR101604169B1 (en) 17 A Use of ROR for Controlling Activity of Th17 Cell
Sikarwar et al. siRNA-mediated silencing of c-kit in mouse primary spermatogonial cells induces cell cycle arrest
Zhao et al. Functional conservation and divergence of duplicated the suppressor of cytokine signaling 1 in blunt snout bream (Megalobrama amblycephala)
Mali et al. Hydroid TNF-receptor-associated factor (TRAF) and its splice variant: a role in development
CN101039663B (en) STAT3 phosphorylation inhibitor and notch 1 expression inhibitor
Schmitz Gadd45 proteins in immunity 2.0
CN112870380B (en) Application of BPOZ gene in preparing medicine for treating excessive inflammatory reaction diseases
Chen et al. The first identification of three AdIRAK2 genes from an evolutionarily important amphibian Andrias davidianus and their involvement in NF-κB activation and inflammatory responses
KR102317415B1 (en) Use of a novel transmembrane protein of Lrig-1 in a regulatory T cell
KR102094747B1 (en) Use of a novel transmembrane protein of Lrig-1 in a regulatory T cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181210

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6