KR20140050169A - Wind generator with superconducting generator and cooler of none coupling type - Google Patents

Wind generator with superconducting generator and cooler of none coupling type Download PDF

Info

Publication number
KR20140050169A
KR20140050169A KR1020120115775A KR20120115775A KR20140050169A KR 20140050169 A KR20140050169 A KR 20140050169A KR 1020120115775 A KR1020120115775 A KR 1020120115775A KR 20120115775 A KR20120115775 A KR 20120115775A KR 20140050169 A KR20140050169 A KR 20140050169A
Authority
KR
South Korea
Prior art keywords
superconducting
generator
field coil
coil
superconducting field
Prior art date
Application number
KR1020120115775A
Other languages
Korean (ko)
Inventor
김호민
김지형
Original Assignee
제주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제주대학교 산학협력단 filed Critical 제주대학교 산학협력단
Priority to KR1020120115775A priority Critical patent/KR20140050169A/en
Priority to PCT/KR2013/005479 priority patent/WO2014061894A1/en
Publication of KR20140050169A publication Critical patent/KR20140050169A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a wind generator with a superconducting generator and a non-coupling type cooling system comprising: a tower post; a rotating body (a hub with a blade and a main shaft); and a superconducting generator. The superconducting generator generates power using wind power by rotating a roeble bar coupled with the main shaft by a shaft while an armature coil and a superconducting field coil keeps still. A cryocooler is directly installed on one side of the superconducting field coil without coupling. Therefore, the wind generator with a superconducting generator and a non-coupling type cooling system can perform high efficient and high performance wind power generation by the superconducting field coil; maintain excellent lower load properties by directly connecting electric systems by omitting a change gear; and improves by reducing the construction costs and operating expenses.

Description

초전도 발전기와 논 커플링 구조식 냉각 시스템을 갖는 풍력 발전기{wind generator with Superconducting Generator and cooler of none coupling type}Wind generator with superconducting generator and cooler of none coupling type

본 발명은 타워 지주체, 회전동체(블레이드를 갖는 허브 및 메인 샤프트)와 초전도 발전기로 구성되는 풍력 발전기에 있어서, 상기 초전도 발전기는 전기자 코일(Armature Coil)과 초전도 계자코일(Superconducting Field Coil)이 정지된 상태로 있고 메인 샤프트와 축 결합된 로벨-바가 회전하면서 풍력으로 인해 발전을 수행하도록 하되, 상기 초전도 계자코일 일측에는 극저온 냉동기가 커플링의 연결 없이 직접 부설되도록 함으로써, 초전도 계자코일에 의한 고효율, 고성능 풍력 발전을 도모하고, 변속기어 생략에 따른 전력계통 직결로 인해 저부하 특성이 우수하게 유지되도록 형성되며, 이에 건설비용 절감과 운영비 감소로 인해 생산성이 향상되는 것을 특징으로 하는 초전도 발전기와 논 커플링 구조식 냉각 시스템을 갖는 풍력 발전기에 관한 것이다.
The present invention is a wind generator consisting of a tower support body, a rotating body (a hub and a main shaft having a blade) and a superconducting generator, the superconducting generator is the armature coil (Armature Coil) and the superconducting field coil (Superconducting Field Coil) is stopped Rovel-bar coupled to the main shaft and the main shaft is rotated to generate power due to wind power, but one side of the superconducting field coil allows the cryogenic freezer to be directly installed without coupling, thereby providing high efficiency due to superconducting field coil. Superconducting generators and non-couplings are characterized by high-performance wind power generation and low load characteristics maintained by direct connection of power systems due to transmission gear omissions, thereby improving productivity by reducing construction costs and reducing operating costs. A wind generator having a ring structured cooling system.

일반적으로 풍력 발전시스템은 바람에 의한 운동 에너지를 전기적 에너지로 변환할 수 있도록 구성되는 시스템으로서, 설치되는 환경 조건에 따라 육상용(onshore)과 해상용(offshore)로 구분될 수 있다.In general, the wind power generation system is a system configured to convert the kinetic energy of the wind into electrical energy, it can be divided into onshore (offshore) and offshore (offshore) according to the installed environmental conditions.

도 6은 일반적인 풍력 터빈시스템의 구조를 보여주는 개략도로서, 그 작동을 개략적으로 설명하면 다음과 같다.6 is a schematic view showing the structure of a general wind turbine system, the operation of which is outlined as follows.

먼저, 타워(40)를 견고한 지반(50) 상에 콘트리트 구조물 등을 이용해서 세우고 그 위에 나셀(20)을 안착시킨다. First, the tower 40 is erected on the solid ground 50 using a concrete structure or the like and seats the nacelle 20 thereon.

상기 나셀(20)은 내부에 증속기(22), 발전기(24), 인버터, 트랜스포머 등이 구비된다. The nacelle 20 is provided with a speed increaser 22, a generator 24, an inverter, a transformer, and the like.

상기 증속기(22)에는 허브와 메인 샤프트를 통해 블레이드(30)가 연결 고정되고, 바람에 의해 저속으로 회전하는 블레이드(30)는 증속기(22)를 통해 1500rpm 이상의 고속으로 운동 에너지를 발생시키고 발전기(24)는 상기 운동에너지를 전기에너지로 변화시키게 되며, 발전기(24)에서 생산된 전기는 인버터에서 정류되어 전송된다.The blade 30 is connected and fixed to the speed increaser 22 through the hub and the main shaft, and the blade 30 rotating at a low speed by wind generates kinetic energy at a high speed of 1500 rpm or more through the speed increaser 22. The generator 24 converts the kinetic energy into electrical energy, and the electricity produced by the generator 24 is rectified and transmitted from the inverter.

그러나, 이와 같은 종래의 풍력 발전에서는 풍력에 의한 운동에너지를 전기에너지로 변화시키는 과정과 구동라인인 증속기에서 기어 등의 기계적 마찰 등에 의해 에너지 손실이 발생할 수 있고 인버터, 트랜스포머 등과 같은 정류장치들에서도 손실에 의한 열이 발생할 수 있다.However, in the conventional wind power generation, energy loss may occur due to the process of converting kinetic energy from wind into electric energy and mechanical friction of gears in a drive line speed increaser, and also at stop values such as inverters and transformers. May cause heat.

또한, 나셀 내에서는 각 장치들을 연결하는 파워 케이블, 컨트롤 캐비넷, 파워 서플라이 등으로부터 부가적인 열손실이 발생할 경우에 열 손실은 더욱 증가할 우려가 있게 되는 문제가 지속적으로 야기되고 있는 실정이다.
In addition, in the nacelle, there is a problem that heat loss may increase even when additional heat loss occurs from a power cable, a control cabinet, and a power supply connecting each device.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 그 기술적 요지는 초전도 발전기와 직렬식 극저온 냉동기가 구비된 풍력 발전기에 있어서, 상기 초전도 발전기는 전기자 코일(Armature Coil)과 초전도 계자코일(Superconducting Field Coil)이 정지된 상태로 있고 메인 샤프트와 축 결합된 로벨-바가 회전하면서 풍력으로 인해 발전을 수행하도록 하되, 상기 초전도 계자코일 일측에는 극저온 냉동기가 커플링의 연결 없이 직접 부설되도록 함으로써, 초전도 계자코일에 의한 고효율, 고성능 풍력 발전을 도모하고, 변속기어 생략에 따른 전력계통 직결로 인해 저부하 특성이 우수하게 유지되도록 형성되며, 이에 건설비용 절감과 운영비 감소로 인해 생산성이 향상되는 것을 특징으로 하는 초전도 발전기와 논 커플링 구조식 냉각 시스템을 갖는 풍력 발전기를 제공하고자 함에 그 목적이 있다.
The present invention is to solve the above-described problems, the technical gist of the wind power generator having a superconducting generator and a series cryogenic chiller, the superconducting generator is an armature coil (Armature Coil) and superconducting field coil (Superconducting Field Coil) This stationary state and the axial-bar coupled to the main shaft rotates to perform power generation due to the wind, but the superconducting field coil by one side of the cryogenic freezer to be directly installed without a coupling, by the superconducting field coil Superconducting generators that promote high efficiency, high performance wind power generation, and maintain low load characteristics due to the direct connection of the power system due to transmission gear omissions, thereby improving productivity by reducing construction costs and operating costs Manufacturing a wind generator with a non-coupling structural cooling system As to which is the purpose.

이러한 목적을 달성하기 위해 본 발명은 블레이드(110)를 갖는 허브(100)가 형성되고, 상기 허브(100)와 축 결합되는 메인샤프트(200)가 형성되며, 상기 메인샤프트(200)와 결합되는 로벨-바(300)가 형성되고, 상기 로벨-바(300)의 외측에는 S극과 N극이 원주방향을 따라 등간격으로 반복 배열되는 전기자 코일(400)이 형성되며, 상기 로벨-바(300)의 내측에는 베어링에 의해 메인샤프트(200)가 회전하면 운동에너지를 전기에너지로 변화하도록 하는 초전도 계자코일(Superconducting Field Coil: 500)이 형성되고, 상기 초전도 계자코일(500)의 일측에는 커플링 없이 직접 연결되어 초전도 계자코일(500)에 대하여 직접 냉각을 수행하도록 하는 극저온 냉동기(600)가 형성되어 이루어진다.In order to achieve the object of the present invention, the hub 100 having the blades 110 is formed, and the main shaft 200 is axially coupled to the hub 100 is formed, which is coupled to the main shaft 200 A leveling bar 300 is formed, and an outer side of the leveling bar 300 is formed with an armature coil 400 in which S-poles and N-poles are repeatedly arranged at equal intervals along the circumferential direction. Inside the 300, a superconducting field coil 500 is formed to change kinetic energy into electrical energy when the main shaft 200 rotates by a bearing, and a couple is formed on one side of the superconducting field coil 500. The cryogenic freezer 600 is formed to be directly connected without a ring to perform direct cooling on the superconducting field coil 500.

이때, 상기 초전도 계자코일(500)은 권선된 외주면에 진공막(Vacuum Layer: 510)이 형성되고, 극저온 냉동기(600)와 대응되는 측부에는 극저온 냉동기(600)로부터 연결된 배관에 의해 진공막(510) 내부로 혼합 냉매(hybrid cryogens)가 공급될 수 있도록 하는 것이 바람직하다.At this time, the superconducting field coil 500 has a vacuum layer (Vacuum Layer: 510) is formed on the outer circumferential surface of the winding, and the vacuum membrane 510 by a pipe connected from the cryogenic freezer 600 to the side corresponding to the cryogenic freezer 600 It is desirable to allow hybrid cryogens to be supplied into the chamber.

또한, 상기 전기자 코일(400)은 구리 코일(Copper Coil)로서 로벨-바(300)가 자속을 끊으면 도체 양단에 전압이 유기되어 교류 전압이 발생되고, 유기된 유도 전압에 의해 상기 초전도 계자코일(500)에는 로벨-바(300)의 회전시 전기자 코일(400)과 자성에 의해 직류 전류가 흐르도록 하는 것이 바람직하다.In addition, the armature coil 400 is a copper coil (Copper Coil) when the low-bar 300 breaks the magnetic flux, the voltage is induced at both ends of the conductor to generate an alternating voltage, the superconducting field coil ( In the 500, the direct current flows by the armature coil 400 and magnetism when the leveling bar 300 rotates.

이에, 상기 극저온 냉동기(600)는 고온 저압의 기상 냉매를 저온 고압으로 압축하는 압축기와, 상기 압축기에서 압축된 냉매를 액상으로 응축하는 응축기와, 액상 냉매를 저압 액상 냉매로 팽창시키는 팽창밸브 및 상기 팽창밸브에서 팽창된 액상 냉매를 증발시키면서 외부의 열을 흡수하여 고온 고압의 기상 냉매를 압축기로 보내는 증발기가 구비되어 이루어진 것이 바람직하다.
Accordingly, the cryogenic refrigerator 600 includes a compressor for compressing a high-temperature low-pressure gaseous refrigerant at low temperature and high pressure, a condenser for condensing the refrigerant compressed in the compressor into a liquid phase, an expansion valve for expanding the liquid refrigerant into a low pressure liquid refrigerant, and the It is preferable that an evaporator is provided to absorb the external heat while evaporating the liquid refrigerant expanded by the expansion valve and to send the high temperature and high pressure gaseous refrigerant to the compressor.

이와 같이, 본 발명은 타워 지주체, 회전동체(블레이드를 갖는 허브 및 메인 샤프트)와 초전도 발전기로 구성되는 풍력 발전기에 있어서, 상기 초전도 발전기는 전기자 코일(Armature Coil)과 초전도 계자코일(Superconducting Field Coil)이 정지된 상태로 있고 메인 샤프트와 축 결합된 로벨-바가 회전하면서 풍력으로 인해 발전을 수행하도록 하되, 상기 초전도 계자코일 일측에는 극저온 냉동기가 커플링의 연결 없이 직접 부설되도록 함으로써, 초전도 계자코일에 의한 고효율, 고성능 풍력 발전을 도모하고, 변속기어 생략에 따른 전력계통 직결로 인해 저부하 특성이 우수하게 유지되도록 형성되며, 이에 건설비용 절감과 운영비 감소로 인해 생산성이 향상되는 효과가 있다.
As described above, the present invention is a wind generator comprising a tower support body, a rotating body (a hub having a blade and a main shaft) and a superconducting generator, wherein the superconducting generator is an armature coil and a superconducting field coil. ) Is stationary and the low-bar axially coupled to the main shaft rotates to generate power due to wind power, but one side of the superconducting field coil allows the cryogenic freezer to be directly installed without connection of the coupling to the superconducting field coil. High efficiency and high performance by the wind power generation, and the low load characteristics are formed to remain excellent due to the direct connection of the power system by the transmission gear omitted, thereby improving the productivity by reducing the construction cost and operating cost.

도 1은 본 발명에 따른 초전도 발전기와 논 커플링 구조식 냉각 시스템을 갖는 풍력 발전기의 개략적 구성도,
도 2 내지 도 5는 본 발명에 따른 초전도 계자코일과 극저온 냉동기의 결합 구조를 나타낸 예시도,
도 6은 일반적인 풍력발전기를 나타낸 예시도이다.
1 is a schematic configuration diagram of a wind power generator having a superconducting generator and a non-coupling structured cooling system according to the present invention;
2 to 5 is an exemplary view showing a coupling structure of the superconducting field coil and the cryogenic freezer according to the present invention,
6 is an exemplary view showing a general wind power generator.

다음은 첨부된 도면을 참조하며 본 발명을 보다 상세히 설명하겠다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings.

먼저, 도 1에 도시된 바와 같이, 본 발명의 풍력 발전기는 블레이드(110)를 갖는 허브(100)가 형성되고, 상기 허브(100)와 축 결합되는 메인샤프트(200)가 형성되며, 상기 메인샤프트(200)와 결합되는 로벨-바(300)가 형성된다.First, as shown in FIG. 1, in the wind generator of the present invention, a hub 100 having a blade 110 is formed, a main shaft 200 axially coupled to the hub 100 is formed, and the main A leveling bar 300 is formed which is coupled with the shaft 200.

이때, 상기 로벨-바(300)의 외측에는 S극과 N극이 원주방향을 따라 등간격으로 반복 배열되는 전기자 코일(400)이 형성되며, 상기 로벨-바(300)의 내측에는 베어링에 의해 메인샤프트(200)가 회전하면 운동에너지를 전기에너지로 변화하도록 하는 초전도 계자코일(Superconducting Field Coil: 500)이 형성된다.At this time, the armature coil 400 is formed on the outer side of the low-bar 300, the S pole and the N pole is repeatedly arranged at equal intervals along the circumferential direction, the inner side of the low-bar 300 by a bearing When the main shaft 200 rotates, a superconducting field coil 500 is formed to change kinetic energy into electrical energy.

이때, 상기 초전도 계자코일(500)의 일측에는 커플링 없이 직접 연결되어 초전도 계자코일(500)에 대하여 직접 냉각을 수행하도록 하는 극저온 냉동기(600)가 형성되어 이루어진다.At this time, one side of the superconducting field coil 500 is directly formed without a coupling to form a cryogenic refrigerator 600 to perform a direct cooling to the superconducting field coil 500.

이때, 상기 초전도 계자코일(500)은 권선된 외주면에 진공막(Vacuum Layer: 510)이 형성되고, 극저온 냉동기(600)와 대응되는 측부에는 극저온 냉동기(600)로부터 연결된 배관에 의해 진공막(510) 내부로 혼합 냉매(hybrid cryogens)가 공급될 수 있도록 하는 것이 바람직하다.At this time, the superconducting field coil 500 has a vacuum layer (Vacuum Layer: 510) is formed on the outer circumferential surface of the winding, and the vacuum membrane 510 by a pipe connected from the cryogenic freezer 600 to the side corresponding to the cryogenic freezer 600 It is desirable to allow hybrid cryogens to be supplied into the chamber.

또한, 상기 전기자 코일(400)은 구리 코일(Copper Coil)로서 로벨-바(300)가 자속을 끊으면 도체 양단에 전압이 유기되어 교류 전압이 발생되고, 유기된 유도 전압에 의해 상기 초전도 계자코일(500)에는 로벨-바(300)의 회전시 전기자 코일(400)과 자성에 의해 직류 전류가 흐르도록 하는 것이 바람직하다.In addition, the armature coil 400 is a copper coil (Copper Coil) when the low-bar 300 breaks the magnetic flux, the voltage is induced at both ends of the conductor to generate an alternating voltage, the superconducting field coil ( In the 500, the direct current flows by the armature coil 400 and magnetism when the leveling bar 300 rotates.

이에, 상기 극저온 냉동기(600)는 고온 저압의 기상 냉매를 저온 고압으로 압축하는 압축기와, 상기 압축기에서 압축된 냉매를 액상으로 응축하는 응축기와, 액상 냉매를 저압 액상 냉매로 팽창시키는 팽창밸브 및 상기 팽창밸브에서 팽창된 액상 냉매를 증발시키면서 외부의 열을 흡수하여 고온 고압의 기상 냉매를 압축기로 보내는 증발기가 구비되어 이루어진 것이 바람직하다.Accordingly, the cryogenic refrigerator 600 includes a compressor for compressing a high-temperature low-pressure gaseous refrigerant at low temperature and high pressure, a condenser for condensing the refrigerant compressed in the compressor into a liquid phase, an expansion valve for expanding the liquid refrigerant into a low pressure liquid refrigerant, and the It is preferable that an evaporator is provided to absorb the external heat while evaporating the liquid refrigerant expanded by the expansion valve and to send the high temperature and high pressure gaseous refrigerant to the compressor.

즉, 고온 가스가 등온 압축을 하면서 외부로 열을 방출하게 되면, 이 과정 동안에는 외부로 열을 방출하며 압축에 따른 냉매 가스의 온도 상승이 없게 되고, 가스가 재생기를 지나면서 냉각되어 팽창기 쪽으로 등적 이동하게 된다. 이 과정 동안에는 가스가 냉각되면서 재생기에 축열을 하게 된다.That is, when the hot gas emits heat to the outside while isothermally compressing, the heat is released to the outside during this process, and the temperature of the refrigerant gas is not increased due to the compression. Done. During this process, the gas cools and accumulates in the regenerator.

이후 저온 가스는 등온 팽창하면서 저온부로부터 열을 흡수하도록 형성되며 이 과정 동안에는 저온부로부터 열을 흡수하여 팽창에 따른 가스의 온도 강하가 없도록 형성된다.Thereafter, the low temperature gas is formed to absorb heat from the low temperature portion while isothermally expanding, and during this process, the low temperature gas is absorbed from the low temperature portion so that there is no temperature drop of the gas due to expansion.

이후 팽창기에 있는 저온 가스가 재생기를 통과하면서 가열되어 압축기 쪽으로 등적 이동하게 되고, 이 과정에서 재생기에 저장된 열은 가스 쪽으로 방열되는데 방열되는 양은 축열되는 양과 동일하다.Thereafter, the low temperature gas in the expander is heated while passing through the regenerator and is equally moved toward the compressor. In this process, the heat stored in the regenerator is radiated to the gas.

이러한 사이클이 반복됨에 따라 후속 사이클은 선행 사이클에 비하여 냉각부의 온도가 더 낮아지고, 냉동기의 최저 온도는 냉동 부하와 냉동 용량이 균형을 이루는 상태에서의 극저온 온도가 확보된다.
As this cycle is repeated, subsequent cycles have a lower temperature of the cooling section than the preceding cycle, and the lowest temperature of the refrigerator ensures a cryogenic temperature with a balance between the refrigeration load and the refrigeration capacity.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 고안이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims and their equivalents. Of course, such modifications are within the scope of the claims.

100 ... 허브 110 ... 블레이드
200 ... 메인샤프트 300 ... 로벨-바
400 ... 전기자 코일 500 ... 초전도 계자코일
600 ... 냉동기
100 ... hub 110 ... blade
200 ... main shaft 300 ... low-bar
400 ... Armature coil 500 ... Superconducting field coil
600 ... freezer

Claims (3)

블레이드(110)를 갖는 허브(100)가 형성되고, 상기 허브(100)와 축 결합되는 메인샤프트(200)가 형성되며, 상기 메인샤프트(200)와 결합되는 로벨-바(300)가 형성되고, 상기 로벨-바(300)의 외측에는 S극과 N극이 원주방향을 따라 등간격으로 반복 배열되는 전기자 코일(400)이 형성되며, 상기 로벨-바(300)의 내측에는 베어링에 의해 메인샤프트(200)가 회전하면 운동에너지를 전기에너지로 변화하도록 하는 초전도 계자코일(Superconducting Field Coil: 500)이 형성되고, 상기 초전도 계자코일(500)의 일측에는 커플링 없이 직접 연결되어 초전도 계자코일(500)에 대하여 직접 냉각을 수행하도록 하는 극저온 냉동기(600)가 형성되어 이루어진 것을 특징으로 하는 초전도 발전기와 논 커플링 구조식 냉각 시스템을 갖는 풍력 발전기.A hub 100 having a blade 110 is formed, a main shaft 200 axially coupled to the hub 100 is formed, and a leveling bar 300 coupled to the main shaft 200 is formed. The outer side of the low-bar 300 is formed with an armature coil 400, the S pole and the N pole is repeatedly arranged at equal intervals along the circumferential direction, the inner side of the low-bar 300 by a bearing When the shaft 200 rotates, a superconducting field coil 500 is formed to change kinetic energy into electrical energy. A superconducting field coil 500 is directly connected to one side of the superconducting field coil 500 without a coupling, thereby forming a superconducting field coil ( A superconducting generator and a non-coupling structured cooling system, characterized in that the cryogenic freezer (600) is formed to perform direct cooling with respect to 500). 제 1항에 있어서, 상기 초전도 계자코일(500)은 권선된 외주면에 진공막(Vacuum Layer: 510)이 형성되고, 극저온 냉동기(600)와 대응되는 측부에는 극저온 냉동기(600)로부터 연결된 배관에 의해 진공막(510) 내부로 혼합 냉매(hybrid cryogens)가 공급될 수 있도록 하는 것을 특징으로 하는 초전도 발전기와 논 커플링 구조식 냉각 시스템을 갖는 풍력 발전기.According to claim 1, The superconducting field coil 500 has a vacuum layer (Vacuum Layer: 510) is formed on the outer circumferential surface of the winding, the side corresponding to the cryogenic freezer 600 by a pipe connected from the cryogenic freezer (600) A wind generator having a superconducting generator and a non-coupling structured cooling system, wherein the mixed cryogens can be supplied into the vacuum membrane 510. 제 2항에 있어서, 상기 전기자 코일(400)은 구리 코일(Copper Coil)로서 로벨-바(300)가 자속을 끊으면 도체 양단에 전압이 유기되어 교류 전압이 발생되고, 유기된 유도 전압에 의해 상기 초전도 계자코일(500)에는 로벨-바(300)의 회전시 전기자 코일(400)과 자성에 의해 직류 전류가 흐르도록 하는 것을 특징으로 하는 초전도 발전기와 논 커플링 구조식 냉각 시스템을 갖는 풍력 발전기.
According to claim 2, The armature coil 400 is a copper coil (Copper Coil) when the low-bar 300 is a magnetic flux, the voltage is induced across the conductor to generate an alternating voltage, the induced induction voltage The superconducting field coil (500) having a superconducting generator and a non-coupling structured cooling system characterized in that the direct current flows by the armature coil (400) and magnetism during the rotation of the low-bar 300.
KR1020120115775A 2012-10-18 2012-10-18 Wind generator with superconducting generator and cooler of none coupling type KR20140050169A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120115775A KR20140050169A (en) 2012-10-18 2012-10-18 Wind generator with superconducting generator and cooler of none coupling type
PCT/KR2013/005479 WO2014061894A1 (en) 2012-10-18 2013-06-21 Wind turbine comprising superconducting generator and non-coupling structure cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120115775A KR20140050169A (en) 2012-10-18 2012-10-18 Wind generator with superconducting generator and cooler of none coupling type

Publications (1)

Publication Number Publication Date
KR20140050169A true KR20140050169A (en) 2014-04-29

Family

ID=50488425

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120115775A KR20140050169A (en) 2012-10-18 2012-10-18 Wind generator with superconducting generator and cooler of none coupling type

Country Status (2)

Country Link
KR (1) KR20140050169A (en)
WO (1) WO2014061894A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121917A (en) 2015-04-13 2016-10-21 한국산업기술대학교산학협력단 Rotating Armature Type Wind Power Generator with Dual Field Windings
KR102371278B1 (en) * 2021-08-30 2022-03-07 제주대학교 산학협력단 Vertical axis type wind turbine equipped with high-temperature superconducting generator with batch impregnation cooling structure using cryogen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107443B2 (en) * 2013-06-10 2017-04-05 株式会社Ihi Impurity removal system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513127B2 (en) * 2004-12-22 2010-07-28 住友電気工業株式会社 Hydrogen supply system
KR100888030B1 (en) * 2007-10-02 2009-03-09 한국전기연구원 Superconducting synchronous machine
KR20100044396A (en) * 2008-10-22 2010-04-30 한국전기연구원 Superconducting field coil consisting of closed magnetic loop and method for operation of superconducting motor using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121917A (en) 2015-04-13 2016-10-21 한국산업기술대학교산학협력단 Rotating Armature Type Wind Power Generator with Dual Field Windings
KR102371278B1 (en) * 2021-08-30 2022-03-07 제주대학교 산학협력단 Vertical axis type wind turbine equipped with high-temperature superconducting generator with batch impregnation cooling structure using cryogen
WO2023033407A1 (en) * 2021-08-30 2023-03-09 제주대학교 산학협력단 Vertical-axis-type wind turbine comprising high-temperature superconducting generator having mass-impregnation cooling structure for cryogenic coolant

Also Published As

Publication number Publication date
WO2014061894A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
Qu et al. Review of superconducting generator topologies for direct-drive wind turbines
Wang et al. Design of a superconducting synchronous generator with LTS field windings for 12 MW offshore direct-drive wind turbines
CN103441648A (en) High-temperature superconducting magnetic levitation motor
JP2011017268A (en) Method and system for converting refrigerant circulation power
KR101273642B1 (en) Conduction cooling type superconducting rotator
CN101539110B (en) High-temperature superconducting wind generating set
CN113131706B (en) Disc type permanent magnet synchronous motor, energy storage flywheel and method
KR20140050169A (en) Wind generator with superconducting generator and cooler of none coupling type
Furuse et al. Development of a cooling system for superconducting wind turbine generator
Mukoyama et al. Test of REBCO HTS magnet of magnetic bearing for flywheel storage system in solar power system
Lee et al. Thermal and mechanical design for refrigeration system of 10 MW class HTS wind power generator
US8297064B2 (en) Energy efficient air conditioning system
CN108900039B (en) Flywheel energy storage rotor vacuum heat dissipation system
Wu et al. Novel concept of dish Stirling solar power generation designed with a HTS linear generator
CN106712394A (en) Method applying wireless electric power transmission and magnetic force transmission on superconductive motor
CN112313410A (en) Wind turbine with superconducting generator and method of operating the same
Kolchanova et al. Superconducting generators for wind turbines
CN103633816B (en) A kind of super conduction synchronous electric motor
CN107612287B (en) High-temperature superconductive synchronous camera
KR101486752B1 (en) Super conducting elecreic power generation system
KR101265287B1 (en) Superconductor rotating machine using magnetic refrigerant
JP6485291B2 (en) Eddy current heating device
Yamasaki et al. Feasibility study project to realize the merits of 10 MW class superconducting wind turbine generators
Keysan et al. Superconducting generators for renewable energy applications
KR20190052794A (en) Generation system of organic rankine cycle integrated wind turbine cooling system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application