KR20140079952A - Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid - Google Patents

Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid Download PDF

Info

Publication number
KR20140079952A
KR20140079952A KR1020120149184A KR20120149184A KR20140079952A KR 20140079952 A KR20140079952 A KR 20140079952A KR 1020120149184 A KR1020120149184 A KR 1020120149184A KR 20120149184 A KR20120149184 A KR 20120149184A KR 20140079952 A KR20140079952 A KR 20140079952A
Authority
KR
South Korea
Prior art keywords
carbon fibers
carbon fiber
sulfuric acid
nitric acid
manufacturing
Prior art date
Application number
KR1020120149184A
Other languages
Korean (ko)
Other versions
KR101418877B1 (en
Inventor
박수진
정건
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020120149184A priority Critical patent/KR101418877B1/en
Publication of KR20140079952A publication Critical patent/KR20140079952A/en
Application granted granted Critical
Publication of KR101418877B1 publication Critical patent/KR101418877B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/244Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus
    • D06M13/248Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing sulfur or phosphorus with compounds containing sulfur
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention relates to a method for manufacturing anodized carbon fibers using the mixed acidic electrolyte solution of sulfuric acid and nitric acid and, more particularly, to a high-performance carbon fibers that has interfacial bonding strength with resin used for a matrix improved by anodizing the carbon fibers with the mixed acidic electrolyte solution of sulfuric acid and nitric acid, thereby introducing functional groups of oxygen; and a manufacturing method thereof. The present invention provides a method for manufacturing anodized carbon fibers by the electrochemical surface treatment of the acidic electrolyte solution in the process of applying an electric current to the acidic electrolyte solution wherein sulfuric acid and nitric acid are present in a volumetric ratio of 1:3 or 3:1. Therefore, a continuous process without damage to the carbon fibers and stable treatment are enabled, and the interfacial bonding strength with the resin matrix is improved and excellent mechanical properties can be exhibited as the carbon fibers has high surface energy.

Description

황산과 질산을 혼합한 산성 전해 용액으로 양극 산화된 탄소섬유의 제조방법{MANUFACTURING METHOD OF ANODIZED CARBON FIBERS USING ACIDIC LIQUID ELECTROLYTES MIXED SULFURIC ACID AND NITRIC ACID}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method of producing an anodized carbon fiber by an acidic electrolytic solution comprising sulfuric acid and nitric acid,

본 발명은 황산과 질산을 혼합한 산성 전해 용액으로 양극 산화된 탄소섬유의 제조방법에 관한 것으로서, 더욱 상세하게는 탄소섬유를 황산과 질산을 혼합한 산성 전해 용액으로 양극 산화시켜 산소 관능기를 도입함으로써 매트릭스로 사용되는 수지와의 계면결합력을 향상시킨 고성능 탄소섬유 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing an anodized carbon fiber by an acidic electrolytic solution in which sulfuric acid and nitric acid are mixed, and more particularly, to an anodic oxidation method for introducing an oxygen functional group into an acidic electrolytic solution containing sulfuric acid and nitric acid The present invention relates to a high performance carbon fiber having improved interfacial bonding strength with a resin used as a matrix, and a method of producing the same.

탄소섬유는 고강도, 고탄성, 높은 열적 특성 및 높은 전도도를 가지는 첨단소재로서, 군사용품, 항공, 건축자재 및 선박 등의 산업에 폭넓게 이용되고 있다. 특히 탄소섬유를 이용하여 제조되는 탄소섬유 강화 복합재료는 높은 비강도, 경량성, 내피로성, 내약품성 및 고탄성률 등 많은 장점으로 인해 베어링, 기어, 캠과 같은 고강도를 필요로 하는 곳이나 자동차 동체와 같은 운송장비 분야 및 스포츠 용품 분야에서 사용되고 있을 뿐만 아니라, 항공 우주 산업, 전기 전자 재료, 토목 건축 재료, 군사 장비 등 다양한 분야에서 널리 사용되고 있는 유망한 신소재이다.Carbon fibers are high-tech materials with high strength, high elasticity, high thermal properties and high conductivity, and are widely used in industries such as military supplies, aviation, building materials and ships. Particularly, carbon fiber reinforced composite materials manufactured using carbon fiber have many advantages such as high non-strength, light weight, fatigue resistance, chemical resistance and high elastic modulus, And is also a promising new material widely used in a variety of fields such as aerospace industry, electric and electronic materials, civil engineering building materials, military equipment, and the like.

이러한 강화재로서의 탄소섬유는 최종 열처리 온도에 의해 그 종류가 나누어지며, 일반적으로 열처리 온도가 증가할수록 계면결합력은 감소하는 경향을 보이는데 이는 열처리 온도가 증가할수록 결정구조가 완벽해져 표면 에너지가 낮아지기 때문이다. 또한, 열처리 온도를 1,000 내지 1,500℃까지 가열하여 탄화시킨 고강도 탄소섬유는 일반적으로 크로멘(chromene)이나 피론(pyrone)과 같은 염기성 관능기를 가지거나 탄소원자 자체가 루이스 염기성을 띠게 된다고 알려져 있다. In general, as the heat treatment temperature increases, the interfacial bonding force tends to decrease because the crystal structure becomes perfect and the surface energy decreases as the heat treatment temperature increases. It is also known that high-strength carbon fibers carbonized by heating at a temperature of 1,000 to 1,500 占 폚 at a heat treatment temperature generally have basic functional groups such as chromene and pyrone, or carbon atoms themselves have a Lewis basicity.

일반적으로 섬유강화 복합재의 물성은 강화재로 사용되는 섬유와 기지재료(matrix)의 물성에 크게 의존하지만, 외부충격의 일차적인 확산 경로로 작용하는 섬유와 매트릭스의 접촉계면에서의 결합력에 의해서도 크게 좌우된다고 알려져 있다. 복합재료의 계면(interface)은 복합재료에서 가장 중요한 심장부로서 복합재료의 물성에 결정적인 영향을 미치게 되며, 섬유와 매트릭스 수지와의 계면결합력은 강화섬유, 수지의 종류, 섬유와 수지의 표면상태(흠집, 표면처리)에 따라 영향을 받는다.In general, the physical properties of the fiber-reinforced composite material depend largely on the physical properties of the fiber and the matrix used as the reinforcing material, but also largely on the bonding strength between the fiber and the matrix, which act as the primary diffusion path of the external impact, It is known. The interface of the composite material is the most important core part of the composite material and has a decisive influence on the physical properties of the composite material. The interfacial bonding force between the fiber and the matrix resin depends on the type of the reinforcing fiber, the resin, , Surface treatment).

탄소섬유의 계면결합력은 섬유의 표면적을 늘려 더 많은 접촉점을 제공하거나 섬유와 수지 사이의 물리화학적 상호작용을 증가시킴으로써 향상될 수 있다. 이와 같은 계면결합력을 향상시키기 위해 탄소섬유를 표면처리하는 방법인 기상산화, 액상산화, 전기화학적 산화 등이 연구되어 왔으며, 대한민국 공개특허 제10-2011-0034728호(연속식 상압플라즈마 장치를 이용한 탄소섬유의 표면처리방법), 대한민국 등록특허 제10-1189153호(기계적 계면 강도가 강화된 탄소섬유강화 복합재 제조방법), 대한민국 등록특허 제10-0572995(전해도금법에 의한 니켈 도금된 탄소섬유의 제조방법) 등이 있다.The interfacial bonding strength of carbon fibers can be improved by increasing the surface area of the fibers to provide more contact points or by increasing the physicochemical interactions between the fibers and the resin. In order to improve the interfacial bonding force, a method of surface treatment of carbon fibers, such as gas phase oxidation, liquid phase oxidation and electrochemical oxidation has been studied. Korean Patent Publication No. 10-2011-0034728 (carbon using continuous atmospheric pressure plasma apparatus Korean Patent No. 10-1189153 (Method of manufacturing a carbon fiber reinforced composite material having enhanced mechanical interface strength), Korean Patent Registration No. 10-0572995 (Method of manufacturing nickel-plated carbon fiber by electrolytic plating method) ).

종래 염기성 수용액을 전해 용액으로 사용하고 비교적 높은 전류로 탄소섬유를 전기화학적으로 표면처리한 경우, 탄소섬유 표면 자체를 손상시키고 그로 인해 매트릭스 수지와의 계면결합력이 감소되는 문제점이 있었다.When the conventional basic aqueous solution is used as an electrolytic solution and electrochemically surface-treated with carbon fibers at a relatively high current, there is a problem that the surface of the carbon fiber itself is damaged and the interface bonding force with the matrix resin is reduced.

본 발명의 목적은 황산과 질산의 부피비가 1 : 3 내지 3 : 1인 산성 전해 용액에 전류를 인가함으로써 전기화학적으로 표면처리하여 양극 산화된 탄소섬유의 제조방법을 제공함으로써, 단순히 하나의 산성 용액으로 표면처리하는 방법이 아닌, 황산과 질산의 부피비에 따라 탄소섬유를 표면처리하여 탄소섬유의 표면을 부드럽게 하고 산화 처리하여 카르복실기, 하이드록시기, 카르보닐기 등 산소 관능기를 도입함으로써 높은 표면 에너지를 가져 매트릭스 수지와의 계면결합력이 향상되고 우수한 기계적 특성, 즉 우수한 층간전단강도(interlaminar shear strength)를 갖는 고성능 탄소섬유를 제공함에 있다.An object of the present invention is to provide a method for producing an anodized carbon fiber by electrochemically surface-treating an acidic electrolytic solution having a volume ratio of sulfuric acid and nitric acid of 1: 3 to 3: 1, , Surface treatment of carbon fibers is carried out according to the volume ratio of sulfuric acid and nitric acid to smooth the surface of the carbon fiber and oxidation treatment to introduce oxygen functional groups such as carboxyl group, hydroxyl group and carbonyl group, To provide a high-performance carbon fiber having an improved interfacial bonding force with a resin and excellent mechanical properties, that is, an excellent interlaminar shear strength.

상기 목적을 달성하기 위하여, 본 발명은 탄소섬유를 표면처리하는 방법에 있어서, 황산과 질산의 부피비가 1 : 3 내지 3 : 1인 산성 전해 용액에 전류를 인가하고 전기화학적으로 표면처리하여 양극 산화된 탄소섬유의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method of surface-treating carbon fibers, which comprises applying an electric current to an acidic electrolytic solution having a volume ratio of sulfuric acid and nitric acid of 1: 3 to 3: 1 and electrochemically surface- And a method for producing the carbon fiber.

상기 산성 전해 용액의 농도는 20%인 것을 특징으로 한다.And the concentration of the acid electrolytic solution is 20%.

상기 전류는 0.1 내지 1A/㎡의 전류밀도로 전류를 인가하는 것을 특징으로 한다.And the current is applied at a current density of 0.1 to 1 A / m < 2 >.

상기 전류는 1분 동안 전류를 인가하는 것을 특징으로 한다.Characterized in that the current is applied for one minute.

또한, 본 발명은 상기와 같은 방법으로 제조된 양극 산화된 탄소섬유를 제공한다.The present invention also provides an anodized carbon fiber produced by the above method.

또한, 본 발명은 상기 양극 산화된 탄소섬유와 에폭시 수지로 이루어진 탄소섬유/에폭시 복합재료를 제공한다.The present invention also provides a carbon fiber / epoxy composite material comprising the anodized carbon fiber and the epoxy resin.

상기 탄소섬유/에폭시 복합재료는 30 내지 100MPa 범위에서의 층간전단강도(interlaminar shear strength)를 갖는 것을 특징으로 한다.The carbon fiber / epoxy composite material has an interlaminar shear strength in the range of 30 to 100 MPa.

상기와 같은 본 발명에 따르면, 황산과 질산의 부피비가 1 : 3 내지 3 : 1인 산성 전해 용액에 전류를 인가함으로써 전기화학적으로 표면처리하여 양극 산화된 탄소섬유의 제조방법을 제공함으로써, 탄소섬유의 손상 없이 연속공정이 가능하고 안정적인 처리가 가능함과 동시에 탄소섬유가 높은 표면 에너지를 가지게 되어 수지 매트릭스와의 계면결합력이 향상되고 우수한 기계적 특성을 발현할 수 있는 효과가 있다. According to the present invention, there is provided a method for producing an anodized carbon fiber by electrochemically surface-treating an acidic electrolytic solution having a volume ratio of sulfuric acid and nitric acid of 1: 3 to 3: 1, It is possible to carry out the continuous process without damage of the carbon fiber, and the carbon fiber has a high surface energy, thereby improving the interfacial bonding strength with the resin matrix and exhibiting excellent mechanical properties.

도 1은 본 발명에 따라 표면처리된 탄소섬유로 만들어진 복합재료의 층간전단강도를 나타낸 그래프이다.1 is a graph showing the interlaminar shear strength of a composite material made of carbon fibers surface-treated according to the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 탄소섬유를 표면처리하는 방법에 있어서, 황산과 질산의 부피비가 1 : 3 내지 3 : 1인 산성 전해 용액에 전류를 인가하고 전기화학적으로 표면처리하여 양극 산화된 탄소섬유의 제조방법을 제공한다.The present invention relates to a method of surface-treating a carbon fiber, which comprises applying an electric current to an acidic electrolytic solution having a volume ratio of sulfuric acid and nitric acid of 1: 3 to 3: 1 and electrochemically surface- to provide.

이때, 황산과 질산의 부피비는 3 : 1인 것이 최적의 효과를 나타낸다.At this time, the volume ratio of sulfuric acid and nitric acid is 3: 1, which shows the optimum effect.

상기 산성 전해 용액의 농도는 10 내지 40%일 수 있으며, 20%일 때 최적의 효과를 나타낸다. The concentration of the acid electrolytic solution may be 10 to 40%, and when the concentration is 20%, the optimum effect is exhibited.

상기 전류는 0.1 내지 1A/㎡의 전류밀도로 전류를 인가하는 것이 바람직하며, 0.4 내지 0.7A/㎡인 것이 최적의 효과를 나타낸다.The current is preferably applied at a current density of 0.1 to 1 A / m < 2 >, and 0.4 to 0.7 A / m < 2 >

상기 전류는 10 내지 120초 동안 인가할 수 있으며, 1분 동안 인가하는 것이 최적의 효과를 나타낸다.The current can be applied for 10 to 120 seconds, and it is optimal to apply for 1 minute.

산성 전해 용액의 농도와 전류밀도 및 전류인가시간이 상기와 같은 범위보다 낮을 경우 양극 산화에 의해 해리되는 전해질의 농도가 낮아 탄소섬유 표면에 생성되는 산소 관능기의 양이 적어질 수 있고, 반대로 상기와 같은 범위보다 높을 경우 양극 산화에 의해 해리되어 나오는 많은 전해질이 탄소섬유 표면을 부식시키고 섬유 축 방향의 에칭 현상으로 인해 매트릭스 수지와의 계면결합력이 감소할 수 있어 바람직하지 않다.When the concentration of the acidic electrolytic solution and the current density and the current application time are lower than the above range, the concentration of the electrolyte dissociated by anodic oxidation is low, so that the amount of oxygen functional groups generated on the surface of the carbon fiber can be reduced. If it is higher than the same range, it is not preferable because many electrolytes dissociated by anodic oxidation may corrode the surface of the carbon fiber and the interfacial bonding force with the matrix resin may decrease due to the etching phenomenon in the fiber axis direction.

또한, 본 발명은 상기와 같은 제조방법에 의해 제조된 양극 산화된 탄소섬유를 제공한다. In addition, the present invention provides the anodized carbon fiber produced by the above-mentioned production method.

또한, 본 발명은 상기 양극 산화된 탄소섬유와 에폭시 수지로 이루어진 탄소섬유/에폭시 복합재료를 제공한다.The present invention also provides a carbon fiber / epoxy composite material comprising the anodized carbon fiber and the epoxy resin.

이때, 에폭시 수지는 일반 비스페놀 A형 에폭시(DGEBA type Epoxy)인 것이 바람직하다.At this time, the epoxy resin is preferably a general bisphenol A type epoxy (DGEBA type epoxy).

상기 탄소섬유/에폭시 복합재료는 30 내지 100MPa 범위에서의 층간전단강도(interlaminar shear strength)를 갖는 것을 특징으로 한다.The carbon fiber / epoxy composite material has an interlaminar shear strength in the range of 30 to 100 MPa.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are merely illustrative of the present invention and that the scope of the present invention is not construed as being limited by these embodiments.

실시예 1.Example 1.

강화재로 고강도 PAN계 탄소섬유 TZ-607 제품을 이용하고, 전해 용액은 HNO3 용액 200mL가 들어간 1L 수용액을 사용하여 1분 동안 0.4A/㎡의 전류 밀도로 전기화학적으로 표면처리한 다음 증류수로 세척하고 건조시켰다. The high strength PAN-based carbon fiber TZ-607 was used as the reinforcement, and the electrolytic solution was electrochemically surface-treated at a current density of 0.4 A / m 2 for 1 minute using a 1 L aqueous solution containing 200 mL of HNO 3 solution, And dried.

이후, 매트릭스로 국내 국도화학(주)의 2관능성 에폭시 올리고머인 비스페놀 A의 디글리시딜 에테르(DGEBA, YD-128)계 에폭시 수지와 경화제로 아미노 디페닐 메탄(DDM)을 사용하였다. 에폭시 수지는 탄소섬유로의 원활한 함침과 일방향 프리프레그 제조시 작업의 편리함을 위해 메틸에틸케톤 (MEK)으로 희석하여 사용하였다. Subsequently, diglycidyl ether (DGEBA, YD-128) epoxy resin of bisphenol A, which is a bifunctional epoxy oligomer of Kukdo Chemical Co., Ltd., and amino diphenylmethane (DDM), as a curing agent, were used as a matrix. Epoxy resin was diluted with methyl ethyl ketone (MEK) for smooth impregnation with carbon fiber and for convenience in manufacturing unidirectional prepreg.

일방향 프리프레그를 적층하고, 적층된 프리프레그를 열압착기를 이용하여 진공분위기 하에서 열과 압력에 의해 성형하였다. 경화 조건은 10MPa의 압력을 가함과 동시에 150℃에서 2시간 30분 동안 경화시켰으며, 최종 경화물의 섬유 부피는 50 내지 60으로 조절하였다.Unidirectional prepregs were laminated, and the laminated prepregs were formed by heat and pressure in a vacuum atmosphere using a thermocompressor. The curing conditions were applied at a pressure of 10 MPa and at the same time curing for 2 hours and 30 minutes at 150 ° C, and the fiber volume of the final cured product was adjusted to 50-60.

실시예 2.Example 2.

상기 실시예 1.과 동일한 과정을 실시하되, 전해 용액은 H2SO4 용액 200mL가 들어간 1L 수용액을 사용하여 1분 동안 0.4A/㎡의 전류 밀도로 전기화학적으로 표면처리한 후 상기 실시예 1.과 동일한 과정을 실시하여 복합재료를 제조하였다.The electrolytic solution was electrochemically surface-treated at a current density of 0.4 A / m < 2 > for 1 minute using a 1 L aqueous solution containing 200 mL of a H 2 SO 4 solution, . The composite material was prepared by the same procedure as in Example 1.

실시예 3.Example 3.

상기 실시예 1.과 동일한 과정을 실시하되, 전해 용액은 HNO3 용액 100mL, H2SO4 용액 100mL 들어간 1L 수용액을 사용하여 1분 동안 0.4A/㎡의 전류 밀도로 전기화학적으로 표면처리한 후 상기 실시예 1.과 동일한 과정을 실시하여 복합재료를 제조하였다.The electrolytic solution was electrochemically surface-treated with a 1 L aqueous solution containing 100 mL of HNO 3 solution and 100 mL of H 2 SO 4 solution at a current density of 0.4 A / m 2 for 1 minute The same procedure as in Example 1 was carried out to prepare a composite material.

실시예 4.Example 4.

상기 실시예 1.과 동일한 과정을 실시하되, 전해 용액은 HNO3 용액 133mL, H2SO4 용액 66mL 들어간 1L 수용액을 사용하여 1분 동안 0.4A/㎡의 전류 밀도로 전기화학적으로 표면처리한 후 상기 실시예 1.과 동일한 과정을 실시하여 복합재료를 제조하였다.The electrolytic solution was electrochemically surface-treated at a current density of 0.4 A / m 2 for 1 minute using a 1 L aqueous solution containing 133 mL of HNO 3 solution and 66 mL of H 2 SO 4 solution The same procedure as in Example 1 was carried out to prepare a composite material.

실시예 5.Example 5.

상기 실시예 1.과 동일한 과정을 실시하되, 전해 용액은 HNO3 용액 66mL, H2SO4 용액 133mL 들어간 1L 수용액을 사용하여 1분 동안 0.4A/㎡의 전류 밀도로 전기화학적으로 표면처리한 후 상기 실시예 1.과 동일한 과정을 실시하여 복합재료를 제조하였다.The electrolytic solution was subjected to electrochemical surface treatment at a current density of 0.4 A / m 2 for 1 minute using a 1 L aqueous solution containing 66 mL of HNO 3 solution and 133 mL of H 2 SO 4 solution The same procedure as in Example 1 was carried out to prepare a composite material.

실시예 6.Example 6.

상기 실시예 1.과 동일한 과정을 실시하되, 전해 용액은 HNO3 용액 150mL, H2SO4 용액 50mL 들어간 1L 수용액을 사용하여 1분 동안 0.4A/㎡의 전류 밀도로 전기화학적으로 표면처리한 후 상기 실시예 1.과 동일한 과정을 실시하여 복합재료를 제조하였다.The electrolytic solution was electrochemically surface-treated with a 1 L aqueous solution containing 150 mL of HNO 3 solution and 50 mL of H 2 SO 4 solution at a current density of 0.4 A / m 2 for 1 minute The same procedure as in Example 1 was carried out to prepare a composite material.

실시예 7.Example 7.

상기 실시예 1.과 동일한 과정을 실시하되, 전해 용액은 HNO3 용액 50mL, H2SO4 용액 150mL 들어간 1L 수용액을 사용하여 1분 동안 0.4A/㎡의 전류 밀도로 전기화학적으로 표면처리한 후 상기 실시예 1.과 동일한 과정을 실시하여 복합재료를 제조하였다.The electrolytic solution was electrochemically surface-treated with a 1 L aqueous solution containing 50 mL of HNO 3 solution and 150 mL of H 2 SO 4 solution at a current density of 0.4 A / m 2 for 1 minute The same procedure as in Example 1 was carried out to prepare a composite material.

비교예.Comparative Example.

탄소섬유를 증류수를 이용하여 상온에서 세척한 후, 상기 실시예 1.과 동일한 과정을 실시하여 복합재료를 제조하였다.The carbon fibers were washed at room temperature using distilled water and then the same procedure as in Example 1 was carried out to prepare a composite material.

실험예 1.Experimental Example 1

상기 실시예. 1 내지 7 및 비교예에서 제조한 탄소섬유의 표면 변화를 관찰하기 위해서 X-ray photoelectron spectroscope(XPS) 분석을 실시하였으며, 그 결과는 표 1.에 나타내었다.In the above embodiment. X-ray photoelectron spectroscope (XPS) analysis was performed to observe the surface changes of the carbon fibers prepared in Examples 1 to 7 and Comparative Examples, and the results are shown in Table 1.

Figure pat00001
Figure pat00001

실험예 2.Experimental Example 2

상기 실시예. 1 내지 7 및 비교예에서 제조한 복합재료의 기계적 물성은 만능시험기(Universal testing machine, LR5K plus, Lloyd)을 이용하여 측정하였다. Span-to-depth의 비가 4:1이며, cross-head speed는 2mm/min이다. 복합재료의 층간전단강도는 복합재료의 조건당 10개 이상의 값을 측정하여 실시하였다.In the above embodiment. The mechanical properties of the composite materials prepared in Examples 1 to 7 and Comparative Examples were measured using a universal testing machine (LR5K plus, Lloyd). The span-to-depth ratio is 4: 1 and the cross-head speed is 2 mm / min. The interlaminar shear strength of the composite material was measured by measuring 10 or more values per condition of the composite material.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다
Having described specific portions of the present invention in detail, it will be apparent to those skilled in the art that this specific description is only a preferred embodiment and that the scope of the present invention is not limited thereby. It will be obvious. It is therefore intended that the scope of the present invention be defined by the claims appended hereto and their equivalents

Claims (7)

탄소섬유를 표면처리하는 방법에 있어서, 황산과 질산의 부피비가 1 : 3 내지 3 : 1인 산성 전해 용액에 전류를 인가하고 전기화학적으로 표면처리하여 양극 산화된 탄소섬유의 제조방법.
A method of surface-treating a carbon fiber, comprising applying an electric current to an acid electrolytic solution having a volume ratio of sulfuric acid and nitric acid of 1: 3 to 3: 1 and electrochemically surface-treating the carbon fiber.
제 1항에 있어서,
상기 산성 전해 용액의 농도는 20%인 것을 특징으로 하는 양극 산화된 탄소섬유의 제조방법.
The method according to claim 1,
Wherein the concentration of the acidic electrolytic solution is 20%.
제 1항에 있어서,
상기 전류는 0.1 내지 1A/㎡의 전류밀도로 전류를 인가하는 것을 특징으로 하는 양극 산화된 탄소섬유의 제조방법.
The method according to claim 1,
Wherein the current is applied at a current density of 0.1 to 1 A / m < 2 >.
제 1항에 있어서,
상기 전류는 1분 동안 전류를 인가하는 것을 특징으로 하는 양극 산화된 탄소섬유의 제조방법.
The method according to claim 1,
Wherein the current is applied for one minute. ≪ RTI ID = 0.0 > 11. < / RTI >
제 1항 내지 제 4항 중 어느 한 항의 방법에 의해 제조된 양극 산화된 탄소섬유.
An anodized carbon fiber produced by the method of any one of claims 1 to 4.
제 5항의 양극 산화된 탄소섬유와 에폭시 수지로 이루어진 탄소섬유/에폭시 복합재료.
A carbon fiber / epoxy composite material comprising an anodized carbon fiber and an epoxy resin according to claim 5.
제 6항에 있어서.
상기 탄소섬유/에폭시 복합재료는 30 내지 100MPa 범위에서의 층간전단강도(interlaminar shear strength)를 갖는 것을 특징으로 하는 탄소섬유/에폭시 복합재료.





The method of claim 6,
Wherein the carbon fiber / epoxy composite material has an interlaminar shear strength in the range of 30 to 100 MPa.





KR1020120149184A 2012-12-20 2012-12-20 Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid KR101418877B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120149184A KR101418877B1 (en) 2012-12-20 2012-12-20 Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120149184A KR101418877B1 (en) 2012-12-20 2012-12-20 Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid

Publications (2)

Publication Number Publication Date
KR20140079952A true KR20140079952A (en) 2014-06-30
KR101418877B1 KR101418877B1 (en) 2014-07-17

Family

ID=51130792

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120149184A KR101418877B1 (en) 2012-12-20 2012-12-20 Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid

Country Status (1)

Country Link
KR (1) KR101418877B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180127694A (en) * 2017-05-22 2018-11-30 재단법인 한국탄소융합기술원 Manufacturing Method for Polymer composite with carbon fiber for 3D printers
CN114263036A (en) * 2021-12-31 2022-04-01 湖南东映碳材料科技有限公司 Preparation method of carbon fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094204B1 (en) 2018-09-18 2020-03-27 인하대학교 산학협력단 Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124010A (en) * 1988-12-12 1992-06-23 Mitsubishi Rayon Company, Limited Carbon fibers having modified surfaces and process for producing the same
KR100317617B1 (en) * 1999-05-13 2001-12-22 김충섭 Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
KR101013783B1 (en) * 2008-12-24 2011-02-14 주식회사 효성 Method and apparatus for treating surface of carbon fiber
KR20110131715A (en) * 2010-05-31 2011-12-07 인하대학교 산학협력단 Method for preparing carbon nanofibers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180127694A (en) * 2017-05-22 2018-11-30 재단법인 한국탄소융합기술원 Manufacturing Method for Polymer composite with carbon fiber for 3D printers
CN114263036A (en) * 2021-12-31 2022-04-01 湖南东映碳材料科技有限公司 Preparation method of carbon fiber

Also Published As

Publication number Publication date
KR101418877B1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
Jiang et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites
He et al. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength
Deka et al. Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid–polyester resin
Yan et al. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites
Park et al. Effect of acidic anode treatment on carbon fibers for increasing fiber-matrix adhesion and its relationship to interlaminar shear strength of composites
Mujin et al. The surface of carbon fibres continuously treated by cold plasma
JP4969363B2 (en) Prepreg and carbon fiber reinforced composites
Patnaik et al. Influence of cryogenic temperature on mechanical behavior of graphene carboxyl grafted carbon fiber reinforced polymer composites: An emphasis on concentration of nanofillers
JP2011231331A5 (en)
JP2007211224A (en) Method for surface anticorrosion treatment of chromium-free aluminum alloy, and method for manufacturing galvanic corrosion-resistant cfrp/aluminium alloy laminate
KR101418877B1 (en) Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid
Tian et al. Enhanced surface free energy of polyimide fibers by alkali treatment and its interfacial adhesion behavior to epoxy resins
CN108504908A (en) A kind of preparation method of carbon nanotube enhanced aluminium-based composite material
Yandrapu et al. Effects of electrophoretic deposition process parameters on the mechanical properties of graphene carboxyl‐grafted carbon fiber reinforced polymer composite
Zhang et al. Reinforcement study of anodizing treatment with various temperatures on aluminum substrates for stronger adhesive bonding with carbon fiber composites
CN108625151A (en) A kind of surface treatment method of high-strength carbon fiber
WO2019153218A1 (en) Environmentally friendly non-destructive fiber-reinforced composite material recovering method
KR100317617B1 (en) Process for the preparation of high performance carbon fibers having improved adhesive property with matrix resins
Di Franco et al. Influence of anodizing surface treatment on the aging behavior in salt-fog environment of aluminum alloy 5083 to fiber reinforced composites adhesive joints
CN111534050B (en) Carbon fiber composite material with multi-scale high-temperature-resistant interface structure and preparation method thereof
KR100572995B1 (en) Manufacturing process of nickel-plated carbon fibers by electroplating method
WO2020093503A1 (en) Electrically promoted heterogeneous catalytic device for recovering cfrp and control method thereof
KR20170036273A (en) Epoxy composites having enhanced thermal stability and mechnical behaviors and manufacturing method of the same
CN112726208B (en) Wear-resistant waterproof composite carbon fiber cloth and preparation method thereof
CN104212169A (en) Functional carbon nanofiber multi-scale reinforced composite material and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190703

Year of fee payment: 6