KR20140054698A - Process for preparing the stabilized astaxanthine by liposomal encapsulation - Google Patents

Process for preparing the stabilized astaxanthine by liposomal encapsulation Download PDF

Info

Publication number
KR20140054698A
KR20140054698A KR1020120120501A KR20120120501A KR20140054698A KR 20140054698 A KR20140054698 A KR 20140054698A KR 1020120120501 A KR1020120120501 A KR 1020120120501A KR 20120120501 A KR20120120501 A KR 20120120501A KR 20140054698 A KR20140054698 A KR 20140054698A
Authority
KR
South Korea
Prior art keywords
astaxanthin
carbon dioxide
supercritical carbon
astaxanthine
liposome
Prior art date
Application number
KR1020120120501A
Other languages
Korean (ko)
Inventor
변상요
송영근
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to KR1020120120501A priority Critical patent/KR20140054698A/en
Publication of KR20140054698A publication Critical patent/KR20140054698A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4833Encapsulating processes; Filling of capsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/14Liposomes; Vesicles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9706Algae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • C07B63/04Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/487Saturated compounds containing a keto group being part of a ring containing hydroxy groups
    • C07C49/497Saturated compounds containing a keto group being part of a ring containing hydroxy groups a keto group being part of a six-membered ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Botany (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Dermatology (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cosmetics (AREA)

Abstract

The present invention relates to a method for extracting astaxanthine from microalgae by using supercritical carbon dioxide and a method for stabilizing the same. More specifically, the method of the present invention comprises the steps of: extracting astaxanthine by applying supercritical carbon dioxide to crushed microalgae raw material under conditions of 35-90°C and 300-800 bar; and separating and recycling carbon dioxide from the extracted astaxanthine and a mixture of supercritical carbon dioxide. The extracted astaxanthine has less degradation factor such as lipid oxidation even for a long-term storage by being stabilized through liposome encapsulation; thereby has excellent stability and color as an antioxidant matter for raw materials of cosmetics.

Description

리포좀 캡슐화를 이용한 산화안정성이 우수한 아스타잔틴의 제조방법{Process for preparing the stabilized astaxanthine by liposomal encapsulation}Technical Field [0001] The present invention relates to a process for preparing astaxanthin having excellent oxidation stability using liposome encapsulation, and a process for preparing the astaxanthin by liposomal encapsulation,

본 발명은 초임계유체로 추출한 아스타잔틴을 리포좀 캡슐화를 통하여 안정화하는 방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 초임계 이산화탄소를 이용하여, 아스타잔틴을 고효율로 추출하고, 추출된 아스타잔틴을 리포좀 캡슐화를 통하여 산화로부터 보호되는 안정성을 높이는 제조방법 및 상기 방법에 의하여 제조된 아스타잔틴에 관한 것이다.
The present invention relates to a method for stabilizing astaxanthin extracted with a supercritical fluid through liposome encapsulation. More specifically, the present invention relates to a method for producing astaxanthin by extracting astaxanthin with high efficiency using supercritical carbon dioxide, and for enhancing the stability of the extracted astaxanthin through oxidation by liposome encapsulation, It is about astanthin.

최근 차세대 항산화 성분인 아스타잔틴 (Astaxanthin)이 식품, 의약품, 화장품 등 바이오산업 전반에서 큰 주목을 받고 있다. 아스타잔틴은 자연계에 널리 존재하는 keto-carotenoid로 polyisoprenoid와 oxygen quenching 기능을 가진 benzenoid ring의 결합체이다. 카로테노이드는 lipid-soluble하며, 주황색 또는 붉은색을 띠는 색소로 자연계에 700여종이 존재한다. 주로 새우, 붉은 도미류, 연어 및 바다가재등과 같은 해양 동물 조직에 존재하는 것으로 알려져 있다.Astaxanthin, a next-generation antioxidant, has received great attention in the food industry, pharmaceuticals and cosmetics industries. Astaxanthin is a natural keto-carotenoid, a combination of a polyisoprenoid and a benzenoid ring with oxygen quenching function. Carotenoids are lipid-soluble, orange or red pigmented, with over 700 species present in nature. It is known to exist in marine animal tissues such as shrimp, red sea bream, salmon and sea lobster.

아스타잔틴의 화학명은 3,3-dihydroxy---carotene-4,4-dione으로 가장 널리 알려진 카로티노이드류 중 비타민 A의 전구체인 베타카로틴을 기본 화학구조로 한 카로티노이드이며, 화학적으로 크산토필로 분류된다. 아스타잔틴은 말단기에 가지고 있는 히드록시(OH)기놔 케톤(=C-O)기는 강력한 항산화능력이 있고, 친수기와 친유기가 있는 이중층계면에서 아스타잔틴의 극성부분의 회전은 프리라디칼을 공격이 일어나게 한다. 자연산과 합성의 아스타잔틴 화학적 특성은 공간에서의 입체화학적특성(이성질체)에 기인한다. 아스타잔틴은 3S-3S, 3R-3S, and 3-3R으로 존재하는데 키랄탄소내의 히드록시기(OH)의 3차원적 배향에 기인한다. 이런 chirality and stero 차이는 효소, 면역성차이를 가져오며, 약, 향료, 향신료와 음식첨가제등과 같은 bioactive같은 경우에 매우 중요하다. 헤마토코쿠스 프로빌리어스 같은 해양미생물, 연거,게등의 자연산 아스타잔틴은 3S-3S형태이지만, 석유화학 같은 합성 아스타잔틴은 3R-3S(the meso form)가 50%로 함유된 혼합형태이다.  The chemical name of astaxanthin is carotenoid, which is the basic chemical structure of beta carotene, a precursor of vitamin A, among carotenoids most widely known as 3,3-dihydroxy-carotene-4,4-dione, and chemically classified as xanthophyll do. Astaxanthin has a strong antioxidant ability in the hydroxy terminated ketone (= CO) group, and the polar part of the astaxanthin in the bilayer interface with the hydrophilic group and the hydrophilic group causes free radical attack do. The chemical properties of astaxanthin in natural and synthetic origin are attributed to the stereochemical properties (isomers) in space. Astaxanthin is present as 3S-3S, 3R-3S, and 3-3R and is due to the three-dimensional orientation of the hydroxyl group (OH) in the chiral carbon. This difference in chirality and sterility leads to differences in enzymes, immunity, and is very important in bioactive situations such as drugs, spices, spices and food additives. 3S-3S is a natural astaxanthin in marine microorganisms such as Hematococcus probabilis, and agar, ghak, but synthetic astaxanthin such as petrochemical is a mixed form containing 3R-3S (the meso form) to be.

아스타잔틴의 가장 주요한 기능은 항산화력으로, 종전에 널리 사용되었던 다른 카로테노이드의 10배 이상이고, -토코페롤 (tocopherol)의 100배 이상인 것으로 보고되었으며 항산화제의 보석 (The jewel antioxidant) 이라 불리고 있다. 또한 현재까지 아스타잔틴의 독성에 대해서는 보고된 바 없다. 아스타잔틴은 정상적인 호기적 대사과정 중 활성산소가 세포 내 DNA, 단백질, 지질 등을 손상시키는 것과 더불어 세포와 조직의 노화 및 발암을 유발하는 반응을 억제할 뿐만 아니라 유리 라디칼의 생성을 억제하는 작용을 한다. 화장품 소재로서는 레티놀 전구체로서 주름개선에 효과적이며, 티로시나제 억제에 의한 멜라닌 색소침착 억제, 피부보습, 가려움 습진 개선 효과, 자외선에 의한 유해산소 제거효과, 피부탄력 개선 등의 효과가 있는 것으로 알려져 있다. 하지만 단가와 안정성, 원료 수급에 문제가 있고 추출하는 방법에서도 안정성, 색상, 수율, 품질에 제약이 많이 따르며, 폐기물 처리도 어려움이 있다. 그중에서도 열, 광에 의하여 쉽게 변화하는 등의 취급에 어려움과 분자량이 매우 커 이용에도 여러 가지 난제가 있다.The main function of astaxanthin is antioxidant activity, which is reported to be more than 10 times that of other carotenoids that have been widely used before, more than 100 times that of tocopherol, and is called the jewel antioxidant. Toxicity of astaxanthin has not been reported to date. Astaxanthin inhibits the production of free radicals as well as inhibits the aging and cancer-causing reactions of cells and tissues, as well as damaging cellular DNA, proteins and lipids during normal aerobic metabolism. . As a cosmetic material, it is a retinol precursor and is effective for improving wrinkles. It is known to have effects of inhibiting melanin pigmentation by inhibition of tyrosinase, skin moisturizing, improving itching eczema, removing harmful oxygen by ultraviolet rays, and improving skin elasticity. However, there are problems with unit cost, stability, raw material supply and demand, and there are restrictions on stability, color, yield and quality even in the extraction method, and waste disposal is also difficult. Among them, there are difficulties in handling such as easily changing by heat and light, and the molecular weight is very large.

아스타진틴은 다양한 기능을 가지고 있으나 가장 큰 문제점은 고온안정성, 열안정성이 나쁜점, 분자량이 너무 커 사용에의 어려움, 색상 문제, 고단가등의 문제점이 있다. 따라서 본 발명에서는 Haematococcus pluvialis로부터 초임계 이산화탄소를 이용하여 아스타잔틴을 순도 높게 고효율로 추출하였고, 추출된 아스타잔틴의 안정성을 높이고자 하였다. 이렇게 추출 획득한 아스타잔틴은 열, 광에 약해 취급이 어려워 이를 해소하기 위하여 본 발명을 하게 되었다.Although astaxanthin has various functions, the biggest problems are high temperature stability, poor thermal stability, high molecular weight, difficulty in use, color problems, and high cost. Therefore, the present invention extracts astaxanthin from Haematococcus pluvialis with high purity and high efficiency using supercritical carbon dioxide, and intends to enhance the stability of extracted astaxanthin. Astaxanthin thus extracted and obtained is difficult to handle due to heat and light, so that the present invention has been accomplished in order to solve this problem.

상기의 목적을 달성하기 위하여 본 발명에 초임계 이산화탄소를 이용한 아스타잔틴 추출방법은 미세조류에 35 내지 90 ℃ 및 300 내지 800 bar의 조건에서 초임계 이산화탄소를 가하여 아스타잔틴을 추출하는 단계; 상기 추출된 아스타잔틴과 초임계 이산화탄소의 혼합물로부터 이산화탄소를 기체상으로 분리하여 수거하는 단계; 및 추출된 아스타잔틴을 분리 정제하는 단계를 포함한다. 이때, 미세조류는 추출의 효율을 높이기 위하여 파쇄 전처리 한다.To achieve the above object, there is provided a method for extracting astaxanthin from supercritical carbon dioxide, comprising: extracting astaxanthin by adding supercritical carbon dioxide to microalgae at 35 to 90 DEG C and 300 to 800 bar; Separating carbon dioxide into a gaseous phase from a mixture of the extracted astaxanthin and supercritical carbon dioxide; And separating and purifying the extracted astaxanthin. At this time, the microalgae are pretreated in order to increase the extraction efficiency.

유럽특허 제 925,724호에 개시된 바와 같이, 초임계 이산화탄소를 사용하여 지질을 추출하기 위하여는, 추출조, 열교환기, 펌프, 이산화탄소 저장조, 칠러(냉각응축기), 감압 분리기 및 감압밸브로 구성된 추출장치를 사용한다. 상기 추출장치에 있어서, 추출조는 파쇄된 미세조류를 투입하여 추출되도록 하는 역할을 수행하고, 펌프는 초임계 이산화탄소에 압력을 가하는 역할을 수행하며, 열교환기는 초임계 이산화탄소를 가열하는 역할을 수행하고, 감압밸브는 추출기에서 방출된 초임계 이산화탄소를 감압시키는 역할을 수행하며, 감압분리기는 초임계 이산화탄소를 완전히 감압시켜서, 기체상의 이산화탄소를 분리하는 역할을 수행하고, 칠러는 감압된 이산화탄소를 초임계 이산화탄소로 전환시키는 역할을 수행하며, 이산화탄소 저장조는 초임계 이산화탄소를 저장하는 역할을 수행한다.As disclosed in European Patent No. 925,724, in order to extract lipid using supercritical carbon dioxide, an extraction device composed of an extraction tank, a heat exchanger, a pump, a carbon dioxide storage tank, a chiller (cooling condenser), a decompression separator, use. In the above extracting apparatus, the extracting tank serves to extract and extract the broken microalgae. The pump performs a function of applying pressure to the supercritical carbon dioxide. The heat exchanger serves to heat the supercritical carbon dioxide, The decompression valve serves to decompress the supercritical carbon dioxide emitted from the extractor. The decompression separator completely decompresses the supercritical carbon dioxide, separates the carbon dioxide on the gas phase, and the chiller decompresses the decompressed carbon dioxide into supercritical carbon dioxide And the carbon dioxide storage tank plays a role of storing supercritical carbon dioxide.

상기 추출장치를 사용하여 미세조류로부터 아스타잔틴을 추출하기 위해서는, 먼저 추출조에 파쇄된 미세조류를 투입하고, 펌프 및 열교환기를 통과한 초임계 이산화탄소를 추출조의 하단에 투입한 다음, 미세조류에서 추출된 아스타잔틴 및 여러 성분과 초임계 이산화탄소의 혼합물을 추출조의 상단으로 배출하고, 배출된 혼합물을 감압밸브를 통하여 감압시킨 후, 감압분리기에서 이산화탄소를 기체상으로 분리하여 수거하고, 추출된 아스타잔틴을 수거하는 단계를 수행하게 된다. 이때, 분리된 이산화탄소는 칠러를 통하여 액체 이산화탄소로 전환되어 이산화탄소 저장조에 보관된다.In order to extract astaxanthin from the microalgae using the above extracting apparatus, the microalgae pulverized in the extraction tank are first introduced, supercritical carbon dioxide passed through the pump and the heat exchanger is introduced into the bottom of the extraction tank, and then extracted from the microalgae The mixture of astaxanthin and various components and supercritical carbon dioxide is discharged to the top of the extraction tank and the discharged mixture is decompressed through a pressure reducing valve. Then, carbon dioxide is separated into gas phase by a decompression separator, Tin < / RTI > At this time, the separated carbon dioxide is converted into liquid carbon dioxide through the chiller and stored in the carbon dioxide storage tank.

추출된 아스타잔틴의 안정성을 높이기 위하여 다각적으로 연구한 결과, 리포좀 캡슐화가 아스타잔틴의 빛 및 열 안정성을 크게 향상시킨다는 것을 알고 본 발명을 완성하게 되었다.As a result of various studies to enhance the stability of extracted astaxanthin, it has been found that liposome encapsulation greatly improves astaxanthin's light and heat stability.

본 발명에 의한 아스타잔틴은 장기간 보관 시에도 열 또는 빛에 의하여 품질이 저하되지 않고 안정하여, 식용 뿐 아니라 기능성 화장품 소재로 활용될 수 있을 것이다.Astaxanthin according to the present invention is stable without deterioration in quality due to heat or light even when stored for a long period of time, and can be utilized as functional cosmetic materials as well as edible materials.

도 1은 리포좀 캡슐화된 아스타잔틴의 빛 안정성 (light stability)을 색차측정 (spectrometric color difference)을 통하여 나타낸 결과이다.Figure 1 shows the light stability of liposomally encapsulated astaxanthin through spectrometric color difference.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for describing the present invention more specifically, and the scope of the present invention is not limited by these embodiments.

초임계 유체 온도의 영향Effect of Supercritical Fluid Temperature

상기 언급된 추출 공정에서, 파쇄 전처리된 미세조류 원료 100 g에서, 초임계 이산화탄소의 온도를 35, 40, 50, 60, 70, 80 ℃ 로 변화시키며 아스타잔틴을 추출하였다. 이때 초임계유체의 압력은 350 bar로 유지하였고, 추출 시간은 어느 온도에서나 2시간으로 제한하였다. 아스타잔틴 추출 수율은 추출된 아스타잔틴을 미세조류에 존재하는 아스타잔틴 총량으로 나눈 값으로 %로 표시하였다. The above- In the extraction process, astaxanthin was extracted from 100 g of pretreated microalgae by varying the temperature of supercritical carbon dioxide at 35, 40, 50, 60, 70 and 80 ° C. The pressure of the supercritical fluid was maintained at 350 bar and the extraction time was limited to 2 hours at any temperature. The extraction yield of astaxanthin was expressed as a percentage of the extracted astaxanthin divided by the total amount of astaxanthin present in the microalgae.

표 1의 결과에서 보듯이 미세조류에서 추출한 아스타잔틴의 경우, 초임계 이산화탄소의 온도에 따라 추출 효율이 영향을 받는 것으로 나타났다. 온도가 높을수록 추출 효율이 증가하지만 70 ℃ 이상에선 증가폭이 크지 않았고, 80 ℃ 이상에선 오히려 감소하였는데, 이는 고온에서의 아스타잔틴의 변질에 따른 영향으로 판단된다. As shown in Table 1, the extraction efficiency of astaxanthin extracted from microalgae was affected by the temperature of supercritical carbon dioxide. The higher the temperature, the higher the extraction efficiency. However, the increase in the temperature above 70 ℃ was not significant, but the decrease was above 80 ℃, which is probably due to the alteration of astaxanthin at high temperature.

초임계 유체의 온도 변화에 따른 아스타잔틴 추출 수율Extraction yield of astaxanthin according to temperature change of supercritical fluid 온도 (℃)Temperature (℃) 3535 4040 5050 6060 7070 8080 9090 추출수율 (%)Extraction yield (%) 88 1010 1212 1515 1717 1717 1515

초임계 유체 압력의 영향Influence of Supercritical Fluid Pressure

마찬가지로 상기 추출 공정에서, 파쇄 전처리된 미세조류 원료 100 g으로 부터, 초임계 이산화탄소의 압력을 75, 100, 200, 300, 400, 500, 600, 700, 800 bar로 변화시키며 아스타잔틴을 추출하고 수율을 측정하였다. 이때 초임계 유체의 온도는 60 ℃로 유지하였고, 추출 시간은 어떤 압력에서나 2시간으로 제한하였다. Similarly, In the extraction process, the pressure of the supercritical carbon dioxide was changed to 75, 100, 200, 300, 400, 500, 600, 700, 800 bar from 100 g of the pretreated microalgae raw material to extract astaxanthin and the yield Respectively. At this time, supercritical fluid temperature was maintained at 60 ° C and extraction time was limited to 2 hours at any pressure.

표 2의 결과에서 보듯이 미세조류에서 추출한 아스타잔틴의 경우, 초임계 이산화탄소의 압력에 따라 추출 효율이 영향을 받는 것으로 나타났다. 압력이 높을수록 추출 효율이 증가하였다. As can be seen from the results in Table 2, in the case of astaxanthin extracted from microalgae, the extraction efficiency was affected by the pressure of supercritical carbon dioxide. The higher the pressure, the higher the extraction efficiency.

초임계 유체의 압력 변화에 따라 추출된 인삼씨유량과 토코페롤 함량 변화Changes of Ginseng Seed Flow and Tocopherol Contents in the Presence of Supercritical Fluid Pressure 압력 (bar)Pressure (bar) 7575 100100 200200 300300 400400 500500 600600 700700 800800 추출수율 (%)Extraction yield (%) 66 99 1111 1414 1616 1717 1818 1919 1919

리포좀 캡슐화Liposome encapsulation

High pressure homogenizer는 입자의 균질화 및 맛 개선과 보관 기간을 연장 할 목적으로 만들었으며 유제품 및 식품 가공에 널리 사용되고 있고 화학 공업에서도 많이 응용되고 있다. Homogenizer는 높은 압력에서 시료를 valve사이 간격을 통과시켜 고압에서 상압으로 변환시키면 압력차에 의한 cavitation과 난류에 의해 입자의 미립화가 일어난다. 입자 크기는 약 1 ㎛ 이하를 필요로 할 때 homogenizer를 사용하며 압력을 발생 시키는 가압 부분과 효과를 얻기 위한 valve 부분으로 구성되어 있다. 3 wt% Lecithin에 10 wt% Propylene glycol, 2 wt% Mineral oil, 10 wt% EtOH 을 혼합 후 65~70 로 가온하여 용해시킨 후 증류수를 첨가한 혼합물을 Homomixer를 이용하여 3500 rpm에서 10분간 균질화하여 1차 리포좀을 제조하였다. 제조한 리포좀에 Astaxanthin 1 wt%를 넣은 후 5분간 다시 균질화하고 고압 Homogenizer를 이용하여 1000 bar에서 3회 통과하여 리포좀을 제조하였다.
High pressure homogenizer has been used for homogenization of particles and improvement of taste and storage period. It is widely used in dairy products and food processing, and is widely applied in chemical industry. When homogenizer is converted from high pressure to atmospheric pressure by passing the sample through the gap between the valves at high pressure, the particle is atomized by cavitation and turbulence due to pressure difference. A particle size of less than about 1 ㎛ is used as a homogenizer and consists of a pressure part generating pressure and a valve part for obtaining effect. 3 wt% Lecithin was mixed with 10 wt% propylene glycol, 2 wt% mineral oil, and 10 wt% EtOH. The mixture was heated to 65 ~ 70 and dissolved in distilled water. The mixture was homogenized at 3500 rpm for 10 min using Homomixer A first liposome was prepared. 1 wt% of Astaxanthin was added to the prepared liposome, and homogenized again for 5 minutes. Liposomes were prepared by passing 3 times at 1000 bar using a high-pressure homogenizer.

리포좀 특성 및 안정성 측정Liposome characterization and stability measurement

제조된 리포좀의 입자 크기 분포는 입도분포 측정기 (Mastersizer, Malvern, UK)를 이용하여 측정하였다. 일정 파장의 Laser가 입자의 표면에 조사되면 나타나는 회절(Diffraction), 굴절(Refraction), 반사(Reflection)의 동시 복합적 현상을 이용하며, 산란강도는 입자의 크기에 비례하고 산란각은 입자 크기에 반비례한다는 원리로 입자 크기를 분석하는 장비이다. 아스타잔틴의 광 및 열 안정성 측정을 위하여 아스타잔틴 emulsion과 리포좀 용액을 이용하였다. 광 안정성은 샘플을 일광 조건에서 방치 1, 3, 6일 후 상등액을 취하여 색도 변화를 측정하였다. 열 안정성은 동일 샘플을 이용하여 45, 37, 25, 4 ℃에서 각 6시간으로 총합 24시간이 1 cycle로 고정하고 cycle test를 실시하여 광 안정성과 마찬가지로 1, 3, 6일 후 상등액을 취하여 색도 변화를 측정하였다. 색도는 Color Spectrophotometer (ColorMate, Scinco, Korea)를 이용하여 △E*ab 값을 측정하였다. The particle size distribution of the prepared liposomes was measured using a particle size distribution analyzer (Mastersizer, Malvern, UK). The scattering intensity is proportional to the size of the particle and the scattering angle is inversely proportional to the particle size. The scattering intensity is proportional to the size of the particle. It is a device to analyze the particle size by the principle of. Astaxanthin emulsion and liposome solution were used for measuring optical and thermal stability of astaxanthin. The light stability was measured by taking the supernatant after 1, 3, and 6 days after the sample was left in the sunlight condition. The thermal stability was determined by the same sample for 6 hours at 45, 37, 25 and 4 ℃ for a total of 24 hours. After 1, 3 and 6 days, Change was measured. The chromaticity was measured by using Color Spectrophotometer (ColorMate, Scinco, Korea).

리포좀의 열역학적 안전성을 유지하기 위해서는 입자를 작게 하고 입자의 분포를 협조하게 하는 size distribution의 효율을 증가 시키는 노력이 중요하다. 고압 Homogenizer를 이용한 리포좀의 형성에서 리포좀화에 따른 안정성을 살펴보기 위하여 일반 emulsion과 리포좀을 형성하여 측정한 결과 일반 emulsion은 3342 nm 이었고 고압 호모게나이저 (Panda, Niro Soavi, Italy)를 이용하여 1000 bar에서 3회 통과시켰을 때 안정한 나노 리포좀이 형성되었으며 size측정결과 입자크기는 166 nm 임을 확인 하였다. 입도 분포 결과에서도 일반 emulsion은 두 개의 peak를 보이나 liposome의 경우 단일 peak를 나타냄을 알 수 있다.In order to maintain the thermodynamic safety of the liposome, it is important to increase the efficiency of the size distribution, which reduces the particle size and coordinates the distribution of the particles. In order to investigate the stability of liposomes in the formation of liposomes by high pressure homogenizer, general emulsion and liposomes were formed and the emulsion was 3342 nm. Using a high pressure homogenizer (Panda, Niro Soavi, Italy) , The stable nano-liposome was formed. The size of the nano-liposome was measured to be 166 nm. In the particle size distribution, the general emulsion has two peaks but the liposome has a single peak.

도 1에서 보듯이 일반 emulsion의 경우 광, 열 환경에 노출시켰을 때 입자가 응집되어 크기가 커지는 거동을 보였으며 육안으로도 층이 분리되는 것을 관찰할 수 있었다. 반면 리포좀의 경우 도 1과 같이 입자의 크기도 유지되었으며 층 분리 현상도 나타나지 않았다. 광 및 열 환경에 노출 후 색차측정 (△E*ab) 결과, 리포좀의 경우 일반 emulsion 보다 색변화가 없어, 아스타잔틴의 안정성이 더욱 향상된 것을 확인할 수 있다. As shown in FIG. 1, in the case of the general emulsion, the particles were agglomerated when exposed to the light and heat environment, and the layer was separated by the naked eye. On the other hand, in the case of liposomes, particle size was maintained as shown in Fig. 1, and no layer separation phenomenon was observed. As a result of colorimetric measurement (ΔE * ab) after exposure to light and heat environment, the stability of astaxanthin was further improved by the absence of color change in liposomes compared with the general emulsion.

Claims (3)

미세조류로부터 초임계 이산화탄소를 이용하여 추출된 아스타잔틴을 리포좀 캡슐화를 통하여 안정성이 향상된 아스타잔틴의 제조방법.
A method for preparing astaxanthin having enhanced stability through liposome encapsulation of astaxanthin extracted from microalgae using supercritical carbon dioxide.
제1항에 있어서 리포좀 캡슐화는, 3 wt% Lecithin에 10 wt% Propylene glycol, 2 wt% Mineral oil, 10 wt% EtOH 을 혼합 후 65~70 로 가온하여 용해시킨 후 증류수를 첨가한 혼합물을 호모믹서를 이용하여 3500 rpm에서 10분간 균질화하여 1차 리포좀을 제조하고, 제조한 리포좀에 아스타잔틴 1 wt%를 넣은 후 5분간 다시 균질화하고 고압 Homogenizer를 이용하여 1000 bar에서 3회 통과시켜 리포좀 제조방법.
The liposome encapsulation according to claim 1, wherein 10 wt% of propylene glycol, 2 wt% of mineral oil and 10 wt% of EtOH are mixed with 3 wt% Lecithin, and the mixture is heated to 65 to 70 to dissolve, , Homogenized at 3500 rpm for 10 minutes to prepare a first liposome, 1 wt% of astaxanthin was added to the prepared liposome, homogenized again for 5 minutes, and passed three times at 1000 bar using a high-pressure homogenizer to prepare liposome .
제1항에 있어서, 35 에서 90 ℃의 온도조건 및 300 에서 800 bar의 압력조건의 초임계 이산화탄소로 추출하는 것을 특징으로 하는 초임계 이산화탄소를 이용한 아스타잔틴의 추출방법.The method of extracting astaxanthin from supercritical carbon dioxide according to claim 1, characterized by extracting with supercritical carbon dioxide at a temperature of 35 to 90 ° C and a pressure of 300 to 800 bar.
KR1020120120501A 2012-10-29 2012-10-29 Process for preparing the stabilized astaxanthine by liposomal encapsulation KR20140054698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120120501A KR20140054698A (en) 2012-10-29 2012-10-29 Process for preparing the stabilized astaxanthine by liposomal encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120120501A KR20140054698A (en) 2012-10-29 2012-10-29 Process for preparing the stabilized astaxanthine by liposomal encapsulation

Publications (1)

Publication Number Publication Date
KR20140054698A true KR20140054698A (en) 2014-05-09

Family

ID=50886508

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120120501A KR20140054698A (en) 2012-10-29 2012-10-29 Process for preparing the stabilized astaxanthine by liposomal encapsulation

Country Status (1)

Country Link
KR (1) KR20140054698A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004563A1 (en) * 2017-06-30 2019-01-03 Cell-Rege Cosmetics Co., Ltd. Method of preparing bioactive substance-encapsulated ethosome, ethosome composition, and cosmetic composition including ethosome composition
WO2019080193A1 (en) * 2017-10-24 2019-05-02 国家海洋局第三海洋研究所 Liposome encapsulating free astaxanthin and preparation method therefor
KR20200085023A (en) * 2019-01-04 2020-07-14 충북대학교 산학협력단 Composition for prevention or treatment of atopic dermatitis and skin trouble care comprising Astaxanthin Liposome as effective component
KR20200110287A (en) * 2020-09-16 2020-09-23 충북대학교 산학협력단 Composition for prevention or treatment of atopic dermatitis and skin trouble care comprising Astaxanthin Liposome as effective component
KR20200110638A (en) * 2020-09-16 2020-09-24 충북대학교 산학협력단 Composition for prevention or treatment of atopic dermatitis and skin trouble care comprising Astaxanthin Liposome as effective component
KR20210022433A (en) * 2019-08-20 2021-03-03 한국세라믹기술원 Astaxanthin solubilizing composition and method for preparing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004563A1 (en) * 2017-06-30 2019-01-03 Cell-Rege Cosmetics Co., Ltd. Method of preparing bioactive substance-encapsulated ethosome, ethosome composition, and cosmetic composition including ethosome composition
US11452679B2 (en) 2017-06-30 2022-09-27 Binotec Co., Ltd. Method of preparing bioactive substance-encapsulated ethosome, ethosome composition, and cosmetic composition including ethosome composition
WO2019080193A1 (en) * 2017-10-24 2019-05-02 国家海洋局第三海洋研究所 Liposome encapsulating free astaxanthin and preparation method therefor
KR20200085023A (en) * 2019-01-04 2020-07-14 충북대학교 산학협력단 Composition for prevention or treatment of atopic dermatitis and skin trouble care comprising Astaxanthin Liposome as effective component
KR20210022433A (en) * 2019-08-20 2021-03-03 한국세라믹기술원 Astaxanthin solubilizing composition and method for preparing same
KR20200110287A (en) * 2020-09-16 2020-09-23 충북대학교 산학협력단 Composition for prevention or treatment of atopic dermatitis and skin trouble care comprising Astaxanthin Liposome as effective component
KR20200110638A (en) * 2020-09-16 2020-09-24 충북대학교 산학협력단 Composition for prevention or treatment of atopic dermatitis and skin trouble care comprising Astaxanthin Liposome as effective component

Similar Documents

Publication Publication Date Title
KR20140054698A (en) Process for preparing the stabilized astaxanthine by liposomal encapsulation
Pataro et al. Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction
Pan et al. Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier
Zoz et al. Torularhodin and torulene: bioproduction, properties and prospective applications in food and cosmetics-a review
Cardarelli et al. Characterization of different annatto extracts based on antioxidant and colour properties
Singh et al. Phenolic content and antioxidant capacity of selected cucurbit fruits extracted with different solvents
Wu et al. Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa
KR101332064B1 (en) Nanoemulsion composition and nethod of manufacturing the same
US20070286930A1 (en) Carotenoid-containing emulsion composition, process for its production, and food and cosmetic product containing the same
KR101448317B1 (en) Carotenoid compositions useful for whitening skin
Pernice et al. Bergamot: A source of natural antioxidants for functionalized fruit juices
US11179333B2 (en) Emulsion composition
US10701957B2 (en) Method for production of carotenoid
US20130338234A1 (en) Method for direct extraction and concentration of naturally-derived active compounds
Hu et al. Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts
EP2017262B1 (en) Process for production of carotenoid
Miyazawa et al. Plasma carotenoid concentrations before and after supplementation with astaxanthin in middle-aged and senior subjects
WO2013002398A1 (en) Method for producing carotenoid composition
JP2008536896A (en) Method for preparing formulations rich in lycopene and free of organic solvents, resulting formulations, compositions containing these formulations, and uses thereof
Özen et al. Antioxidant activities of Sarcodon imbricatum wildly grown in the black sea region of Turkey
Cefali et al. Vitamin C in acerola and red plum extracts: quantification via hplc, in vitro antioxidant activity, and stability of their gel and emulsion formulations
CN108522914A (en) Anti-oxidant, anti-aging compound juice beverage and preparation method thereof
Lee et al. Single-step extraction of bioactive compounds from cruciferous vegetable (kale) waste using natural deep eutectic solvents
Lara-Abia et al. High hydrostatic pressure-assisted extraction of carotenoids from papaya (Carica papaya L. cv. Maradol) tissues using soybean and sunflower oil as potential green solvents
Sy et al. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment–Comparison with dietary reference carotenoids

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination