KR20140046165A - Method for making superhydrophobic matal surface - Google Patents

Method for making superhydrophobic matal surface Download PDF

Info

Publication number
KR20140046165A
KR20140046165A KR1020120112257A KR20120112257A KR20140046165A KR 20140046165 A KR20140046165 A KR 20140046165A KR 1020120112257 A KR1020120112257 A KR 1020120112257A KR 20120112257 A KR20120112257 A KR 20120112257A KR 20140046165 A KR20140046165 A KR 20140046165A
Authority
KR
South Korea
Prior art keywords
metal
super
water
etching
repellent
Prior art date
Application number
KR1020120112257A
Other languages
Korean (ko)
Other versions
KR101424995B1 (en
Inventor
임현의
지승묵
김완두
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020120112257A priority Critical patent/KR101424995B1/en
Publication of KR20140046165A publication Critical patent/KR20140046165A/en
Application granted granted Critical
Publication of KR101424995B1 publication Critical patent/KR101424995B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions

Abstract

The present invention relates to a method for manufacturing a super hydrophobic metal surface. The present invention provides the method for manufacturing a super hydrophobic metal surface which is capable of giving excellent super hydrophobic properties through minimal steps of processes. According to the present invention, the method for manufacturing a super hydrophobic metal surface comprises a step (S1) for grinding the surface of a metal; a step (S2) for etching the metal of which the surface is ground by dipping the metal into etching solution; and a step (S3) for depositing a low surface energy material for giving super hydrophobic properties. [Reference numerals] (S1) Grinding step; (S2) Etching step; (S3) Depositing step

Description

초발수성 금속 표면 제조 방법 {Method for making superhydrophobic matal surface}TECHNICAL FIELD [0001] The present invention relates to a superhydrophobic matal surface,

본 발명은 초발수성 금속 표면 제조 방법에 관한 것이다.The present invention relates to a method for producing a superhydrophobic metal surface.

일반적으로 발수성이란 물에 젖기 어려운 성질을 뜻한다. 초발수 표면기술은 표면의 젖음(wetting)현상을 조절하기 위한 표면 개질(surface modification) 기술의 한 분야로, 고체의 표면을 물리적 또는 화학적으로 표면개질하여 고체의 표면에 액체가 접촉할 때 접촉각이 150° 이상이 되도록 하는 기술을 말한다. 고체 표면상에서 이루어지는 물방울의 접촉각이 발수성의 지표가 되는데, 일반적으로는 접촉각이 90° 이상인 경우를 발수성(소수성) 표면이라 하고, 110° 내지 150°이면 고발수성 표면, 150° 이상이면 초발수성 표면이라 칭한다.Generally, water repellency means a property that is not wetted with water. The super-water-repellent surface technology is a field of surface modification technology for controlling the wetting phenomenon of a surface. When the surface of a solid is physically or chemically modified, the contact angle 150 ° or more. The contact angle of the water droplet on the solid surface is an index of water repellency. Generally, a water repellent (hydrophobic) surface when the contact angle is 90 ° or more is referred to as a highly water repellent surface when the contact angle is 110 ° to 150 °, It is called.

이와 같은 발수성 내지 초발수성 표면을 형성하기 위해서, 과거에는 1950년대부터 재료 표면의 화학적 구조에 따른 표면 물성인 표면에너지가 낮은 소재를 개발하고 활용하기 위한 연구에 집중되었다. 즉 일반적으로 기재의 표면에 화학적으로 발수 성질을 갖는 재료를 도포하는 방법이 주로 사용되었던 것이다. 그러나 1980년대부터 초발수성을 좌우하는 변수는 표면의 화학적 물성뿐만 아니라, 표면의 기하학적 공간 구조도 매우 중요한 인자라는 것이 밝혀졌다. 이에 따라 발수성 표면 제조 기술에 있어서, 연구자들의 관심은 어떤 소재를 도포하느냐의 문제에서 기재 표면상에 어떻게 원하는 미세 구조물을 형성하느냐의 문제로 옮겨가게 되었다.
In order to form such a water-repellent or super-water-repellent surface, in the past, the research focused on developing and utilizing a material having low surface energy, which is a surface property according to the chemical structure of the material surface, since the 1950s. That is, generally, a method of applying a material having chemically water repellency to the surface of the substrate has been mainly used. However, since the 1980s, it has been found that not only the chemical properties of the surface but also the geometrical spatial structure of the surface are very important factors that influence the water repellency. Therefore, researchers' interest in water repellent surface preparation technology has shifted to the question of how to form the desired microstructure on the substrate surface in terms of what material is to be applied.

특히 최근, 금속 표면에 초발수 성질을 부여하고자 하는 기술에 대한 연구가 다양한 필요에 의하여 진행되고 있다. 종래에 금속 표면에 별도의 재료를 도포하는 것만으로 초발수성을 띠게 하는 기술로는, 일본특허공개 제2008-062182호(2008.03.21, "고발수성 표면의 형성 방법"), 일본특허공개 제1997-020983호(1997.01.21, "발수성이 우수한 강판") 등과 같은 여러 기술들이 있어 왔다. 그러나 앞서 설명한 바와 같이, 기재의 표면에 별도의 재료를 도포하는 방법 이외에, 기재 자체에 미세 구조물을 잘 형성함으로써 발수성을 띠게 하고자 하는 관점에서의 기술 개발에의 필요성이 상당히 높은 실정이다.Particularly, in recent years, researches on techniques for imparting super water repellency to metal surfaces have been carried out in various needs. As a technique for imparting super water repellency to a metal surface only by applying a separate material to a metal surface, Japanese Patent Application Laid-Open No. 2008-062182 (Mar. 21, 2008, entitled " Highly water- -020983 (Jan. 21, 1997, "Highly water-repellent steel sheet"). However, as described above, in addition to a method of applying a separate material to the surface of the substrate, there is a great need for technology development from the viewpoint of making the microstructure well-formed on the substrate itself to impart water repellency.

이러한 요구에 따라, 한국특허등록 제1014277호(2011.02.07, "무반사 표면 및 초발수 표면의 제조 방법"), 한국특허등록 제854486호(2008.08.20, "초발수 표면 제조 방법") 등에서는 콜로이달 리소그래피 방법을 응용하여 다종의 크기의 비드들의 배열 및 에칭의 반복을 통해 기재 표면에 미세 구조물이 형성되도록 함으로써 기재 표면에 원하는 성질(무반사성, 초발수성 등)을 부여하도록 하는 표면 개질 방법이 개시되어 있다. 상술한 바와 같은 나노 구조물 형성을 통한 표면 개질 방법은 원하는 성질을 우수하게 얻을 수 있는 기술로서 효과가 뛰어난 것은 사실이나, 비드를 배열하고 에칭하는 단계를 반복하는 과정에서 시간, 인력, 비용 등의 자원이 소모되는 경향이 있다. 이에 따라 보다 용이하고 간편하면서도 우수한 초발수성을 부여할 수 있는 금속 표면 개질 방법에 대한 요구가 당업자 사이에서 꾸준히 있어 왔다.
In accordance with this demand, in Korean Patent Registration No. 1014277 (Feb. 23, 2011, "Method for producing non-reflective surface and super water-repellent surface") and Korean Patent No. 854486 (2008.08.20, A surface modification method for applying a colloidal lithography method so as to form microstructures on the surface of a substrate by repeating the arrangement and etching of various sizes of beads, thereby imparting desired properties (anti-reflection, super water repellency, etc.) Lt; / RTI > The surface modification method through the formation of nanostructures as described above is effective as a technique for obtaining excellent properties. However, in the course of repeating the step of arranging and etching the beads, This tends to be consumed. Accordingly, there has been a constant need among those skilled in the art for a metal surface modification method which can provide a more easily and easily super water repellent property.

1. 일본특허공개 제2008-062182호(2008.03.21, "고발수성 표면의 형성 방법")1. Japanese Patent Application Laid-Open No. 2008-062182 (Mar. 21, 2008, entitled "Method of Forming Highly Watery Surface") 2. 일본특허공개 제2001-240956호(2001.09.04, "금속재료의 표면 처리 방법 및 불화 처리 금형")2. Japanese Patent Application Laid-Open No. 2001-240956 (September 04, 2001, "Method of surface treatment of metal material and fluorine-containing mold") 3. 일본특허공개 제1997-020983호(1997.01.21, "발수성이 우수한 강판")3. Japanese Patent Application Laid-Open No. 1997-020983 (Jan. 21, 1997, "a steel sheet excellent in water repellency & 4. 한국특허등록 제1014277호(2011.02.07, "무반사 표면 및 초발수 표면의 제조 방법")4. Korean Patent Registration No. 1014277 ("Preparation method of non-reflecting surface and super water-repellent surface" 5. 한국특허등록 제1014277호(2011.02.07, "무반사 표면 및 초발수 표면의 제조 방법")5. Korean Patent Registration No. 1014277 ("Preparation method of non-reflecting surface and super water-repellent surface"

따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 최소 단계의 과정을 통해서도 우수한 초발수성을 부여할 수 있게 하는, 초발수성 금속 표면 제조 방법을 제공함에 있다.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an ultra-water-repellent metal surface preparation method capable of imparting excellent super-water repellency through a minimum step. .

상기한 바와 같은 목적을 달성하기 위한 본 발명의 초발수성 금속 표면 제조 방법은, 금속 표면을 그라인딩하는 단계(S1); 표면이 그라인딩된 금속을 에칭액에 침지(dipping)하여 에칭하는 단계(S2); 초발수성 부여를 위한 저표면에너지 물질을 증착(deposition)하는 단계(S3)를 포함하여 이루어진다.According to another aspect of the present invention, there is provided a method of manufacturing a super-water-repellent metal surface, comprising: grinding a metal surface (S1); (S2) dipping and etching the surface-ground metal into the etching solution; And depositing a low surface energy material for imparting super water repellency (S3).

이 때, 상기 그라인딩하는 단계(S1)에서 그라인더의 입자 크기가 35um(P400) 내지 8.4um(P2500) 범위 내로 형성되는 것이 바람직하다.At this time, it is preferable that the particle size of the grinder in the grinding step S1 is within the range of 35 袖 m (P400) to 8.4 袖 m (P2500).

또한, 상기 금속은 알루미늄(Al), 구리(Cu), 크롬(Cr), 철(Fe), 타이타늄(Ti), 아연(Zn) 중 선택되는 적어도 어느 하나일 수 있다. 또한, 상기 에칭액은 염산(HCl), 질산(HNO3), 인산(H3PO4) 중 선택되는 적어도 어느 하나일 수 있다.The metal may be at least one selected from aluminum (Al), copper (Cu), chromium (Cr), iron (Fe), titanium (Ti), and zinc (Zn). The etching solution may be at least one selected from hydrochloric acid (HCl), nitric acid (HNO 3 ), and phosphoric acid (H 3 PO 4 ).

이 때, 상기 저표면에너지 FOTS(perfluoroctyltrichlorosilane) 등과 같은 불소함유 자기조립단분자막 또는 F-DLC(Fluorinated diamond like carbon) 등과 같은 불소함유 화합물 중 선택되는 적어도 어느 하나일 수 있다.
At this time, the fluorine-containing self-assembled monolayer film such as the low surface energy FOTS (perfluoroctyltrichlorosilane) or the fluorine-containing compound such as F-DLC (Fluorinated diamond like carbon) may be used.

본 발명에 의하면, 금속 표면을 그라인딩, 에칭 후 저표면에너지 물질을 증착하는 최소한의 단계만으로도 금속 표면에 우수한 초발수성을 부여할 수 있는 큰 효과가 있다. 즉 본 발명에 의하면 초발수성 금속 표면을 제조함에 있어 종래에 비해 공정 수나 사용하는 화학 물질 종류나 양 등을 비약적으로 저감할 수 있는 큰 효과가 있어, 시간, 인력, 비용 등의 자원 절약 효과가 매우 뛰어나다.
According to the present invention, there is a great effect that an excellent super water repellency can be imparted to a metal surface even by a minimum step of depositing a low surface energy material after grinding and etching the metal surface. In other words, according to the present invention, there is a great effect in dramatically reducing the number of process water and chemical substances to be used in producing super-water-repellent metal surface, and it is possible to save resources such as time, manpower and cost outstanding.

도 1은 본 발명의 초발수성 금속 표면 제조 방법 실시예의 흐름도.
도 2는 본 발명의 초발수성 금속 표면 제조 방법 실시예의 각 단계.
도 3은 본 발명의 초발수성 금속 표면 제조 방법 각 단계에서의 표면 형상.
도 4는 본 발명의 초발수성 금속 표면 제조 방법에 의하여 만들어진 금속 표면의 초발수성 실험예.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a flow diagram of an embodiment of a method of making a superhydrophobic metal surface of the present invention.
Figure 2 shows the steps of each embodiment of the method of manufacturing a superhydrophobic metal surface of the present invention.
Figure 3 shows the surface morphology at each step of the method of the present invention for preparing superhydrophobic metal surfaces.
4 is an example of a super-water repellency test of a metal surface produced by the method of the present invention for producing a super-water-repellent metal surface.

이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 초발수성 금속 표면 제조 방법을 첨부된 도면을 참고하여 상세하게 설명한다.
Hereinafter, a method of producing a super-water-repellent metal surface according to the present invention having the above-described structure will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 초발수성 금속 표면 제조 방법 실시예의 흐름도를, 도 2는 본 발명의 초발수성 금속 표면 제조 방법 실시예의 각 단계를, 도 3은 본 발명의 초발수성 금속 표면 제조 방법 각 단계에서의 표면 형상을 각각 도시하고 있다.FIG. 1 is a flow chart of an embodiment of a method for producing a super-water-repellent metal surface according to the present invention, FIG. 2 is a diagram for explaining each step of a super- Respectively. As shown in Fig.

도 1에 도시된 바와 같이, 본 발명의 초발수성 금속 표면 제조 방법은, 가장 기본적으로는 그라인딩 단계(S1), 에칭 단계(S2) 및 증착단계(S3)로 이루어진다. 즉 먼저 그림2(A)와 같은 금속인 알루미늄 판재에 대하여, 금속 표면을 그라인딩하는 단계(S1)를 통해 금속 표면 일부 또는 전체가 그라인딩되게 한다. 이 때, 상기 그라인딩하는 단계(S1)에서는, 구체적인 예로써 도 2(A)에서는 그라인더의 입자 크기가 18.3um(P1000)인 사포를 사용하였으나, 그라인더 입자 크기는 이에 한정되지 않고 35um(P400) 내지 8.4um(P2500) 범위 내로 형성되도록 하는 것이 바람직하다. 다음으로, 표면이 그라인딩된 금속을 에칭액에 침지(dipping)하여 에칭하는 단계(S2)를 통해 표면에 미세구조물을 형성하게 된다. 도 2(B)에 도시된 바와 같이 1M의 HCl 용액에 에칭된 알루미늄 표면은 사각형 모양의 미세구조물들을 갖게 된다. 이때 그라인딩의 단계를 거친 금속의 표면은 결함을 가짐으로써 에칭용액이 결정립의 경계(grain boundary)에서 에칭이 더 효과적으로 일어나도록 만들어 준다. 이러한 과정을 거쳐 표면에 미세구조를 형성한 표면에 도 2(C)에 도시된 바와 같이 증착하는 단계(S3)를 통해 초발수성 부여를 위한 저표면에너지 물질을 증착 또는 코팅하면 금속표면에 접촉각이 150°가 넘는 초발수성을 부여할 수 있게 된다.As shown in FIG. 1, the method of manufacturing the super-water-repellent metal surface of the present invention comprises a grinding step (S1), an etching step (S2), and a deposition step (S3). That is, for the aluminum plate material as shown in FIG. 2 (A), a part or all of the metal surface is ground through the step (S1) of grinding the metal surface. 2 (A), a sandpaper having a grinder particle size of 18.3 μm (P1000) is used. However, the grinder particle size is not limited to this, but may be 35 μm (P400) to (P2500). ≪ / RTI > Next, a microstructure is formed on the surface through a step S2 of dipping and etching the surface-ground metal into the etching solution. As shown in FIG. 2 (B), the aluminum surface etched into the 1 M HCl solution has rectangular microstructures. At this time, the surface of the metal subjected to the grinding step has defects, thereby making the etching solution more effective in etching the grain boundary. When a low surface energy material for imparting super water repellency is deposited or coated through deposition (S3) as shown in FIG. 2 (C) on a surface having a microstructure formed on the surface through such a process, a contact angle Water repellency exceeding 150 ° can be imparted.

즉, 금속 표면에 불규칙한 무작위의(random) 마이크로/나노 스케일의 요철이 형성되면, 앞서 설명한 바와 같이 최근의 연구를 통해 초발수성을 결정함에 있어서 표면의 화학적 물성 뿐만 아니라 표면의 나노 스케일의 기하학적 구조가 중요한 인자가 된다는 점이 밝혀진 것처럼, 그라인딩 및 에칭을 통해 금속 표면에 마이크로/나노 스케일의 요철이 형성되도록 함으로써 금속 표면에 초발수성을 부여할 수 있게 된다.That is, when irregular random micro / nano scale irregularities are formed on the metal surface, as described above, in recent studies, in order to determine the super water repellency, not only the chemical properties of the surface but also the nanoscale geometry of the surface It becomes possible to impart super-water repellency to the metal surface by forming micro / nano scale irregularities on the metal surface through grinding and etching as it has been found to be an important factor.

구체적인 실시예로서, 상기 금속으로 알루미늄(Al)을 사용하고, 상기 그라인딩 단계로서 P1000 사포로 15회 가량 상기 금속을 문지른 후, 상기 에칭액으로 1M HCl 용액을 사용하여 15분간 에칭하고, 마지막으로 FOTS(perfluoroctyltrichlorosilane) 화합물을 기상증착법으로 코팅한 예시가 도 3에 도시되어 있다. 도 3(A)는 판재로 준비된 알루미늄 표면의 전자현미경 사진이며, 도 3(B)는 알루미늄 표면을 P1000 사포로 15회 문지른 후 얻은 전자현미경 사진이다. 도 3(C)는 알루미늄 표면을 P1000 사포로 15회 문지른 후 1M HCl 용액을 사용하여 15분간 에칭한 알루미늄 표면의 전자현미경 사진이다. 도 3(B) 및 도 3(C)를 비교해 보면, 그라인딩 이후 에칭을 함으로서 마이크로/나노 스케일의 불균일한 무작위 요철이 알루미늄 표면 상에 잘 형성이 된 것을 볼 수 있다.As a specific example, aluminum (Al) is used as the metal, and the metal is rubbed with P1000 sandpaper about 15 times as the grinding step, followed by etching with a 1M HCl solution for 15 minutes using the etchant, and finally, FOTS perfluoroctyltrichlorosilane) compound by a vapor deposition method is shown in FIG. Fig. 3 (A) is an electron micrograph of an aluminum surface prepared as a sheet material, and Fig. 3 (B) is an electron micrograph obtained after rubbing the aluminum surface with P1000 sandpaper 15 times. 3 (C) is an electron micrograph of an aluminum surface obtained by rubbing the aluminum surface with P1000 sandpaper 15 times, followed by etching with a 1M HCl solution for 15 minutes. 3 (B) and 3 (C), it can be seen that micro / nano scale uneven random irregularities are well formed on the aluminum surface by etching after the grinding.

물론 상기 금속이 알루미늄으로 한정되는 것은 아니며, 예를 들어 상기 금속은 알루미늄(Al), 구리(Cu), 크롬(Cr), 철(Fe), 타이타늄(Ti), 아연(Zn) 등이 될 수 있다. 또한 상기 에칭액 역시 염산(HCl)로 한정되는 것은 아니며, 염산(HCl), 질산(HNO3), 인산(H3PO4)등이 될 수 있다. Of course, the metal is not limited to aluminum. For example, the metal may be aluminum (Al), copper (Cu), chromium (Cr), iron (Fe), titanium (Ti) have. The etchant is not limited to hydrochloric acid (HCl), and may be hydrochloric acid (HCl), nitric acid (HNO 3 ), phosphoric acid (H 3 PO 4 ), or the like.

이와 같이 그라인딩 - 에칭 단계에 더하여 증착 단계까지 거침으로써 기존의 단순한 표면에너지가 작은 화합물을 코팅하는 방법을 사용하였을 때보다 보다 금속 표면의 초발수성을 더욱 높일 수 있다. 상술한 예시(금속: 알루미늄(Al) / 에칭액: 염산(HCl))의 경우, 상기 초발수성 부여를 위한 저표면에너지 물질로서 불소함유 자기조립단분자막의 한 종류인 FOTS(perfluoroctyltrichlorosilane)를 사용하였는데, 물론 이것으로 한정되는 것은 아니며, 상기 저표면에너지 물질은 FOTS(perfluoroctyltrichlorosilane)와 같은 불소함유 자기조립단분자막이나 F-DLC(Fluorinated diamond like carbon)와 같은 불소함유 화합물 등이 될 수 있다.
In addition to the grinding-etching step as described above, the super-water repellency of the metal surface can be further enhanced than when the conventional method of coating a compound having a small surface energy is used. In the case of the above-mentioned example (metal: aluminum (Al) / etching solution: hydrochloric acid (HCl)), FOTS (perfluoroctyltrichlorosilane), which is one kind of fluorine-containing self-assembled monolayer, is used as a low surface energy material for imparting super- The low surface energy material may be a fluorine-containing self-assembled monolayer film such as FOTS (perfluoroctyltrichlorosilane) or a fluorine-containing compound such as F-DLC (Fluorinated diamond like carbon).

도 4는 본 발명의 초발수성 금속 표면 제조 방법에 의하여 만들어진 금속 표면의 초발수성 실험예 사진이다. 도 4에서 A측은 그라인딩을 하지 않은 쪽이고, B측은 그라인딩을 한 쪽인데, 도시된 바와 같이 그라인딩을 한 쪽(B)이 보다 초발수성이 훨씬 우수하여 물이 표면에 머무르지 못하고 알루미늄 시료 밖으로 굴러가는 것을 확인할 수 있다.
4 is a photograph of a super-water repellency test example of a metal surface produced by the method of the present invention for producing a super water repellent metal surface. In Fig. 4, the side A is the side without grinding, and the side B is the side subjected to grinding. As shown in Fig. 4, the side (B) which is subjected to grinding is much superior in super water repellency and water can not stay on the surface, .

본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. It goes without saying that various modifications can be made.

S1 ~ S3: 본 발명의 초발수성 금속 표면 제조 방법의 각 단계S1 to S3: Each step of the method for producing a super-water-repellent metal surface of the present invention

Claims (5)

금속 표면을 그라인딩하는 단계(S1);
표면이 그라인딩된 금속을 에칭액에 침지(dipping)하여 에칭하는 단계(S2);
초발수성 부여를 위한 저표면에너지 물질을 증착(deposition)하는 단계(S3)
를 포함하여 이루어지는 초발수성 금속 표면 제조 방법.
Grinding the metal surface (S1);
(S2) dipping and etching the surface-ground metal into the etching solution;
Depositing a low surface energy material for imparting superhydrophobicity (S3)
Wherein the surface of the super-water-repellent metal surface is coated with a metal.
제 1항에 있어서, 상기 그라인딩하는 단계(S1)에서
그라인더의 입자 크기가 35um 내지 8.4um 범위 내로 형성되는 초발수성 금속 표면 제조 방법.
2. The method according to claim 1, wherein in said grinding step (S1)
Wherein the particle size of the grinder is formed within a range of 35 [mu] m to 8.4 [mu] m.
제 1항에 있어서, 상기 금속은
알루미늄(Al), 구리(Cu), 크롬(Cr), 철(Fe), 타이타늄(Ti), 아연(Zn) 중 선택되는 적어도 어느 하나인 초발수성 금속 표면 제조 방법.
The method of claim 1,
Wherein at least one of aluminum (Al), copper (Cu), chromium (Cr), iron (Fe), titanium (Ti) and zinc (Zn) is selected.
제 1항에 있어서, 상기 에칭액은
염산(HCl), 질산(HNO3), 인산(H3PO4) 중 선택되는 적어도 어느 하나인 초발수성 금속 표면 제조 방법.
The method according to claim 1,
Wherein at least one selected from hydrochloric acid (HCl), nitric acid (HNO 3 ) and phosphoric acid (H 3 PO 4 ) is used.
제 1항에 있어서, 상기 저표면에너지 물질은
FOTS(perfluoroctyltrichlorosilane)를 포함하는 불소함유 자기조립단분자막또는 F-DLC(Fluorinated diamond like carbon)를 포함하는 불소함유 화합물 중 선택되는 적어도 어느 하나인 초발수성 금속 표면 제조 방법.
The method of claim 1, wherein the low surface energy material
A method of producing a super water-repellent metal surface, which is at least one selected from a fluorine-containing self-assembled monolayer containing FOTS (perfluoroctyltrichlorosilane) or a fluorine-containing compound including a fluorinated diamond like carbon (F-DLC).
KR1020120112257A 2012-10-10 2012-10-10 Method for making superhydrophobic matal surface KR101424995B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120112257A KR101424995B1 (en) 2012-10-10 2012-10-10 Method for making superhydrophobic matal surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120112257A KR101424995B1 (en) 2012-10-10 2012-10-10 Method for making superhydrophobic matal surface

Publications (2)

Publication Number Publication Date
KR20140046165A true KR20140046165A (en) 2014-04-18
KR101424995B1 KR101424995B1 (en) 2014-08-01

Family

ID=50653216

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120112257A KR101424995B1 (en) 2012-10-10 2012-10-10 Method for making superhydrophobic matal surface

Country Status (1)

Country Link
KR (1) KR101424995B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465561B1 (en) * 2013-08-27 2014-11-27 인하대학교 산학협력단 Processing method for superhydrophobic stainless steel substrate surface and stainless steel substrate having the superhydrophobic surface prepared with the same
KR101685291B1 (en) * 2015-06-10 2016-12-12 포항공과대학교 산학협력단 Super hydrophobic glass bead and manufacturing methods thereof
CN110434034A (en) * 2019-08-26 2019-11-12 青岛理工大学 A kind of preparation method of super-hydrophobic coat
CN116140938A (en) * 2023-03-06 2023-05-23 广东工业大学 Processing method of macro-micro composite array wear-resistant super-hydrophobic surface and metal piece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101962778B1 (en) * 2018-09-05 2019-07-31 주식회사 태진중공업 A super-water-repellent coating method of a cryogenic heat exchanger tube and a cryogenic heat exchanger tube manufactured by the method and an super-water-repellent coating composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101136391B1 (en) * 2010-06-23 2012-04-18 한국기계연구원 Water repellent heat sink and method for manufacturing thereof
JP2012076374A (en) 2010-10-01 2012-04-19 Fujifilm Corp Method of producing unimolecular film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101465561B1 (en) * 2013-08-27 2014-11-27 인하대학교 산학협력단 Processing method for superhydrophobic stainless steel substrate surface and stainless steel substrate having the superhydrophobic surface prepared with the same
KR101685291B1 (en) * 2015-06-10 2016-12-12 포항공과대학교 산학협력단 Super hydrophobic glass bead and manufacturing methods thereof
CN110434034A (en) * 2019-08-26 2019-11-12 青岛理工大学 A kind of preparation method of super-hydrophobic coat
CN110434034B (en) * 2019-08-26 2021-09-17 青岛理工大学 Preparation method of super-hydrophobic coating
CN116140938A (en) * 2023-03-06 2023-05-23 广东工业大学 Processing method of macro-micro composite array wear-resistant super-hydrophobic surface and metal piece
CN116140938B (en) * 2023-03-06 2024-01-30 广东工业大学 Processing method of macro-micro composite array wear-resistant super-hydrophobic surface and metal piece

Also Published As

Publication number Publication date
KR101424995B1 (en) 2014-08-01

Similar Documents

Publication Publication Date Title
Qing et al. Rough structure of electrodeposition as a template for an ultrarobust self-cleaning surface
Qu et al. Facile selective and diverse fabrication of superhydrophobic, superoleophobic-superhydrophilic and superamphiphobic materials from kaolin
KR101424995B1 (en) Method for making superhydrophobic matal surface
Dong et al. Roll-to-roll manufacturing of robust superhydrophobic coating on metallic engineering materials
Zhou et al. Matchstick-like Cu2S@ Cu x O nanowire film: transition of superhydrophilicity to superhydrophobicity
Cao et al. Fabrication of highly antireflective silicon surfaces with superhydrophobicity
CN105504324B (en) A kind of polymer matrix composites with super-hydrophobic bionic surface and preparation method thereof
Han et al. 3D re-entrant nanograss on microcones for durable superamphiphobic surfaces via laser-chemical hybrid method
Zhang et al. Durable superhydrophobic surface with hierarchical microstructures for efficient water collection
KR101141619B1 (en) Method of manufacturing superhydrophobic material and superhydrophobic material manufactured by the method
Wang et al. A multifunctional polymer composite coating assisted with pore-forming agent: preparation, superhydrophobicity and corrosion resistance
Sun et al. Preparation of stable superamphiphobic surfaces on Ti-6Al-4V substrates by one-step anodization
KR101364019B1 (en) Organic-inorganic hybrid hierarchical structure and preparing method of superhydrophobic or superhydrophilic surface using the same
KR101404127B1 (en) Surface fabricating method of metal substrate and metal substrate with the surface fabricated by the method
JP5656026B2 (en) Water repellent material and method for producing the same
Feng et al. Fabrication of superhydrophobic copper surface with excellent corrosion resistance
Chen et al. Development of durable, fluorine-free, and transparent superhydrophobic surfaces for oil/water separation
KR20130097487A (en) Method of preparing material having superhydrophobicity and superoleophobicity
Laad et al. Fabrication techniques of superhydrophobic coatings: A comprehensive review
Chen et al. Fabrication of repairable anti-corrosive superhydrophobic surfaces with micro-nano structures by ultrasonic cavitation
CN103817059A (en) Preparation method for aluminum super-hydrophobic surface and product
CN104195539A (en) Reparation method for zinc super-hydrophobic surface
KR101150173B1 (en) Laminate having superhydrophobic surface and process for preparing the same
Chen et al. A high-efficiency preparation method of super wear-resistant superhydrophobic surface with hierarchical structure using wire electrical discharge machining
Abbas et al. High stability performance of superhydrophobic modified fluorinated graphene films on copper alloy substrates

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 4