KR20140090311A - Method for Dose reduction in full-field digital mammography using total variation based noise removal algorithms - Google Patents

Method for Dose reduction in full-field digital mammography using total variation based noise removal algorithms Download PDF

Info

Publication number
KR20140090311A
KR20140090311A KR1020120158747A KR20120158747A KR20140090311A KR 20140090311 A KR20140090311 A KR 20140090311A KR 1020120158747 A KR1020120158747 A KR 1020120158747A KR 20120158747 A KR20120158747 A KR 20120158747A KR 20140090311 A KR20140090311 A KR 20140090311A
Authority
KR
South Korea
Prior art keywords
noise
kvp
present
agd
image
Prior art date
Application number
KR1020120158747A
Other languages
Korean (ko)
Other versions
KR101891833B1 (en
Inventor
최석윤
Original Assignee
부산가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산가톨릭대학교 산학협력단 filed Critical 부산가톨릭대학교 산학협력단
Priority to KR1020120158747A priority Critical patent/KR101891833B1/en
Publication of KR20140090311A publication Critical patent/KR20140090311A/en
Application granted granted Critical
Publication of KR101891833B1 publication Critical patent/KR101891833B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/10Safety means specially adapted therefor
    • A61B6/107Protection against radiation, e.g. shielding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52077Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging with means for elimination of unwanted signals, e.g. noise or interference

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention relates to a method for reducing a dose in a full-field digital mammography through a noise removal algorithm based on total variation. More particularly, the present invention is to minimize an average glandular dose (AGD) given to a patient by reducing an amount of radiation, which is generated when a digital mammography device is used, through the total variation noise removal algorithm. The present invention suggests the total variation algorithm to maintain breast information as much as possible and to remove the noise. According to the present invention, the AGD given to the patient at 35 kVp, W/Rh, or (AGD; 2.77 mGy), which represents the worst condition, is represented as 0.88 mGy, which is reduced by 2.10 mGy.

Description

전변분에 기초한 노이즈 제거 알고리즘을 이용한 유방 X선 조영장치에서의 선량 감소 방법{Method for Dose reduction in full-field digital mammography using total variation based noise removal algorithms}[0001] The present invention relates to a method for reducing a dose in a mammography apparatus using a noise canceling algorithm based on a full-

본 발명은 전변분(total variation)에 기초한 노이즈 제거 알고리즘을 이용한 유방 X선 조영장치(full-field digital mammography, FFDM)에서의 선량 감소 방법에 관한 것이다. 상세하게는 전변분에 기초한 노이즈 제거 알고리즘을 적용하여 디지털 유방촬영장치 사용시 발생하는 방사선량을 줄여 환자가 받는 평균유선선량(Average glandular dose, AGD)을 최소화할 수 있는 방법에 관한 것이다.
The present invention relates to a dose reduction method in a full-field digital mammography (FFDM) using a noise reduction algorithm based on total variation. More particularly, the present invention relates to a method for minimizing the average glandular dose (AGD) received by a patient by reducing the amount of radiation generated when a digital mammography apparatus is used by applying a noise elimination algorithm based on a full-

유방 촬영술은 만져지지 않는 유방암을 발견하는 가장 우수한 검사 방법이다. 유방은 정상 조직과 병변 조직과의 X선 흡수 정도의 차이가 X선으로 검사하는 다른 신체 부위에 비해 적기 때문에 이러한 차이를 극대화해서 볼 수 있는 고대조도 영상이 필요하다. 따라서 유방 전용 촬영기는 일반 X선 촬영기에 비해 관전압이 낮고(관전압이 감소하면 발생되는 X선의 양이 감소한다), 촬영기의 타깃(target, 각종의 반응을 일으키게 하는 피조사 물질)으로 일반 촬영기에 사용하는 텅스텐이 아니라 몰리브데니움을 사용하며, 촬영 시 압박 기구를 이용하여 촬영한다.
Mammography is the best method of detecting untamaged breast cancer. Because the difference in the degree of X-ray absorption between normal and diseased tissues in breast is smaller than in other body parts examined by X-rays, an ancient illumination image is needed to maximize this difference. Therefore, the mammography camera has lower tube voltage (the amount of X-ray generated when the tube voltage is lowered) is lower than that of a general X-ray apparatus, and the target of the camera is a target It uses molybdenum instead of tungsten, and shoots with a pressing mechanism when shooting.

유방 X선 조영술(full-field digital mammography, FFDM)은 여성들을 대상으로 유방암 검사를 보다 효율적으로 실시할 수 있게 만들었고 기존의 필름형 유방조영술(screen/film mammography, SFM)보다 훨씬 더 많은 사례를 검진할 수 있었다Full-field digital mammography (FFDM) has made it possible for women to perform breast cancer screening more efficiently and to screen for far more cases than conventional screen / film mammography (SFM) Could

유방 촬영기 내에 한 쪽 유방씩 차례대로 놓고 위아래 방향과 내외 방향으로 2번씩 촬영하는 것이 기본 촬영이며, 압박을 하여 충분히 유방 조직을 펴서 검사를 시행해야 적절한 화질에 필요한 방사선량이 줄고 대조도가 향상된다It is the basic photography to take one breast in the mammogram and two times in the up and down direction and the inside and outside direction in order. When the breast is compressed enough to perform the test, the amount of radiation necessary for proper image quality is reduced and the contrast is improved

유방은 유선조직, 섬유조직, 지방조직으로 구성되며, 높은 밀도를 가진 유선과 섬유조직, 그리고 낮은 밀도를 가지는 지방조직의 상대적인 양과 분포에 따라 그 종류를 구분한다. 젊은 여성은 섬유 유선조직이 풍부해 높은 밀도를 보이는 치밀 유방을 가지며, 폐경기를 지나면서 점차 지방으로 대치되어 지방형 유방이 된다. 치밀 유방의 여성에서는 유방 촬영 사진에서 하얗게 보이는 암 조직과 정상 조직이 구분되지 않는다. 비대칭 음영이 보이는 경우, 정상 유방 조직이 한쪽으로 치우친 분포가 나타날 때와 유방암과의 식별이 어렵다. 이때는 추가로 유방 초음파 검사를 시행함으로써 암 발견율을 높일 수 있다.The breast is composed of mammary tissue, fibrous tissue, and adipose tissue. The breast is classified according to the relative amount and distribution of high density mammary tissue and low density lipid tissue. Young women have dense breasts with high density of abundance of fibrous mammary tissues and gradually become fat substitutes after menopause to become fatty breasts. In women with dense breasts, there is no distinction between normal and normal cancer tissues. When asymmetric shadows are seen, it is difficult to distinguish between normal breast tissue and unilateral breast cancer. In this case, breast cancer can be detected by breast ultrasound.

유방 X선 조영술에서는 노출되는 방사선량이 높을수록 좋을 화질을 얻을 수 있으며, 방사선량이 감소할수록 화질은 나빠지게 된다. 따라서, 유방 X선 조영술에서 환자는 일정량 이상의 방사선량에 노출되게 되는데, 최근 의료진단 과정에서 환자가 CT 등 각종 방사선 촬영 장치에 노출되는 빈도가 높아짐에 따라 각종 방사선 촬영 장치에서 노출 방사선량을 줄이기 위한 연구가 시도되고 있다. 그러나, 조사되는 방사선량의 감소는 화질의 열화를 수반하게 되는 문제가 있어, 좋은 영상을 획득하면서도 방사선량을 줄일 수 있는 방법이 필요하다.
In mammography, the higher the exposure dose, the better the image quality. The lower the dose, the worse the image quality. Therefore, in mammography, the patient is exposed to a certain amount of radiation dose. In recent medical diagnosis process, since the frequency of exposing the patient to various radiography apparatuses such as CT is increased, Research is being attempted. However, there is a problem that the reduction of the radiation dose to be irradiated involves the deterioration of the image quality, and a method which can reduce the radiation dose while acquiring a good image is needed.

본 발명은 유방 X선 조영술에서 화질의 열화를 방지하면서도 환자에게 노출되는 평균유선선량을 최소화할 수 있는 방법을 제공하는 것을 그 목적으로 한다.
It is an object of the present invention to provide a method for minimizing the average amount of wire radiation exposed to a patient while preventing deterioration of image quality in mammography.

본 발명은 전변분에 기초한 노이즈 제거 알고리즘을 이용한 유방 X선 조영장치에서의 선량 감소 방법을 제공한다.The present invention provides a method of reducing dose in a mammography apparatus using a noise-canceling algorithm based on a full-variable approach.

본 발명은 전변분(Total variation) 노이즈 제거 알고리즘을 적용하여 디지털 유방촬영장치 사용시 발생하는 방사선량을 줄여 환자가 받는 평균유선선량(average grandular dose, AGD)을 최소화하는 것이다.The present invention minimizes the average grandiose dose (AGD) that a patient receives by reducing the amount of radiation generated when using a digital mammography apparatus by applying a total variation noise elimination algorithm.

본 발명에서는, 전변분(Total variation) 알고리즘을 제안하여 유방정보를 최대한 유지하고 노이즈를 제거하는데 성공하였다.In the present invention, a total variation algorithm has been proposed to maintain maximum breast information and to remove noise.

본 발명을 통해서 화질이 가장 나쁜 조건인 35kVp, W/Rh, (AGD;2.77 mGy) 에서 환자가 받는 AGD는 0.88 mGy 로 나타났다. 2.10 mGy가 감소하는 것이 확인되었다According to the present invention, the AGD of the patient was 0.88 mGy at 35 kVp, W / Rh, (AGD; 2.77 mGy), which is the worst image quality. 2.10 mGy decreased

이러한 본 발명에 의해 유방 X선 조영술에서 화질의 열화를 방지하면서도 환자에게 노출되는 평균유선선량을 최소화할 수 있는 방법을 제공할 수 있다.According to the present invention, it is possible to provide a method for minimizing the average wired dose amount exposed to a patient while preventing deterioration of image quality in mammography.

특히, 본 발명을 통하여, 최적 노출 변수가 조사되어 환자가 진단시 받게 되는 평균유선선량(AGD)을 노이즈제거 필터를 적용하여 줄일 수 있게 된다.
Particularly, through the present invention, the optimal exposure parameter is examined and the average wired dose (AGD) that the patient receives at diagnosis can be reduced by applying a noise elimination filter.

도 1 Digital images of Phantom which acquired through appearance and FFDM used in the experiment
a) The phantom is 4.5 cm thick, simulates a 50% glandular tissue composition
b) Embedded details
c) Digital image of phantom to be used in the experiment
도 2 Example of extracted mass on a real phantom and denoising
a) Image with maximum noise value (W/Rh, 35kVp)
b) Image with minimum noise value (Mo/Mo, 23kVp)
c) Image of results after denoising processing (W/Rh, 35kVp)
d) Image of results after denoising processing denoising (Mo/Mo, 23kVp)
3. Example of extracted mass on a real phantom and denoising
a) Image with maximum noise value (w/rh,35kVp)
b) Image with minimum noise value (mo/mo 23 kVp)
c) Image of results after denoising processing (w/rh, 35kVp)
d) Image of results after denoising processing (mo/mo, 23 kVp)
4. Example of extracted microcalcificaton from extracted mass on a real phantom
a) Image with maximum noise value (w/rh, 35kVp)
b) Image with minimum noise value (mo/mo, 23 kVp)
c) Image of results after denoising processing (w/rh, 35kVp)
d) Image of results after denoising processing (mo/mo, 23 kVp)
5. Suggested image of Phantom is showing microcalcification and mass equivalent step wedged. Quadrangle box suggested in the figure is used for calculation of signal and noise.
6. Distribution of signal values acquired from the mass equivalent step wedge for each filtration-target material
7. Distribution of noise values acquired from the mass equivalent step wedge for each filtration-target material
8. Distribution of contrast values acquired from the mass equivalent step wedge for each filtration-target material
9. Distribution of SNR values acquired from the mass equivalent step wedge for each filtration-target material
10. FOM results to find an optimal exposure parameter
11. Distribution of AGD values according to filtration-target material and, kVp, when using FFDM system
12. Comparision of a denoising filter suggested with median filter and wiener filter
Fig. 1 Digital images of Phantom acquired by through appearance and FFDM used in the experiment
a) The phantom is 4.5 cm thick, simulates a 50% glandular tissue composition
b) Embedded details
c) Digital image of phantom to be used in the experiment
Figure 2 Example of extracted mass on a real phantom and denoising
a) Image with maximum noise value (W / Rh, 35 kVp)
b) Image with minimum noise value (Mo / Mo, 23 kVp)
c) Image of results after denoising processing (W / Rh, 35 kVp)
d) Image of results after denoising processing denoising (Mo / Mo, 23 kVp)
Figure 3. Example of extracted mass on a real phantom and denoising
a) Image with maximum noise value (w / rh, 35 kVp)
b) Image with minimum noise value (mo / mo 23 kVp)
c) Image of results after denoising processing (w / rh, 35 kVp)
d) Image of results after denoising processing (mo / mo, 23 kVp)
Figure 4. Example of extracted microcalcification from extracted mass on a real phantom
a) Image with maximum noise value (w / rh, 35 kVp)
b) Image with minimum noise value (mo / mo, 23 kVp)
c) Image of results after denoising processing (w / rh, 35 kVp)
d) Image of results after denoising processing (mo / mo, 23 kVp)
Figure 5. Suggested image of phantom is showing microcalcification and mass equivalent step wedged. Quadrangle box is used for the calculation of signal and noise.
Figure 6. Distribution of signal values obtained from the mass equivalent step wedge for each filtration-target material
Figure 7. Distribution of noise values obtained from the mass equivalent step wedge for each filtration-target material
Figure 8. Distribution of contrast values obtained from the mass equivalent step wedge for each filtration-target material
Figure 9. Distribution of SNR values obtained from the mass equivalent step wedge for each filtration-target material
Figure 10. FOM results to find an optimal exposure parameter
Figure 11. Distribution of AGD values according to filtration-target material and kV p , when using FFDM system
12. Comparison of a denoising filter with median filter and wiener filter

이하에서는 실시예를 바탕으로 본 발명을 실시하기 위한 구체적인 내용에 대해 상세히 설명하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 구성이 실시예와 관련하여 기술되지만, 이러한 실시예는 본 발명이 구체적으로 실현되기 위한 일례를 기재한 것이고 본 발명의 구성에 기초가 되는 기술적 사상을 제한하거나 한정하는 것은 아니다.
Although the configuration of the present invention is described in connection with the embodiment, such an embodiment describes an example for realizing the present invention concretely, and does not limit or limit the technical idea on which the constitution of the present invention is based.

유방 X선 조영장치(full-field digital mammography, FFDM)에 사용되는 디지털 디텍터는 방사선량의 다양한 범위에 걸쳐 선형 응답 특성을 가지고 있으며 디지털 유방조영술의 노출 매개 변수를 설정하여 수동 또는 자동으로 사용할 수 있다.Digital detectors used in full-field digital mammography (FFDM) have linear response characteristics over a wide range of radiation doses and can be used manually or automatically by setting the exposure parameters of digital mammography .

자동 노출 제어(automatic exposure control, AEC)의 기능을 갖추고 있는 FFDM 시스템은 유방의 두께에 의해 자동으로 mAs 계산하고 많은 경우에 튜브 전압(kVp), 여과-표적 물질(filteration-target material)을 선택적으로 사용하도록 설계되어 있다. FFDM systems with automatic exposure control (AEC) function automatically calculate the mAs by the thickness of the breast, and in many cases select the tube voltage (kVp), filter-target material It is designed for use.

이 기능은 선량 감소의 가능성에 대한 가능성을 제공한다.  디지털 유방조영술에서 mAs를 낮춤으로써 선량을 감소시키면 노이즈가 증가되어 미세석회화에 대한 검출성능이 떨어지는 결과가 된다. 그러나 최적의 노출 매개 변수를 사용하는 것이 매우 중요한데, 이는 최적의 화질을 얻으려는 노력과 함께 병원에서 환자가 노출되는 평균유선선량(Average Grandular Dose, AGD)을 고려하여 여과-표적 물질와 적절한 튜브전압(kVp)을 사용하여 얻을 수 있다.  한편, 노이즈 제거를 통해 화질을 개선하려는 시도는 AGD를 감소시키는데 큰 도움이 될 것이다.
This function provides the possibility for the possibility of dose reduction. Decreasing dose by lowering mAs in digital mammography results in increased noise and poor detection of microcalcifications. However, it is very important to use the optimal exposure parameters because it is important to consider the average Grand Dose (AGD) of the patient exposed at the hospital, together with the effort to obtain optimal image quality, kVp). On the other hand, attempts to improve image quality through noise cancellation will be of great help in reducing AGD.

본 발명에서는, 노이즈, 콘트라스트(contrast), 신호 대 잡음비(signal to noise ratio, SNR) 및 성능지수(figure of merit, FOM)를 측정하여 최적의 여과-표적 물질 및 튜브전압(kVp)을 이해하고, 노이즈 제거 방법을 제공함으로써 이미지의 신호 대 잡음비를 향상시킬 수 있도록 할 것이다.
In the present invention, noise, contrast, signal to noise ratio (SNR), and figure of merit (FOM) are measured to understand the optimal filtration-target material and tube voltage (kVp) , And noise reduction methods, thereby improving the signal-to-noise ratio of the image.

< 실시예 ><Examples>

1. 이미징 프로토콜( Imaging Protocol ) 1. Imaging Protocol (Imaging Protocol )

본 발명의 실시예에서는 이미지를 획득하는데 Siemens Mammomat Inspiration (Siemens, Erlangen, Germany)을 사용하였다.  본 발명의 실시예는 순서에 따라 여과-표적 물질의 조합에 대해 초점을 0.3 및 3 정도의 Mo/Mo, W/Rh 및 Mo/Rh로 적용하여 수행되었다.In the embodiment of the present invention, Siemens Mammomat Inspiration (Siemens, Erlangen, Germany) was used to acquire images. Embodiments of the present invention were performed in order to focus on the combination of filtration-target materials with Mo / Mo, W / Rh and Mo / Rh concentrations of about 0.3 and 3.

병원에서 사용되는 FFDM에서는 수동모드와 AEC 모드가 있는데, AEC 모드가 사용되는 경우 kVp와 여과-표적 물질은 선택적으로 사용하도록 설계되어 있다. 본 실시예는 병원에서 AEC모드가 사용되는 경우 AGD를 감소시킬 수 있는 최적 노출 변수를 조사하고 노이즈 제거 방법을 적용한 결과를 검토하였다.FFDM used in hospitals has passive mode and AEC mode, where kVp and filtration-target material are designed to be used selectively when AEC mode is used. The present embodiment examines the optimal exposure variable that can reduce the AGD when the AEC mode is used in hospitals, and examines the result of applying the noise reduction method.

본 실시예에 사용되는 이미지는 Nuclear Associates Model 18-222의 인체모형(CIRS, 버지니아, 미국)과 FFDM 시스템의 AEC모드를 사용하여 수집하였다. 동시에 entrance surface air kerma (ESAK)와 AGD가 측정되었고 이는 시스템에서 자동으로 지시된다. 그리고, 인체모형은 같은 지점에 고정되고 이미지는 여러개의 전압(23~35 kVp)으로부터 획득되었다. 일 실시예가 종료되면 여과-표적 물질 및 튜브전압(kVp)을 바꿔 실험이 진행되었다. 노이즈 제거 알고리즘을 적용한 후 획득된 테스트 이미지를 평가하는 작업을 반복하였다.
Images used in this example were collected using the human model of Nuclear Associates Model 18-222 (CIRS, Virginia, USA) and the AEC mode of the FFDM system. At the same time, entrance surface air kerma (ESAK) and AGD were measured and are automatically indicated in the system. Then, the anatomical model was fixed at the same point and the image was obtained from several voltages (23 ~ 35 kVp). At the end of one embodiment, the experiment was performed by changing the filtration-target material and the tube voltage (kVp). After applying the noise reduction algorithm, we evaluated the obtained test image.

2. 인체모형(2. Human body model phantomphantom ))

실시예에 사용된 유방조영술에 대한 인체모형과 동등한 조직으로서의 인체모형(CIRS, 버지니아, 미국)이 도 1과 표 1에 세부적으로 설명되어 있다.A human model (CIRS, Virginia, USA) as a human model equivalent to the mammogram used in the examples is detailed in FIG. 1 and Table 1.

Specification of phantom Specification of phantom IndexIndex SpecificationSpecification LineLine pairpair targettarget 1: 20    1: 20 lplp // mmmm GrainGrain sizeyou ( ( mmmm )) 2: 0.1302: 0.130 3: 0.1653: 0.165 4: 0.1964: 0.196 5: 0.2305: 0.230 6: 0.2756: 0.275 7: 0.4007: 0.400 8: 0.2308: 0.230 9: 0.1969: 0.196 10: 0.16510: 0.165 11: 0.23011: 0.230 12: 0.19612: 0.196 13: 0.16513: 0.165 StepStep WedgeWedge (1  (One cmcm thickthick )) 14: 100%  14: 100% glandgland 15: 70% 15: 70% glandgland 16: 50% 16: 50% glandgland 17: 30% 17: 30% glandgland 18: 100%  18: 100% adiposeadipose NylonNylon FibersFibers
( ( diameterdiameter mmmm ))
19. 1.2519. 1.25 20: 0.8320: 0.83 21: 0.7121: 0.71
22: 0.5322: 0.53 23: 0.3023: 0.30 HemisphericHemispheric MassesMasses
75% 75% glandularglandular /25% / 25% AdiposeAdipose
(( thicknessthickness mmmm ))
24: 4.7624: 4.76 25: 3.1625: 3.16 26: 2.3826: 2.38
27: 1.9827: 1.98 28: 1.5928: 1.59 29: 1.1929: 1.19 30: 0.9030: 0.90 DimensionsDimensions
(( LengthwidthhightLengthwidthhight cmcm ))
12.518.54.512.518.54.5

인체 모형은 내부에 7개 덩어리들이 선열이 있는 반구형 형상이며, 왁스가 내재된 나일론 섬유로 채워져 있다. 인체모형은 4.5cm 두께로 50 % 선형 조직 구성이고, 임상적으로 발견되는 것과 비슷한 작은 이미지를 나타내 수 있도록 시스템 성능에 대한 양적평가에 의해 유방조형술 시스템의 수행을 테스트하도록 설계되어 있다.
The anatomical shape is hemispherical in shape with seven lumps inside and is filled with wax-embedded nylon fiber. The anatomy is designed to test the performance of the mammography system by a quantitative assessment of system performance so that a 4.5 cm thick, 50% linear organization is present and a small image similar to that found clinically.

3.  3. 전변분(Total Variation, TV)을Total Variation (TV) 이용한  Used 노이즈noise 제거 방법 How to uninstall

FFDM 시스템에서 발생하는 비상관 소음이 유방조형술 이미지의 SNR 결과에 영향을 미친다. 비상관 소음은 x-선 양자 노이즈, 전자 노이즈 및 열 노이즈를 포함하는데, 이는 검출기의 기본 및 분산 소음이 포함되어 있다.  최적의 노이즈 제거를 위하여, 비선형 특성을 가지는 필터가 요구되어 본 발명은 전변분법(total variation method)을 제안한다.The uncorrelated noise in the FFDM system affects the SNR of the mammogram. Uncorrelated noise includes x-ray quantum noise, electronic noise, and thermal noise, which includes the detector's fundamental and distributed noise. For optimum noise removal, a filter having non-linear characteristics is required, and the present invention proposes a total variation method.

이미지는 Ω의 유계(bounded) 및 개방(open) 도메인으로 정의된 실함수(real function)로 해석될 수 있다.

Figure pat00001
는 함수의 2-norm을 나타낸다.An image can be interpreted as a real function defined as the bounded and open domains of OMEGA.
Figure pat00001
Represents the 2-norm of the function.

Figure pat00002
Figure pat00002

우리 관심은 이미지의 노이즈 제거이다. 노이즈 제거 과정은 이미지의 에지(edges)를 회복해야 하는 것이다.

Figure pat00003
는 관찰된 이미지
Figure pat00004
는 오리지널 이미지이다.Our concern is image noise reduction. The noise reduction process is to recover the edges of the image.
Figure pat00003
The observed image
Figure pat00004
Is the original image.

가정한 모델(the model of degradation)은 수학식 2와 같다.   The model of degradation is shown in Equation 2. &lt;

Figure pat00005
Figure pat00005

Figure pat00006
는 노이즈(noise)
Figure pat00006
Noise,

일반적으로 역산 문제

Figure pat00007
=
Figure pat00008
는 부적절하게 정립된 문제이다. 이는 문제 선량이 데이터 z에 종속되지 않는 것을 의미한다. 이 문제에 대하여 수학식 3은 두 개의 제약 문제(constrained problem)를 보여준다. Generally inversion problem
Figure pat00007
=
Figure pat00008
Is an improperly established problem. This means that the problem dose is not dependent on the data z. Equation 3 for this problem shows two constrained problems.

Figure pat00009
Figure pat00009

따라서, 노이즈 제거 문제는 수학식 4와 같이 작성될 수 있다. Therefore, the noise removal problem can be created as shown in Equation (4).

Figure pat00010
Figure pat00010

Figure pat00011
Figure pat00012
를 실함수로 정의하고,
Figure pat00013
를 최소화하면,
Figure pat00011
Wow
Figure pat00012
Is defined as a real number,
Figure pat00013
If minimized,

Figure pat00014
Figure pat00014

그런 다음  

Figure pat00015
는 수학식 6을 만족해야 한다.after that
Figure pat00015
Must satisfy Equation (6).

Figure pat00016
Figure pat00016

이 방정식은 오일러 - 라그랑 방정식이라 한다. 그리고 수학식 7에 도달할 수 있다..This equation is called the Euler-Lagrange equation. Then, Equation 7 can be reached.

Figure pat00017
Figure pat00017

Figure pat00018
에서
Figure pat00019
.
Figure pat00018
in
Figure pat00019
.

이 솔루션 과정은 evolution parameter로서 시간에 대한 parabolic equation을 사용한다. This solution procedure uses a parabolic equation for time as an evolution parameter.

Figure pat00020
Figure pat00020

 t가 증가함에 따라 목표에 도달할 수 있다. 즉,

Figure pat00021
 가 계산되어야 한다. 정상상태에 도달하면 왼쪽항은 사라진다. 결국 수학식 9을 얻을 수 있다. As t increases, the target can be reached. In other words,
Figure pat00021
Should be calculated. When the steady state is reached, the left term disappears. Consequently, Equation 9 can be obtained.

Figure pat00022
Figure pat00022

Figure pat00023

Figure pat00023

4. 이미지 평가 및 선량 감소4. Image evaluation and dose reduction

수집 이미지에서 화질을 평가하기 위해 이미지 평가에 필요한 유방조형술 ㅇ이미지 신호는 관심영역(regions of interest, ROI)의 정보를 계산하여 얻을 수 있으며, ㅇ이인이느는 도 5 및 수학식 10 내지 14를 통하여 얻어진다.The mammography needed to evaluate the image to evaluate the image quality in the acquired image. The image signal can be obtained by calculating the information of the regions of interest (ROI), which is shown in FIGS. 5 and 10-14 Lt; / RTI &gt;

Figure pat00024
Figure pat00024

Figure pat00025
Figure pat00025

Figure pat00026
Figure pat00026

Figure pat00027
Figure pat00027

Figure pat00028
Figure pat00028

인체모형으로부터 평균신호강도(average signal intensity)를 얻기 위해, 모든 ROI에서 90×90 픽셀이 사용되었다. ROI 1의 위치는 인체모형 내 존재하는 팬텀 내에 존재하는 스탭 웨지(step wedge)에 설정되고, ROI 2는 ROI 2 주위에 ROI 4에 걸쳐 배경(background)으로 동일한 크기로 설정되며, ROI 5는 분리된 지점에 260×220으로 설정된다. 일반적으로, 신호값은 스탭웨지 ROI 1과 배경 ROI 2 사이의 차이를 가짐으로써 얻어진다. 그러나, ROI 1과 ROI 4와 같은 영역들이 추가되고 계산되어져 Heel Effect 및 background trends를 바로 잡는다(수학식 6 참조). 소음 값은 ROI 5 픽셀값의 표준편차값을 가지고 2의 제곱근을 함으로써 얻어진다. 콘트라스트(contrast)는 스탭웨지 ROI 1과 배경(background) ROI 2와의 차이에 대해 계산된다. 그것은 평균배경강도에 의해 표준화되어 있다.  콘트라스트는 항상 높은 강도에 있으며 이는 긍적적이다. SNR은 잡음 전력에 대한 신호 전력의 비율에 의해 표시된다. SNR이 1보다 높은 경우는 소음보다 신호가 많은 것을 가리킨다.To obtain the average signal intensity from the anatomy, 90 x 90 pixels were used in all ROIs. The position of ROI 1 is set in a step wedge that is present in the phantom present in the human body model, ROI 2 is set to the same size as the background over ROI 4 around ROI 2, And is set to 260 x 220 at the point where it is made. In general, the signal value is obtained by having a difference between the step wedge ROI 1 and the background ROI 2. However, regions such as ROI 1 and ROI 4 are added and calculated to correct the Heel Effect and background trends (see Equation 6). The noise value is obtained by taking the square root of 2 with the standard deviation value of the ROI 5 pixel value. The contrast is calculated for the difference between the step wedge ROI 1 and the background ROI 2. It is standardized by average background intensity. The contrast is always high, which is positive. The SNR is indicated by the ratio of the signal power to the noise power. When the SNR is higher than 1, it indicates that there is more signal than noise.

본 발명에서는 SNR과 AGD 사이에서 균형점(tradeoff)을 찾기 위해 윌리엄스가 제시한 성능지수(FOM)를 채택하였다. FOM은 AGD를 최소화하는 반면에 SNR의 최대치를 결정하는데 사용하는 지표이다. 결과값이 높아지면 질수록 보다 향상된 값을 나타낸다. SNR이 노이즈제거 또는 제안된 알고리즘에 대한 매개변수를 평가하는데 사용되는 반면에 FOM은 AGD를 최소화하는데 고려되어야 할 것이다.
In the present invention, the performance index (FOM) proposed by Williams was employed to find a tradeoff between SNR and AGD. The FOM is an index used to determine the maximum SNR while minimizing the AGD. The higher the result, the better the value. While the SNR is used to evaluate the noise reduction or the parameters for the proposed algorithm, the FOM should be considered in minimizing the AGD.

5. 이미지 품질 평가5. Image quality evaluation

신호는 픽셀의 신호 강도에 의해 표시된다. 신호값이 크면 좋은 화질의 이미지가 얻어지고 콘트라스트 및 SNR 값이 증가한다.The signal is indicated by the signal strength of the pixel. If the signal value is large, a good quality image is obtained and the contrast and SNR value are increased.

도 6 (a)는 노이즈 제거가 적용되기 전에 여과 및 표적 물질과 선택적인 kVp의 조합에 따라 신호강도의 결과를 보여준다. 신호강도는 Mo/Mo 23 kVp에서 가장 좋았으며, kVp가 증가하면 감소하는 것으로 나타난다. Mo/꼬 및 W/h 신호26kVp 근사하게 넘는 것으로 나타나는 반면에 Mo/Mo는 빠르게 감소하는 것으로 나타난다. 도 1(b)는 노이즈 제거를 적용한 결과인데 적용전 결과와 비슷함을 알 수 있다. 이것은 노이즈 제거가 신호 강도에는 영향을 주지 않는 것을 보여준다.
FIG. 6 (a) shows the results of signal strength according to the combination of filtration and target material and selective kVp before noise removal is applied. Signal strength was best at Mo / Mo 23 kVp and decreased with increasing kVp. The Mo / Mo and Mo / Mo signals appear to decrease rapidly, while the Mo / Mo and Mo / Mo signals appear to be close to 26kVp. Fig. 1 (b) shows the result of applying noise removal, which is similar to the result before application. This shows that noise rejection does not affect signal strength.

노이즈는 덩어리 또는 미세석회화를 찾아내는 것을 어렵게 하는 원인이 된다. 도 7(a)에서 노이즈가 전압이 증가함에 따라 조금씩 증가된다. 노이즈는 W/Rh 에서 가장 낮고 Mo/Rh보다 평균적으로 0.34가 높다. 도 7(b)에서 노이즈 제거 후 결과를 보면, 결과분포가 적용전과 비슷함을 보여주며 여과 및 표적 물질 조합의 노이즈값이 41.5의 평균에서 전체적으로 2.13까지 많이 감소하는 것을 볼 수 있다.Noise causes lumps or microcalcifications to be difficult to find. In Fig. 7 (a), the noise increases gradually as the voltage increases. Noise is lowest in W / Rh and 0.34 higher on average than Mo / Rh. In Fig. 7 (b), the results after noise removal show that the distribution of results is similar to that before application, and the noise value of the filtration and target material combination decreases significantly from 41.5 to 2.13 as a whole.

도 8(a) 및 (b)는 노이즈 제거 전후의 결과를 보여준다. 콘트라스 결과는 변하지 않은 반면에 신호는 노이즈 제거에 의해 급격히 감소하며(도 7), 특정신호 결과를 사용하여 계산하면 신호강도는 증가되지 않았다.(도 6)8 (a) and 8 (b) show the results before and after noise removal. The contrast is not changed, while the signal is sharply reduced by noise reduction (Figure 7), and signal strength is not increased when calculated using specific signal results (Figure 6).

SNR은 신호값 및 노이즈값 결과를 이용해 계산된다. 분명하게 SNR이 높은 것으로 보여지기 때문에 이는 확인자에게 좋은 정보가 될 수 있다. 도 9(a)의 노이즈 제거가 적용되지 않는다면, SNR은 Mo/Mo 23 kVp에서 6.2로 가장 높았으며 kVp가 증가함에 따라 SNR은 감소한다. Mo/Rh 값은 28 kVp를 넘어 가장 높게 유지되었으며, SNR은 35 kVp에서 3.9fh 가장 낮게 나타났다.The SNR is calculated using the signal value and the noise value result. This can be good information for the verifier because the SNR is clearly seen to be high. 9 (a), the SNR was highest at 6.2 at Mo / Mo 23 kVp and the SNR decreased with increasing kVp. Mo / Rh values remained highest at over 28 kVp and SNR was lowest at 3.9 fh at 35 kVp.

도 9(b)에서, 노이즈 제거가 적용되어 SNR은 35 kVp에서 3.89로 가장 낮게 나타났다. 이는 W/Rh 및 Mo/Rh 보다 31 kVp 만큼 높게 유지되다가 W/Rh 보다 많이 감소하는 현상을 보여준다. W/Rh는 Mo/Mo 보다 낮은 튜브전압이 확인되었고 35 kVp에서 6.58로 가장 낮아진다. 이는 Mo/Mo의 23 kVp의 결과와 비슷한데, 노이즈 제거가 적용되기 전에 경우에 따라서는 SNR이 가장 두드러진다.In FIG. 9 (b), noise rejection was applied and the SNR was lowest at 3.89 from 35 kVp. Which is higher than W / Rh and Mo / Rh by 31 kVp. W / Rh has a lower tube voltage than Mo / Mo and the lowest at 35 kVp to 6.58. This is similar to the result of 23 kVp of Mo / Mo, where the SNR is most noticeable before noise removal is applied.

도 2 및 도 4는 추출된 질량 샘플 및 미세석회화를 가시효과로서 사용한 결과를 설명해 준다. 제안된 노이즈 제거가 노이즈값이 최대인 W/Rh(35 kVp)과 노이즈값이 최소인 Mo/Mo(23 kVp)에 화질이 개선되는 결과를 볼 수 있다. 도 3은 추출 질량 샘플의 프로파일 정보를 이용하여 특수한 해상도 정보를 표시하고 객관적으로 동일한 결과를 증명하고 있다.Figures 2 and 4 illustrate the results of using extracted mass samples and microcalcifications as visual effects. We can see that the proposed noise reduction improves picture quality in W / Rh (35 kVp) with the maximum noise value and Mo / Mo (23 kVp) with the minimum noise value. FIG. 3 shows specific resolution information using profile information of extracted mass samples and demonstrates objectively the same result.

 

6.  최적의 노출 매개 변수에 대한 6. For optimal exposure parameters FOMFOM 계산 Calculation

SNR 및 AGD가 동시에 고려되는 지표로 FOM은 환자의 방사선 선량을 최소화하기위한 최적의 노출 매개 변수를 얻을 수 있다.SNR and AGD are considered simultaneously, and the FOM can obtain optimal exposure parameters to minimize the radiation dose of the patient.

실시예에 따르면, 노이즈 제거 적용전에 FOM은 W/Rh의 29 kVp에서 23.95로 가장 높은 것으로 나타났다. 현재 SNR은 6.22에서 4.59로 떨어졌고, AGD는 2.77 mGy에서 0.88 mGy로 감소했다.  그리고 나서, FOM 결과는 순서대로 Mo/Rh 26 kVp에서 18.25 및 Mo/Mo 27 kVp에서 16.35로 높았다.According to the example, FOM was highest at 23 kVp of W / Rh, 23.95 before noise removal application. The current SNR has dropped from 6.22 to 4.59, and the AGD has decreased from 2.77 mGy to 0.88 mGy. The FOM results were then as high as 18.25 at Mo / Rh 26 kVp and 16.35 at 27 kVp for Mo / Mo, respectively.

노이즈 제거 후에 AGD를 고려하면, FOM은 W/Rh 29 kVp에서 89.48로 가장 높았다.  이때, SNR은 6.22에서 9.57로 개선하고 AGD는 2.77에서 0.88로 감소되어, Mo/Rh 및 Mo/Mo에서의 결과를 보여주고 Mo/Rh의 FOM은 24~26 kVp 전에서 약간 크나 27 kVp 이상에서는 비슷하게 나타난다.Considering AGD after noise removal, FOM was the highest at 89.48 at W / Rh 29 kVp. At this time, the SNR improved from 6.22 to 9.57 and the AGD decreased from 2.77 to 0.88, showing the results for Mo / Rh and Mo / Mo, and the FOM of Mo / Rh was slightly larger than 24-26 kVp, but above 27 kVp It appears similar.

우선적으로 환자의 방사선 노출 선량에 대한 최소화를 고려하기 위해, W/Rh 35 kVp는 상용화될 수 있고(도 11 참조), 이때 AGD는 0.67이다. 노이즈 제거가 적용된 때(noise 2.37, SNR 9.73), 적용전 가장 좋은 SNR을 나타낸 Mo/Mo 23 kVp(noise 3.77, SNR 6.23)보다 더 좋은 화질이 얻어지며, 노이즈 제거 프로세스 후 AGD를 2.10mGy로 줄일 수 있다.To initially consider minimization of radiation exposure dose to the patient, W / Rh 35 kVp can be commercialized (see Figure 11), with an AGD of 0.67. When the noise removal is applied (noise 2.37, SNR 9.73), better image quality is obtained than Mo / Mo 23 kVp (noise 3.77, SNR 6.23) which shows the best SNR before application and AGD is reduced to 2.10 mGy after noise removal process .

 

7.      7. DenoisingDenoising 방법의 비교 결과 Comparison of methods

본 발명의 실시예를 TV 노이즈 제거 방법으로 이전에 제안된 median filter, Wiener filter와 비교하였다.  노이즈가 Wiener filter에서는 2.6±0.13의 평균 값으로 최악이었으며, 본 발명의 방법에서는 1.56±0.07의 평균값으로 최상이었다. 도 12의 SNR 결과를 보면, Wiener filter는 7.69±7.47의 평균 값으로 최악이었고, 본 발명의 방법에서는 12.83±0.1의 평균값으로 최상이었다. 도 12(c)에서 ADG값이 반영된 FOM은 본 발명의 방법에서 183.73±22.37의 평균값으로 가장 뛰어났으며, 다음으로 80.21±7.47로 median filter에서 65.98±6.02의 wiener filter에서 순서대로 나타났다.The embodiment of the present invention is compared with the previously proposed median filter and Wiener filter by the TV noise reduction method. Noise was worst with an average value of 2.6 ± 0.13 for the Wiener filter, and was the best with an average value of 1.56 ± 0.07 for the method of the present invention. In the SNR results of FIG. 12, the Wiener filter was the worst at an average value of 7.69 +/- 7.47, and was the best at an average value of 12.83 +/- 0.1 in the method of the present invention. In FIG. 12 (c), the FOM with the ADG value was the best in the method of the present invention with an average value of 183.73 ± 22.37, followed by 80.21 ± 7.47 and median filter with 65.98 ± 6.02 wiener filters.

Comparision of results before denoising filter processing for image at 35kVp of W/Rh with the smallest AGD Comparison of results before denoising filter processing for image at 35kV p of W / Rh with the smallest AGD FilterFilter SignalSignal NoiseNoise ContrastContrast SNRSNR OriginalOriginal 16.7616.76 4.684.68 0.190.19 3.583.58 WienerWiener 16.7816.78 2.902.90 2.892.89 5.805.80 MedianMedian 16.7916.79 2.472.47 0.190.19 6.796.79 ProposedProposed MethodMethod 16.7216.72 1.721.72 0.190.19 9.739.73

AGD summary for the digital mammography system obtained at various voltages.AGD summary for the digital mammography system obtained at various voltages. Mo/Mo (mGy)Mo / Mo (mGy) W/Rh (mGy)W / Rh (mGy) Mo/Rh (mGy)Mo / Rh (mGy) ESDESD MGDMGD ESDESD MGDMGD ESDESD MGDMGD 12.312.3 2.772.77 3.13.1 1.321.32 7.17.1 2.192.19 10.510.5 2.422.42 2.62.6 1.061.06 5.85.8 1.811.81 8.78.7 2.12.1 2.32.3 1.051.05 5.45.4 1.721.72 88 1.981.98 2.32.3 0.990.99 4.94.9 1.571.57 7.17.1 1.791.79 2.22.2 0.950.95 4.64.6 1.51.5 6.46.4 1.631.63 2.12.1 0.920.92 4.34.3 1.451.45 5.85.8 1.511.51 22 0.880.88 4.14.1 1.391.39 5.35.3 1.391.39 1.91.9 0.850.85 3.93.9 1.341.34 4.84.8 1.31.3 1.81.8 0.810.81 3.83.8 1.291.29 4.54.5 1.221.22 1.71.7 0.780.78 3.63.6 1.251.25 4.24.2 1.161.16 1.61.6 0.740.74 3.53.5 1.211.21 44 1.131.13 1.51.5 0.710.71 3.33.3 1.181.18 3.83.8 1.061.06 1.41.4 0.670.67 3.23.2 1.151.15

이상과 같이 도면과 명세서에서 최적 실시 예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, an optimal embodiment has been disclosed in the drawings and specification. Although specific terms have been employed herein, they are used for purposes of illustration only and are not intended to limit the scope of the invention as defined in the claims or the claims. Therefore, those skilled in the art will appreciate that various modifications and equivalent embodiments are possible without departing from the scope of the present invention. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (1)

노이즈 제거 알고리즘을 적용하여 촬영시 발생되는 방사선량을 줄이는 것을 특징으로 하는 선량 감소 방법.
Wherein the noise reduction algorithm is applied to reduce the radiation dose during the photographing.
KR1020120158747A 2012-12-31 2012-12-31 Method for Dose reduction in full-field digital mammography using total variation based noise removal algorithms KR101891833B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120158747A KR101891833B1 (en) 2012-12-31 2012-12-31 Method for Dose reduction in full-field digital mammography using total variation based noise removal algorithms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120158747A KR101891833B1 (en) 2012-12-31 2012-12-31 Method for Dose reduction in full-field digital mammography using total variation based noise removal algorithms

Publications (2)

Publication Number Publication Date
KR20140090311A true KR20140090311A (en) 2014-07-17
KR101891833B1 KR101891833B1 (en) 2018-08-24

Family

ID=51737964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120158747A KR101891833B1 (en) 2012-12-31 2012-12-31 Method for Dose reduction in full-field digital mammography using total variation based noise removal algorithms

Country Status (1)

Country Link
KR (1) KR101891833B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696200A (en) * 1992-06-19 1994-04-08 Agfa Gevaert Nv Method and device for decreasing noise
JP2001068294A (en) * 1999-07-12 2001-03-16 General Electric Co <Ge> Exposure quantity management/control system and method
KR20010102023A (en) * 1999-12-13 2001-11-15 추후제출 Tomographic imaging scan condition determining method, tomographic imaging method and x-ray ct apparatus
WO2012056364A1 (en) * 2010-10-27 2012-05-03 Koninklijke Philips Electronics N.V. Low dose ct denoising

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696200A (en) * 1992-06-19 1994-04-08 Agfa Gevaert Nv Method and device for decreasing noise
JP2001068294A (en) * 1999-07-12 2001-03-16 General Electric Co <Ge> Exposure quantity management/control system and method
KR20010102023A (en) * 1999-12-13 2001-11-15 추후제출 Tomographic imaging scan condition determining method, tomographic imaging method and x-ray ct apparatus
WO2012056364A1 (en) * 2010-10-27 2012-05-03 Koninklijke Philips Electronics N.V. Low dose ct denoising

Also Published As

Publication number Publication date
KR101891833B1 (en) 2018-08-24

Similar Documents

Publication Publication Date Title
JP4424706B2 (en) Automatic detection method of glandular tissue
JP5844296B2 (en) Radiation image processing apparatus and method
JP6006193B2 (en) Radiation image processing apparatus and method, and program
CN107753048B (en) X-ray imaging apparatus
JP6122269B2 (en) Image processing apparatus, image processing method, and program
JP6223781B2 (en) Radiation image processing apparatus and method, and program
JP5536284B2 (en) Image processing method and apparatus, and medical image system using the same
JP2017143943A (en) Radiation image processing device, method, and program
JP6174217B2 (en) Radiation image processing apparatus and method, and program
US10430930B2 (en) Image processing apparatus, image processing method, and image processing program for performing dynamic range compression process
JP6824133B2 (en) Image processing equipment, image processing method, and image processing program
KR20140043317A (en) High dynamic range mammography using a restricted dynamic range full field digital mammogram
US7746976B2 (en) Bone mineral density assessment using mammography system
US9595116B2 (en) Body motion detection device and method
CN110458913B (en) Method for correcting bone hardening artifacts in image reconstruction by multi-threshold segmentation CT image
EP2895074A1 (en) Mammographic tomography test phantom
WO2020059306A1 (en) Image processing device, image processing method, and image processing program
US9101325B2 (en) Chest radiography image contrast and exposure dose optimization
KR20160065674A (en) Medical image apparatus and method for processing medical image
JP2004283410A (en) Medical image generation apparatus, medical image processing system, method for adjusting photographing condition, and method for adjusting detecting condition of abnormal shade candidate
Takashima et al. A flat-panel detector digital radiography and a storage phosphor computed radiography: screening for pneumoconioses
KR101891833B1 (en) Method for Dose reduction in full-field digital mammography using total variation based noise removal algorithms
Kwak et al. Quantitative study of total variation (TV) noise reduction algorithm with chest X-ray imaging
Suad et al. Analysis of application of mean glandular dose and factors on which it depends to patients aged 65 to 80
Giannotti et al. Propagation-based phase-contrast breast computed tomography: a visual grading assessment of the performance of photon-counting and flat-panel X-ray detectors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant