KR20140064308A - Polymer electrolyte membranes prepared from 4,4-bis(4-chlorophenylsulfone)-1,1-biphenyl compound for fuel cells and their manufacturing methods - Google Patents
Polymer electrolyte membranes prepared from 4,4-bis(4-chlorophenylsulfone)-1,1-biphenyl compound for fuel cells and their manufacturing methods Download PDFInfo
- Publication number
- KR20140064308A KR20140064308A KR1020120131496A KR20120131496A KR20140064308A KR 20140064308 A KR20140064308 A KR 20140064308A KR 1020120131496 A KR1020120131496 A KR 1020120131496A KR 20120131496 A KR20120131496 A KR 20120131496A KR 20140064308 A KR20140064308 A KR 20140064308A
- Authority
- KR
- South Korea
- Prior art keywords
- formula
- polymer electrolyte
- electrolyte membrane
- biphenyl
- bis
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Sustainable Development (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
Abstract
Description
본 발명은 4,4-비스(4-클로로페닐술폰)-1,1-비페닐 화합물로 만든 연료전지용 고분자 전해질 막의 제조방법에 관한 것이다. 보다 상세하게는 저온에서도 효과적으로 이온 전도도를 갖는 연료전지용 고분자 전해질 막을 제공하고, 술폰화 시킬 수 있는 연료전지용 고분자 전해질 막의 재료를 제공하는 데 있다.
The present invention relates to a process for producing a polymer electrolyte membrane for a fuel cell made of 4,4-bis (4-chlorophenylsulfone) -1,1-biphenyl compound. And more particularly, to provide a polymer electrolyte membrane for a fuel cell having effective ion conductivity even at a low temperature, and to provide a material for a polymer electrolyte membrane for a fuel cell that can be sulfonated.
연료전지(fuel cell)는 연료로써 수소, 메탄올, 에탄올 그리고 천연가스등과 산소와 공기와의 전기화학적 반응에 의해 직접 화학적 에너지를 전기에너지로 변환하는 장치이다.A fuel cell is a device that directly converts chemical energy into electrical energy by electrochemical reaction of hydrogen, methanol, ethanol, natural gas, etc. with oxygen and air as a fuel.
연료전지는 전해질에 따라 종류가 다르며 대표적으로 고분자 전해질형 연료전지(polymer electrolyte membrane fuel cell), 직접 산화형 연료전지(direct oxidation fuel cell), 그리고 직접 메탄올 연료전지(direct methanol fuel cell) 등이 있다.Fuel cells have different types according to electrolytes, and typically include polymer electrolyte membrane fuel cells, direct oxidation fuel cells, and direct methanol fuel cells .
일반적으로 연료전지 발전 시스템은 화석에너지를 대체할 수 있는 신재생에너지로 각광받고 있는 청정한 에너지자원으로서 무공해 자동차, 이동통신 휴대용 전원, 가정용 발전 시스템 그리고 군사용 장비 등 다양한 분야에서 사용이 가능하다. Generally, the fuel cell power generation system is a clean energy resource that can be substituted for fossil energy and can be used in various fields such as pollution-free automobile, mobile communication portable power source, household power generation system, and military equipment.
현재 상용화 되어진 고분자 연료전지 막은 듀폰사에서 제조한 NafionTM은 술폰화된 과불소화 고분자이며, 높은 기계적 강도와 높은 가습에서의 이온전도도를 나타낸다. 그렇지만 가격이 매우 비싸며, 화학적 안정성이 낮기 때문에 응용이 제한되어져 있다.The polymer fuel cell membranes that are currently commercialized are Nafion ™ , a sulfonated perfluorinated polymer manufactured by DuPont, which exhibits high mechanical strength and ionic conductivity at high humidification. However, applications are limited because of their high cost and low chemical stability.
본 발명은 이러한 단점을 극복하고자 저렴한 가격의 고분자 연료전지 막을 설계하여 저온에서 높은 이온전도도를 낼 수 있는 고분자 연료전지 막을 개발하는 것이다. 본 발명과 관련된 종래기술(Macromolecules 2011, 44, 38843892)로는 하이드로카본계열의 고분자 전해질 막으로써 친수성 블록(hydrophilic block)과 소수성 블록(hydrophobic block)이 교대로 이루어진 멀티 블록 공중합체(multi block copolymer) 고분자 전해질 막으로써 그 제조방법에 대해서 제시되어져 있다. 또한 위와 유사한 방법으로 고분자를 제조하고 난 후, 술폰화를 클로로 설퍼릭 에시드를 사용하여 친수성 블록을 형성하고 난 후, 소수성 블록을 사용하여 블록공중합체를 만드는 것이 제시되었다. 그러나 이 들 종래기술은 본 발명과는 기술적 구성이 다른 것 들이다.
In order to overcome such disadvantages, the present invention is to develop a polymer fuel cell membrane capable of achieving a high ionic conductivity at a low temperature by designing an inexpensive polymer fuel cell membrane. The prior art related to the present invention (Macromolecules 2011, 44, 38843892) is a multi-block copolymer polymer in which a hydrophilic block and a hydrophobic block are alternately arranged as a hydrocarbon-based polymer electrolyte membrane And a manufacturing method thereof is proposed as an electrolyte membrane. In addition, a polymer was prepared by a method similar to the above, sulfonation was carried out using a chlorosulfuric acid to form a hydrophilic block, and then a hydrophobic block was used to make a block copolymer. However, these prior arts have different technical constructions from the present invention.
본 발명의 목적은 낮은 온도에서의 효과적인 이온 전도도를 가진 연료전지용 고분자 전해질 막을 제공하는 것이다. 또한 본 발명의 다른 목적은 쉽게 술폰화를 시킬 수 있는 연료전지용 고분자 전해질 막의 재료를 제공하는 것이다.
An object of the present invention is to provide a polymer electrolyte membrane for a fuel cell having an effective ion conductivity at a low temperature. Another object of the present invention is to provide a material for a polymer electrolyte membrane for a fuel cell capable of easily sulfonating.
본 발명의 목적을 달성하기 위하여, 전기전도성을 갖는 화학식 1의 고분자는 양이온 전하를 가진 염이온은 칼륨이온, 나트륨 이온 또는 알킬 아민인 것을 포함하는 연료전지용 고분자 전해질 막을 제공한다.To achieve the object of the present invention, the polymer of formula (I) having electrical conductivity provides a polymer electrolyte membrane for a fuel cell, wherein the salt ion having a cationic charge is potassium ion, sodium ion or alkylamine.
...(화학식 1)
(Formula 1)
상기 화학식 1에서 Y는 탄소와 탄소가 직접 연결되어져 있는 단일결합, -O-, -S-, 또는 -C(=O)-, -S(=O)2-를 나타내며, x는 0 ≤ X ≤ 4 이며, Z, Z', Z''는 술폰산기 또는 인산기로 이루어진 군으로부터 선택된 1종의 이온 교환기를 나타낸다.Y represents a single bond in which carbon and carbon are directly connected to each other, -O-, -S-, or -C (= O) - or -S (= O) 2- , ≪ / = 4, and Z, Z 'and Z''represent one ion-exchange group selected from the group consisting of a sulfonic acid group and a phosphoric acid group.
상기 화학식 1의 반응식에서 n과 m은 중합체의 반복단위를 나타내며, n, m은 3≤ n, m ≤400 이다.
In the above formula (1), n and m represent repeating units of the polymer, and n and m are 3? N and m? 400, respectively.
본 발명에 따르면, 과량의 술폰화된 블록을 가진 공중합체를 이용한 고분자 전해질 막은 낮은 온도, 적절한 습도에서 높은 이온 전도도와 화학적 안정성을 가지며, 기존에 상용화된 막과 동등 또는 그 이상의 수준을 보여준다.
According to the present invention, a polymer electrolyte membrane using a copolymer having an excessive sulfonated block has a high ionic conductivity and chemical stability at a low temperature, a suitable humidity, and shows a level equal to or higher than that of a commercially available membrane.
도 1은 실시예 1과 실시예 3을 비교한 1H NMR을 나타낸 것이다.
도 2는 비 술폰화/술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체들의 FT-IR을 나타낸 것이다.
도 3은 나피온115/비 술폰화/술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체들의 TGA와 비술폰화/ 술폰화 폴리아릴렌 비페닐 이써 블록 공중합체들의 유리전이 온도를 나타낸 것이다.
도 4는 나피온 115/술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체들의 이온전도도값을 나타낸 것이다.1 shows 1 H NMR of Example 1 and Example 3. FIG.
Figure 2 shows the FT-IR of unsulfonated / sulfonated polyarylene biphenylsulfone sulfonated block copolymers.
Figure 3 shows the glass transition temperatures of the Nafion 115 / unsulfonated / sulfonated polyarylene biphenylsulfones block copolymers TGA and non-sulfonated / sulfonated polyarylene biphenyl block copolymers.
Figure 4 shows ionic conductivity values of Nafion 115 / sulfonated polyarylene biphenylsulfone sulfonated block copolymers.
본 발명은 친수성 공중합체를 제조하는 단계와, 소수성 공중합체를 제조하는 단계와, 술폰화 폴리아릴렌 비페닐설폰 공중합체를 제조하는 단계와, 술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체로 고분자 전해질 막을 제조하는 단계로 구성되는 것을 특징으로 하는 4,4-비스(4-클로로페닐술폰)-1,1-비페닐 화합물을 이용한 연료전지용 고분자 전해질 막의 제조방법으로 구성된다.The present invention relates to a process for producing a hydrophilic copolymer, comprising the steps of: preparing a hydrophilic copolymer; preparing a hydrophobic copolymer; preparing a sulfonated polyarylene biphenyl sulfone copolymer; and mixing the sulfonated polyarylene biphenyl sulfone sulfone copolymer (4-chlorophenylsulfone) -1,1-biphenyl compound, which comprises the step of preparing a polymer electrolyte membrane by using a 4,4-bis (4-chlorophenylsulfone) -1,1-biphenyl compound.
전도성 작용기를 가지는 술폰화된 비페닐설폰 공중합체는 하기 화학식 2로 표시된다.The sulfonated biphenyl sulfone copolymer having a conductive functional group is represented by the following general formula (2).
...(화학식 2) (Formula 2)
상기 화학식 2에서 Y는 탄소와 탄소가 직접 연결되어져 있는 단일결합, -O-, -S-, -N- -C(=O)-, -S(=O)2-를 나타내며, x는 0 ≤ X ≤ 4 이며, Z, Z', Z"는 술폰산기 또는 인산기로 이루어진 군으로부터 선택된 1종의 이온 교환기를 나타낸다. In the general formula Y 2 is a single bond the carbon-carbon the given directly to, -O-, -S-, -N- -C ( = O) -, -S (= O) 2 - represents the, x is 0, X < = 4, and Z, Z 'and Z "represent one ion-exchange group selected from the group consisting of a sulfonic acid group and a phosphoric acid group.
상기 화학식 1에 있어서 Ar1은 방향족 화합물로서 하기의 화학식 10-1 내지 10-7 중에서 선택된 어느 하나 일 수 있으며;In the above formula (1), Ar 1 may be any aromatic compound selected from the following formulas (10-1) to (10-7);
...화학식 10-1 10-1
...화학식 10-2 10-2
...화학식 10-3 10-3
...화학식 10-4 10-4
...화학식 10-5 10-5
...화학식 10-6 10-6
...화학식 10-7 10-7
상기 화학식 2에서 n은 고분자 중합체의 반복단위를 나타내며, n은 3≤ n ≤400 정수이다.
In the formula (2), n represents a repeating unit of a polymer, and n is an integer of 3? N? 400.
전도성 작용기를 가지는 술폰화된 비페닐설폰 블록공중합체는 하기 화학식 2 및 화학식 3을 반응시켜 얻은 하기 화학식 1로 표시된다.The sulfonated biphenyl sulfone block copolymer having a conductive functional group is represented by the following Formula 1 obtained by reacting the following Formula 2 and Formula 3.
...(화학식 1) (Formula 1)
...(화학식 2) (Formula 2)
...(화학식 3) (Formula 3)
상기의 화학식 1 내지 화학식 3 중 선택된 어느 하나 이상의 화학식에서 Y는 탄소와 탄소가 직접 연결되어져 있는 단일결합, -O-, -S-, 또는 -C(=O)-, -S(=O)2-를 나타내며;Y is a single bond in which carbon and carbon are directly connected to each other, -O-, -S-, or -C (= O) -, -S (= O) 2 -;
x는 0 ≤ X ≤ 4 이며;x is 0? X? 4;
Z, Z', Z"는 술폰산기 또는 인산기로 이루어진 군으로부터 선택된 1종의 이온 교환기를 나타내며;Z, Z ', Z "represents one ion-exchange group selected from the group consisting of a sulfonic acid group and a phosphoric acid group;
Ar1, Ar2, Ar3은 방향족 화합물로서 각각 독립적으로 아래 화학식 10-1 내지 10-7에서 선택된 어느 하나일 수 있으며;Ar 1 , Ar 2 , Ar 3 are The aromatic compound may be any one independently selected from the following formulas (10-1) to (10-7);
...화학식 10-1 10-1
...화학식 10-2 10-2
...화학식 10-3 10-3
...화학식 10-4 10-4
...화학식 10-5 10-5
...화학식 10-6 10-6
...화학식 10-7 10-7
n, m은 3≤ n, m ≤400 정수이다.
n and m are integers of 3? n and m? 400.
<실시예 1> : 친수성 고분자를 위한 폴리아릴렌 비페닐설폰 공중합체 제조Example 1: Preparation of polyarylene biphenyl sulfone copolymer for hydrophilic polymer
상기 반응식 1로 표시되는 폴리아릴렌 비페닐설폰 공중합체를 제조하였다.To prepare a polyarylene biphenyl sulfone copolymer represented by the above-mentioned reaction formula (1).
[반응식 1][Reaction Scheme 1]
재료 : 4,4-비스4클로로페닐설포닐-1,1-비페닐(BCPSBP), 4,4-핵사플루오로이소프로필라덴 디페놀(6F-BPA)은 시그마-알드리치 사로부터 구입하였다.
Materials: 4,4-bis 4 chlorophenylsulfonyl-1,1-biphenyl (BCPSBP) and 4,4-nuclear fluoroisopropylidene diphenol (6F-BPA) were purchased from Sigma-Aldrich.
<폴리아릴렌 비페닐설폰 공중합체 합성> ≪ Synthesis of polyarylene biphenyl sulfone copolymer >
6.8g의 4,4-비스4클로로페닐설포닐-1,1-비페닐(13.5 mmol), 5.0g의 4,4-헥사플루오로이소프로필라덴 디페놀(14.9mmol), 3.73g의 탄산칼륨(27mmol), 25mL DMAc 및 20mL 톨루엔을 마그네틱 교반기, 딘-스탁 트랩, 2구 둥근바닥 플라스크에 넣었다. 6.8 g of 4,4-bis 4 chlorophenylsulfonyl-1,1-biphenyl (13.5 mmol), 5.0 g of 4,4-hexafluoroisopropyl laden diphenol (14.9 mmol), 3.73 g of potassium carbonate (27 mmol), 25 mL of DMAc and 20 mL of toluene were placed in a magnetic stirrer, Dean-Stark trap, two-neck round bottom flask.
135℃에서 6시간 반응시키고, 160℃에서 2시간 동안 톨루엔을 제거, 190℃에서 고분자화에 필요한 에너지 공급을 위해 온도를 24시간 이상 유지하여 점도가 생긴 혼합물을 3차 증류수 1, 아세톤 1, 메탄올 6의 비율인 혼합용액에 침전시켰다. 수득한 전구체는 적외선분광기(FT-IR)와 핵자기공명분광기(NMR)를 통해 구조분석을 하였다.The reaction mixture was reacted at 135 占 폚 for 6 hours, and the toluene was removed at 160 占 폚 for 2 hours. The temperature was maintained at 190 占 폚 for supplying the energy required for polymerizing for 24 hours or longer. The resulting mixture was diluted with tertiary distilled water 1, acetone 1, 6 by weight. The resulting precursor was analyzed by infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR).
FT-IR : 1015 cm-1 (s, -O-), 1508, 1594 cm-1 (s, aromatic; C=C), 1064 (s, SO2) 930cm-1 (-CF3). 1H NMR (600 MHz, DMSO-d 6 ) d 8.1 (8H) 7.8 (4H), 7.4 (4H), 7.2 (8H).
FT-IR: 1015 cm -1 ( s, -O-), 1508, 1594 cm -1 (s, aromatic; C = C), 1064 (s, SO 2) 930cm -1 (-CF 3). 1 H NMR (600 MHz, DMSO- d 6) d 8.1 (8H) 7.8 (4H), 7.4 (4H), 7.2 (8H).
<실시예 2>; 소수성 공중합체 제조≪ Example 2 > Hydrophobic copolymer preparation
하기 반응식 2로 표시되는 소수성 공중합체를 제조하였다.A hydrophobic copolymer represented by the following Reaction Scheme 2 was prepared.
[반응식 2][Reaction Scheme 2]
재료 : 4,4'-헥사플루오로이소프로필라덴 디페놀(6F-BPA), 4-클로로밴조페논은 시그마-알드리치 사로부터 구입하였다.
Materials: 4,4'-hexafluoroisopropyl laden diphenol (6F-BPA) and 4-chlorobenzophenone were purchased from Sigma-Aldrich.
<소수성 공중합체 합성> <Synthesis of hydrophobic copolymer>
5g의 4,4'-헥사플루오로이소프로필라덴 디페놀(14.9 mmol), 4.11g의 4-클로로밴조페논(16.4 mmol), 4.12g의 탄산칼륨(26.2 mmol), 25mL DMAc 및 20mL 톨루엔을 마그네틱 교반기, 딘-스탁 트랩, 2구 둥근바닥 플라스크에 넣었다. 135℃에서 6시간 반응시키고, 160℃에서 2시간 동안 톨루엔을 제거, 190℃에서 고분자화에 필요한 에너지 공급을 위해 온도를 24시간 이상 온도를 유지하여 점도가 생긴 혼합물을 3차 증류수 1, 아세톤 1, 메탄올 6의 비율인 혼합용액에 침전시켰다.
(16.9 mmol) of 4,4'-hexafluoroisopropylradene diphenol (14.9 mmol), 4.11 g of 4-chlorobenzophenone, 4.12 g of potassium carbonate (26.2 mmol), 25 mL of DMAc and 20 mL of toluene, Stirrer, Dean-Stark trap, two-necked round bottom flask. The reaction mixture was reacted at 135 占 폚 for 6 hours, the toluene was removed at 160 占 폚 for 2 hours, the viscosity was maintained at a temperature of at least 24 hours to supply energy required for polymerizing at 190 占 폚, , And methanol (6).
<실시예 3> : 친수성 술폰화 폴리아릴렌 비페닐설폰 공중합체 제조Example 3: Preparation of hydrophilic sulfonated polyarylene biphenyl sulfone copolymer
상기반응식 3으로 표시되는 친수성 술폰화 폴리아릴렌 비페닐설폰 공중합체를 제조하였다.To prepare a hydrophilic sulfonated polyarylene biphenylsulfone copolymer represented by the above-mentioned reaction formula (3).
[반응식 3][Reaction Scheme 3]
재료 : 폴리아릴렌 비페닐설폰 공중합체, 메틸렌클로라이드, 클로로 설퍼릭 에시드. 이 중에서 메틸렌클로라이드, 클로로 설퍼릭 에시드는 대정화학에서 구입하였다.
Materials: polyarylene biphenylsulfone copolymer, methylene chloride, chlorosulfuric acid. Of these, methylene chloride and chlorosulfuric acid were purchased from Daejung Chemical.
<술폰화> <Sulfonation>
0.5g의 폴리아릴렌 비페닐 설폰 중합체를 20mL의 메틸렌클로라이드에 녹인 후 0.2M의 클로로 설퍼릭 에시드를 천천히 떨어뜨려 상온에서 24시간 반응하였다. 이 후 3차 증류수에 부어 침전물을 얻어 100℃에 24시간 동안 건조시켰다.
0.5 g of the polyarylene biphenyl sulfone polymer was dissolved in 20 mL of methylene chloride, and then 0.2 M of chlorosulfuric acid was slowly dropped and reacted at room temperature for 24 hours. Thereafter, the precipitate was poured into third distilled water and dried at 100 ° C for 24 hours.
<실시예 4>; 술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체 제조≪ Example 4 > Preparation of Sulfonated Polyarylene Biphenylsulfone Sulfur Block Copolymer
상기 반응식 4로 표시되는 술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체를 제조하였다.A sulfonated polyarylene biphenylsulfone sulfonated block copolymer represented by the above-mentioned Reaction Scheme 4 was prepared.
[반응식 4][Reaction Scheme 4]
<합성><Synthesis>
상기 합성된 친수성 술폰화 폴리아릴렌 비페닐설폰 공중합체, 소수성 공중합체 파우더를 합성 전 100℃에서 24시간 동안 건조하였다. 건조된 파우더는 각각의 몰비율에 따라(친수성 술폰화 폴리아릴렌 비페닐 설폰 : 소수성 공중합체 = 0.1:0.9, 0.3:0.7, 0.5:0.5) 술폰화 폴리아릴렌 비페닐설폰이써 블록-10, 술폰화 폴리아릴렌 비페닐설폰이써 블록-30, 술폰화 폴리아릴렌 비페닐설폰이써 블록-50을 합성하였다. 합성방법은 과량의 탄산칼륨, 25mL DMAc 및 20mL 톨루엔을 마그네틱 교반기, 딘-스탁 트랩, 2구 둥근바닥 플라스크에 넣었다. 135℃에서 6시간 반응시키고, 160℃에서 2시간 동안 톨루엔을 제거하고, 190℃에서 고분자화에 필요한 에너지 공급을 위해 온도를 24시간 이상 온도를 유지하여 점도가 생긴 혼합물을 3차 증류수에 침전시켰다. 합성된 블록 공중합체는 3차 증류수, 메탄올을 이용하여 세척하였으며, DMAc 8wt%로 제막을 하였다.The synthesized hydrophilic sulfonated polyarylene biphenylsulfone copolymer and the hydrophobic copolymer powder were dried at 100 ° C for 24 hours before the synthesis. The dried powders were sulfonated polyarylene biphenylsulfone sulfonate-10 (hydrophilic sulfonated polyarylene biphenyl sulfone: hydrophobic copolymer = 0.1: 0.9, 0.3: 0.7, 0.5: 0.5) , Sulfonated polyarylene biphenylsulfone sulfonate-30, and sulfonated polyarylene biphenylsulfone sulfonate-50 were synthesized. The synthetic method involves the addition of excess potassium carbonate, 25 mL of DMAc and 20 mL of toluene were charged into a magnetic stirrer, Dean-Stark trap, two-neck round bottom flask. The reaction was carried out at 135 DEG C for 6 hours, the toluene was removed at 160 DEG C for 2 hours, and the viscosity of the mixture was maintained at the temperature for more than 24 hours to supply the energy required for polymerizing at 190 DEG C, and the mixture was precipitated in tertiary distilled water . The synthesized block copolymer was washed with tertiary distilled water and methanol, and was formed into 8 wt% of DMAc.
상기 화학식에서 x, y는 0≤ x, y ≤ 1 이다.
In the above formula, x and y are 0? X and y? 1.
<실시예 4-1>; 술폰화 폴리아릴렌 비페닐설폰이써 블록-10 제조≪ Example 4-1 > Manufacture of sulfonated polyarylene biphenylsulphone di-block-10
상기 실시예 4에 제시된 방법과 같으며, 몰 비율은 x는 0.1, y(1-x)는 0.9이다. 수득한 술폰화 폴리아릴렌 비페닐설폰이써 블록 10을 적외선분광기(FT-IR) 분석 결과 설퍼릭 에시드의 특성밴드로 예상되는 1064 cm-1의 밴드가 증가한 것을 확인할 수 있었다.
The molar ratio is 0.1 and y (1-x) is 0.9. Infrared spectroscopy (FT-IR) analysis of the obtained sulfonated polyarylene biphenylsulfone diisobarb 10 showed that the band of 1064 cm -1 , which is expected to be the characteristic band of the sulfuric acid, was increased.
<실시예 4-2> ; 술폰화 폴리아릴렌 비페닐설폰이써 블록-30 제조≪ Example 4-2 > Manufacture of sulfonated polyarylene biphenylsulfone thermoplastic block-30
상기 실시예 4에 제시된 방법과 같으며, 몰 비율은 x는 0.3, y(1-x)는 0.7이다. 수득한 술폰화 폴리아릴렌 비페닐설폰이써 블록 10을 FT-IR 분석 결과 설퍼릭 에시드의 특성밴드로 예상되는 1064 cm-1의 밴드가 증가한 것을 확인할 수 있었다.
The same as the method described in Example 4, wherein the molar ratio is 0.3 and y (1-x) is 0.7. As a result of FT-IR analysis of sulfonated polyarylene biphenyl sulfone
<실시예 4-3>; 술폰화 폴리아릴렌 비페닐설폰이써 블록-50 제조≪ Example 4-3 > Manufacture of sulfonated polyarylene biphenylsulphone di-block-50
상기 실시예 4에 제시된 방법과 같으며, 몰 비율은 x는 0.5, y(1-x)는 0.5이다. 수득한 술폰화 폴리아릴렌 비페닐설폰이써 블록 10을 FT-IR 분석 결과 설퍼릭 에시드의 특성밴드로 예상되는 1064 cm-1의 밴드가 증가한 것을 확인할 수 있었다.
The molar ratio is 0.5 and y (1-x) is 0.5. As a result of FT-IR analysis of sulfonated polyarylene biphenyl sulfone
<실험예 1>; 술폰화 여부 확인≪ Experimental Example 1 > Confirm sulphonation
상기 실시예 1과 실시예 3에서 제조된 블록 공중합체들을 1H NMR, FT-IR을 측정함으로, 그 결과를 도 1에 나타내었다.The results of 1 H NMR and FT-IR measurements of the block copolymers prepared in Examples 1 and 3 are shown in FIG.
도 1을 참조하면, 술폰화로 인해 1H NMR 피크의 변화로 면적비의 변화를 확인할 수 있었다.
Referring to FIG. 1, changes in the area ratio can be confirmed by changing 1 H NMR peak due to sulfonation.
<실험예 2>; 물리적 특성 분석≪ Experimental Example 2 > Physical Characteristics Analysis
상기 실시예 4-1 내지 실시예 4-3에서 제조된 블록 공중합체의 물리적인 특성을 확인하였으며, 표 1, 2에 나타내었다. Physical properties of the block copolymers prepared in Examples 4-1 to 4-3 were confirmed and shown in Tables 1 and 2.
각각의 블록 공중합체의 평균 분자량은 DMF에 녹이고 0.025M LiBr로 점도를 맞춘 후 겔 투과크로마토그래피로 측정하였으며 표 1에 정리하였다.The average molecular weight of each block copolymer was determined by gel permeation chromatography after dissolving in DMF and adjusting the viscosity to 0.025M LiBr, and summarized in Table 1.
(Mn, g mol-1) Number average molecular weight
(M n , g mol -1 )
(Mw, g mol-1)Weight average molecular weight
(M w , g mol -1 )
(Mmax, g mol-1)Maximum average molecular weight
(M max , g mol -1 )
(PDI, Mn/Mw) Polydispersity index
(PDI, M n / M w )
비페닐설폰이써 Polyarylene
Biphenylsulfone is used
상기 실시예 4-1 내지 실시예 4-3에서 제조된 블록 공중합체의 용해도를 확인하기 위해 DMAc, NMP, DMSO, DMF, 클로로포름, THF, 아세톤, 메탄올, 물에 대한 용해도는 표 2에 정리하였다.(측정온도는 상온에서 (++) 매우 잘 용해, (+) 잘 용해, (±) 부분적으로 용해, () 비용해)The solubilities of the block copolymers prepared in Examples 4-1 to 4-3 were measured in DMAc, NMP, DMSO, DMF, chloroform, THF, acetone, methanol and water in Table 2 The measurement temperature is (+) very well soluble at room temperature, (+) well soluble, (±) partially soluble, ()
상기 표 2에 보면 DMAc, NMP, DMSO, DMF와 같은 극성유기용매에는 높은 용해도를 보였다.
Table 2 shows high solubility in polar organic solvents such as DMAc, NMP, DMSO, and DMF.
<실험예 3>; 화학적 특성 분석≪ Experimental Example 3 > Chemical characterization
상기 실시예 4-1 내지 실시예 4-3에서 제조한 술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체의 이온교환용량, 함수율, 이온전도도 등의 화학적 특성을 분석하였으며, 이를 표 3에 나타내었다.Chemical characteristics such as ion exchange capacity, water content and ionic conductivity of the sulfonated polyarylene biphenylsulfone sulfonated block copolymer prepared in Examples 4-1 to 4-3 were analyzed and shown in Table 3 .
(1) 이온교환용량 측정(1) Measurement of ion exchange capacity
상기 실시예 4-1 내지 실시예 4-3에서 제조한 술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체들을 1M NaCl에 24시간 동안 담지시킨 후 표준용액 페놀프탈레인을 첨가한 후 0.01N NaOH로 적정하여 이온교환용량(IEC)값을 계산하였다.The sulfonated polyarylene biphenylsulfone sulfonated copolymers prepared in Examples 4-1 to 4-3 were immersed in 1 M NaCl for 24 hours, then phenolphthalein as a standard solution was added thereto, and then titrated with 0.01 N NaOH And the ion exchange capacity (IEC) value was calculated.
[수학식 1][Equation 1]
IEC (meqg-1) = (VNaOH × CNaOH)/ Wdry IEC (meqg -1 ) = (V NaOH x C NaOH ) / W dry
(상기 수학식 1에서 VNaOH은 사용한 NaOH 표준용액의 소모량, CNaOH은 NaOH 표준용액의 농도, Wdry건조된 박막의 무게(g))
(V NaOH is consumption of NaOH standard solution, C NaOH is concentration of NaOH standard solution, W dry weight of dried film (g)
(2) 함수율 측정(2) Moisture content measurement
상기 실시예 4-1 내지 실시예 4-3에서 제조한 술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체들을 건조 후 무게와 24시간 동안 물에 담지시킨 후 무게 변화율을 계산하였다.The sulfonated polyarylene biphenylsulfone sulfon block copolymers prepared in Examples 4-1 to 4-3 were dried and then dried in water for 24 hours, and the weight change rates were calculated.
[수학식 2]&Quot; (2) "
함수율 (%) = [ (Wwet - Wdry) / Wdry ] × 100Water content (%) = [(W wet - W dry ) / W dry ] × 100
(상기 수학식 3에서 Wwet은 젖은 막의 무게, Wdry은 건조된 막의 무게)
(W wet in the above equation (3) is the weight of the wet film, W dry is the weight of the dried film)
(3) 이온전도도 측정(3) Measurement of ion conductivity
상기 실시예 4-1 내지 실시예 4-3에서 제조한 술폰화 폴리아릴렌 비페닐설폰이써 블록 공중합체들은 교류 사극자법을 이용하여 음저항 또는 벌크저항을 측정하여 이온전도도를 계산하였다.The sulfonated polyarylene biphenylsulfone sulfonated block copolymers prepared in Examples 4-1 to 4-3 were measured for negative ion conductivity by measuring the negative resistance or the bulk resistance using the AC diopter.
[수학식 3] &Quot; (3) "
이온전도도(σ, S cm-1) = L / ( R × T × W)Ion conductivity (?, S cm -1 ) = L / (R x T x W)
(상기 수학식 3에서 L은 두 전극사이의 거리, R은 막의 저항, T는 막의 두께, W는 막의 너비)(Where L is the distance between two electrodes, R is the resistance of the film, T is the thickness of the film, and W is the width of the film)
(℃)Glass transition temperature
(° C)
(meqg-1)Ion exchange capacity
(meqg -1 )
(S cm-1)Ion conductivity
(S cm -1 )
비페닐설폰이써Polyarylene
Biphenylsulfone is used
비페닐설폰이써-10Sulfonated polyarylene
Biphenyl sulfone di-10
비페닐설폰이써-30Sulfonated polyarylene
Biphenylsulfone is a s-30
비페닐설폰이써-50Sulfonated polyarylene
Biphenylsulfone s-50
상기 표 3의 함수율과 이온교환용량은 상온(25℃)에서 실시하였으며, 이온전도도는 100% 상대습도, 60℃에서 측정된 값이다. 비교적 친수성 블록의 증가에 따라 함수율, 이온교환용량, 이온전도도가 증가하는 것을 확인할 수 있었다.
The water content and ion exchange capacity of Table 3 were measured at room temperature (25 ° C) and the ion conductivity was measured at 100% relative humidity and 60 ° C. It was confirmed that water content, ion exchange capacity and ion conductivity increase with increasing hydrophilic block.
본 발명의 4,4-비스(4-클로로페닐술폰)-1,1-비페닐 화합물로 만든 연료전지용 고분자 전해질 막은 친수성 블록의 증가에 따라 함수율, 이온교환용량, 이온전도도가 증가하므로 산업상 이용 가능성이 있다.The polyelectrolyte membrane for fuel cells made of the 4,4-bis (4-chlorophenylsulfone) -1,1-biphenyl compound of the present invention increases water content, ion exchange capacity and ionic conductivity as the hydrophilic block increases, There is a possibility.
Claims (12)
...(화학식 2)
상기 화학식 2에서 Y는 탄소와 탄소가 직접 연결되어져 있는 단일결합, -O-, -S-, -N- -C(=O)-, -S(=O)2-를 나타내며, x는 0 ≤ X ≤ 4 이며, Z, Z'는 술폰산기 또는 인산기로 이루어진 군으로부터 선택된 1종의 이온 교환기를 나타낸다. 상기 화학식 1에 있어서 Ar1은 방향족 화합물로서, 하기의 화학식 10-1 내지 10-7 중에서 선택된 어느 하나일 수 있으며;
...화학식 10-1
...화학식 10-2
...화학식 10-3
...화학식 10-4
...화학식 10-5
...화학식 10-6
...화학식 10-7
상기의 화학식 1에서 n은 3≤ n ≤400 정수이다. A sulfonated biphenyl sulfone copolymer having a conductive functional group represented by the following formula (2)
(Formula 2)
In Formula 2 Y is a single bond, a carbon-carbon the given directly to, -O-, -S-, -N- -C ( = O) -, -S (= O) 2 - represents the, x is 0, ? X? 4, and Z and Z 'represent one ion-exchange group selected from the group consisting of a sulfonic acid group and a phosphoric acid group. In the above formula (1), Ar 1 is an aromatic compound, and may be any one selected from the following formulas (10-1) to (10-7);
10-1
10-2
10-3
10-4
10-5
10-6
10-7
In the above formula (1), n is an integer of 3? N? 400.
...(화학식 1)
...(화학식 2)
...(화학식 3)
상기의 화학식 1 내지 화학식 3 중 선택된 어느 하나 이상의 화학식에서 Y는 탄소와 탄소가 직접 연결되어져 있는 단일결합, -O-, -S-, 또는 -C(=O)-, -S(=O)2-를 나타내며;
x는 0 ≤ X ≤ 4 이며;
Z, Z', Z"는 술폰산기 또는 인산기로 이루어진 군으로부터 선택된 1종의 이온 교환기를 나타내며;
Ar1, Ar2, Ar3은 방향족 화합물로서 각각 독립적으로 아래 화학식 10-1 내지 10-7에서 선택된 어느 하나일 수 있으며;
...화학식 10-1
...화학식 10-2
...화학식 10-3
...화학식 10-4
...화학식 10-5
...화학식 10-6
...화학식 10-7
n, m은 3≤ n, m ≤400 정수이다. A sulfonated biphenyl sulfone block copolymer having a conductive functional group represented by the following formula (1) by reacting the following formula (2) and (3):
(Formula 1)
(Formula 2)
(Formula 3)
Y is a single bond in which carbon and carbon are directly connected to each other, -O-, -S-, or -C (= O) -, -S (= O) 2 -;
x is 0? X? 4;
Z, Z 'and Z "represent one ion-exchange group selected from the group consisting of a sulfonic acid group and a phosphoric acid group;
Ar 1 , Ar 2 , Ar 3 are The aromatic compound may be any one independently selected from the following formulas (10-1) to (10-7);
10-1
10-2
10-3
10-4
10-5
10-6
10-7
n and m are integers of 3? n and m? 400.
술폰화 폴리아릴렌 비페닐설폰을 제조하는 단계와,
술폰화 폴리아릴렌 비페닐설폰이써 블록 제조하는 단계를 포함하는 것을 특징으로 하는 4,4-비스(4-클로로페닐술폰)-1,1-비페닐 화합물을 이용하여 만든 고분자 전해질 막의 제조방법Preparing a hydrophilic polymer block,
Preparing a sulfonated polyarylene biphenyl sulfone,
(4-chlorophenylsulfone) -1,1-biphenyl compound, which comprises the step of producing sulfonated polyarylene biphenylsulfone as a block copolymer, and a process for producing a polymer electrolyte membrane using the 4,4-bis
청구항 제1항의 4,4-비스(4-클로로페닐술폰)-1,1-비페닐 화합물을 이용하여 만든 친수성 고분자를 이용하여 만든 연료전지용 고분자 전해질 막을 사용하는 연료전지.In a fuel cell,
A fuel cell using a polymer electrolyte membrane for a fuel cell made by using a hydrophilic polymer made by using the 4,4-bis (4-chlorophenylsulfone) -1,1-biphenyl compound of claim 1.
청구항 제2항의 4,4-비스(4-클로로페닐술폰)-1,1-비페닐 화합물을 이용하여 만든 친수성 고분자가 포함된 블록공중합체를 이용하여 만든 연료전지용 고분자 전해질 막을 사용하는 연료전지.In a fuel cell,
A fuel cell using a polymer electrolyte membrane for a fuel cell made by using a block copolymer containing a hydrophilic polymer made by using the 4,4-bis (4-chlorophenylsulfone) -1,1-biphenyl compound of claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120131496A KR101428550B1 (en) | 2012-11-20 | 2012-11-20 | Polymer Electrolyte Membranes prepared from 4,4-Bis(4-chlorophenylsulfone)-1,1-biphenyl Compound for Fuel Cells and Their Manufacturing Methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120131496A KR101428550B1 (en) | 2012-11-20 | 2012-11-20 | Polymer Electrolyte Membranes prepared from 4,4-Bis(4-chlorophenylsulfone)-1,1-biphenyl Compound for Fuel Cells and Their Manufacturing Methods |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140064308A true KR20140064308A (en) | 2014-05-28 |
KR101428550B1 KR101428550B1 (en) | 2014-08-11 |
Family
ID=50891777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120131496A KR101428550B1 (en) | 2012-11-20 | 2012-11-20 | Polymer Electrolyte Membranes prepared from 4,4-Bis(4-chlorophenylsulfone)-1,1-biphenyl Compound for Fuel Cells and Their Manufacturing Methods |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101428550B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11236196B2 (en) | 2014-11-18 | 2022-02-01 | Rensselaer Polytechnic Institute | Polymers and methods for their manufacture |
US11286337B2 (en) | 2014-11-18 | 2022-03-29 | Rensselaer Polytechnic Institute | Polymers and methods for their manufacture |
US11465139B2 (en) | 2020-03-20 | 2022-10-11 | Rensselaer Polytechnic Institute | Thermally stable hydrocarbon-based anion exchange membrane and ionomers |
US11621433B2 (en) | 2016-12-20 | 2023-04-04 | Rensselaer Polytechnic Institute | Proton exchange membrane material and methods of making the same |
US11680328B2 (en) | 2019-11-25 | 2023-06-20 | Twelve Benefit Corporation | Membrane electrode assembly for COx reduction |
US11826746B2 (en) | 2017-07-06 | 2023-11-28 | Rensselaer Polytechnic Institute | Ionic functionalization of aromatic polymers for ion exchange membranes |
US12027731B2 (en) | 2018-11-26 | 2024-07-02 | Rensselaer Polytechnic Institute | Phosphate anion-quaternary ammonium ion pair coordinated polymer membranes |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102418820B1 (en) * | 2020-07-21 | 2022-07-11 | 인천대학교 산학협력단 | Sulfonated polyethersulfone copolymer, composite membranes for ion exchange membrane comprising the same, ion exchange membrane comprising the composite membrane, fuel cell comprising the ion exchange membrane, method for manufacturing the copolymer and method for manufacturing composite membrane for the ion exchange membrane |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101210514B1 (en) * | 2010-09-28 | 2012-12-11 | 전북대학교산학협력단 | Sulfonated Bis(phenylsulfonyl)-1,1'-Biphenyl Compounds and Their Manufacturing Methods |
-
2012
- 2012-11-20 KR KR1020120131496A patent/KR101428550B1/en not_active IP Right Cessation
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11236196B2 (en) | 2014-11-18 | 2022-02-01 | Rensselaer Polytechnic Institute | Polymers and methods for their manufacture |
US11286337B2 (en) | 2014-11-18 | 2022-03-29 | Rensselaer Polytechnic Institute | Polymers and methods for their manufacture |
US11834550B2 (en) | 2014-11-18 | 2023-12-05 | Rensselaer Polytechnic Institute | Polymers and methods for their manufacture |
US11987664B2 (en) | 2014-11-18 | 2024-05-21 | Rensselaer Polytechnic Institute | Polymers and methods for their manufacture |
US11621433B2 (en) | 2016-12-20 | 2023-04-04 | Rensselaer Polytechnic Institute | Proton exchange membrane material and methods of making the same |
US11826746B2 (en) | 2017-07-06 | 2023-11-28 | Rensselaer Polytechnic Institute | Ionic functionalization of aromatic polymers for ion exchange membranes |
US12027731B2 (en) | 2018-11-26 | 2024-07-02 | Rensselaer Polytechnic Institute | Phosphate anion-quaternary ammonium ion pair coordinated polymer membranes |
US11680328B2 (en) | 2019-11-25 | 2023-06-20 | Twelve Benefit Corporation | Membrane electrode assembly for COx reduction |
US11465139B2 (en) | 2020-03-20 | 2022-10-11 | Rensselaer Polytechnic Institute | Thermally stable hydrocarbon-based anion exchange membrane and ionomers |
Also Published As
Publication number | Publication date |
---|---|
KR101428550B1 (en) | 2014-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101428550B1 (en) | Polymer Electrolyte Membranes prepared from 4,4-Bis(4-chlorophenylsulfone)-1,1-biphenyl Compound for Fuel Cells and Their Manufacturing Methods | |
KR100756821B1 (en) | Sulphonated multiblock copolymer and electrolyte membrane using the same | |
KR101566789B1 (en) | Sulfonated polyarylene ether copolymer process of manufacturing the same and polymer electrolyte membrane for fuel cell using the copolymer | |
KR100934529B1 (en) | Sulfonated poly (arylene ether) copolymer having a crosslinked structure inside the polymer chain, sulfonated poly (arylene ether) copolymer having a crosslinked structure inside and at the end of the polymer chain, and a polymer electrolyte membrane using the same | |
US20130216936A1 (en) | Alkaline single ion conductors with high conductivity and transference number and methods for preparing the same | |
KR100819332B1 (en) | Sulfonated poly(arylene ether) containing crosslinkable moity at end group, method of manufacturing the same, and polymer electrolyte membrane using the sulfonated poly(arylene ether) and the method | |
KR101154404B1 (en) | Sulfonated polyarylene ether copolymer, process of manufacturing the same, and polymer electrolyte membrane for fuel cell using the copolymer | |
KR20150060159A (en) | Electrolyte membranes of partially fluorinated and tetrasulfonated block coploymers for fuel cells and manufacturing method thereof | |
KR100963409B1 (en) | Sulfonated PolyArylene Ether Alternating Copolymer and Sulfonated PolyArylene Ether Alternating Copolymer containing Crosslinkable Moiety in the End of the Polymer, and Polymer Electrolyte Membrane using the Sulfonated PolyArylene Ether Alternating Copolymer | |
KR20120060645A (en) | Polyarylene ether copolymer having cation-exchange group, process of manufacturing the same, and use thereof | |
KR101517011B1 (en) | Tetrasulfonated poly(arylene biphenyl sulfone) copolymers, Manufacturing Method thereof and Proton Exchange Membrane for Fuel Cells comprising thereof | |
KR100760452B1 (en) | Poly(arylene ether) co-polymer and membrane using the same | |
KR20190078049A (en) | Anion Exchange Membrane with Large Size Ionic Channel for Non-aqueous Vanadium Redox Flow Battery and preparation method thereof | |
KR101235167B1 (en) | Sulfonated poly(arylene ether) copolymer comprising crosslink structure and polymer electrolyte membrane comprising the same | |
KR100954060B1 (en) | Sulfonated PolyArylene Ether, Method of manufacturing the same, and Crosslinked Polymer Electrolyte Membrane using the same | |
KR20130114472A (en) | Novel sulfonated conjugated tetraphenylethylene polyimides and proton exchange membrane for fuel cell using the same | |
Jeong et al. | Synthesis and characterization of sulfonated bromo-poly (2, 6-dimethyl-1, 4-phenylene oxide)-co-(2, 6-diphenyl-1, 4-phenylene oxide) copolymer as proton exchange membrane | |
KR20150019051A (en) | Proton Exchange Membrane for Fuel Cells And Manufacturing Method Thereof | |
KR101286265B1 (en) | Sulfonated poly(sulfone-ketone) copolymer, polymer electrolyte comprising the same, and mehtod for preparing the same | |
KR101699484B1 (en) | Preparation Method of Branched and Sulfonated Copolymer Containing Perfluorocyclobutylene Group | |
Song et al. | Fluorinated/non-fluorinated sulfonated polynaphthalimides as proton exchange membranes | |
KR20080099967A (en) | Sulfonated triphenylamine derivative and polimer prepared from the same | |
KR101963600B1 (en) | Polyarylene-based polymer, process of manufacturing thereof, and the use of the same | |
KR101703949B1 (en) | Sulfonated copolymer, polymer electrolyte comprising the same and water treating apparatus comprising the polymer electrolyte | |
CA3213611A1 (en) | Polymer electrolyte membrane, block copolymer, polymer electrolyte material, polymer electrolyte molded body, electrolyte membrane with catalyst layer, membrane electrode composite, solid polymer fuel cell, and water electrolytic hydrogen generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170804 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |