KR20140050122A - Loc_os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of oryza sativa - Google Patents

Loc_os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of oryza sativa Download PDF

Info

Publication number
KR20140050122A
KR20140050122A KR1020120114034A KR20120114034A KR20140050122A KR 20140050122 A KR20140050122 A KR 20140050122A KR 1020120114034 A KR1020120114034 A KR 1020120114034A KR 20120114034 A KR20120114034 A KR 20120114034A KR 20140050122 A KR20140050122 A KR 20140050122A
Authority
KR
South Korea
Prior art keywords
gene
loc
os02g05840
recombinant vector
plant
Prior art date
Application number
KR1020120114034A
Other languages
Korean (ko)
Other versions
KR101423834B1 (en
Inventor
안진흥
양정일
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020120114034A priority Critical patent/KR101423834B1/en
Publication of KR20140050122A publication Critical patent/KR20140050122A/en
Application granted granted Critical
Publication of KR101423834B1 publication Critical patent/KR101423834B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8226Stem-specific, e.g. including tubers, beets
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to LOC_Os02g05840 gene for enhancing yield potential of rice, a recombinant vector comprising the same, transformed plants thereby and a preparation method thereof. A LOC_Os02g05840 gene of the present invention regulates a number of ears, stem development, and flowering time which are traits involved in quantity increase thereby increasing yield potential of main grains including rice and bio-mass and accordingly increasing productivity and being used for developing novel feed grains.

Description

벼의 수량성 증진을 위한 LOC_Os02g05840 유전자, 유전자를 포함하는 재조합 벡터, 이에 의한 형질전환 식물체 및 이의 제조 방법 {LOC_Os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of Oryza sativa} LOC_Os02g05840 gene for enhancing the yield of rice, a recombinant vector containing the gene, a transgenic plant by the same, and a method for producing the same, and a method for producing the LOC_Os02g05840 gene, a recombinant vector comprising the same, Oryza sativa}

본 발명은 벼의 수량성 증진을 위한 LOC_Os02g05840 유전자, 유전자를 포함하는 재조합 벡터, 이에 의한 형질전환 식물체 및 이의 제조 방법에 관한 것이다.The present invention relates to a LOC_Os02g05840 gene for enhancing the yield of rice, a recombinant vector containing the gene, a transgenic plant and a method for producing the same.

벼(Oryza sativa)는 보리, 옥수수와 함께 세계에서 가장 중요한 식량 작물 중 하나이다. 벼는 인구 증가, 공업화로 인한 농지 부족, 기후 변화 등을 통해 그 수요가 증가되고 있으나, 생산량 증대를 위한 새로운 품종 개발은 미비한 실정이다. 이를 해결하기 위해 기존의 육종 방법을 벗어나 유용 유전자의 도입을 통한 새로운 품종 개발이 이루어지고 있다. 실제로 분자 생물학의 발달은 유용유전자의 분리 및 조작을 통해 벼를 포함한 많은 식물에 형질전환하여 새로운 형질전환 식물을 얻고 있다. 이러한 유용 유전자의 발굴과 이를 이용한 새로운 품종 개발은 식량 문제 해결과 산업 전반에 유용하게 사용 될 수 있다.Rice (Oryza sativa), together with barley and corn, is one of the most important food crops in the world. The demand for rice is increasing due to the increase in population, lack of agricultural land due to industrialization, and climate change, but the development of new varieties for increasing the production is insufficient. In order to solve this problem, new breeds have been developed through the introduction of useful genes out of existing breeding methods. In fact, the development of molecular biology has transformed many plants including rice into new transgenic plants through the isolation and manipulation of useful genes. The discovery of these useful genes and the development of new varieties using them can be useful for the solution of food problems and the whole industry.

벼는 종자 생산이 목적인 세계적으로 가장 중요한 작물 중의 하나로 최근 몇 년간 전체 유전자 서열이 밝혀짐으로써 유용유전자를 대량으로 확보하고 이를 선점하고자 하는 많은 노력이 행해지고 있다. 종래 종자의 크기나 생육을 향상시키기 위한 기술로서, 식물 세포 내의 세포주기 제어 단백질(cell cycle control protein)의 농도나 촉매 활성을 변성하여 식물 세포 성장을 조절하는 방법(미국등록특허 6,087,175)이나 합성 징크핑거단백질(a synthetic zinc finger protein)을 코딩하는 뉴클레오티드를 증진시키고자 목표 유전자에 결합시킨 발현벡터를 식물 세포에 도입시켜 식물 세포 내에서 목표 유전자의 발현정도를 조절하는 방법(미국등록특허7,151,201) 등이 개시되어 있다. 또한 애기장대 유래의 시토크롬 P450 단백질의 유전자를 식물 세포에 형질전환시켜 식물종자의 크기를 증가시키는 기술(한국등록특허 10-0794395) 등이 있다. Rice is one of the most important crops in the world for the purpose of seed production. In recent years, the entire gene sequence has been revealed, and a lot of efforts have been made to acquire a large number of useful genes and to preoccupy them. As a technique for improving the size and growth of seeds in the past, there has been known a method of controlling plant cell growth by modifying the concentration or the catalytic activity of a cell cycle control protein in a plant cell (US Patent No. 6,087,175) A method of regulating the expression level of a target gene in a plant cell by introducing an expression vector in which a target gene is bound to a plant cell to promote a nucleotide encoding a synthetic zinc finger protein (US Patent No. 7,151,201) . Also, there is a technology (Korean Patent Registration No. 10-0794395) in which the gene of cytochrome P450 protein derived from Arabidopsis thaliana is transformed into plant cells to increase the size of plant seeds.

식물의 줄기, 잎 등 측생기관의 형태와 크기는 바이오매스를 증대시키고 농업생산성에 영향을 주는 중요한 요인이다. 최근 벼, 옥수수, 밀, 기장 등 주요 곡물의 줄기형성 기작 연구가 활성화 단계에 있다. 옥수수 육종을 가능하게 했던 줄기생성 억제 유전자인 teosinte branched 1 (tb1)이 규명된 이래, zfl(FLORICAULA/LEAFY), bif (barren inflorescence2), pin (pinoid) 등의 줄기에 관련된 유전자 규명이 가속화되고 있는 단계이다 (Lukens and Doebley 2001, Barazesh and McSteen 2008). 옥수수에서 처음 알려진 tb1은 벼와 애기장대에서도 측아 발생을 억제하는 주요한 유전자임이 확인되었다 (Takeda et al. 2003,Finlayson 2007, Aquilar-Martinez et al. 2007).The shape and size of the organisms such as the stem and leaf of the plant are important factors that increase the biomass and affect the agricultural productivity. Research on stemming mechanism of major grains such as rice, maize, wheat, and millet is in the active stage. Since the identification of teosinte branched 1 (tb1), a stem production inhibitor that enabled maize breeding, identification of genes related to stems such as zfl (FLORICAULA / LEAFY), bif (barren inflorescence2) and pin (Lukens and Doebley 2001, Barazesh and McSteen 2008). The first known tb1 gene in maize has been identified as a key gene in rice and Arabidopsis (Takeda et al. 2003, Finlayson 2007, Aquilar-Martinez et al. 2007).

벼, 옥수수 등 주요 곡물 이외에도 토마토 등 원예작물의 측지 발생을 억제하는 유전자 (lateral suppressor, blind)가 이미 규명된 바 있고 (Schumacher et al. 1999, Schmitz et al. 2002), 사탕수수, 대나무 등의 바이오매스를 증진시키기 위한 줄기생성 조절 유전자를 탐색하는 연구가 시작단계에 있다 (Aiteken et al. 2008). 또한 최근 연구결과는 옥수수의 tb1 유전자를 밀에 도입하여 분열을 억제하였는데 (Lewis 2008) 이는 이런 측아 발생 조절 유전자들이 생명공학기술의 측면에서 이용가능성이 있음을 보여주는 것이다.(Schumacher et al. 1999, Schmitz et al. 2002), and other genes such as sugarcane, bamboo, etc. have been identified in addition to major crops such as rice, maize and corn Research into the stem production regulatory genes to promote biomass is at an early stage (Aiteken et al. 2008). In addition, recent studies have shown that tb1 gene of maize is introduced into wheat to inhibit cleavage (Lewis 2008), indicating that these genes can be used in biotechnology.

식물의 수량 증대를 위해서는 이삭의 수가 증대되어야 할 뿐만 아니라 이삭을 많이 맺기 위한 알맞은 식물 형태를 가져야한다. 이를 위해서 벼의 줄기 발달, 개화시기, 이삭 발달 등의 조절이 중요하다.In order to increase the yield of plants, the number of ears is not only increased but also has a proper plant form to make a lot of ears. For this purpose, it is important to control the development of the stem of the rice, flowering time, ear growth.

예를 들어, 벼의 개화 시기는 계절 변화와 온도 변화 등 환경적인 요소를 인지하는 중요한 형질이다. 벼는 단일 조건에서 개화가 촉진되는 단자엽 식물로서 이들의 개화시기(출수기)는 광주기와 영양 생장기의 기간에 의해 영향을 받으며, 이러한 요인들은 벼가 다양한 경작지에서 생장하는데 관여하는 중요한 농업적 형질이다. 그 중에서 광주기는 벼의 개화시기 및 생체시계를 조절함으로써 중요하게 생장에 영향을 미쳐 직접적으로 생산성에 영향을 미친다. 또한, 최근에 벼의 전체 게놈에 대한 염기서열이 완료되고, 비교 유전체학에 대한 연구가 진행되면서 벼는 중요한 단자엽 모델식물로써 주목을 받고 있다.For example, the flowering time of rice is an important trait for recognizing environmental factors such as seasonal changes and temperature changes. Rice is a monocotyledonous plant whose flowering is promoted in a single condition, and the flowering period (water extraction period) is influenced by the photoperiod and nutrient growth period, and these factors are important agricultural traits that are involved in growing rice in various fields. Among them, photoperiod significantly influences growth by controlling the flowering time and the biological clock of rice, which directly affects productivity. In addition, recently, as the nucleotide sequence of the entire genome of rice has been completed and research on comparative genomics has progressed, rice has attracted attention as an important monocotyledonous plant.

즉, 수량 증대를 위해서 줄기 발달, 개화 시기, 이삭 발달을 조절하는 각각의 유전자 또는 이들 모두를 조절할 수 있는 하나의 유전자에 대한 연구 및 이를 이용하는 새로운 품종에 대한 연구가 필요하다.In other words, to increase the yield, it is necessary to study each gene which regulates stem development, flowering time, ear development, or a single gene that can control all of them and a new breed using the same.

하지만, 현재까지 벼에서 몇몇 개화 관련 유전자, 줄기 발달 관련 유전자 및 이삭 발달들이 밝혀졌지만 그 수가 제한적이며 애기장대와 구별되는 벼 특이적인 유전자에 대해서도 알려진 것이 거의 없다. 줄기 발달, 개화 시기, 이삭 발달 등을 조절함으로써 막대한 농업적 이익을 얻을 수 있음을 고려할 때, 이에 관여하는 유전자를 탐색하기 위한 노력이 절실히 요구된다 할 것이다.However, to date, some flowering-related genes, stem development-related genes and ear developments have been identified in rice, but the number is limited and little is known about rice-specific genes distinguished from Arabidopsis. Considering that huge agricultural benefits can be obtained by controlling stem development, flowering time, and ear development, efforts to search for genes involved in this will be urgently needed.

(KR) 10-2007-7016825(US) 10-2007-7016825 (KR) 10-2006-0095687(US) 10-2006-0095687

본 발명은 식물의 줄기 발달, 이삭 증가, 개화 시기 조절을 통한 수량성 증가를 목적으로 하는 LOC_Os02g05840 유전자, 이 유전자를 포함하는 재조합 벡터, 이 재조합 벡터로 형질전환된 형질전환체 및 이의 제조방법을 제공하고자 한다. The present invention provides a LOC_Os02g05840 gene, a recombinant vector comprising the gene, a transformant transformed with the recombinant vector, and a method of preparing the same, for the purpose of increasing the yield through controlling stem development, ear growth, and flowering time of plants. I would like to.

상기와 같은 목적을 달성하기 위하여, 본 발명자들은 식물의 이삭 발달, 줄기 발달, 개화 시기 등의 수량성 증가를 위한 유전자를 발굴하기 위하여 예의 노력하였다. 이 과정에서 벼의 LOC_Os02g05840 유전자가 이삭 수, 줄기 발달, 개화시기를 조절하는 유전자임을 확인하고, 이에 따라, 이 유전자를 확보하여 이를 포함하는 재조합 벡터를 제조하고 이를 식물체에 도입하여 형질전환시킴으로써, 형질전환체에서 이삭 수가 많아지고 줄기가 발달되며 개화시기가 빨라짐을 확인함으로써 본 발명을 완성하게 되었다.In order to achieve the above object, the present inventors made diligent efforts to discover genes for increasing the quantitative yield, such as the ear development, stem development, flowering time of plants. In this process, the LOC_Os02g05840 gene of rice was identified as a gene for regulating ear number, stem development, and flowering time, and accordingly, this gene was secured to prepare a recombinant vector including the same, and introduced into a plant to transform it. The present invention was completed by confirming that the number of spikes, the stems, and the flowering period of the converting body increased.

보다 상세하게, 본 발명자들은 아그로박테리움(Agrobacterium)을 이용한 형질 전환 방법을 통해 만들어진 10만 개통의 벼 돌연변이 집단에서 이삭 수, 줄기 발달, 개화시기에 변화가 있는 돌연변이체를 관찰하였다. 각각의 돌연변이 식물체는 아그로박테리움(Agrobacterium)에 의해 T-DNA가 게놈 상에 삽입되어 삽입된 지역의 유전자가 기능을 못하게 된 돌연변이체이다. T-DNA 삽입 위치는 genomic DNA PCR과 염기서열 분석을 통해 확인할 수 있으며, 공개된 벼의 유전자 데이터베이스에서 유전자 locus id를 찾을 수 있다. More specifically, the present inventors observed mutants with changes in the number of eggs, stem development, and flowering time in the 100,000 rice mutant population produced by the transformation method using Agrobacterium. Each mutant plant is a mutant in which the gene in the region inserted by insertion of T-DNA into the genome by Agrobacterium has been rendered inoperable. The location of T-DNA insertion can be confirmed by genomic DNA PCR and sequencing, and the gene locus id can be found in the published gene database of rice.

상기 돌연변이 집단의 표현형 관찰을 통해, 개화시기에 변화가 있는 2개의 계통 3A-10852와 1B-21530을 선발하였다. 3A-10852는 LOC_Os02g05840의 두 번째 intron에 T-DNA가 삽입되었으며, 1B-21530은 세 번째 exon에 T-DNA가 삽입된 돌연변이체로써, PCR을 통해 이 두 계통에서 LOC_Os02g05840의 기능이 상실된 것을 확인할 수 있었다. Through the phenotypic observations of the mutant population, two lines 3A-10852 and 1B-21530 with varying flowering time were selected. 3A-10852 shows that T-DNA was inserted into the second intron of LOC_Os02g05840, and 1B-21530 was a mutant with T-DNA inserted into the third exon. Thus, the function of LOC_Os02g05840 was lost in these two lines by PCR there was.

염기서열 해독 정보를 바탕으로 LOC_Os02g05840의 DNA를 분리하고 pGA3426, pGA3428, pGA3438 벡터로 클로닝하였다. 이를 아그로박테리움(Agrobacterium)에 도입하여 형질전환에 이용하였다.DNA of LOC_Os02g05840 was isolated and cloned into pGA3426, pGA3428, and pGA3438 vectors based on the nucleotide sequencing information. This was introduced into Agrobacterium and used for transformation.

이렇게 형질전환된 식물체의 표현형을 분석하여 LOC_Os02g05840 유전자가 이삭 발달, 줄기 발달, 개화시기를 조절하는 것을 확인할 수 있었다.The phenotype of the transformed plant was analyzed to confirm that the LOC_Os02g05840 gene regulates ear development, stem development, and flowering time.

본 발명은 벼의 수량성 증가를 위한 LOC_Os02g05840 유전자(이하 '본 발명의 유전자'라 함)를 제공한다. LOC_Os02g05840 유전자에 의한 수량성 증가는 이삭 증가, 줄기 발달 또는 개화 시기 단축에서 선택되는 하나 이상에 의한 것이다. The present invention provides a LOC_Os02g05840 gene (hereinafter referred to as "gene of the present invention") for increasing the yield of rice. The increase in yield by the LOC_Os02g05840 gene is due to one or more selected from ear growth, stem development or shortening of flowering time.

LOC_Os02g05840의 genome DNA 크기는 5600 bp이며 대표 coding sequence (LOC_Os02g05840.1)의 크기는 2250 bp로 4개의 exon과 3개의 intron으로 구성되며 749개의 아미노산으로 번역되어 단백질이 만들어진다. 이 단백질은 Plant homeo domain(PHD finger domain), the fibronectin Type III (FNIII) domain, and the VIN3 interacting domain (VID)을 암호화 하며 PHD finger domain은 DNA 중합체인 염색체가 감겨있는 histone 잔기에 결합하여 특정 유전자의 발현을 조절하는 역할을 한다고 보고하였다. LOC_Os02g05840이 암호화 하는 PHD finger domain도 histone H3과 결합한다. The genome DNA size of LOC_Os02g05840 is 5600 bp and the size of the representative coding sequence (LOC_Os02g05840.1) is 2250 bp. It consists of 4 exons and 3 introns and is translated into 749 amino acids to make protein. This protein encodes the PHD finger domain, the fibronectin type III (FNIII) domain, and the VIN3 interacting domain (VID). The PHD finger domain binds to the histone residue of the DNA polymer, And the expression of these genes is known to play a role. The PHD finger domain that LOC_Os02g05840 encodes also binds histone H3.

유전자는 생물의 세포를 구성하고 유지하는데 필요한 정보를 암호화 하고 있으며, 본 발명에 따른 이삭, 줄기, 개화시기 발달에 관여하는 LOC_Os02g05840 유전자를 이용하여 수량성 증가를 유도할 수 있다.The gene encodes information necessary for constructing and maintaining the cells of the organism, and can increase the yield by using the LOC_Os02g05840 gene involved in the development of ear, stem and flowering time according to the present invention.

또한 본 발명은 상기 유전자를 포함하는 수량성 증가를 위한 재조합 벡터를 제공한다.The present invention also provides a recombinant vector for increasing the yield including the gene.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 의미하며, DNA를 복제하고, 숙주세포에서 독립적으로 재생산될 수 있다. "재조합 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 재조합 벡터는 일반적으로 플라스미드 또는 바이러스 DNA로부터 유래하거나, 둘 다의 요소를 포함할 수 있다. 따라서 재조합 벡터는 재조합 DNA 또는 RNA 구축물, 예컨대, 플라스미드, 파지, 재조합 바이러스 또는 적절한 숙주 세포 내 도입 시, 클로닝된 DNA의 발현을 초래하는 다른 벡터를 의미한다. 적절한 재조합 벡터는 당업자에게 잘 알려져 있으며, 진핵세포 및/또는 원핵세포 내에서 복제가능한 것들 및 에피솜으로 남는 것들 또는 숙주 세포 게놈 내에 통합되는 것들을 포함한다.The term "vector" refers to a DNA fragment (s), nucleic acid molecule, which transfers into a cell, which can be cloned and independently reprogrammed in host cells. "Recombinant vector" means a recombinant DNA molecule comprising a desired coding sequence and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked in a particular host organism. The recombinant vector may generally be derived from a plasmid or viral DNA, or may contain both elements. Thus, a recombinant vector refers to a recombinant DNA or RNA construct, such as a plasmid, phage, recombinant virus, or other vector that, upon introduction into an appropriate host cell, results in the expression of the cloned DNA. Suitable recombinant vectors are well known to those of skill in the art and include those that replicate in eukaryotic and / or prokaryotic cells and those that remain as episomes or that are integrated into the host cell genome.

상기 통상의 벡터는 본 발명의 유전자를 도입할 수 있는 것이면 어떠한 것이든 무방하나, 바람직하게는 pCAMBIA계열 또는 pGA계열의 벡터, 예컨대, pGA3383, pCAMBIA1381, pCAMBIA1391, pGWB3, pGA3426, pGA3428, pGA3438, pGA2715, pGA2717 와 같이 Ti-plasmid에서 파생된 벡터로 이루어진 군에서 선택된 어느 하나일 수 있다. 보다 바람직하게는 pGA3426, pGA3428 또는 pGA3438이 사용 될 수 있다. The vector may be any vector capable of introducing the gene of the present invention. Preferably, pCAMBIA or pGA family vectors such as pGA3383, pCAMBIA1381, pCAMBIA1391, pGWB3, pGA3426, pGA3428, pGA3438, pGA2715, and a vector derived from a Ti-plasmid such as pGA2717. More preferably, pGA3426, pGA3428 or pGA3438 may be used.

바람직하게, 본 발명의 재조합 벡터는 LOC_Os02g05840 유전자와 작동가능하게 연결된(Operatively linked) 프로모터를 포함하는 재조합 벡터이다. Preferably, the recombinant vector of the present invention is a recombinant vector comprising a promoter operably linked to the LOC_Os02g05840 gene.

예를 들어, 상기 프로모터는 식물체의 전신 또는 특별한 조직에만 국한시켜 발현되는 것이면 무엇이든 무방하며, 바람직하게는 전신발현 유도 하는 프로모터로서 예컨대 쌍떡잎식물용 프로모터로 사용되는 꽃양배추 모자이크 바이러스(CaMV: cauliflower mosaic virus)의 35S RNA 유전자의 프로모터, 떡잎식물용 전신발현 유도 프로모터로는 벼 액틴(actin), 옥수수 유비퀴틴(ubiquithin) 유전자 프로모터 및 벼 시토크롬 C유전자(OsOc1)의 프로모터, 잎 등의 기타 조직 특이 프로모터로써 예컨대 벼와 옥수수 유래의 알비씨에스 (rbcS: ribulose bisphosphate carboxylase/oxygenase small subunit) 프로모터, 아그로박테리움 유래의 식물 뿌리 발현을 유도하는 RolD 프로모터, 감자 유래 괴경 특이 발현 유도 파타틴 (patatin) 프로모터, 토마토 유래의 과실 성숙 특이 발현 유도 피디에스 (PDS: phytoene synthase) 프로모터, 본 발명 LOC_Os02g05840 유전자의 프로모터 등이다. For example, the promoter may be anything that is expressed by being limited to the entire body or a specific tissue of a plant, preferably a promoter that induces systemic expression, such as a CaMV virus as a promoter of the 35S RNA gene and the promoter for promoting the expression of the whole plant in a cotyledon plant are other tissue specific promoters such as rice actin, maize ubiquitin gene promoter and rice cytochrome C gene (OsOc1) promoter and leaf For example, ribosyl bisphosphate carboxylase / oxygenase small subunit (rbcS) promoter derived from rice and maize, RolD promoter inducing expression of plant roots derived from Agrobacterium, patatin promoting expression specific to potato-derived tubers, (PDS: phytoen < RTI ID = 0.0 > e synthase) promoter, the promoter of the present invention LOC_Os02g05840 gene, and the like.

보다 바람직하게, LOC_Os02g05840 유전자와 작동가능하게 연결된(Operatively linked) 서열번호 3으로 표시되는 프로모터인 LOC_Os02g05840의 프로모터를 포함하는 재조합 벡터를 제공한다.More preferably, there is provided a recombinant vector comprising the promoter of LOC_Os02g05840, which is a promoter represented by SEQ ID NO: 3, which is operatively linked to the LOC_Os02g05840 gene.

"본 발명의 유전자"와 "기능적으로 동등한 절편"은 본 발명의 유전자와 실질적으로 동등한 효과를 나타내는, 서열번호 1로 표시되는 염기서열로 이루어진 핵산의 조각 또는 일부분을 의미한다. 이러한 핵산 절편은 서열번호 1에 기재된 염기서열과 비교하여 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지며, 이러한 핵산 절편은 당업계에 널리 알려진 분자생물학적 방법에 의하여 용이하게 제작될 수 있다.Means a fragment or a fragment of a nucleic acid comprising the nucleotide sequence shown in SEQ ID NO: 1, which exhibits substantially equivalent effect to the gene of the present invention. Such nucleic acid fragments are 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, compared to the nucleotide sequences set forth in SEQ ID NO: 1 With 96%, 97%, 98%, 99% or more sequence homology, such nucleic acid fragments can be readily produced by molecular biological methods well known in the art.

상기 재조합 벡터는 통상의 벡터에 본 발명의 유전자를 도입한 것일 수 있으며, 이처럼 본 발명의 유전자를 도입하여 재조합 벡터를 제조하는 것은 본 발명이 속하는 기술분야의 당업자라면 공지의 방법에 따라 용이하게 실시 가능하다.The recombinant vector may be one obtained by introducing the gene of the present invention into a conventional vector. The production of a recombinant vector by introducing the gene of the present invention may be easily carried out according to known methods by those skilled in the art. It is possible.

또한 본 발명은 상기 벡터에 의해 형질전환된 형질 전환 세포를 제공한다. The present invention also provides a transformed cell transformed with said vector.

상기한 재조합 벡터는 감염, 형질도입, 트랜스펙션, 전기천공 및 형질전환과 같은 주지된 기술을 이용하여 배양된 숙주 세포 내로 도입될 수 있다. 숙주의 대표적인 예는 박테리아 세포, 예를 들면, 대장균, 스트렙토마이세스 및 살모넬라 티피무리움 세포 및 식물 세포를 포함하나, 이에 제한되지 않는다. 바람직하게, 형질전환 세포는 아그로박테리움 속 미생물인 형질전환 세포가 이용될 수 있으며, 보다 바람직하게, 아그로박테리움 속 미생물은 아그로박테리움 투메파시엔스 LB4404(Agrobacterium tumefaciens LB4404)가 이용될 수 있다.Such recombinant vectors may be introduced into host cells cultured using well known techniques such as infection, transfection, transfection, electroporation and transformation. Representative examples of hosts include, but are not limited to, bacterial cells such as Escherichia coli, Streptomyces and Salmonella typhimurium cells and plant cells. Preferably, the transformed cells are transformed cells that are microorganisms of the genus Agrobacterium. More preferably, Agrobacterium tumefaciens LB4404 can be used as the microorganism of the genus Agrobacterium.

식물의 형질전환에 이용되는 "식물 세포"는 임의의 식물 세포가 이용가능하다. 식물 세포는 배양 세포, 배양 조직, 배양기관 또는 전체 식물, 바람직하게는 배양 세포, 배양 조직 또는 배양 기관 및 더욱 바람직하게는 배양 세포의 어떤 형태도 가능하다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 줄기, 잎, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. Any plant cell can be used as "plant cell" used for transformation of a plant. The plant cell may be any type of cultured cell, cultured tissue, cultured organ or whole plant, preferably cultured cell, cultured tissue or culture organ, and more preferably cultured cell. "Plant tissue" refers to a tissue of a differentiated or undifferentiated plant, such as, but not limited to, stem cells, leaves, cancer tissues, and various types of cells used in culture, such as single cells, protoplasts, Callus tissue.

또한 본 발명은 상기 벡터 또는 상기 형질전환 세포로 형질전환된 형질전환 단자엽 식물체를 제공한다. The present invention also provides a transformed transgenic plant transfected with said vector or said transformed cell.

이러한 형질전환 단자엽 식물체는 도입된 LOC_Os02g05840 유전자에 의해 이삭 증가, 줄기 발달 또는 개화 시기 단축 등의 효과를 가짐으로써 단자엽 식물체의 수량성 증가 특성을 나타낸다. The transformed monocotyledonous plant exhibits an increase in yield, stem development, or shortening of flowering time by the introduced LOC_Os02g05840 gene, thereby exhibiting an increase in the yield of monocotyledonous plants.

"본 발명의 형질전환 단자엽 식물체"와 "기능적으로 동등한 형질전환 식물체"는 서열번호 1로 표시되는 염기서열로 이루어진 핵산의 변이체와 비교하여 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 그 이상의 서열 상동성을 가지는 염기서열을 이용하여 제조된 형질 전환 단자엽 식물체로써, 이삭 증가, 줄기 발달 또는 개화 시기 단축 등에 의한 수량성 증가 효과가 실질적으로 동등한 특징을 가지는 형질전환 식물체이다."Transformed monocotyledonous plant" and "functionally equivalent transgenic plant" of the present invention is 60%, 65%, 70%, 75%, 80%, Transgenic monocots prepared using sequences having 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence homology As a plant, it is a transgenic plant having substantially the same characteristics as the effect of increasing the yield by increasing ear, stem development or flowering time.

본 발명의 식물체의 형질전환은 DNA를 식물에 전이시키기 위한 당업계에 알려진 임의의 방법에 의해 수행될 수 있다. 그러한 형질전환 방법은 반드시 재생 및 (또는) 조직 배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 예를 들어, 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D.et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen.Genet. 202, 179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein T.M. et al., 1987, Nature327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염(EP 0 301 316 호) 등으로부터 적당하게 선택될 수 있다. Transformation of a plant of the present invention can be carried out by any method known in the art for transferring DNA to a plant. Such transformation methods do not necessarily have a regeneration and / or tissue culture period. Transformation of plant species is now common for plant species, including both terminal plants as well as dicotyledonous plants. For example, the calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373) (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microinjection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. (Klein et al., 1987, Nature 327, 70), infiltration of plants or mature pollen of various plant elements (DNA or RNA-coated) Infections caused by (non-integrative) viruses in Agrobacterium tumefaciens mediated gene transfer (EP 0 301 316), and the like.

본 발명에서 형질전환되는 식물체는 본 실시예에서 사용된 벼(Oryza sativa L.)를 포함한 단자엽식물을 제한 없이 사용할 수 있다. The plant to be transformed in the present invention can be used without limitation in a terminal plant including the rice (Oryza sativa L.) used in the present embodiment.

바람직하게는 벼(Oryza sativa L.)가 사용된다.Preferably rice (Oryza sativa L.) is used.

이러한 변이체는 당업계에 널리 알려진 분자생물학적 방법에 의하여 용이하게 제작될 수 있다.Such mutants can be easily produced by molecular biological methods well known in the art.

또한 본 발명은 외래 프로모터를 이용 벡터로 식물을 형질전환시켜 이삭, 줄기, 개화시기 발달에 관여하는 유전자 LOC_Os02g05840 유전자를 발현시키는 단계를 포함하는 식물의 형질전환 방법을 제공한다. In another aspect, the present invention provides a method for transforming a plant comprising the step of transforming the plant with a vector using a foreign promoter to express the gene LOC_Os02g05840 gene involved in the development of ear, stem and flowering time.

바람직하게, 서열번호 1로 표시되는 유전자를 포함하는 벡터를 제조하는 단계; 벼에 상기 재조합 벡터를 도입하는 단계; 및 상기 재조합 벡터가 도입에 따라 이삭 증가, 줄기 발달, 개화시기 단축의 효과가 있는 벼 형질전환체를 선별하는 단계를 포함하는 식물의 형질전환 방법을 제공한다.Preferably, a step of preparing a vector comprising the gene of SEQ ID NO: 1; Introducing the recombinant vector into rice; And it provides a plant transformation method comprising the step of selecting a rice transformant having the effect of increasing the ear, stem development, shortening the flowering time according to the introduction of the recombinant vector.

본 발명의 LOC_Os02g05840 유전자는 이삭 발달, 줄기 발달, 개화시기에 영향을 주어 수량성을 향상시키는 유전자로써, 벼를 포함한 다양한 곡물의 수량을 증대시키는 연구, 식물의 바이오매스 증가 연구, 사료 작물 연구 등에 이용 될 수 있다.LOC_Os02g05840 gene of the present invention is a gene that improves yield by affecting ear development, stem development, and flowering time, and is used to increase the yield of various grains including rice, increase biomass of plants, and study feed crops. Can be.

도 1은 LOC_Os02g05840 유전자와 3A-10852 및 1B-21530 계통의 T-DNA 삽입 위치를 나타내는 도이다.
도 2는 3A-10852 및 1B-21530 계통의 개화 표현형 및 유전형에 따른 LOC_Os02g05840 transcript의 유무를 나타내는 도이다.
도 3은 LOC_Os02g05840 과발현 형질전환 단자엽 식물체 제조를 위한 벡터의 다이어그램을 나타내는 도이다.
도 4는 LOC_Os02g05840 유전자를 과발현하는 형질전환 벼의 LOC_Os02g05840 유전자 발현을 확인한 결과를 나타내는 도이다.
도 5는 LOC_Os02g05840 유전자를 과발현한 형질전환 벼의 표현형을 나타내는 도이다.
도 6은 LOC_Os02g05840 유전자 과발현 형질전환 벼의 신장 길이와 식물체의 절간(internode) 길이를 측정한 도이다.
도 7은 LOC_Os02g05840 유전자 과발현 형질전환 벼의 줄기 두께 및 횡단 모양을 나타내는 도이다.
도 8은 LOC_Os02g05840 유전자 과발현 형질전환 벼의 1차 및 2차 이삭 가지 수를 수치화 및 전체 종자 수 증가를 나타내는 도이다.
도 9는 LOC_Os02g05840 유전자 과발현 형질전환 벼의 세포 모양을 길이 및 폭을 중심으로 나타내는 도이다.
1 is a diagram showing the LOC_Os02g05840 gene and T-DNA insertion positions of the 3A-10852 and 1B-21530 lines.
2 is a diagram showing the presence or absence of LOC_Os02g05840 transcript according to the flowering phenotype and genotype of the 3A-10852 and 1B-21530 lines.
Figure 3 is a diagram of a vector for the production of LOC_Os02g05840 overexpressed transgenic monocots.
FIG. 4 is a graph showing the results of confirming the LOC_Os02g05840 gene expression of transgenic rice plants overexpressing the LOC_Os02g05840 gene.
5 is a diagram showing the phenotype of transgenic rice plants overexpressing the LOC_Os02g05840 gene.
FIG. 6 is a diagram showing elongation lengths and internode lengths of transgenic rice plants transgenic overexpressing LOC_Os02g05840 gene.
7 is a diagram showing stem thickness and transverse shape of LOC_Os02g05840 gene overexpressed transgenic rice.
FIG. 8 is a graph showing the numerical value and the total number of seeds of primary and secondary sprouts of LOC_Os02g05840 gene overexpressed transgenic rice.
FIG. 9 is a diagram showing the cell shape of LOC_Os02g05840 gene overexpressed transgenic rice, centering on length and width.

이하에서는, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 그러나, 아래의 실시예는 발명의 이해를 돕기 위한 예시일 뿐, 이에 의해 본 발명의 범위가 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to examples. However, the following embodiments are only examples for helping understanding of the invention, and thus the scope of the present invention is not limited thereto.

<< 실시예Example 1> 수량에 영향을 미치는 개화 시기 조절 돌연변이 계통 선발 1> Selection of flowering timing control mutant strains affecting yield

수량성 증가에 영향을 주는 형질인 이삭, 줄기, 개화시기를 조절하는 유전자를 찾기 위해 10만 계통의 T-DNA 돌연변이 집단의 식물체 표현형을 관찰하였다. 이 중에서 개화 시기가 늦어지는 계통으로 두 계통 3A-10852와 1B-21530 을 선발하였다. 두 계통을 12 light/ 12 dark (단일 조건), 16 light/ 8 dark (장일 조건), 논 조건에서 키워 대조구인 동진 벼와 비교하여 개화 시기의 차이를 확인하였다.The plant phenotype of 100,000 T-DNA mutant populations was observed to find genes that regulate ear, stem, and flowering time, which are factors affecting the yield. Of these, two strains 3A-10852 and 1B-21530 were selected for the slow flowering period. The difference in flowering time was confirmed by comparing the two lines with the control group, Dongjin rice, which was grown in 12 light / 12 dark (single condition), 16 light / 8 dark (long day condition)

상기 개화시기에 대한 결과를 표 1에 나타내었다.The results of the flowering time are shown in Table 1.

표 1. 3A-10852와 1B-21530 계통의 개화 시기 변화Table 1. Changes in Flowering Time of 3A-10852 and 1B-21530 Systems

Figure pat00001
Figure pat00001

표1에 나타낸 바와 같이, 선발된 두 계통은 단일 조건, 장일 조건 또는 논 조건에서 모두 대조군인 동진 벼와 비교하여 개화시기가 늦추어진 것을 확인할 수 있었다. As shown in Table 1, it was confirmed that the flowering time of each of the two lines was slowed down compared with that of the control group, Dongjin rice, under single condition, long-day condition or rice field condition.

<< 실시예Example 2> 3A-10852와 1B-21530 계통의 T- 2 > The T- DNADNA 표지의  Cover coco -- segregationsegregation 검증 Verification

T-DNA 삽입에 의해 만들어진 3A-10852와 1B-21530 계통은 각각 pGA2715, pGA2717 벡터에 의해 유전자가 trap 되었다. 두 계통에 대한 inverse-PCR 및 염기 서열 분석을 통해 T-DNA가 삽입된 염색체를 분석하였다. The 3A-10852 and 1B-21530 lines generated by T-DNA insertion were trapped by pGA2715 and pGA2717 vectors, respectively. T-DNA-inserted chromosomes were analyzed by inverse-PCR and sequencing of the two lines.

상기 선발된 2 계통의 벼 종자를 MSO 배지에 28℃에서 10일간 배양하였다. 이렇게 배양한 개체들의 잎 100mg을 채취하여 액체질소를 이용하여 급냉각한 후 분쇄하였다. 분쇄된 잎에서 one step buffer (1M Tris (pH9.5) 5ml, 0.5M EDTA 1ml, KCl 3.73g을 넣고 물로 50ml을 맞춰 조제하였다.)를 이용하여 DNA를 추출하였다. The selected two lines of rice seeds were cultured in MSO medium at 28 DEG C for 10 days. 100 mg of the leaves of the cultivated individuals were sampled and pulverized by rapid cooling using liquid nitrogen. DNA was extracted from the pulverized leaves using one step buffer (5 ml of 1 M Tris (pH 9.5), 1 ml of 0.5 M EDTA, and 3.73 g of KCl, followed by 50 ml of water).

3A-10852는 LOC_Os02g05840 유전자의 두 번째 intron에 T-DNA가 삽입된 계통으로 T-DNA 삽입위치 앞뒤에서 만들어진 프라이머(서열번호 5 및 서열번호 6)와 NGUS1 프라이머(서열번호 9)를 이용하여 PCR로 유전형 분석을 하였다. 3A-10852 is a system in which T-DNA is inserted into the second intron of the LOC_Os02g05840 gene. PCR was performed using primers (SEQ ID NO: 5 and SEQ ID NO: 6) and NGUS1 primer (SEQ ID NO: 9) Genotype analysis was performed.

1B-21530은 LOC_Os02g05840 유전자의 세 번째 exon에 T-DNA가 삽입된 계통으로 삽입위치 앞뒤에서 만들어진 프라이머(서열번호 7 및 서열번호 8)와 NGUS1 프라이머(서열번호 9)를 이용하여 유전형을 분석하였다. 1B-21530 was genotyped with primers (SEQ ID NO: 7 and SEQ ID NO: 8) and NGUS1 primer (SEQ ID NO: 9) prepared before and after the insertion site in which T-DNA was inserted into the third exon of the LOC_Os02g05840 gene.

LOC_Os02g05840 유전자 내 3A-10852 및 1B-21530 삽입 위치 및 해당 서열은 도 1 및 서열번호 1에 나타내었으며 유전형 분석에 사용된 프라이머는 표 2에 나타내었다.3A-10852 and 1B-21530 insertion positions and corresponding sequences in the LOC_Os02g05840 gene are shown in FIG. 1 and SEQ ID NO: 1, and the primers used in the genotyping analysis are shown in Table 2.

표 2. 3A-10852 및 1B-21530의 프라이머Table 2. Primers 3A-10852 and 1B-21530

Figure pat00002
Figure pat00002

도 1의 1은 서열번호 4의 뉴클레오티드 160번 내지 178번이며, 2는 서열번호 4의 1627번 내지 2314번이며, 3A-10852 계통의 T-DNA 삽입위치는 2550이며, 3은 서열번호 4의 3298번 내지 3602이며, 1B-21530 계통의 T-DNA 삽입위치는 3591이며, 4는 서열번호 4의 3680번 내지 4917번이다. 도 1의 1 내지 4는 각각의 exon에 해당하는 서열이다.1 is the nucleotides 160 to 178 of SEQ ID NO: 4, 2 is the nucleotides 1627 to 2314 of SEQ ID NO: 4, the T-DNA insertion site of the 3A-10852 strain is 2550 and 3 is the nucleotide of SEQ ID NO: 4 3298 to 3602, the T-DNA insertion site of the 1B-21530 strain is 3591, and 4 is 3680 to 4917 of SEQ ID NO: 4. 1 to 4 in Fig. 1 are sequences corresponding to respective exons.

PCR 반응은 95℃에서 5분 후; 95℃에서 30초, 53℃에서 20초, 72℃에서 1분을 35회 반복하고, 마지막으로 72℃에서 7분을 진행하였다. PCR 산물은 아가로즈 젤을 이용하여 전기영동으로 확인하였다. 이를 통해 유전형을 확인하였다.PCR reactions were performed after 5 minutes at 95 ° C; 30 seconds at 95 ° C, 20 seconds at 53 ° C, 1 minute at 72 ° C was repeated 35 times, and finally 7 minutes at 72 ° C. PCR products were confirmed by electrophoresis using agarose gel. This confirmed the genotype.

그 결과를 도 2 A에 나타내었다. The results are shown in Fig. 2A.

도 2 A는 순종(HO) 실험군 3A-10852 및 1B-21530의 개화시기를 야생형(WT)의 개화시기와 비교한 것을 나타내는 도이다. 도 2 A에 나타낸 바와 같이, 순종(HO) 3A-10852 및 1B-21530의 꽃대가 나오는 시기에 야생형(WT)은 꽃대가 이미 생성되었으며 종자가 발달되는 것을 확인할 수 있는 바, 그 개화 시기가 늦춰진 것을 확인할 수 있었다. 또한, PCR을 통한 유전형 분석 결과도 상기 결과를 뒷받침한다. 상단 밴드는 gene specific primer(서열번호 5 내지 서열번호 8)의 PCR 산물에 해당하며 하단의 밴드는 T-DNA의 RB(right border) 상의 NGUS1(서열번호 9)과 서열번호 5 또는 서열번호 7에 의한 PCR 산물에 해당한다. 두 실험군 모두에서 야생형(WT)은 gene specific primer에 의해서만 증폭되었으며 순종(HO)은 서열번호 5 또는 서열번호 7와 T-DNA의 RB(right border) 상의 NGUS1(서열번호 9)의해서만 증폭된 것을 확인할 수 있었다. FIG. 2A shows a comparison of the flowering time of pure (HO) experimental groups 3A-10852 and 1B-21530 with the flowering time of wild type (WT). As shown in FIG. 2A, it can be confirmed that the flower buds have already been formed in the wild type (WT) and the seeds are developed at the time when the flower buds of purebred (HO) 3A-10852 and 1B-21530 are emerging, . In addition, genotype analysis results through PCR also support the above results. The upper band corresponds to the PCR product of the gene specific primer (SEQ ID NO: 5 to SEQ ID NO: 8), and the lower band corresponds to the NGUS1 (SEQ ID NO: 9) on the RB (right border) of T-DNA and SEQ ID NO: . In both experimental groups, the wild-type (WT) was amplified only by gene specific primers, confirming that obedience (HO) was only amplified by SEQ ID NO: 5 or SEQ ID NO: 7 and NGUS1 (SEQ ID NO: 9) on the RB I could.

즉, LOC_Os02g05840 유전자가 개화시기에 영향을 미치는 것을 확인할 수 있었다. That is, it was confirmed that the LOC_Os02g05840 gene affects the flowering time.

또한, 실제로 LOC_Os02g05840 유전자의 기능이 상실되었는지 확인하기 위해 도 1의 첫 번째 엑손에서 만들어진 프라이머(서열번호 10)와 도 1의 네 번째 엑손에서 만들어진 프라이머(서열번호 11)를 이용하여 mRNA가 만들어지는 확인하였다. 대조군으로 벼 유비퀴틴-5의 프라이머(서열번호12 및 서열번호 13)를 사용하였다. 이와 같은 transcript 확인을 위한 프라이머는 표 3에 나타내었다.In order to confirm whether the function of the LOC_Os02g05840 gene was actually lost, it was confirmed that the mRNA was produced using the primer (SEQ ID NO: 10) produced in the first exon of FIG. 1 and the primer (SEQ ID NO: 11) Respectively. As a control, primers of rice ubiquitin-5 (SEQ ID NO: 12 and SEQ ID NO: 13) were used. The primers for identifying such transcripts are shown in Table 3.

표 3. LOC_Os02g03670 transcript 확인용 프라이머Table 3. LOC_Os02g03670 transcript confirmation primer

Figure pat00003
Figure pat00003

두 계통의 종자를 MSO 배지에서 10일 키운 후, 개체들의 잎 100mg을 채취하여 액체질소를 이용해 급속냉동 시켰다. 냉동된 잎 조직을 분쇄하여 RNA iso buffer (takara, http://www.takara-bio.com)를 이용하여 total RNA를 분리하였다. 2 ug의 total RNA을 Moloney murine leukemia virus reverse transcriptase (Promega, Madison,WI,USA)를 이용하여 cDNA를 합성하고 합성된 cDNA는 PCR을 통해 확인하였다.Two lines of seeds were grown in MSO medium for 10 days, and then 100 mg of leaves of each individual were collected and rapidly frozen using liquid nitrogen. The frozen leaf tissue was pulverized and total RNA was isolated using RNA iso-buffer (Takara, http://www.takara-bio.com). 2 μg of total RNA was synthesized using Moloney murine leukemia virus reverse transcriptase (Promega, Madison, WI, USA) and the cDNA was confirmed by PCR.

PCR 반응은 95℃에서 5분 후; 95℃에서 30초, 53℃에서 20초, 72℃에서 2분을 25회 반복하고, 마지막으로 72℃에서 7분을 진행하였다. PCR 산물은 아가로즈 젤을 이용하여 전기영동으로 확인하였다. PCR reactions were performed after 5 minutes at 95 ° C; 30 seconds at 95 ° C, 20 seconds at 53 ° C, 2 minutes at 72 ° C, and finally 7 minutes at 72 ° C. PCR products were confirmed by electrophoresis using agarose gel.

그 결과를 도 2 B에 나타내었다.The results are shown in Fig. 2B.

도 2 B에 나타낸 바와 같이, 순종(HO) 실험군 3A-10852 및 1B-21530에서 LOC_Os02g05840 유전자의 mRNA 생성이 없는 것을 PCR을 통해서 확인할 수 있었다. 도 2 B의 상단의 밴드는 LOC_Os02g05840의 mRNA primer(서열번호 10 및 서열번호 11)에 의한 PCR 산물에 해당하며 하단의 밴드는 벼의 ubiquithin 5의 specific primer(서열번호 12 및 서열번호 13)의 PCR 산물에 해당한다. As shown in FIG. 2B, it was confirmed by PCR that there was no mRNA production of the LOC_Os02g05840 gene in the pure (HO) experimental groups 3A-10852 and 1B-21530. The upper band of FIG. 2B corresponds to the PCR product of the mRNA primers (SEQ ID NO: 10 and SEQ ID NO: 11) of LOC_Os02g05840 and the lower band corresponds to the PCR of the specific primers of the rice ubiquitin 5 (SEQ ID NO: 12 and SEQ ID NO: 13) It corresponds to product.

즉, 유전형 분석을 통해 분리한 3A-10852 및 1B-21530은 대조군인 동진에 비해 개화가 늦어졌으며, 이 두 계통은 PCR을 통해 mRNA 유무를 관찰하였을 때 mRNA가 증폭되지 않았다.That is, 3A-10852 and 1B-21530 isolated from the genotypic analysis were delayed to flowering in comparison with the control group, Dongjin, and the mRNA was not amplified when the presence of mRNA was observed by PCR.

상기 결과를 통해 3A-10852 및 1B-21530 계통은 LOC_Os02g05840 유전자에 co-segregation 된 것이 확인되었다.From the above results, it was confirmed that the 3A-10852 and 1B-21530 lines were co-segregated with the LOC_Os02g05840 gene.

<< 실시예Example 3>  3> LOCLOC __ Os02g05840Os02g05840 발현을 위한 유전자  Genes for expression 클로닝Cloning

LOC_Os02g05840 유전자를 클로닝하기 위하여 상기 도 2 C에서 사용한 cDNA를 주형으로 표 3에 나타낸 서열번호 10 및 서열번호 11을 이용하여 PCR을 수행하였다. 20 ng의 cDNA 주형과 각 프라이머 5 pmol을 사용하였다. PCR 반응은 95℃에서 5분 후; 95℃에서 30초, 53℃에서 20초, 72℃에서 2분을 25회 반복하고, 마지막으로 72℃에서 7분을 진행하였다. PCR 산물은 아가로즈 젤을 사용하여 전기영동하고 정적크기의 사이즈 확인하고 분리 동정하여, pGA3724 벡터(sub-cloning용 벡터)에 클로닝하여 염기서열 해독을 하였다. 클로닝한 DNA를 HindⅢ와 SpeⅠ으로 절단한 후, 동일한 제한효소로 절단된 pGA3426 벡터(over-expression용 벡터)와 라이게이션을 28℃에서 3시간 수행하였다. 라이게이션 산물을 Top10 E.coli 컴피턴트 셀 50㎕과 혼합하여 1.5 ml 튜브에 옮긴 다음 얼음에 15분 방치하였다. 이어서, 37℃ 오븐에 1분을 다시 방치한 후 1 ml의 LB 액체 배지를 추가로 튜브에 넣은 다음 3시간 동안 37℃ 셰이킹 인큐베이터에서 방치하였다. 이어서, 카나마이신 저항성 LB 고체 배지에 도말하고 12시간을 기다려 생성되는 콜로니를 1mL의 LB 액체 배지에서 세포 배양 후 미니 프렙하였다. 미니 프렙으로 얻은 DNA를 제한 효소 HindⅢ와 SpeⅠ을 사용하여 절단 후 전기영동에서 아가로즈 젤을 분리 하고서 밴드를 확인하였다. 얻어진 클로닝 DNA를 다시 분석하여 에러가 발생하지 않은 DNA를 선택하였다. 이렇게 만들어진 LOC_Os02g05840 과다발현 식물체 제조를 위한 벡터의 다이어그램을 도 3에 나타내었다. 3730XL DNA analyzer(AB,USA)와 BigDye v3.1(AB,USA)을 이용하여 염기서열 분석을 수행하였고 LOC_Os02g05840 유전자 내 서열을 이용한 프라이머들을 사용하였으며 이를 표 4에 나타내었다. In order to clone the LOC_Os02g05840 gene, PCR was performed using SEQ ID NO: 10 and SEQ ID NO: 11 shown in Table 3 with the cDNA used in FIG. 2C as a template. 20 ng of cDNA template and 5 pmol of each primer were used. PCR reactions were performed after 5 minutes at 95 ° C; 30 seconds at 95 ° C, 20 seconds at 53 ° C, 2 minutes at 72 ° C, and finally 7 minutes at 72 ° C. The PCR product was electrophoresed using an agarose gel, and the size of the PCR product was determined. Then, the PCR product was isolated and identified and cloned into a pGA3724 vector (vector for sub-cloning). The cloned DNA was digested with HindIII and SpeI, followed by ligation with pGA3426 vector (over expression vector) digested with the same restriction enzyme at 28 DEG C for 3 hours. The ligation product was mixed with 50 μl of Top10 E. coli competent cells, transferred to a 1.5 ml tube, and left on ice for 15 minutes. Subsequently, the plate was allowed to stand in a 37 ° C oven for 1 minute, and then 1 ml of LB liquid medium was further placed in the tube and left in a 37 ° C shaking incubator for 3 hours. Then, the cells were plated on kanamycin-resistant LB solid medium and the resulting colonies were awaited for 12 hours and then mini-prepared after cell culture in 1 mL of LB liquid medium. The DNA obtained as a miniprep was digested with restriction enzymes HindIII and SpeI, and the agarose gel was separated by electrophoresis to confirm the band. The obtained cloning DNA was analyzed again to select DNA that did not cause an error. FIG. 3 shows a diagram of the vector for producing the overexpressed plant LOC_Os02g05840. Sequence analysis was performed using a 3730XL DNA analyzer (AB, USA) and BigDye v3.1 (AB, USA), and primers using sequences in the LOC_Os02g05840 gene were used.

표 4. 염기 서열 분석을 위한 프라이머Table 4. Primers for Sequencing

Figure pat00004
Figure pat00004

<< 실시예Example 4> 형질전환 세포의 제작 4> Production of transformed cells

상기 실시예 3에서 제작한 식물 재조합 벡터를 추출하였다. 아그로박테리움 컴피턴트 셀(Agrobacterium tumefaciens LB4404) 50㎕와 10㎍의 식물재조합 벡터를 혼합하여 얼음에 15분 방치하였다. 이어서, 액체질소에 1분 넣은 후, 37℃ 오븐에 5분을 다시 방치하는 과정을 3회 반복한 후 1 ml의 YEP 액체 배지를 넣은 다음 5시간 동안 28℃ 셰이킹 인큐베이터에서 방치하였다. 이어서, 테트라사이클린 저항성 LB 고체 배지에 도말하고 36시간을 기다려 생성되는 콜로니를 1mL의 테트라사이클린 항생제가 든 YEP 액체 배지에서 세포 배양 후 미니 프렙한 후, HindⅢ와 SpeⅠ을 사용하여 효소 절단 후 사이즈를 확인하였다.The plant recombinant vector produced in Example 3 was extracted. 50 μl of Agrobacterium tumefaciens LB4404 and 10 μg of the plant recombinant vector were mixed and left on ice for 15 minutes. Subsequently, 1 minute was added to liquid nitrogen, and the same procedure was repeated 3 times in a 37 ° C oven for 5 minutes. Then, 1 ml of YEP liquid medium was added, followed by incubation in a 28 ° C shaking incubator for 5 hours. Next, the cells were plated on a tetracycline-resistant LB solid medium and incubated for 36 hours. Cells were cultured in a YEP liquid medium containing 1 mL of tetracycline antibiotics and mini-preparations were performed. The cells were digested with HindIII and SpeI Respectively.

상기 생성된 형질전환된 아그로박테리움을 이용하여 벼의 형질전환 실험에 사용하였다.The resulting transformed Agrobacterium was used for transgenic rice transformation experiments.

<< 실시예Example 5> 형질전환 식물체의 제작 5> Production of Transgenic Plants

N6D 고체 배지에서 동진벼 종자를 30일 정도 28℃ 생장실에서 암 조건으로 키워서 벼의 캘러스를 생성하였다. 생성된 캘러스를 상기 실시예 4에서 얻은 식물 재조합 벡터로 형질 전환된 아그로박테리움을 72시간 키운 세포와 혼합하여 N6D-Acetosyringone 을 포함한 배지에서 22℃ 암처리 생장실에 방치하였다.From the N6D solid medium, Dong - Jin - jin seeds were grown for 30 days at 28 ℃ in the growth chamber under dark conditions to produce calli of rice. The resulting callus was mixed with the cells cultured for 72 hours with Agrobacterium transformed with the plant recombinant vector obtained in Example 4, and left in a culture medium containing N6D-Acetosyringone at a temperature of 22 占 폚.

아그로박테리움에 오염된 캘러스를 세파탁신이 첨가된 3차 증류수로 깨끗이 5번 정도 헹구어 낸 다음 N6D 고체 배지에서 hygromycin 선발을 1차(hygromycin 30 mg/L), 2차 (hygromycin 40 mg/L)에 걸쳐서 계대 배양을 통해 진행하였다. 선발은 28℃ 생장실에서 각각 2주 씩 합해서 4 주 동안 이루어졌다. 분열된 캘러스를 재분화 배지인 MSR (hygromycin 40 mg/L) 고체배지에 옮겨 4주 28℃ 광조건 생장실에서 재분화를 유도한 후, 식물체를 MS 고체 배지로 옮기고 7일 28℃ 광조건 생장실에서 키우고 온실로 옮겨서 재분화 식물체를 키웠다.Hygromycin 30 mg / L, hygromycin 40 mg / L, and hygromycin 40 mg / L were used in the N6D solid medium, and the callus contaminated with Agrobacterium was rinsed 5 times with 3 times distilled water containing Sepharose. Lt; RTI ID = 0.0 &gt; subculture. &Lt; / RTI &gt; Selection was made in the 28 ℃ growth room for 2 weeks each for 4 weeks. The cleaved callus was transferred to MSR (hygromycin 40 mg / L) solid medium, which is a regeneration medium, to induce re-differentiation in the growth room at 28 ° C. for 4 weeks, and then the plants were transferred to MS solid medium and grown in 28 ° C. Transferred to grow replanted plants.

<< 실시예Example 6> 형질전환 식물체를 이용한  6> transgenic plants LOCLOC __ Os02g05840Os02g05840 유전자 발현 검증 Gene expression verification

재분화된 식물체에서 LOC_Os02g05840 발현이 증가된 것을 확인하기 위해 재분화된 식물체에서 total RNA를 분리 cDNA를 합성하여 Rotor-Gene 6000 PCR 기기를 이용하여 quantitative real-time RT-PCR을 수행하였다. 도 4 A의 네 번째 액손 및 5'UTR 부위에서 발현 확인에 사용될 프라이머를 제작하였다. 상기 프라이머는 표 5에 나타내었다. To confirm the increased expression of LOC_Os02g05840 in regenerated plants, isolated total RNA was isolated from regenerated plants and quantitative real-time RT-PCR was performed using a Rotor-Gene 6000 PCR instrument. A primer to be used for confirmation of expression was prepared at the 4'-axon and 5'UTR sites in Fig. 4A. The primers are shown in Table 5.

표 5. 형질전환 식물체에서 LOC_Os02g05840 발현 검증 프라이머Table 5. Verification of expression of LOC_Os02g05840 in transgenic plants Primer

Figure pat00005
Figure pat00005

도 4 B에 나타낸 바와 같이, 서로 다른 LOC_Os02g05840 과발현 형질전환 벼 OX1과 OX2에서 LOC_Os02g05840 발현을 관찰한 결과, 대조군 동진 벼에 비해 transcript의 양이 현저히 증가한 것을 확인하였다. 즉, LOC_Os02g05840 과발현 재조합 벡터를 이용해 LOC_Os02g05840 transcript가 증가한 형질전환 벼를 확인할 수 있었다.As shown in FIG. 4B, LOC_Os02g05840 expression was observed in different LOC_Os02g05840 overexpressed rice OX1 and OX2. As a result, it was confirmed that the amount of transcript was significantly increased in comparison with the control group, Dongjin rice. In other words, the transgenic rice with the LOC_Os02g05840 transcript increased using the LOC_Os02g05840 overexpression recombinant vector.

<< 실시예Example 7>  7> LOCLOC __ Os02g05840Os02g05840 과발현 형질전환 식물체를 형질 분석 Over-expression transgenic plants were characterized

LOC_Os02g05840 과발현 형질전환 벼의 표현형 관찰을 통해 변환된 형질을 확인하였다. LOC_Os02g05840 Overexpressed transgenic rice plants were identified by phenotypic observations.

그 결과를 도 5 내지 도8에 나타내었다. The results are shown in Figs. 5 to 8. Fig.

도 5는 형질전환 벼의 표현형을 나타내는 도이다. 형질전환 벼는 크게 3가지의 형질이 대조군과 비교하여 달라졌다. 5 is a diagram showing a phenotype of transgenic rice. The three transgenic lines of the transgenic rice were different from those of the control group.

첫 번째로 OX1과 OX2는 대조군에 비해 신장 길이가 길어졌으며 그 결과를 도 6에 나타내었다. First, OX1 and OX2 were elongated longer than the control, and the results are shown in Fig.

도 6에 나타낸 바와 같이, 신장 길이가 대조군과 비교하여 길어진 것을 확인 할 수 있다. 신장 길이는 식물체의 줄기 끝부터 이삭 끝까지를 측정하였다. 도 6 A 에서 대조군(control)의 평균 신장 길이는 122 cm이었으며, OX1 식물체 및 OX2 식물체의 평균 신장 길이는 각각 158과 173 cm이었다. 이 수치는 OX1 및 OX2 식물체가 대조군과 비교해 각각 30% 및 42% 의 길이가 길어진 것으로, 이러한 신장 길이의 증가는 절간(internode) 각각의 길이가 길어졌기 때문이다. 대조군과 두 계통의 형질전환체의 major 및 minor 절간 길이를 측정한 결과는 도 6 B에 나타내었다. 도 6 B에 나타낸 바와 같이, 형질전환체 두 계통 모두가 대조군에 비해 모든 절간의 길이가 길어져있음을 확인 할 수 있었다. As shown in Fig. 6, it can be confirmed that the elongation length is longer than that of the control group. The kidney length was measured from the stem end of the plant to the end of the ears. In FIG. 6A, the control elongation length was 122 cm, and the average elongation lengths of the OX1 and OX2 plants were 158 and 173 cm, respectively. This figure is due to the fact that OX1 and OX2 plants are 30% and 42% longer, respectively, than the control, and this increase in length is due to the longer length of each internode. The results of measuring the lengths of the major and minor intervertebral bodies of the control and two line transformants are shown in Figure 6B. As shown in FIG. 6B, it was confirmed that the lengths of all the intervertebral discs were longer than those of the control.

도 6에서 나타낸 바와 같이 LOC_Os02g05840 발현이 증가하면 수량성에 관련된 형질인 신장이 길이지는 결과를 확인하였다. 즉, LOC_Os02g05840은 식물체의 신장 발달을 조절하여 수량성 증가에 중요한 역할을 할 수 있다.As shown in FIG. 6, when the expression level of LOC_Os02g05840 was increased, it was confirmed that the kidney which is a trait related to the yield was lengthened. In other words, LOC_Os02g05840 can play an important role in increasing the yield by regulating plant kidney development.

두 번째로 두 계통의 형질전환체 모두가 대조군과 대비하여 줄기 두께가 두꺼워진 것을 확인할 수 있었다. Second, the transgenic lines of both strains showed a thicker stem compared to the control.

그 결과를 도 7에 나타내었다. The results are shown in Fig.

도 7 A에 나타낸 바와 같이, 버니어캘리퍼를 이용해 각 절간의 마디 위 4cm 위치에서 대조군과 두 계통의 형질전환체 OX1 식물체와 OX2 식물체의 major 및 minor 줄기의 두께를 측정하였다. 형질전환체의 major 줄기 두께는 대조군에 비해 평균 19% 두꺼워졌고, minor 줄기 두께는 평균 20% 두꺼워져 있음을 확인할 수 있었다. As shown in Fig. 7A, the thicknesses of the major and minor stems of the control and OX1 and OX2 plants of the control and two lines were measured at 4 cm above each node using a vernier caliper. The major stem thickness of transgenic plants was 19% larger than that of the control group, and the minor stem thickness was 20% larger on average.

이를 세포단위에서 확인하기위해 section을 하여 관찰하였다. A section was made to confirm this in cell units.

section을 통한 절간의 관찰을 위해 개화가 이루어지고 30일이 지난 식물체의 세 번째 절간을 잘라 FAA fix 용액 (formalin (35%): acetic acid: alcohol (70%) = 1:1:18)에 담구어 세포를 고정시켰다. 절간 조직은 LEICA RM2265 section 기기를 이용하여 1um 이내로 횡단으로 자르고, 슬라이드 글라스 위에 놓고 커버글라스로 고정한 후 0.05% toluidine blue 용액으로 염색하여 광학현미경에서 20-40배율로 단면을 관찰하였다. section, the third section of the plant was discarded after 30 days and the FAA fix solution (formalin (35%): acetic acid: alcohol (70%) = 1: 1: 18) The spiral cells were fixed. The cross-sectional tissue was cut with a LEICA RM2265 section apparatus in a transverse section within 1 μm, fixed on a slide glass, fixed with a cover glass, stained with 0.05% toluidine blue solution and observed with an optical microscope at 20-40 magnification.

그 결과를 도 7 B에 나타내었다. The results are shown in Fig. 7B.

도 7 B에 나타낸 바와 같이, OX1 식물체는 대조군에 비해 줄기 두께가 두꺼워졌음을 확인할 수 있었다. As shown in Fig. 7B, it was confirmed that the stem thickness of the OX1 plant was thicker than that of the control group.

즉, LOC_Os02g05840 유전자는 줄기의 길이 신장뿐만 아니라 두께 발달에도 영향을 미치는 것을 통해 전체적인 줄기 발달에 관여하는 것을 확인할 수 있었다.In other words, it was confirmed that LOC_Os02g05840 gene is involved in whole stem development through influencing thickness development as well as stem length.

세 번째로 main tiller의 전체 종자 수가 증가하였다. Third, total seed number of main tiller increased.

형질전환체는 대조군에 비해 1차 이삭 가지 수 및 2차 이삭 가지 수가 증가하여 전체 종자 수가 증가하였으며, 이를 도 8에 나타내었다.The number of primary spikes and secondary spikes increased in the transformants compared to the control group, and the total number of seeds was increased, as shown in FIG.

도 8에 나타낸 바와 같이, 도 8 A에서 형질전환체는 대조군과 비교하여 1차 이삭 가지 수가 40% 증가하였고, 도 8 B에서 형질전환체는 대조군과 비교하여 2차 이삭 가지 수 가 28% 증가하였다. 이삭 가지 수의 증가는 전체 종자 수의 증가를 가져오는 바, 도 8 C에서 나타낸 바와 같이, OX1 식물체의 종자 수가 대조군에 비해 47% 증가한 것을 확인할 수 있었다. As shown in Fig. 8, in the transformant, the number of primary spikes was increased by 40% as compared with that of the control group. In Fig. 8B, the number of secondary spikes increased by 28% Respectively. The increase in the number of seeds resulted in an increase in the total number of seeds. As shown in FIG. 8C, the number of seeds of OX1 plants was increased by 47% as compared with the control.

도 8의 결과는 수량을 증가시키는 요소 중의 하나인 신장 길이를 조절하는 역할뿐만 아니라, 직접적으로 종자의 수를 증가시켜 수량을 증대할 수 있는 것을 보여준다.The results of FIG. 8 show that the number of seeds can be increased to increase the yield, as well as controlling the height of the kidney, which is one of the factors that increase the yield.

<< 실시예Example 8>  8> LOCLOC __ Os02g05840Os02g05840 과발현 형질전환 세포학적 관찰 Overexpressed Transforming Cytological Observation

상기에서 보여준 LOC_Os02g05840 과다 발현체가 보여주는 형질의 변화를 세포학적으로 관찰하고자 하였다.The cytotoxicity of the LOC_Os02g05840 overexpressant was investigated.

세포의 종단면 관찰하여 세포의 크기와 수를 관찰하고자 개화가 이루어지고 30일이 지난 식물체의 세 번째 절간을 잘라 FAA fix 용액 (formalin (35%): acetic acid: alcohol (70%) = 1:1:18)에 담구어 세포를 고정시켰다. 절간 조직은 LEICA RM2265 section 기기를 이용하여 1um 이내로 종단으로 자르고, 슬라이드 글라스 위에 놓고 커버글라스로 고정한 후 0.05% toluidine blue 용액으로 염색하여 광학현미경에서 20-40배율로 단면을 관찰하였다. In order to observe the size and number of the cells, the third section of the plant that had been over 30 days old was cut and FAA fix solution (formalin (35%): acetic acid: alcohol (70%) = 1: : 18). The cross-sectional tissue was cut with a LEICA RM2265 section instrument to a length of less than 1 μm, fixed on a slide glass, fixed with a cover glass, stained with 0.05% toluidine blue solution and observed at 20-40 magnification under an optical microscope.

도 9 A에 나타낸 바와 같이, OX1 형질전환체의 세포는 대조군에 비해 크기가 작고 같은 범위 내에서 세포수가 많은 것을 확인할 수 있었다. 이를 수치화하여 관찰하였을 때 도 9 B에 나타낸 바와 같이, 형질전환체의 세포는 대조군에 비해 길이가 40% 정도로 작아진 것을 확인할 수 있었다. As shown in Fig. 9A, the OX1 transformant cells were smaller in size than the control group, and the number of cells was found to be the same within the same range. As shown in FIG. 9B, when the cells were quantitatively observed, it was confirmed that the transformant cells were about 40% shorter in length than the control group.

즉, 도 9는 도 6 및 도 7에서 줄기의 신장 및 두께 증가에 대한 효과가 식물체를 구성하는 세포 수가 증가함에 따른 신장 및 두께 증가에 의한 것임을 뒷받침해 준다. In other words, FIG. 9 supports that the effects on the elongation and thickness increase of the stem are due to the increase in elongation and thickness as the number of cells constituting the plant increases in FIG. 6 and FIG.

상기 결과를 바탕으로 LOC_Os02g05840 유전자는 개화시기, 신장 길이 및 이삭 수량 증대와 같은 수량성 증가와 관련되는 여러 형질을 한 유전자를 통해서 조절할 수 있음을 보여준다. 즉, LOC_Os02g05840 유전자를 통해 수량성 증가를 이룰 수 있음을 확인하였다. Based on the above results, the LOC_Os02g05840 gene shows that one gene can control several traits related to increased quantitative properties such as flowering time, height of kidney and increase of ear yield. That is, it was confirmed that the LOC_Os02g05840 gene could increase the yield.

<110> University-Industry Cooperation Group of Kyung Hee Universityv <120> LOC_Os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of Oryza sativa <130> P12-086-KHU <160> 22 <170> KopatentIn 2.0 <210> 1 <211> 2247 <212> DNA <213> Oryza sativa <220> <221> CDS <222> (1)..(2247) <223> LOC_Os02g05840 <400> 1 atg gat cca ccc tac gca gga gta cct att gat cct gct aaa tgc cga 48 Met Asp Pro Pro Tyr Ala Gly Val Pro Ile Asp Pro Ala Lys Cys Arg 1 5 10 15 ttg atg agt gtg gat gaa aag cgg gaa ctt gtc cgt gaa tta tcg aag 96 Leu Met Ser Val Asp Glu Lys Arg Glu Leu Val Arg Glu Leu Ser Lys 20 25 30 cgg cca gaa agt gct cct gac aaa ctg cag tct tgg agt cgc cgt gaa 144 Arg Pro Glu Ser Ala Pro Asp Lys Leu Gln Ser Trp Ser Arg Arg Glu 35 40 45 att gta gag att ctt tgt gct gat tta gga agg gaa agg aag tac act 192 Ile Val Glu Ile Leu Cys Ala Asp Leu Gly Arg Glu Arg Lys Tyr Thr 50 55 60 gga tta tcg aag cag aga atg ttg gaa tat ctc ttc aga gtt gtg act 240 Gly Leu Ser Lys Gln Arg Met Leu Glu Tyr Leu Phe Arg Val Val Thr 65 70 75 80 ggc aaa tca tct ggt ggt ggc gtt gtg gag cat gtg caa gag aag gag 288 Gly Lys Ser Ser Gly Gly Gly Val Val Glu His Val Gln Glu Lys Glu 85 90 95 cct acc cct gaa ccc aac aca gcc aac cat cag tcc cct gcg aaa cgg 336 Pro Thr Pro Glu Pro Asn Thr Ala Asn His Gln Ser Pro Ala Lys Arg 100 105 110 cag cga aag agt gac aac cca tca cga cta cca att gtt gca agc agt 384 Gln Arg Lys Ser Asp Asn Pro Ser Arg Leu Pro Ile Val Ala Ser Ser 115 120 125 cca act aca gaa ata ccc agg cca gca agt aat gct cgc ttc tgc cac 432 Pro Thr Thr Glu Ile Pro Arg Pro Ala Ser Asn Ala Arg Phe Cys His 130 135 140 aat tta gct tgc aga gcg act ctt aat cca gaa gat aaa ttt tgc aga 480 Asn Leu Ala Cys Arg Ala Thr Leu Asn Pro Glu Asp Lys Phe Cys Arg 145 150 155 160 cgc tgt tca tgc tgt att tgt ttc aag tac gat gac aat aag gat cct 528 Arg Cys Ser Cys Cys Ile Cys Phe Lys Tyr Asp Asp Asn Lys Asp Pro 165 170 175 agc ctc tgg tta ttc tgt agt tca gat caa ccc ttg cag aaa gat tct 576 Ser Leu Trp Leu Phe Cys Ser Ser Asp Gln Pro Leu Gln Lys Asp Ser 180 185 190 tgt gta ttt tcg tgc cat ctt gaa tgt gct ctt aag gat gga aga act 624 Cys Val Phe Ser Cys His Leu Glu Cys Ala Leu Lys Asp Gly Arg Thr 195 200 205 ggc atc atg cag agt ggg cag tgc aag aaa ctt gat ggt ggt tat tac 672 Gly Ile Met Gln Ser Gly Gln Cys Lys Lys Leu Asp Gly Gly Tyr Tyr 210 215 220 tgc act cgc tgt cgg aaa cag aat gat ctg ctt ggg tcc tgg aag aaa 720 Cys Thr Arg Cys Arg Lys Gln Asn Asp Leu Leu Gly Ser Trp Lys Lys 225 230 235 240 caa ctg gtg ata gct aaa gat gct cgc cgg ttg gat gta ttg tgt cat 768 Gln Leu Val Ile Ala Lys Asp Ala Arg Arg Leu Asp Val Leu Cys His 245 250 255 cgg att ttt ttg agt cat aag att ctt gtc tcc acg gag aag tac ttg 816 Arg Ile Phe Leu Ser His Lys Ile Leu Val Ser Thr Glu Lys Tyr Leu 260 265 270 gtt ttg cat gaa att gtt gac aca gcg atg aag aaa ctg gag gct gag 864 Val Leu His Glu Ile Val Asp Thr Ala Met Lys Lys Leu Glu Ala Glu 275 280 285 gtt ggt cct ata tct gga gtt gca aat atg ggt cgt gga att gtg agc 912 Val Gly Pro Ile Ser Gly Val Ala Asn Met Gly Arg Gly Ile Val Ser 290 295 300 cgg ctt gct gtt ggt gct gaa gtt cag aaa ctt tgt gct cga gca ata 960 Arg Leu Ala Val Gly Ala Glu Val Gln Lys Leu Cys Ala Arg Ala Ile 305 310 315 320 gaa acc atg gag tct ctg ttt tgt gga tct cct tct aac ttg caa ttt 1008 Glu Thr Met Glu Ser Leu Phe Cys Gly Ser Pro Ser Asn Leu Gln Phe 325 330 335 caa cgt tca cgg atg ata cca tca aac ttc gta aag ttt gaa gct ata 1056 Gln Arg Ser Arg Met Ile Pro Ser Asn Phe Val Lys Phe Glu Ala Ile 340 345 350 acc caa aca tct gtc act gta gtt ttg gat ttg ggt cct ata ctt gct 1104 Thr Gln Thr Ser Val Thr Val Val Leu Asp Leu Gly Pro Ile Leu Ala 355 360 365 caa gat gta aca tgc ttt aat gta tgg cac aga gtg gca gcc aca ggc 1152 Gln Asp Val Thr Cys Phe Asn Val Trp His Arg Val Ala Ala Thr Gly 370 375 380 tcg ttc tca tca agt cca act ggc atc ata ctt gca cca tta aaa acg 1200 Ser Phe Ser Ser Ser Pro Thr Gly Ile Ile Leu Ala Pro Leu Lys Thr 385 390 395 400 tta gtg gtc act caa ctt gtg cca gct aca agc tat ata ttc aag gta 1248 Leu Val Val Thr Gln Leu Val Pro Ala Thr Ser Tyr Ile Phe Lys Val 405 410 415 gtt gcc ttc agt aac tac aag gag ttt gga tcg tgg gaa gcc aaa atg 1296 Val Ala Phe Ser Asn Tyr Lys Glu Phe Gly Ser Trp Glu Ala Lys Met 420 425 430 aag aca agc tgt cag aag gaa gtt gat ctg aag ggt ttg atg cca ggt 1344 Lys Thr Ser Cys Gln Lys Glu Val Asp Leu Lys Gly Leu Met Pro Gly 435 440 445 ggg tct ggg cta gac caa aac aat ggg agc cca aag gca aac agt ggt 1392 Gly Ser Gly Leu Asp Gln Asn Asn Gly Ser Pro Lys Ala Asn Ser Gly 450 455 460 ggt cag tct gat cct tct tca gaa ggt gtg gac tca aat aat aac act 1440 Gly Gln Ser Asp Pro Ser Ser Glu Gly Val Asp Ser Asn Asn Asn Thr 465 470 475 480 gcg gtg tat gct gat ctc aat aaa tca cca gaa agt gat ttt gaa tat 1488 Ala Val Tyr Ala Asp Leu Asn Lys Ser Pro Glu Ser Asp Phe Glu Tyr 485 490 495 tgt gaa aat cct gag ata ctt gat tca gac aaa gca agt cat cac ccc 1536 Cys Glu Asn Pro Glu Ile Leu Asp Ser Asp Lys Ala Ser His His Pro 500 505 510 aat gaa cct aca aac aac tca cag agt atg ccg atg gtc gta gct agg 1584 Asn Glu Pro Thr Asn Asn Ser Gln Ser Met Pro Met Val Val Ala Arg 515 520 525 gtt acg gag gta tct gga ttg gag gaa gct cct gga ctc tca gca tca 1632 Val Thr Glu Val Ser Gly Leu Glu Glu Ala Pro Gly Leu Ser Ala Ser 530 535 540 gct ttg gac gag gag ccc aat tca gca gtt caa aca caa tta ctt aga 1680 Ala Leu Asp Glu Glu Pro Asn Ser Ala Val Gln Thr Gln Leu Leu Arg 545 550 555 560 gaa tcc tca aat tca atg gag cag aac cag aga agc gaa gtt cct gga 1728 Glu Ser Ser Asn Ser Met Glu Gln Asn Gln Arg Ser Glu Val Pro Gly 565 570 575 tca cag gat gca tca aat gct cct gct gga aat gag gtg gtg att gtt 1776 Ser Gln Asp Ala Ser Asn Ala Pro Ala Gly Asn Glu Val Val Ile Val 580 585 590 cca cct cga tat tct ggc tct att cca cca act gca cct aga tat atg 1824 Pro Pro Arg Tyr Ser Gly Ser Ile Pro Pro Thr Ala Pro Arg Tyr Met 595 600 605 gaa aat ggt aag gat atc agt ggg agg agc ttg aaa gca aaa cct ggt 1872 Glu Asn Gly Lys Asp Ile Ser Gly Arg Ser Leu Lys Ala Lys Pro Gly 610 615 620 gat aac atc ctt caa aat ggc tct tcc aag cct gaa agg gaa cca ggg 1920 Asp Asn Ile Leu Gln Asn Gly Ser Ser Lys Pro Glu Arg Glu Pro Gly 625 630 635 640 aat tct tca aat aaa aga aca tca ggt aaa tgt gag gaa atc ggc cac 1968 Asn Ser Ser Asn Lys Arg Thr Ser Gly Lys Cys Glu Glu Ile Gly His 645 650 655 aag gat gga tgc cca gaa gca tct tat gag tac tgt gtt aag gtg gtc 2016 Lys Asp Gly Cys Pro Glu Ala Ser Tyr Glu Tyr Cys Val Lys Val Val 660 665 670 agg tgg ctg gaa tgt gag ggt tac att gag acc aac ttc aga gtg aag 2064 Arg Trp Leu Glu Cys Glu Gly Tyr Ile Glu Thr Asn Phe Arg Val Lys 675 680 685 ttt ctg act tgg tat agc ctt cgt gct acc cct cat gac agg aag ata 2112 Phe Leu Thr Trp Tyr Ser Leu Arg Ala Thr Pro His Asp Arg Lys Ile 690 695 700 gtc agc gtc tac gta aac act ctt att gat gat cct gtt agc ctt tct 2160 Val Ser Val Tyr Val Asn Thr Leu Ile Asp Asp Pro Val Ser Leu Ser 705 710 715 720 ggc cag ctt gct gac act ttc tct gag gcc atc tac agc aaa agg cca 2208 Gly Gln Leu Ala Asp Thr Phe Ser Glu Ala Ile Tyr Ser Lys Arg Pro 725 730 735 cct tct gtt cgc tcc ggt ttc tgc atg gaa ctt tgg cat 2247 Pro Ser Val Arg Ser Gly Phe Cys Met Glu Leu Trp His 740 745 <210> 3 <211> 3000 <212> DNA <213> Oryza sativa <220> <221> promoter <222> (1)..(3000) <223> Promoter of LOC_Os02g05840 <400> 3 ttggttccta aactctcaaa atacatatcc aaagtcccaa aacttatcaa aatatgttat 60 ttaggtctca aatcgccaca acctcttcag aattttacgt ggggctcccc acatggatgt 120 ggcgtggtat catcttgact gaaaaatagg acccacttat tttttttctt ttttcttctt 180 ttccttttcc ttctcttttt tttccttttc tgttcctttc tctgtgacct gagtacccca 240 tgcggcggta gcctattttt agtgagagga aggagaagaa atgaaaaaaa taagagaagg 300 agaagaaaaa taattttttt taagtaggtc ccatttttaa gtcaagatta tgctacatca 360 cattcgtgtg gtatgccata tcagcgccat gtagaattct agacctatat gacactttaa 420 caagttttga gatctagatt tacatttaag agattgggga cctagatgac actctaagga 480 ctgctcatgc actttactct atttttctag aaatgtcggc accttctttg tgatcctggt 540 cgaatttgag gagtttttgg cttaaaacaa atccaaaacg acttataaac ttgacaagtt 600 tagatatttg ttacaaacga cttatattaa cgacaaatct agacaatctt ttatctaaaa 660 cctaagctct aaccatttgc ccagattagt tatattagag caagtttaat agtatagccc 720 actactagct ccaatttatc tatagccaat ctaatagcta attcatacaa tagttgttta 780 ctatactatt aatatatggt ctcacctgtc atacacatac tgtgtcttgg agtccgtgct 840 acagctggct acagatctgt agactgcttc tcttatctct catcttttat ctcattaaaa 900 tatgtttata gctgactaat agtctgctat tgtacctgct tttaggaggg gttatatttg 960 gttgagtatt tttcgggacg gatggagtac actgcaatat agctgtagaa tattcataaa 1020 attttctcta aaaaatactc ctcgtgaaat gattgttcat tagtcttaag tatactccta 1080 ggtcaaaaaa aattgccaag tgaggtctta ataaaagaaa gggagaaagg cgtttgcact 1140 gcatgcagca actgcagcag tagtggtagt taattaatta attaattaat aatggcgatc 1200 gacagctcag ctcggaagac gatgcccacc cctctctccg aggccgaggc cgcacgaatc 1260 ttgaagcgcc tagccgttcg ccgcgcgtgc cgcgggcggc ggaggcggtg gccacgtaag 1320 cgcccgcccc acgcatgcag ccgtcggatt ccgattcctt ttgccgcttt tcccgtctgc 1380 ccccctcgtt ctccgtcgcc tttaaaccta gagtaatcaa tcaattgatt tattggtaat 1440 tcacgattaa ttaattgttt tctttctcca tcaaccccaa ttaggttata aattatgctt 1500 atatacccta atgtataaag tattctttta ttctagtact ttatactagc actattactc 1560 catactattg tactccctcc attccaaatt gactacatat agtttttttt aaggttattc 1620 ctaaatgatc tacatatttg tgcttattta ttaagtctat tcgttacttg tgcattggag 1680 taaatagaca ttgatgcatg catccatgca cacaagtatt tataacacac atgcaatatc 1740 ttgatttgct attggctagg aaatagtggg gatggtgttt gagtttgttt ctagaataaa 1800 tatagtatga gagagttatt agcttttctt ggtcttggtg tacctatgaa atatgtagat 1860 caatttgaaa tggagggagt actatagtag atgtagatcc actggattat gatttgtgag 1920 gaagattatg acggtgtgta tagtatagta ttggtgttag ctgaatgcac cctttacaaa 1980 atggcatatt gtttgtttcg gtcttagata catgtcattt taattatcaa tgtcatctgc 2040 caaatacaat tcttttcatg tgttttattt tactataatc acactacagg catatttgtg 2100 acaaaaaaaa gaatgggaat tatgtggtag tatgtatcac tttatcatgt atatgtatgt 2160 cgaggagctt agctaagcga agactacatt taatattgat tagcggatct aattacacac 2220 aaacggttgg ttcaactaac cctacaactt gttacgtgcg atcctataag cctttgttta 2280 tattgtacgt aaactataca aaaatgacct aaaaataact caattgaaat atgaatcaac 2340 gcgacaaaaa tctacaagat gtttggtaca gttgaactcc agctgtgtga cacttacaac 2400 tacaatacca agagatcgaa atatacaact ttggttgtac agcgctaccg gctataccca 2460 tagcccaacc acatgtcaga cctcatccaa ccctagatcc accgcaactc gatattatca 2520 cacttctcaa cctactctta ttatcatact acaagcttgt tagcttggtt acaatgtatg 2580 ctaatttgaa gctctgaact atgaacacga actataccac tattactatt ttgcccaaca 2640 aaccccaagt agagccgcct aaccaacaac caacctcgtt gaccgctaga gccgctaatc 2700 actctggagt cgggacccat caccgaatac gcgagaaccc gaggaccaaa ccgcaaaagc 2760 ctcacctcac cctaggcttt gatatgcgtg cggacgccta aggctaggag ttaacctcgc 2820 gtagagagag agagagagag agagagataa ctagcagagc actcgcggag gcgaggagag 2880 agagagagag agagagaggt tggaagagga ggggagagtc cacgtgagtg agaggaggag 2940 gaggaggagg agatccctct cccgcgcgca tccgcccctc tcgccgatcc ccaattcgcc 3000 3000 <210> 4 <211> 5619 <212> DNA <213> Oryza sativa <220> <221> gene <222> (1)..(5619) <223> LOC_Os02g05840 <400> 4 gagagataac tagcagagca ctcgcggagg cgaggagaga gagagagaga gagagaggtt 60 ggaagaggag gggagagtcc acgtgagtga gaggaggagg aggaggagga gatccctctc 120 ccgcgcgcat ccgcccctct cgccgatccc caattcgcca tggatccacc ctacgcaggt 180 cggtcagcgc cgcccccgca tccgcggttt tcgccttgtt tttttttttt gttgttgttg 240 ttgcgtgtgt gtggtggtgg tgatggctca ggtctcgcgg cggcgtcggg gggagctcga 300 tctgtttgtt ccggcgacga atccgctgtt ccggcggtgt aattgcgggc ttggtggtgg 360 aggaggagga atttgtgggc gtggatttta gggtgggagg cggttttttt ttttttgggg 420 ggggggtggt gtagtgttcg tcgagattta gactttttgt gtggatggat ggatgggtta 480 gattatgcgc gcgtggatta gattgcggcg gtagagggtt tgtactgttc attgattggt 540 ttgttgggtt gatttggagc tgtagctgat gcgtggtaga ggggtggagg tggaagcgcg 600 ttggggaggg tggatggcga tgccgctggt gtcagattcg ccgctgcatg cggtgatggg 660 tactcacatt gcgccccctc tctaccgggg gaggtggcag cggagtggtt cctgcggctt 720 tacgtcgttt tcgtgggatt tacgtccgcg ggcgttggta gcagcagcct atcctctttt 780 gggacgggaa aataatatgg cgttaggctg tttgaggcct cctgttcgtg cgttgggtgt 840 tgcattggtg ctgatttggt gggatcacgg ctgccgaagg cgggtttgtt tgctgttagt 900 tgatggtaag gattggctga tacgtcgatt atatcttcta gaggagctgc gtctacttgc 960 atgtcaaggt taccacgttt aggggttata tgattgatga tagtttcttt gtttagtggt 1020 ccaaaattag aaagactcat ttctttttag ttttctcgtt tcccttagac agtctgtaga 1080 gagttgactt tctgcggctc gtgccagctt cgatagctct agttaacatt gcgccttgtg 1140 gtatcacaac tgtgctttgt agttcacatt tagtcctata caatatggta catgttgatg 1200 agcctttaat tcttagatta ttgaccgaat catctttttt ttccgaggtt aagacttatt 1260 ctgttgcaat gtgctataat tataatttga cttctactcc agtaagacag tgtgctactc 1320 acattaattt gattcagcat gtcgagaatt taatttcctt tggaacgtca ttcattgagt 1380 ttttccttgc acgctaagtt actcagtacc gtctcatagt tgttctgaag aagagaaaga 1440 atgatgcctt caaaatatgt attcttctac tggatctaat gaactttaaa cctttccatt 1500 ctggactgta aatatgaatg aacgtctaaa tttccttcgt tgtttgcttc ttgtccgact 1560 ggattttgta actatttctg actttatcaa attgataata atagtttcca gtgttctctt 1620 gtttaggagt acctattgat cctgctaaat gccgattgat gagtgtggat gaaaagcggg 1680 aacttgtccg tgaattatcg aagcggccag aaagtgctcc tgacaaactg cagtcttgga 1740 gtcgccgtga aattgtagag attctttgtg ctgatttagg aagggaaagg aagtacactg 1800 gattatcgaa gcagagaatg ttggaatatc tcttcagagt tgtgactggc aaatcatctg 1860 gtggtggcgt tgtggagcat gtgcaagaga aggagcctac ccctgaaccc aacacagcca 1920 accatcagtc ccctgcgaaa cggcagcgaa agagtgacaa cccatcacga ctaccaattg 1980 ttgcaagcag tccaactaca gaaataccca ggccagcaag taatgctcgc ttctgccaca 2040 atttagcttg cagagcgact cttaatccag aagataaatt ttgcagacgc tgttcatgct 2100 gtatttgttt caagtacgat gacaataagg atcctagcct ctggttattc tgtagttcag 2160 atcaaccctt gcagaaagat tcttgtgtat tttcgtgcca tcttgaatgt gctcttaagg 2220 atggaagaac tggcatcatg cagagtgggc agtgcaagaa acttgatggt ggttattact 2280 gcactcgctg tcggaaacag aatgatctgc ttgggtattc tccctaaaca actttattat 2340 ttgcacagtt ttttttcctg ttctgtaact atacgaaatt atgttttaat tattcctatg 2400 cctccagttt ttactgcctt aagtaatgtt accattattt attgcaacga taactactag 2460 aaatatgtta gtttgacttt tgtgagagtt agctttgata atttgcatgc attcttgctt 2520 tccagccact ttgattacct tactgattct gtttttagga ttcttcggtg aagatccttg 2580 tagtgtcatc atcattggtc caatcatatg atgcatattt ctcaattgtg tcttaagaag 2640 tgggttggct gcttttgccc ttcagcttca tgctttgagc ttgtggtctg tgtgcttact 2700 tctgcattaa gctgaattag tgttggattc ttccttctcc atctggagta aatttgtttg 2760 ctgggataac cctattttca taggttgcga gctgcgaaaa caggctttcg actgcatttt 2820 ggtgtctttg tgttgcattc catagggttc ttgtagttca agtttcaggg tatgaaccaa 2880 gttactaagc cagtaaaact tggtgaggca ctgaggccag gtggattcaa tattttcaag 2940 gatgaataga tcatggagaa atgcttagac tagtatatgc aaggagtctc taatttgtct 3000 gtgcatgttt ataagccatt tgagtaacct gggaaatagg attcattttg aagttttgaa 3060 ctacaagaca agtgattaat tgtctttctc aaaagaatct gcttggctat tagtatcttg 3120 tagtagtaag ttttgaacca gttatatgtt atttagagtt caagattctt tggccagtcc 3180 agcacaatgc acttaagtaa ttcaatcaag tttactggcc cattttccaa aactatgctc 3240 ctttcaagag tttggatatt gaaacagtaa attagcttgc cgagcaatac ttgactgttt 3300 aatgccttgt tcaggtcctg gaagaaacaa ctggtgatag ctaaagatgc tcgccggttg 3360 gatgtattgt gtcatcggat ttttttgagt cataagattc ttgtctccac ggagaagtac 3420 ttggttttgc atgaaattgt tgacacagcg atgaagaaac tggaggctga ggttggtcct 3480 atatctggag ttgcaaatat gggtcgtgga attgtgagcc ggcttgctgt tggtgctgaa 3540 gttcagaaac tttgtgctcg agcaatagaa accatggagt ctctgttttg tggatctcct 3600 tctaacttgc aatttcaacg taagtttcca cgtgcttcac gttagaccac atacatacaa 3660 atagtgttga attctcatgc atatgtgcat tttcaggttc acggatgata ccatcaaact 3720 tcgtaaagtt tgaagctata acccaaacat ctgtcactgt agttttggat ttgggtccta 3780 tacttgctca agatgtaaca tgctttaatg tatggcacag agtggcagcc acaggctcgt 3840 tctcatcaag tccaactggc atcatacttg caccattaaa aacgttagtg gtcactcaac 3900 ttgtgccagc tacaagctat atattcaagg tagttgcctt cagtaactac aaggagtttg 3960 gatcgtggga agccaaaatg aagacaagct gtcagaagga agttgatctg aagggtttga 4020 tgccaggtgg gtctgggcta gaccaaaaca atgggagccc aaaggcaaac agtggtggtc 4080 agtctgatcc ttcttcagaa ggtgtggact caaataataa cactgcggtg tatgctgatc 4140 tcaataaatc accagaaagt gattttgaat attgtgaaaa tcctgagata cttgattcag 4200 acaaagcaag tcatcacccc aatgaaccta caaacaactc acagagtatg ccgatggtcg 4260 tagctagggt tacggaggta tctggattgg aggaagctcc tggactctca gcatcagctt 4320 tggacgagga gcccaattca gcagttcaaa cacaattact tagagaatcc tcaaattcaa 4380 tggagcagaa ccagagaagc gaagttcctg gatcacagga tgcatcaaat gctcctgctg 4440 gaaatgaggt ggtgattgtt ccacctcgat attctggctc tattccacca actgcaccta 4500 gatatatgga aaatggtaag gatatcagtg ggaggagctt gaaagcaaaa cctggtgata 4560 acatccttca aaatggctct tccaagcctg aaagggaacc agggaattct tcaaataaaa 4620 gaacatcagg taaatgtgag gaaatcggcc acaaggatgg atgcccagaa gcatcttatg 4680 agtactgtgt taaggtggtc aggtggctgg aatgtgaggg ttacattgag accaacttca 4740 gagtgaagtt tctgacttgg tatagccttc gtgctacccc tcatgacagg aagatagtca 4800 gcgtctacgt aaacactctt attgatgatc ctgttagcct ttctggccag cttgctgaca 4860 ctttctctga ggccatctac agcaaaaggc caccttctgt tcgctccggt ttctgcatgg 4920 aactttggca ttaaagagag gggagctcgt accgttctct ttgtagggga gcatattttg 4980 gtcccattct ttcgtagcag atcgttgcat tgattcttca ttggaaattt cattgaagcg 5040 gttaacttat acaatctgtt cattgctcta ctttatttgc tatgacagta ggtttaattt 5100 atccagcaac ttatttctgt tttttcactt aggagtccat agtttacagt tctgttatcc 5160 gtaccgccat gttggtacag agcatcaaga gctgtgctct tttggtcagc tttaggaaca 5220 ttctgaaatt gccacaagtg tgtgggtacc tgaagctctg ttgctagctg ctgtgagagg 5280 gagggatgat tctcaggatg taccgggaaa cattgggatg aagcaggctt cgtgtcgaca 5340 ctgacgaatc cgagctaacc atgccttgtc aggataaatg atgatgtggt gctgtatctg 5400 gggttgaaag aaatgcaaat gtgctgctga cttctatggg gaatgggagg agtcctgatg 5460 tttttccttt tcttaagaca atagatgcaa aatgtctgca ctaatgttat gttcggttta 5520 gacccttgct tttactgtct cctactgcac tttcttgcct tctagttcta ccgtttgaga 5580 agttaaattt atgtgcacat gcaaaaaggt ttggacctt 5619 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of 3A-10852 <400> 5 gtgccatctt gaatgtgctc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of 3A-10852 <400> 6 ggcgagcatc tttagctatc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of 1B-21530 <400> 7 gccgagcaat acttgactgt 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of 1B-21530 <400> 8 tccttctgac agcttgtctt 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of NGUS1 <400> 9 aacgctgatc aattccacag 20 <210> 10 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer of LOC_Os02g05840 <400> 10 atggatccac ccta 14 <210> 11 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer of LOC_Os02g05840 <400> 11 atgccaaagt tccatgcag 19 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer of Ubiquitine-5 <400> 12 aaccagctga ggcccaaga 19 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer of Ubiquitine-5 <400> 13 acgattgatt taaccagtcc atga 24 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of LOC_Os02g05840-1 <400> 14 cgcttctgcc acaatttagc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of LOC_Os02g05840-2 <400> 15 tgttggtgct gaagttcaga 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of LOC_Os02g05840-3 <400> 16 tggactcaaa taataacact 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of LOC_Os02g05840-4 <400> 17 ccattctttc gtagcagatc 20 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer of Tnos R <400> 18 ccatctcata aataacgtca tgc 23 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer of pUbi F3 <400> 19 cagctatatg tggatttttt tagc 24 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Foward primer of LOC_Os02g05840 EN+EX <400> 20 actgtgttaa ggtggtcagg 20 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of LOC_Os02g05840 EN <400> 21 atcaatgcaa cgatctgcta c 21 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of LOC_Os02g05840 EX <400> 22 atgccaaagt tccatgcag 19 <110> University-Industry Cooperation Group of Kyung Hee University <120> LOC_Os02g05840 gene, recombinant vector comprising the same,          transformed plants by and method for preparation thereof          a yield-enhancing of Oryza sativa <130> P12-086-KHU <160> 22 <170> Kopatentin 2.0 <210> 1 <211> 2247 <212> DNA <213> Oryza sativa <220> <221> CDS <222> (1) (2247) <223> LOC_Os02g05840 <400> 1 atg gat cca ccc tac gca gga gta cct att gat cct gct aaa tgc cga 48 Met Asp Pro Pro Tyr Ala Gly Val Pro Ile Asp Pro Ala Lys Cys Arg   1 5 10 15 ttg atg agt gtg gat gaa aag cgg gaa ctt gtc cgt gaa tta tcg aag 96 Leu Met Ser Val Asp Glu Lys Arg Glu Leu Val Arg Glu Leu Ser Lys              20 25 30 cgg cca gaa agt gct cct gac aaa ctg cag tct tgg agt cgc cgt gaa 144 Arg Pro Glu Ser Ala Pro Asp Lys Leu Gln Ser Trp Ser Arg Arg Glu          35 40 45 att gta gag att ctt tgt gct gat tta gga agg gaa agg aag tac act 192 Ile Val Glu Ile Leu Cys Ala Asp Leu Gly Arg Glu Arg Lys Tyr Thr      50 55 60 gga tta tcg aag cag aga atg ttg gaa tat ctc ttc aga gtt gt Gly Leu Ser Lys Gln Arg Met Leu Glu Tyr Leu Phe Arg Val Val Thr  65 70 75 80 ggc aaa tca tct ggt ggt ggc gtt gtg gag cat gtg caa gag aag gag 288 Gly Lys Ser Ser Gly Gly Gly Val Val Glu His Val Gln Glu Lys Glu                  85 90 95 cct acc cct gaa ccc aac aca gcc aac cat cag tcc cct gcg aaa cgg 336 Pro Thr Pro Glu Pro Asn Thr Ala Asn His Gln Ser Pro Ala Lys Arg             100 105 110 cag cga aag agt gac aac cca tca cga cta cca att gt t gca agc agt 384 Gln Arg Lys Ser Asp Asn Pro Ser Arg Leu Pro Ile Val Ala Ser Ser         115 120 125 cca act aca gaa ata ccc agg cca gca agt aat gct cgc ttc tgc cac 432 Pro Thr Thr Glu Ile Pro Arg Pro Ala Ser Asn Ala Arg Phe Cys His     130 135 140 aat tta gct tgc aga gcg act ctt aat cca gaa gat aaa ttt tgc aga 480 Asn Leu Ala Cys Arg Ala Thr Leu Asn Pro Glu Asp Lys Phe Cys Arg 145 150 155 160 cgc tgt tca tgc tgt att tgt ttc aag tac gat gac aat aag gat cct 528 Arg Cys Ser Cys Cys Ile Cys Phe Lys Tyr Asp Asp Asn Lys Asp Pro                 165 170 175 agc ctc tgg tta ttc tgt agt tca gat caa ccc ttg cag aaa gat tct 576 Ser Leu Trp Leu Phe Cys Ser Ser Asp Gln Pro Leu Gln Lys Asp Ser             180 185 190 tgt gta ttt tcg tgc cat ctt gaa tgt gct ctt aag gat gga aga act 624 Cys Val Phe Ser Cys His Leu Glu Cys Ala Leu Lys Asp Gly Arg Thr         195 200 205 ggc atc atg cag agt ggg cag tgc aag aaa ctt gat ggt ggt tat tac 672 Gly Ile Met Gln Ser Gly Gln Cys Lys Lys Leu Asp Gly Gly Tyr Tyr     210 215 220 tgc act cgc tgt cgg aaa cag aat gat ctg ctt ggg tcc tgg aag aaa 720 Cys Thr Arg Cys Arg Lys Gln Asn Asp Leu Leu Gly Ser Trp Lys Lys 225 230 235 240 caa ctg gtg ata gct aaa gat gct cgc cgg ttg gat gta ttg tgt cat 768 Gln Leu Val Ile Ala Lys Asp Ala Arg Arg Leu Asp Val Leu Cys His                 245 250 255 cgg att ttt ttg agt cat aag att ctt gtc tcc acg gag aag tac ttg 816 Arg Ile Phe Leu Ser His Lys Ile Leu Val Ser Thr Glu Lys Tyr Leu             260 265 270 gtt ttg cat gaa att gtt gac aca gcg atg aag aaa ctg gag gct gag 864 Val Leu His Glu Ile Val Asp Thr Ala Met Lys Lys Leu Glu Ala Glu         275 280 285 gtt ggt cct ata tct gga gtt gca aat atg ggt cgt gga att gtg agc 912 Val Gly Pro Ile Ser Gly Val Ala Asn Met Gly Arg Gly Ile Val Ser     290 295 300 cgg ctt gct gtt ggt gct gaa gtt cag aaa ctt tgt gct cga gca ata 960 Arg Leu Ala Val Gly Ala Glu Val Gln Lys Leu Cys Ala Arg Ala Ile 305 310 315 320 gaa acc atg gag tct ctg ttt tgt gga tct cct tct aac ttg caa ttt 1008 Glu Thr Met Glu Ser Leu Phe Cys Gly Ser Pro Ser Asn Leu Gln Phe                 325 330 335 caa cgt tca cgg atg ata cca tca aac ttc gta aag ttt gaa gct ata 1056 Gln Arg Ser Ser Met Ile Pro Ser Asn Phe Val Lys Phe Glu Ala Ile             340 345 350 acc caa aca tct gtc act gta gtt ttg gat ttg ggt cct ata ctt gct 1104 Thr Gln Thr Ser Val Thr Val Val Leu Asp Leu Gly Pro Ile Leu Ala         355 360 365 caa gat gta aca tgc ttt aat gta tgg cac aga gtg gca gcc aca ggc 1152 Gln Asp Val Thr Cys Phe Asn Val Trp His Arg Val Ala Ala Thr Gly     370 375 380 tcg ttc tca tca agt cca act ggc atc ata ctt gca cca tta aaa acg 1200 Ser Phe Ser Ser Ser Pro Thr Gly Ile Ile Leu Ala Pro Leu Lys Thr 385 390 395 400 tta gtg gtc act caa ctt gtg cca gct aca agc tat ata ttc aag gta 1248 Leu Val Val Thr Gln Leu Val Pro Ala Thr Ser Tyr Ile Phe Lys Val                 405 410 415 gtt gcc ttc agt aac tac aag gag ttt gga tcg tgg gaa gcc aaa atg 1296 Val Ala Phe Ser Asn Tyr Lys Glu Phe Gly Ser Trp Glu Ala Lys Met             420 425 430 aag aca agc tgt cag aag gaa gtt gat ctg aag ggt ttg atg cca ggt 1344 Lys Thr Ser Cys Gln Lys Glu Val Asp Leu Lys Gly Leu Met Pro Gly         435 440 445 ggg tct ggg cta gac caa aac aat ggg agc cca aag gca aac agt ggt 1392 Gly Ser Gly Leu Asp Gln Asn Asn Gly Ser Pro Lys Ala Asn Ser Gly     450 455 460 ggt cag tct gat cct tct tca gaa ggt gtg gac tca aat aat aac act 1440 Gly Gln Ser Asp Pro Ser Ser Glu Gly Val Asp Ser Asn Asn Asn Thr 465 470 475 480 gcg gtg tat gct gat ctc aat aaa tca cca gaa agt gat ttt gaa tat 1488 Ala Val Tyr Ala Asp Leu Asn Lys Ser Pro Glu Ser Asp Phe Glu Tyr                 485 490 495 tgt gaa aat cct gag ata ctt gat tca gac aaa gca agt cat cac ccc 1536 Cys Glu Asn Pro Glu Ile Leu Asp Ser Asp Lys Ala Ser His His Pro             500 505 510 aat gaa cct aca aac aac tca cag agt atg ccg atg gtc gta gct agg 1584 Asn Glu Pro Thr Asn Asn Ser Gln Ser Met Pro Met Val Val Ala Arg         515 520 525 gtt acg gag gta tct gga ttg gag gaa gct cct gga ctc tca gca tca 1632 Val Thr Glu Val Ser Gly Leu Glu Glu Ala Pro Gly Leu Ser Ala Ser     530 535 540 gct ttg gac gag gag ccc aat tca gca gtt caa aca caa tta ctt aga 1680 Ala Leu Asp Glu Glu Pro Asn Ser Ala Val Gln Thr Gln Leu Leu Arg 545 550 555 560 gaa tcc tca aat tca atg gag cag aac cag aga gaa gtt cct gga 1728 Glu Ser Ser Asn Ser Met Glu Gln Asn Gln Arg Ser Glu Val Pro Gly                 565 570 575 tca cag gat gca tca aat gct cct gct gga aat gag gtg gtg att gtt 1776 Ser Gln Asp Ala Ser Asn Ala Pro Ala Gly Asn Glu Val Val Ile Val             580 585 590 cca cct cga tat tct ggc tct att cca cca act gca cct aga tat atg 1824 Pro Pro Arg Tyr Ser Gly Ser Ile Pro Pro Thr Ala Pro Arg Tyr Met         595 600 605 gaa aat ggt aag gat atc agt ggg agg agc ttg aaa gca aaa cct ggt 1872 Glu Asn Gly Lys Asp Ile Ser Gly Arg Ser Leu Lys Ala Lys Pro Gly     610 615 620 gat aac atc ct caa aat ggc tc tcc aag cct gaa agg gaa cca ggg 1920 Asp Asn Ile Leu Gln Asn Gly Ser Ser Lys Pro Glu Arg Glu Pro Gly 625 630 635 640 aat tct aaa aaa aga aca tca ggt aaa tgt gag gaa atc ggc cac 1968 Asn Ser Ser Asn Lys Arg Thr Ser Gly Lys Cys Glu Glu Ile Gly His                 645 650 655 aag gat gga tgc cca gaa gca tct tat gag tac tgt gtt aag gtg gtc 2016 Lys Asp Gly Cys Pro Glu Ala Ser Tyr Glu Tyr Cys Val Lys Val Val             660 665 670 agg tgg ctg gaa tgt gag ggt tac att gag acc aac ttc aga gtg aag 2064 Arg Trp Leu Glu Cys Glu Gly Tyr Ile Glu Thr Asn Phe Arg Val Lys         675 680 685 ttt ctg act tgg tat agc ctt cgt gct acc cct cat gac agg aag ata 2112 Phe Leu Thr Trp Tyr Ser Leu Arg Ala Thr Pro His Asp Arg Lys Ile     690 695 700 gtc agc gtc tac gta aac act ctt att gat gat cct gtt agc ctt tct 2160 Val Ser Tyr Val Asn Thr Leu Ile Asp Asp Pro Val Ser Leu Ser 705 710 715 720 ggc cag ctt gct gac act ttc tct gag gcc atc tac agc aaa agg cca 2208 Gly Gln Leu Ala Asp Thr Phe Ser Glu Ala Ile Tyr Ser Lys Arg Pro                 725 730 735 cct tct gtt cgc tcc ggt ttc tgc atg gaa ctt tgg cat 2247 Pro Ser Val Arg Ser Gly Phe Cys Met Glu Leu Trp His             740 745 <210> 3 <211> 3000 <212> DNA <213> Oryza sativa <220> <221> promoter &Lt; 222 > (1) .. (3000) <223> Promoter of LOC_Os02g05840 <400> 3 ttggttccta aactctcaaa atacatatcc aaagtcccaa aacttatcaa aatatgttat 60 ttaggtctca aatcgccaca acctcttcag aattttacgt ggggctcccc acatggatgt 120 ggcgtggtat catcttgact gaaaaatagg acccacttat tttttttctt ttttcttctt 180 ttccttttcc ttctcttttt tttccttttc tgttcctttc tctgtgacct gagtacccca 240 tgcggcggta gcctattttt agtgagagga aggagaagaa atgaaaaaaa taagagaagg 300 agaagaaaaa taattttttt taagtaggtc ccatttttaa gtcaagatta tgctacatca 360 gt; caagttttga gatctagatt tacatttaag agattgggga cctagatgac actctaagga 480 ctgctcatgc actttactct atttttctag aaatgtcggc accttctttg tgatcctggt 540 cgaatttgag gagtttttgg cttaaaacaa atccaaaacg acttataaac ttgacaagtt 600 tagatatttg ttacaaacga cttatattaa cgacaaatct agacaatctt ttatctaaaa 660 cctaagctct aaccatttgc ccagattagt tatattagag caagtttaat agtatagccc 720 actactagct ccaatttatc tatagccaat ctaatagcta attcatacaa tagttgttta 780 ctatactatt aatatatggt ctcacctgtc atacacatac tgtgtcttgg agtccgtgct 840 acagctggct acagatctgt agactgcttc tcttatctct catcttttat ctcattaaaa 900 tatgtttata gctgactaat agtctgctat tgtacctgct tttaggaggg gttatatttg 960 gttgagtatt tttcgggacg gatggagtac actgcaatat agctgtagaa tattcataaa 1020 attttctcta aaaaatactc ctcgtgaaat gattgttcat tagtcttaag tatactccta 1080 ggtcaaaaaa aattgccaag tgaggtctta ataaaagaaa gggagaaagg cgtttgcact 1140 gcatgcagca actgcagcag tagtggtagt taattaatta attaattaat aatggcgatc 1200 gacagctcag ctcggaagac gatgcccacc cctctctccg aggccgaggc cgcacgaatc 1260 ttgaagcgcc tagccgttcg ccgcgcgtgc cgcgggcggc ggaggcggtg gccacgtaag 1320 cgcccgcccc acgcatgcag ccgtcggatt ccgattcctt ttgccgcttt tcccgtctgc 1380 ccccctcgtt ctccgtcgcc tttaaaccta gagtaatcaa tcaattgatt tattggtaat 1440 tcacgattaa ttaattgttt tctttctcca tcaaccccaa ttaggttata aattatgctt 1500 atatacccta atgtataaag tattctttta ttctagtact ttatactagc actattactc 1560 catactattg tactccctcc attccaaatt gactacatat agtttttttt aaggttattc 1620 ctaaatgatc tacatatttg tgcttattta ttaagtctat tcgttacttg tgcattggag 1680 taaatagaca ttgatgcatg catccatgca cacaagtatt tataacacac atgcaatatc 1740 ttgatttgct attggctagg aaatagtggg gatggtgttt gagtttgttt ctagaataaa 1800 tatagtatga gagagttatt agcttttctt ggtcttggtg tacctatgaa atatgtagat 1860 caatttgaaa tggagggagt actatagtag atgtagatcc actggattat gatttgtgag 1920 gaagattatg acggtgtgta tagtatagta ttggtgttag ctgaatgcac cctttacaaa 1980 atggcatatt gtttgtttcg gtcttagata catgtcattt taattatcaa tgtcatctgc 2040 caaatacaat tcttttcatg tgttttattt tactataatc acactacagg catatttgtg 2100 acaaaaaaaa gaatgggaat tatgtggtag tatgtatcac tttatcatgt atatgtatgt 2160 cgaggagctt agctaagcga agactacatt taatattgat tagcggatct aattacacac 2220 aaacggttgg ttcaactaac cctacaactt gttacgtgcg atcctataag cctttgttta 2280 tattgtacgt aaactataca aaaatgacct aaaaataact caattgaaat atgaatcaac 2340 gcgacaaaaa tctacaagat gtttggtaca gttgaactcc agctgtgtga cacttacaac 2400 tacaatacca agagatcgaa atatacaact ttggttgtac agcgctaccg gctataccca 2460 tagcccaacc acatgtcaga cctcatccaa ccctagatcc accgcaactc gatattatca 2520 cacttctcaa cctactctta ttatcatact acaagcttgt tagcttggtt acaatgtatg 2580 ctaatttgaa gctctgaact atgaacacga actataccac tattactatt ttgcccaaca 2640 aaccccaagt agagccgcct aaccaacaac caacctcgtt gaccgctaga gccgctaatc 2700 actctggagt cgggacccat caccgaatac gcgagaaccc gaggaccaaa ccgcaaaagc 2760 ctcacctcac cctaggcttt gatatgcgtg cggacgccta aggctaggag ttaacctcgc 2820 gtagagag agagagagag agagagataa ctagcagagc actcgcggag gcgaggagag 2880 agagagagag agagagaggt tggaagagga ggggagagtc cacgtgagtg agaggaggag 2940 gaggaggagg agatccctct cccgcgcgca tccgcccctc tcgccgatcc ccaattcgcc 3000                                                                         3000 <210> 4 <211> 5619 <212> DNA <213> Oryza sativa <220> <221> gene &Lt; 222 > (1) .. (5619) <223> LOC_Os02g05840 <400> 4 gagagataac tagcagagca ctcgcggagg cgaggagaga gagagagaga gagagaggtt 60 ggaagaggag gggagagtcc acgtgagtga gaggaggagg aggaggagga gatccctctc 120 ccgcgcgcat ccgcccctct cgccgatccc caattcgcca tggatccacc ctacgcaggt 180 cggtcagcgc cgcccccgca tccgcggttt tcgccttgtt tttttttttt gttgttgttg 240 ttgcgtgtgt gtggtggtgg tgatggctca ggtctcgcgg cggcgtcggg gggagctcga 300 tctgtttgtt ccggcgacga atccgctgtt ccggcggtgt aattgcgggc ttggtggtgg 360 aggaggagga atttgtgggc gtggatttta gggtgggagg cggttttttt ttttttgggg 420 ggggggtggt gtagtgttcg tcgagattta gactttttgt gtggatggat ggatgggtta 480 gattatgcgc gcgtggatta gattgcggcg gtagagggtt tgtactgttc attgattggt 540 ttgttgggtt gatttggagc tgtagctgat gcgtggtaga ggggtggagg tggaagcgcg 600 ttggggaggg tggatggcga tgccgctggt gtcagattcg ccgctgcatg cggtgatggg 660 tactcacatt gcgccccctc tctaccgggg gaggtggcag cggagtggtt cctgcggctt 720 tacgtcgttt tcgtgggatt tacgtccgcg ggcgttggta gcagcagcct atcctctttt 780 gggacgggaa aataatatgg cgttaggctg tttgaggcct cctgttcgtg cgttgggtgt 840 tgcattggtg ctgatttggt gggatcacgg ctgccgaagg cgggtttgtt tgctgttagt 900 tgatggtaag gattggctga tacgtcgatt atatcttcta gaggagctgc gtctacttgc 960 atgtcaaggt taccacgttt aggggttata tgattgatga tagtttcttt gtttagtggt 1020 ccaaaattag aaagactcat ttctttttag ttttctcgtt tcccttagac agtctgtaga 1080 gagttgactt tctgcggctc gtgccagctt cgatagctct agttaacatt gcgccttgtg 1140 gtatcacaac tgtgctttgt agttcacatt tagtcctata caatatggta catgttgatg 1200 agcctttaat tcttagatta ttgaccgaat catctttttt ttccgaggtt aagacttatt 1260 ctgttgcaat gtgctataat tataatttga cttctactcc agtaagacag tgtgctactc 1320 acattaattt gattcagcat gtcgagaatt taatttcctt tggaacgtca ttcattgagt 1380 ttttccttgc acgctaagtt actcagtacc gtctcatagt tgttctgaag aagagaaaga 1440 atgatgcctt caaaatatgt attcttctac tggatctaat gaactttaaa cctttccatt 1500 ctggactgta aatatgaatg aacgtctaaa tttccttcgt tgtttgcttc ttgtccgact 1560 ggattttgta actatttctg actttatcaa attgataata atagtttcca gtgttctctt 1620 gtttaggagt acctattgat cctgctaaat gccgattgat gagtgtggat gaaaagcggg 1680 aacttgtccg tgaattatcg aagcggccag aaagtgctcc tgacaaactg cagtcttgga 1740 gtcgccgtga aattgtagag attctttgtg ctgatttagg aagggaaagg aagtacactg 1800 gattatcgaa gcagagaatg ttggaatatc tcttcagagt tgtgactggc aaatcatctg 1860 gtggtggcgt tgtggagcat gtgcaagaga aggagcctac ccctgaaccc aacacagcca 1920 accatcagtc ccctgcgaaa cggcagcgaa agagtgacaa cccatcacga ctaccaattg 1980 ttgcaagcag tccaactaca gaaataccca ggccagcaag taatgctcgc ttctgccaca 2040 atttagcttg cagagcgact cttaatccag aagataaatt ttgcagacgc tgttcatgct 2100 gtatttgttt caagtacgat gacaataagg atcctagcct ctggttattc tgtagttcag 2160 atcaaccctt gcagaaagat tcttgtgtat tttcgtgcca tcttgaatgt gctcttaagg 2220 atggaagaac tggcatcatg cagagtgggc agtgcaagaa acttgatggt ggttattact 2280 gcactcgctg tcggaaacag aatgatctgc ttgggtattc tccctaaaca actttattat 2340 ttgcacagtt ttttttcctg ttctgtaact atacgaaatt atgttttaat tattcctatg 2400 cctccagttt ttactgcctt aagtaatgtt accattattt attgcaacga taactactag 2460 aaatatgtta gtttgacttt tgtgagagtt agctttgata atttgcatgc attcttgctt 2520 tccagccact ttgattacct tactgattct gtttttagga ttcttcggtg aagatccttg 2580 tagtgtcatc atcattggtc caatcatatg atgcatattt ctcaattgtg tcttaagaag 2640 tgggttggct gcttttgccc ttcagcttca tgctttgagc ttgtggtctg tgtgcttact 2700 tctgcattaa gctgaattag tgttggattc ttccttctcc atctggagta aatttgtttg 2760 ctgggataac cctattttca taggttgcga gctgcgaaaa caggctttcg actgcatttt 2820 ggtgtctttg tgttgcattc catagggttc ttgtagttca agtttcaggg tatgaaccaa 2880 gttactaagc cagtaaaact tggtgaggca ctgaggccag gtggattcaa tattttcaag 2940 gatgaataga tcatggagaa atgcttagac tagtatatgc aaggagtctc taatttgtct 3000 gtgcatgttt ataagccatt tgagtaacct gggaaatagg attcattttg aagttttgaa 3060 ctacaagaca agtgattaat tgtctttctc aaaagaatct gcttggctat tagtatcttg 3120 tagtagtaag ttttgaacca gttatatgtt atttagagtt caagattctt tggccagtcc 3180 agcacaatgc acttaagtaa ttcaatcaag tttactggcc cattttccaa aactatgctc 3240 ctttcaagag tttggatatt gaaacagtaa attagcttgc cgagcaatac ttgactgttt 3300 aatgccttgt tcaggtcctg gaagaaacaa ctggtgatag ctaaagatgc tcgccggttg 3360 gatgtattgt gtcatcggat ttttttgagt cataagattc ttgtctccac ggagaagtac 3420 ttggttttgc atgaaattgt tgacacagcg atgaagaaac tggaggctga ggttggtcct 3480 atatctggag ttgcaaatat gggtcgtgga attgtgagcc ggcttgctgt tggtgctgaa 3540 gttcagaaac tttgtgctcg agcaatagaa accatggagt ctctgttttg tggatctcct 3600 tctaacttgc aatttcaacg taagtttcca cgtgcttcac gttagaccac atacatacaa 3660 atagtgttga attctcatgc atatgtgcat tttcaggttc acggatgata ccatcaaact 3720 tcgtaaagtt tgaagctata acccaaacat ctgtcactgt agttttggat ttgggtccta 3780 tacttgctca agatgtaaca tgctttaatg tatggcacag agtggcagcc acaggctcgt 3840 tctcatcaag tccaactggc atcatacttg caccattaaa aacgttagtg gtcactcaac 3900 ttgtgccagc tacaagctat atattcaagg tagttgcctt cagtaactac aaggagtttg 3960 gatcgtggga agccaaaatg aagacaagct gtcagaagga agttgatctg aagggtttga 4020 tgccaggtgg gtctgggcta gaccaaaaca atgggagccc aaaggcaaac agtggtggtc 4080 agtctgatcc ttcttcagaa ggtgtggact caaataataa cactgcggtg tatgctgatc 4140 tcaataaatc accagaaagt gattttgaat attgtgaaaa tcctgagata cttgattcag 4200 acaaagcaag tcatcacccc aatgaaccta caaacaactc acagagtatg ccgatggtcg 4260 tagctagggt tacggaggta tctggattgg aggaagctcc tggactctca gcatcagctt 4320 tggacgagga gcccaattca gcagttcaaa cacaattact tagagaatcc tcaaattcaa 4380 tggagcagaa ccagagaagc gaagttcctg gatcakhga tgcatcaaat gctcctgctg 4440 gaaatgaggt ggtgattgtt ccacctcgat attctggctc tattccacca actgcaccta 4500 gatatatgga aaatggtaag gatatcagtg ggaggagctt gaaagcaaaa cctggtgata 4560 acatccttca aaatggctct tccaagcctg aaagggaacc agggaattct tcaaataaaa 4620 gaacatcagg taaatgtgag gaaatcggcc acaaggatgg atgcccagaa gcatcttatg 4680 agtactgtgt taaggtggtc aggtggctgg aatgtgaggg ttacattgag accaacttca 4740 gagtgaagtt tctgacttgg tatagccttc gtgctacccc tcatgacagg aagatagtca 4800 gcgtctacgt aaacactctt attgatgatc ctgttagcct ttctggccag cttgctgaca 4860 ctttctctga ggccatctac agcaaaaggc caccttctgt tcgctccggt ttctgcatgg 4920 aactttggca ttaaagagag gggagctcgt accgttctct ttgtagggga gcatattttg 4980 gtcccattct ttcgtagcag atcgttgcat tgattcttca ttggaaattt cattgaagcg 5040 gttaacttat acaatctgtt cattgctcta ctttatttgc tatgacagta ggtttaattt 5100 atccagcaac ttatttctgt tttttcactt aggagtccat agtttacagt tctgttatcc 5160 gtaccgccat gttggtacag agcatcaaga gctgtgctct tttggtcagc tttaggaaca 5220 ttctgaaatt gccacaagtg tgtgggtacc tgaagctctg ttgctagctg ctgtgagagg 5280 gagggatgat tctcaggatg taccgggaaa cattgggatg aagcaggctt cgtgtcgaca 5340 ctgacgaatc cgagctaacc atgccttgtc aggataaatg atgatgtggt gctgtatctg 5400 gt; tttttccttt tcttaagaca atagatgcaa aatgtctgca ctaatgttat gttcggttta 5520 gacccttgct tttactgtct cctactgcac tttcttgcct tctagttcta ccgtttgaga 5580 agttaaattt atgtgcacat gcaaaaaggt ttggacctt 5619 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of 3A-10852 <400> 5 gtgccatctt gaatgtgctc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of 3A-10852 <400> 6 ggcgagcatc tttagctatc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of 1B-21530 <400> 7 gccgagcaat acttgactgt 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of 1B-21530 <400> 8 tccttctgac agcttgtctt 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of NGUS1 <400> 9 aacgctgatc aattccacag 20 <210> 10 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer of LOC_Os02g05840 <400> 10 atggatccac ccta 14 <210> 11 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer of LOC_Os02g05840 <400> 11 atgccaaagt tccatgcag 19 <210> 12 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer of Ubiquitine-5 <400> 12 aaccagctga ggcccaaga 19 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer of Ubiquitine-5 <400> 13 acgattgatt taaccagtcc atga 24 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of LOC_Os02g05840-1 <400> 14 cgcttctgcc acaatttagc 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of LOC_Os02g05840-2 <400> 15 tgttggtgct gaagttcaga 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of LOC_Os02g05840-3 <400> 16 tggactcaaa taataacact 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Primer of LOC_Os02g05840-4 <400> 17 ccattctttc gtagcagatc 20 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer of Tnos R <400> 18 ccatctcata aataacgtca tgc 23 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Primer of pUbi F3 <400> 19 cagctatatg tggatttttt tagc 24 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Foward primer of LOC_Os02g05840 EN + EX <400> 20 actgtgttaa ggtggtcagg 20 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of LOC_Os02g05840 EN <400> 21 atcaatgcaa cgatctgcta c 21 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of LOC_Os02g05840 EX <400> 22 atgccaaagt tccatgcag 19

Claims (11)

서열번호 1로 표시되는 단자엽 식물의 수량성 증가를 위한 유전자.Gene for increasing the yield of monocotyledonous plants represented by SEQ ID NO: 1. 제1항에 있어서, 상기 수량성 증가는 야생형과 비교하여 이삭 수의 증가, 줄기 발달 또는 개화 시기 단축에서 선택되는 하나 이상에 의한 것인 단자엽 식물의 수량성 증가를 위한 유전자.The gene for increasing the yield of monocotyledonous plants according to claim 1, wherein the increase in yield is at least one selected from an increase in the number of ear, stem development, or shortening of flowering time in comparison with wild type. 제1항 또는 제2항의 유전자와 이와 작동가능하게 연결된(Operatively linked) 프로모터를 포함하는 재조합 벡터.A recombinant vector comprising a gene of claim 1 or 2 and an operably linked promoter. 제3항에 있어서, 상기 프로모터는 서열번호 3으로 표시되는 프로모터인 재조합 벡터.The recombinant vector of claim 3, wherein the promoter is a promoter represented by SEQ ID NO: 3. 5. 제3항에 따른 재조합 벡터에 의해 형질전환된 형질전환 세포.A transformed cell transformed with the recombinant vector according to claim 3. 제5항에 있어서, 상기 세포는 아그로박테리움 속 미생물인 형질전환 세포.The transformed cell of claim 5, wherein the cell is a microorganism of the genus Agrobacterium. 제6항에 있어서, 아그로박테리움 속 미생물은 아그로박테리움 투메파시엔스 LB4404(Agrobacterium tumefaciens LB4404)인 형질전환 세포.The transformed cell of claim 6, wherein the microorganism of the genus Agrobacterium is Agrobacterium tumefaciens LB4404. 제3항에 따른 재조합 벡터에 의해 형질전환된 형질전환 단자엽 식물체.A transformed monocotyledonous plant transformed by the recombinant vector according to claim 3. 제8항에 있어서, 상기 단자엽 식물체는 벼(Oryza sativa)인 형질전환 식물체.The transgenic plant of claim 8, wherein the monocotyledonous plant is Oryza sativa. 제3항의 재조합 벡터로 단자엽 식물을 형질전환시켜 LOC_Os02g05840 유전자를 식물체에서 발현시키는 단계를 포함하는 단자엽 식물의 형질전환 방법.A method of transforming a monocotyledonous plant comprising the step of transforming the monocotyledonous plant with the recombinant vector of claim 3 to express the LOC_Os02g05840 gene in the plant. 제10항에 있어서, 하기의 단계들을 포함하는 LOC_Os02g05840 유전자가 발현되는 벼 형질전환체의 제조방법:
LOC_Os02g05840 유전자를 포함하는 재조합 벡터를 제조하는 단계;
벼에 상기 재조합 벡터를 도입하는 단계; 및
상기 재조합 벡터가 도입에 따라 LOC_Os02g05840 유전자가 발현되는 벼 형질전환체를 선별하는 단계.
The method of claim 10, wherein the LOC_Os02g05840 gene is prepared, comprising the following steps:
Preparing a recombinant vector comprising a LOC_Os02g05840 gene;
Introducing the recombinant vector into rice; And
Selecting a rice transformant in which the LOC_Os02g05840 gene is expressed as the recombinant vector is introduced.
KR1020120114034A 2012-10-15 2012-10-15 LOC_Os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of Oryza sativa KR101423834B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120114034A KR101423834B1 (en) 2012-10-15 2012-10-15 LOC_Os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of Oryza sativa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120114034A KR101423834B1 (en) 2012-10-15 2012-10-15 LOC_Os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of Oryza sativa

Publications (2)

Publication Number Publication Date
KR20140050122A true KR20140050122A (en) 2014-04-29
KR101423834B1 KR101423834B1 (en) 2014-07-30

Family

ID=50655355

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120114034A KR101423834B1 (en) 2012-10-15 2012-10-15 LOC_Os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of Oryza sativa

Country Status (1)

Country Link
KR (1) KR101423834B1 (en)

Also Published As

Publication number Publication date
KR101423834B1 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
AU2017234672A1 (en) Zea mays regulatory elements and uses thereof
Fang et al. Co-option of the SHOOT MERISTEMLESS network regulates protocorm-like body development in Phalaenopsis aphrodite
EP3052633B1 (en) Zea mays metallothionein-like regulatory elements and uses thereof
WO2009072676A1 (en) Transformed plant with promoted growth
KR101608578B1 (en) Shattering-controled transgenic plant and method for producing thereof
CN104805100B (en) Paddy gene OsS μ 2 applications in plant leaf blade aging is delayed of BP
KR101423834B1 (en) LOC_Os02g05840 gene, recombinant vector comprising the same, transformed plants thereby and method for preparation thereof for a yield-enhancing of Oryza sativa
WO2008120410A1 (en) Genes having activity of promoting endoreduplication
CN114230649B (en) Tn1 protein related to rice tillering force, related biological material and application thereof
US20220042030A1 (en) A method to improve the agronomic characteristics of plants
KR102527047B1 (en) A novel promoter based on the characteristics of drought stress specific cis-regulatory element and its manufacturing method
EP2839007B1 (en) Methods for increasing cotton fiber length
KR101963971B1 (en) A drought stress inducible promoter and use thereof
KR101965971B1 (en) Phosphate starvation inducible promoter and use thereof
KR101613366B1 (en) A promoter for ubiquitous gene expression in monocotyledones and use thereof
KR101497832B1 (en) Leaf-, stem- or both- specific promoter, expression vector comprising the same, transformed Oryza sativa thereby and method for preparation thereof
JP2005143338A (en) Promoter having callus- and seed embryo-specific expression activity
WO2001031017A2 (en) Plants with a modified flower and seed development
KR101639883B1 (en) A pollen specific promoter in monocotyledones and use thereof
KR101722333B1 (en) A root hairs specific promoter in monocotyledones and use thereof
KR101613367B1 (en) A promoter for ubiquitous gene expression in monocotyledones and use thereof
KR101493170B1 (en) Root-specific promoter, Expression vector comprising the same, transformed plants thereby and method for preparation thereof
KR101432895B1 (en) Root-specific promoter, Expression vector comprising the same, transformed plants thereby and method for preparation thereof
KR101450398B1 (en) Root-specific promoter, expression vector comprising the same, transformed plants thereby and method for preparation thereof
CN116716335A (en) Application of dandelion TmABI5 gene in promoting plant to synthesize chicoric acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170627

Year of fee payment: 4