KR20140042146A - Manufacturing method of si alloy-shape memory alloy complex for lithium rechargeble anode active material, and si alloy-shape memory alloy complex made by the same - Google Patents

Manufacturing method of si alloy-shape memory alloy complex for lithium rechargeble anode active material, and si alloy-shape memory alloy complex made by the same Download PDF

Info

Publication number
KR20140042146A
KR20140042146A KR1020120108498A KR20120108498A KR20140042146A KR 20140042146 A KR20140042146 A KR 20140042146A KR 1020120108498 A KR1020120108498 A KR 1020120108498A KR 20120108498 A KR20120108498 A KR 20120108498A KR 20140042146 A KR20140042146 A KR 20140042146A
Authority
KR
South Korea
Prior art keywords
alloy
shape memory
memory alloy
active material
negative electrode
Prior art date
Application number
KR1020120108498A
Other languages
Korean (ko)
Other versions
KR101914070B1 (en
Inventor
박원욱
손근용
권혜진
송종진
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to KR1020120108498A priority Critical patent/KR101914070B1/en
Publication of KR20140042146A publication Critical patent/KR20140042146A/en
Application granted granted Critical
Publication of KR101914070B1 publication Critical patent/KR101914070B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a manufacturing method of a Si alloy-shape memory alloy complex for a lithium secondary battery negative electrode active material, and the Si alloy-shape memory alloy complex for a lithium secondary battery negative electrode active material manufactured by the same. According to the present invention of the method and the alloy complex, a complex of a shape memory alloy and a Si alloy is formed, thereby minimizing the expansion of and changes in the volume of an Si alloy due to charge and discharge, and facilitating the manufacture of the Si alloy-shape memory alloy complex for a lithium secondary battery negative electrode active material with not only excellent capacity properties but also lifetime properties.

Description

리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법 및 이에 의하여 제조된 리튬 2차 전지 음극 활물질용 Si합금-형상 기억 합금 복합체{MANUFACTURING METHOD OF Si ALLOY-SHAPE MEMORY ALLOY COMPLEX FOR LITHIUM RECHARGEBLE ANODE ACTIVE MATERIAL, AND Si ALLOY-SHAPE MEMORY ALLOY COMPLEX MADE BY THE SAME}Manufacturing method of Si alloy-shape memory alloy composite for lithium secondary battery negative electrode active material and Si alloy-shape memory alloy composite for lithium secondary battery negative electrode active material manufactured thereby ANODE ACTIVE MATERIAL, AND Si ALLOY-SHAPE MEMORY ALLOY COMPLEX MADE BY THE SAME}

본 발명은 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법 및 이에 의하여 제조된 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체에 관한 것이다.
The present invention relates to a method for producing a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material and a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material produced thereby.

리튬 2차 전지의 음극 활물질로서 종래부터 탄소 재료로 이루어진 분말이 이용됐다. 그러나, 탄소 재료는 이론 용량이 372mAh/g으로 낮고 더 많은 고용량화에는 한계가 존재한다. 그래서 최근에는 탄소 재료보다 이론 용량이 높은 금속 합금 재료의 적용이 검토 및 실용화되고 있다. As a negative electrode active material of a lithium secondary battery, a powder made of a carbon material has been conventionally used. However, carbon materials have a low theoretical capacity of 372 mAh / g, and there is a limit to more high capacities. Therefore, in recent years, application of the metal alloy material whose theoretical capacity is higher than a carbon material is examined and put into practice.

탄소계 음극 활물질을 대체할 수 있는 신규 재료로는 Si, Sn, Al, Sb등의 금속 재료가 검토되고 있다. 이러한 금속 재료에서는 Li과의 합금화/비합금화 반응에 의해 충전/방전이 이루어지며, 상용 음극 활물질인 graphite에 비해 높은 용량을 나타내는 것으로 알려져 있다. 하지만 Si, Sn, Al, Sb 등의 금속은 Li과 합금화/비합금화하는 과정에서 큰 부피 팽창 및 수축을 일으키게 되며, 이로 인한 미분화, 전도 경로(path)의 상실 등으로 인해 수명 특성이 저하되는 문제점을 가지고 있다. 특히 Si의 경우 방전용량 (4200mAh/g), 방전전압(0.4V) 측면에서 고용량 음극 소재로서 가장 적합한 물질인 것으로 알려져 있지만 Li 이온이 물질 내로 삽입(충전)할 시에 유발되는 400%에 이르는 큰 부피 팽창으로 인해 활물질의 퇴화(pulverization)가 발생하여 수명특성의 급격한 저하를 보여왔다.
Metal materials such as Si, Sn, Al, and Sb have been studied as novel materials that can replace the carbon-based negative electrode active material. In such a metal material, charging / discharging is performed by an alloying / non-alloying reaction with Li, and it is known to exhibit a higher capacity than graphite, which is a commercial anode active material. However, metals such as Si, Sn, Al, and Sb cause large volume expansion and contraction in the process of alloying / unalloying with Li, resulting in deterioration of life characteristics due to micronization and loss of conductive paths. Have In particular, Si is known to be the most suitable material as a high-capacity cathode material in terms of discharge capacity (4200mAh / g) and discharge voltage (0.4V), but the large amount of 400% caused when Li ions are inserted (charged) into the material Due to volume expansion, pulverization of the active material occurs, which has shown a sharp drop in life characteristics.

최근에 이러한 문제점을 해결하기 위한 활발한 연구가 이루어지고 있으며, 대부분의 연구의 초점은 Si의 미분화를 통한 부피 팽창 자체의 감소와 Si 주변에 전기화학적으로 비활동적인 매트릭스(inactive matrix)를 임의로 만들어줌으로써 Si의 부피 팽창을 흡수하는 데에 맞추어져 있다. 이 중 Si의 수명특성에 있어서 향상의 폭이 가장 컸던 것은 Si의 합금화/비금화 과정에서 발생하는 부피팽창을 기계적으로 흡수하기에 적합한 soft matrix를 사용했다는 점이다. In recent years, active researches have been made to solve these problems, and the focus of most studies is to reduce the volume expansion itself through the micronization of Si and to randomly create an electrochemically inactive matrix around the Si. It is adapted to absorb the volume expansion of Si. The greatest improvement in the life characteristics of Si was that a soft matrix suitable for mechanically absorbing the volume expansion generated during the alloying / non-metallization of Si was used.

Soft matrix로서는 (1)다양한 carbon 물질과 Si을 단순 혼합한 재료, (2)실란 커플링제 등을 이용하여 carbon 표면에 미분말의 Si 등을 화학적으로 고정한 재료, (3)Organic precursor의 열분해, CVD(Chemical Vapor Deposition) 등을 통해 Si계 활물질 표면에 비정질 carbon을 고정한 재료 등이 사용되었다. As the soft matrix, (1) a material obtained by simply mixing various carbon materials and Si, (2) chemically fixing fine powder Si, etc. on the carbon surface using a silane coupling agent, (3) thermal decomposition of organic precursors, CVD ( Chemical Vapor Deposition) was used to fix the amorphous carbon on the surface of the Si-based active material.

그러나, 상기 (1)carbon에 Si 분말을 단순히 혼합한 재료는 충방전이 진행됨에 따라 Si이 수백 %에 이르는 큰 부피 팽창 및 수축을 겪는 과정에서 carbon이 Si으로부터 유리되며, 이로 인한 물질의 전기 전도성 저하로 수명 특성이 크게 저하되는 문제점을 가지고 있다.However, in (1) the material in which the Si powder is simply mixed with carbon, the carbon is released from the Si during the process of undergoing large volume expansion and contraction of several hundred percent of Si as charging and discharging proceeds, thereby causing the electrical conductivity of the material. It has a problem that the life characteristics are greatly degraded due to degradation.

또한 상기 (2)실란 커플링제 등을 이용하여 carbon 표면에 미분말의 Si 등을 화학적으로 고정한 재료는 충방전 초기에는 carbon이 Si에 밀착된 상태로 유지되어 Si이 음극 활물질로서 기능할 수 있지만, 충방전 cycle이 진행됨에 따라 Li과 합금화/비합금화에 따른 Si내의 잔여 팽창분이 크게 증가하여, 실란커플링제에 의한 결합을 파괴하여 Si이 carbon으로부터 유리되고, 이로 인해 리튬이차전지의 수명특성이 크게 저하되는 문제점을 가지고 있다. 더불어 음극 재료 제조 시에 실란커플링 처리가 균일하게 행해지지 않는 경우가 있어, 안정된 품질의 음극 재료를 용이하게 제조할 수 없다는 문제점이 있다.In addition, the material (2) chemically fixed fine Si on the surface of carbon by using the silane coupling agent or the like remains in a state where carbon is in close contact with Si at the initial stage of charging and discharging, so that Si may function as a negative electrode active material. As the discharge cycle progresses, the residual expansion in Si due to alloying and non-alloying with Li increases greatly, and the Si is liberated from carbon by breaking the bond by the silane coupling agent, thereby greatly reducing the life characteristics of the lithium secondary battery. I have a problem. In addition, the silane coupling process may not be uniformly performed during the production of the negative electrode material, and there is a problem in that the negative electrode material of stable quality cannot be easily produced.

그리고 상기 (3)열분해 carbon, CVD carbon으로 Si계 활물질 표면을 피복한 재료는 (2)실란 커플링제 등을 이용하여 carbon 표면에 미분말의 Si 등을 화학적으로 고정한 재료의 상기 문제점과 동일한 문제점을 가지고 있다.
The material coated with the surface of the Si-based active material with (3) pyrolysis carbon and CVD carbon has the same problems as those of the above-mentioned material of chemically fixing fine powder Si on the carbon surface using a silane coupling agent or the like. have.

한국공개특허 제2012-0069535호Korean Laid-Open Patent No. 2012-0069535

본 발명은 상기와 같은 종래 리튬 이차 전지용 금속 합금 음극 재료의 문제점을 해결하여 향상된 수명특성을 갖는 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method for producing a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material having improved lifespan by solving the problems of the metal alloy negative electrode material for the conventional lithium secondary battery as described above.

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체를 제공하는 것을 목적으로 한다.
Another object of the present invention is to provide a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material produced by the production method of the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention has been made to solve the above problems

급속냉각법인 melt spinning법으로 Si 합금 리본을 제조하는 단계;Preparing a Si alloy ribbon by a fast spinning method;

상기 Si 합금을 볼밀링하는 단계; 및Ball milling the Si alloy; And

상기 볼밀링된 Si 합금에 형상 기억 합금을 혼합하는 단계; 및 Mixing a shape memory alloy with the ball milled Si alloy; And

상기 Si 합금과 형상 기억 합금의 복합체를 제조하는 단계;를 포함하는 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법을 제공한다. It provides a method of producing a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material comprising the step of preparing a composite of the Si alloy and the shape memory alloy.

본 발명의 제조 방법에 있어서, 상기 형상 기억 합금은 Ni-Ti 계 형상 기억 합금, Cu-Al-Ni 계, Cu-Zn-Al계 형상기억합금 인 것을 특징으로 한다. In the manufacturing method of the present invention, the shape memory alloy is a Ni-Ti-based shape memory alloy, a Cu-Al-Ni-based or a Cu-Zn-Al-based shape memory alloy.

본 발명은 형상 기억 합금을 사용하여 형상 기억 합금이 Si 합금분말 사이에 분포하여 완충 역할을 하는 분말층을 형성하고, Si 합금이 형상 기억 합금 분말층에 둘러싸임으로써 Si 합금의 충방전에 따른 부피 팽창의 효과를 감소시키는 것을 특징으로 한다. According to the present invention, the shape memory alloy is distributed between the Si alloy powders to form a powder layer which acts as a buffer, and the Si alloy is surrounded by the shape memory alloy powder layer so that the volume of the Si alloy is charged and discharged. It is characterized by reducing the effect of expansion.

형상기억합금은 1950년대에 Au-Cd 합금에서 형상기억효과가 발견된 이후 Ni-Ti계 합금, Cu계 합금 및 Fe계 합금이 개발되었으며 개발 초기에는 형상기억효과를 이용한 단순한 부품에 응용되어 왔으나, 점차 마이크로 로봇, 반도체 제조 공정, 자동차, 항공기 및 의료분야 등 각 분야에 널리 적용되고 있다.The shape memory alloy was developed in the 1950s after the shape memory effect was found in the Au-Cd alloy, Ni-Ti alloy, Cu-based alloy and Fe-based alloy were developed. Increasingly, it is widely applied in various fields such as micro robot, semiconductor manufacturing process, automobile, aircraft and medical field.

일반적으로 형상기억합금은 크게 Ti-Ni계 합금, Cu계 합금으로서 Cu-Al-Ni, Cu-Zn-Al계, Fe계 합금으로 분류되며, 이 중 등원자비 Ti-Ni계 합금이 가장 널리 사용되고 있다. 상기 등원자비 조성의 Ti-Ni계 형상기억합금의 형상기억 효과는 B2(Cubic)-B19'(Monoclinic) 열탄성형마르텐사이트 변태에 의하여 발생하고, 이 변태에 수반되는 격자변형이 형상기억효과의 출현에 중요한 역할을 하는 것으로 알려져 있다.Generally, shape memory alloys are classified into Ti-Ni alloys and Cu-based alloys, which are classified into Cu-Al-Ni, Cu-Zn-Al and Fe-based alloys. have. The shape memory effect of the Ti-Ni-based shape memory alloy of isoatomic composition is caused by the B2 (Cubic) -B19 '(Monoclinic) thermoelastic martensite transformation, and the lattice deformation accompanying the transformation results in the appearance of the shape memory effect. It is known to play an important role in.

본 발명의 제조 방법에 있어서, 상기 Si 합금은 원자 % 로 Ti:1~20%, Fe, Ni 및 Cr의 1종 또는 2종 이상:합계로 0~30% 를 포함하고, 잔부 Si 및 불가피한 불순물로 이루어지는 것을 특징으로 한다. In the production method of the present invention, the Si alloy contains 0 to 30% in total of Ti: 1 to 20%, Fe, Ni and Cr in one kind or two or more kinds in atomic%, and the balance of Si and unavoidable impurities Characterized in that consists of.

본 발명의 제조 방법에 있어서, 상기 Si 합금은 상기 Ni-Ti 계 형상 기억 합금과 동일한 Ti:1~20%, Ni : 10~30% 를 포함하고, 잔부 Si 및 불가피한 불순물로 이루어지는 것을 특징으로 한다. In the production method of the present invention, the Si alloy contains Ti: 1 to 20% and Ni: 10 to 30%, which is the same as the Ni-Ti-based shape memory alloy, and is made of residual Si and unavoidable impurities. .

Ti는 원료비가 비교적 저렴하고 Si의 미립자화를 촉진하기 위한 필수 원소이며, 그 함유량은 1~20%, 바람직하기는 2~15%, 더 바람직하기는 3~10%이다. Ti 함유량이 1% 미만이면 미립자화 촉진 효과가 충분하지 않고 20% 초과이면 미립자화 형성능이 저하된다.Ti is a relatively inexpensive raw material cost and is an essential element for promoting the granulation of Si, and its content is 1 to 20%, preferably 2 to 15%, more preferably 3 to 10%. If the Ti content is less than 1%, the effect of promoting micronization is not sufficient, and if it is more than 20%, the micronization formation ability is lowered.

본 발명의 제조 방법에 있어서, 상기 Si 합금을 볼밀링하는 단계에서는 볼밀링 매개로 지르코니아 소재 유성볼(planetary ball) 또는 볼밀(ball mill)을 이용하고, 볼:Si 합금의 혼합비가 5~20:1이 되도록 조절하여 2 내지 3시간 동안 200 내지 300rpm의 속도로 수행하는 것을 특징으로 한다. In the manufacturing method of the present invention, in the step of ball milling the Si alloy, a planetary ball or ball mill made of zirconia is used as a ball milling medium, and a mixing ratio of the ball: Si alloy is 5 to 20: It is characterized by performing at a speed of 200 to 300rpm for 2 to 3 hours by adjusting to 1.

본 발명의 제조 방법에 있어서, 상기 볼밀링된 Si 합금에 형상 기억 합금을 혼합하는 단계에서는 상기 볼밀링된 Si 합금 100 중량부당 상기 형상 기억 합금은 5 내지 40 중량부의 비율로 혼합하는 것을 특징으로 한다. 상기 형상 기억 합금의 혼합 비율이 5 중량부 미만이면 형상 기억 합금의 매트릭스 형성이 완전하지 않고, 40 중량부 이상이면 전도성 효율이 감소된다. In the manufacturing method of the present invention, in the step of mixing the shape memory alloy with the ball milled Si alloy, the shape memory alloy per 100 parts by weight of the ball milled Si alloy is characterized in that the mixing ratio of 5 to 40 parts by weight. . If the mixing ratio of the shape memory alloy is less than 5 parts by weight, the matrix formation of the shape memory alloy is not complete, and if it is 40 parts by weight or more, the conductivity efficiency is reduced.

본 발명의 제조 방법에 있어서, 상기 Si 합금과 형상 기억 합금의 복합체를 제조하는 단계에서는 Ball-milling, mechano-fusion arc-melting 중에서 선택된 어느 하나의 방법에 의하는 것을 특징으로 한다. In the manufacturing method of the present invention, the step of preparing the composite of the Si alloy and the shape memory alloy is characterized in that by any one method selected from ball-milling, mechano-fusion arc-melting.

본 발명의 제조 방법은 이상과 같이 제조된 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체 표면을 도전재로 코팅하는 단계를 추가로 포함하는 것을 특징으로 한다. The manufacturing method of the present invention is characterized by further comprising coating a surface of the Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material prepared as described above with a conductive material.

본 발명의 제조 방법에 있어서, 상기 제조된 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체 표면을 도전재로 코팅하는 단계에서는 상기 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체 100 중량부당 상기 도전재를 1 내지 20 중량부 비율로 첨가하고 매개로 지르코니아 소재 유성볼(planetary ball)을 이용하고, 볼:Si 합금의 혼합비가 20:1이 되도록 조절하여 2 내지 3시간 동안 200 내지 300 rpm의 속도로 볼밀링을 실시하는 것을 특징으로 한다. In the manufacturing method of the present invention, in the step of coating the surface of the prepared Si alloy-shape memory alloy composite for lithium secondary battery negative electrode active material with a conductive material, the Si alloy-shape memory alloy composite 100 for lithium secondary battery negative electrode active material The conductive material is added at a ratio of 1 to 20 parts by weight, and a planetary ball made of zirconia is used as a medium, and the mixing ratio of the ball: Si alloy is adjusted to be 20: 1 for 200 to 2 hours. Ball milling is performed at a speed of 300 rpm.

본 발명의 제조 방법에 있어서, 상기 도전재는 흑연계, 카본 블랙계, 도전성 섬유류, 금속분말, 도전성 금속산화물, 전도성 고분자, 금속 또는 금속화합물계를 단독 또는 이들을 혼합하여 이루어지고, 구체적으로 상기 흑연계는 인조 흑연, 천연 흑연을 포함하며, 상기 카본 블랙계는 아세틸렌 블랙, 케첸 블랙, 덴카 블랙, 써멀 블랙, 채널 블랙을 포함하며, 상기 도전성 섬유류는 탄소섬유, 금속섬유를 포함하며, 상기 금속분말은 동, 니켈, 알루미늄, 은을 포함하며, 상기 도전성 금속산화물은 산화티탄을 포함하며, 상기 전도성 고분자는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤을 포함하며, 상기 금속 또는 금속화합물계는 주석, 산화주석, 인산주석(SnPO4), 산화티타늄, 티탄산칼륨, LaSrCoO3, LaSrMnO3와 같은 페로브스카이트(perovskite) 물질을 포함하는 것을 특징으로 한다. In the production method of the present invention, the conductive material is made of graphite, carbon black, conductive fibers, metal powder, conductive metal oxide, conductive polymer, metal or metal compound alone or a mixture thereof, specifically, the graphite Includes artificial graphite and natural graphite, and the carbon black system includes acetylene black, ketjen black, denka black, thermal black, and channel black, and the conductive fibers include carbon fibers and metal fibers, and the metal powder Copper, nickel, aluminum, silver, and the conductive metal oxide comprises titanium oxide, the conductive polymer comprises polyaniline, polythiophene, polyacetylene, polypyrrole, the metal or metal compound system is tin, oxide Perovskite materials such as tin, tin phosphate (SnPO 4 ), titanium oxide, potassium titanate, LaSrCoO 3 , LaSrMnO 3 .

본 발명은 또한, 본 발명의 제조 방법에 의하여 제조된 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체를 제공한다. The present invention also provides a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material produced by the production method of the present invention.

본 발명의 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체는 형상 기억 합금이 매트릭스를 형성하고, 상기 Si 합금이 상기 매트릭스 내에 포함되는 구조이고, 직경이 0.1 내지 10 ㎛ 인 것을 특징으로 한다. The Si alloy-shape memory alloy composite for a lithium secondary battery negative electrode active material of the present invention is a structure in which a shape memory alloy forms a matrix, and the Si alloy is contained in the matrix, and has a diameter of 0.1 to 10 µm. .

또한, 본 발명의 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체는 표면이 도전재로 코팅되는 것을 특징으로 한다.
In addition, the Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material of the present invention is characterized in that the surface is coated with a conductive material.

본 발명의 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법 및 이에 의하여 제조된 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체는 형상 기억 합금 및 Si 합금의 복합체를 형성함으로써, 충방전에 의한 Si 합금의 부피 팽창 및 부피 변화를 최소화함으로써 용량 특성 뿐만 아니라 수명 특성이 우수한 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체를 제조할 수 있다.
The method for producing a Si alloy-shape memory alloy composite for a lithium secondary battery negative electrode active material of the present invention and the Si alloy-shape memory alloy composite for a lithium secondary battery negative electrode active material produced thereby form a complex of a shape memory alloy and a Si alloy. As a result, the Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material having excellent lifespan characteristics as well as capacity characteristics by minimizing volume expansion and volume change of the Si alloy due to charge and discharge can be produced.

도 1은 본 발명의 일 실시예에 의하여 제조된 Si 합금-형상 기억 합금 복합체의 SEM 사진을 나타낸다.
도 2는 본 발명의 Si 합금-형상 기억 합금 복합체를 음극으로 하여 제조된 전지읫 수명 특성을 측정한 결과를 나타낸다.
Figure 1 shows a SEM photograph of the Si alloy-shaped memory alloy composite prepared by one embodiment of the present invention.
Figure 2 shows the results of measuring the battery life characteristics produced by using the Si alloy-shaped memory alloy composite of the present invention as a negative electrode.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<실시예><Examples>

본 실험에서는 멜트스피너를 이용한 급속 냉각 응고법으로 제조된 12~15 ㎛ 두께의 SNT1505(Si: 80 at.%, Ni: 15 at.%, Ti: 5 at.%) 합금 리본 4.5g을 플라스틱 용기에 넣고 48시간 동안, 시료와 zirconia ball을 1:40의 무게비로 함께 넣은 뒤 볼밀링을 실시하였다. 48시간 동안 볼밀링을 진행한 후 Ni-Ti 형상기억합금 분말 1.2g과 아세틸렌 블랙 0.3g을 추가적으로 넣고 동일한 조건에서 48시간 동안 볼밀링을 진행하여 Si 합금-형상 기억 합금 복합체를 제조하였다.
In this experiment, 4.5g of SNT1505 (Si: 80 at.%, Ni: 15 at.%, Ti: 5 at.%) Alloy ribbon of 12 to 15 μm thickness prepared by rapid cooling coagulation using melt spinner was placed in a plastic container. After 48 hours, the sample and zirconia ball were put together at a weight ratio of 1:40, and ball milling was performed. After 48 hours of ball milling, 1.2 g of Ni-Ti shape memory alloy powder and 0.3 g of acetylene black were added thereto, and then, the ball milling was performed for 48 hours under the same conditions to prepare a Si alloy-shaped memory alloy composite.

<실험예 1> SEM 사진 측정Experimental Example 1 SEM Photographic Measurement

제조된 Si 합금-형상 기억 합금 복합체의 SEM 사진을 측정하고 그 결과를 도 1에 나타내었다.
SEM images of the prepared Si alloy-shaped memory alloy composites were measured and the results are shown in FIG. 1.

<제조예><Production Example>

상기 실시예에서 제조된 Si 합금-형상 기억 합금 복합체를 음극 활물질로 하고, 이 음극 활물질과 도전재인 아세틸렌 블랙분말을 N-methyl-2-pyrrolidinone(NMP) 용매에 polyamide imide 바인더를 녹인 바인더액에 첨가하고 혼합하여 음극 활물질 슬러리를 제조하였다. 제조된 음극 활물질슬러리를 Cu foil에 도포하여 110℃의 진공 오븐에서 건조한 후 프레스로 압착하여 음극을 제조하였다.The Si alloy-shape memory alloy composite prepared in the above example was used as a negative electrode active material, and the negative active material and acetylene black powder, which is a conductive material, were added to a binder liquid in which a polyamide imide binder was dissolved in N-methyl-2-pyrrolidinone (NMP) solvent. And mixed to prepare a negative electrode active material slurry. The negative electrode active material slurry was coated on Cu foil, dried in a vacuum oven at 110 ° C., and pressed to form a negative electrode.

상기의 음극과 Li 금속 대극을 사용하여 리튬 이차 전지 반쪽 전지를 제조하였다. 이때, 전해질은 1M LiPF6이 용해된 에틸렌 카보네이트 및 디에틸렌카보네이트의 혼합용액(1:1 부피비)을 사용하였다.The lithium secondary battery half battery was produced using the said negative electrode and Li metal counter electrode. In this case, a mixed solution (1: 1 volume ratio) of ethylene carbonate and diethylene carbonate in which 1M LiPF 6 was dissolved was used.

비교예로서 형상 기억 합금과 복합체를 형성하지 않은 Si 합금을 사용하여 동일하게 전지를 제조하였다.
As a comparative example, a battery was produced in the same manner using a Si alloy that did not form a composite with the shape memory alloy.

<실험예 2> 수명 특성 측정 Experimental Example 2 Measurement of Lifespan Characteristics

상기 제조예에서 제조된 Si 합금-형상 기억 합금 복합체를 음극 활물질로 하는 전지 및 비교예로서 Si 합금만을 포함하는 전지에 대한 수명 특성을 측정하고 그결과를 도 2에 나타내었다. 도 2에서 음극활물질로 사용되는 경우 전기 화학 특성이 우수하고 50 cycle까지의 유지율이 더 높은 것으로 나타났다.
The lifetime characteristics of the battery containing the Si alloy-shaped memory alloy composite prepared in the above Preparation Example as a negative electrode active material and a battery containing only the Si alloy as a comparative example were measured and the results are shown in FIG. 2. When used as a negative electrode active material in Figure 2 was shown to have excellent electrochemical properties and higher retention up to 50 cycles.

Claims (7)

급속냉각법인 melt spinning법으로 Si 합금 리본을 제조하는 단계;
상기 Si 합금을 볼밀링하는 단계; 및
상기 볼밀링된 Si 합금에 형상 기억 합금을 첨가하여 혼합물을 제조하는 단계; 및
상기 Si 합금과 형상 기억 합금의 복합체를 제조하는 단계;를 포함하는 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법.
Preparing a Si alloy ribbon by a fast spinning method;
Ball milling the Si alloy; And
Adding a shape memory alloy to the ball milled Si alloy to produce a mixture; And
Manufacturing a composite of the Si alloy and the shape memory alloy; a method of manufacturing a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material comprising a.
제 1 항에 있어서,
상기 형상 기억 합금은 Ni-Ti 계 형상 기억 합금, Cu-Al-Ni 계 형상 기억 합금 및 Cu-Zn-Al계 형상기억합금 중에서 선택되는 것인 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법.
The method according to claim 1,
The shape memory alloy is selected from a Ni-Ti-based shape memory alloy, a Cu-Al-Ni-based shape memory alloy, and a Cu-Zn-Al-based shape memory alloy. Method of preparation of the composite.
제 1 항에 있어서,
상기 Si 합금은 원자 % 로
Ti:1~20%,
Fe, Ni 및 Cr의 1종 또는 2종 이상:합계로 0~30% 를 포함하고,
잔부 Si 및 불가피한 불순물로 이루어지는 것인 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법.
The method according to claim 1,
The Si alloy is in atomic%
Ti: 1-20%
1 type (s) or 2 or more types of Fe, Ni, and Cr: total 0-30%,
A method for producing a Si alloy-shape memory alloy composite for a lithium secondary battery negative electrode active material comprising residual Si and unavoidable impurities.
제 1 항에 있어서,
상기 Si 합금은 원자 % 로
Ti:1~20%,
Ni : 10~30% 를 포함하고,
잔부 Si 및 불가피한 불순물로 이루어지는 것인 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법.
The method according to claim 1,
The Si alloy is in atomic%
Ti: 1-20%
Ni: contains 10-30%,
A method for producing a Si alloy-shape memory alloy composite for a lithium secondary battery negative electrode active material comprising residual Si and unavoidable impurities.
제 1 항에 있어서,
상기 Si 합금을 볼밀링하는 단계에서는 볼밀링 매개로 지르코니아 소재 유성볼(planetary ball)을 이용하고,
볼:Si 합금의 혼합비가 20:1이 되도록 조절하여 2 내지 3시간 동안 200 내지 300 rpm의 속도로 수행하는 것을 특징으로 하는 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법.
The method according to claim 1,
In the ball milling of the Si alloy, a planetary ball made of zirconia is used as a ball milling medium.
A method of manufacturing a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material, characterized in that the mixing ratio of the ball: Si alloy is adjusted to 20: 1 and performed at a speed of 200 to 300 rpm for 2 to 3 hours.
제 1 항에 있어서,
상기 볼밀링된 Si 합금에 형상 기억 합금을 혼합하는 단계에서는
상기 볼밀링된 Si 합금 100 중량부당 상기 형상 기억 합금은 5 내지 40 중량부의 비율로 혼합하는 것인 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법.
The method according to claim 1,
In the step of mixing a shape memory alloy with the ball milled Si alloy
The shape memory alloy per 100 parts by weight of the ball milled Si alloy is mixed at a ratio of 5 to 40 parts by weight of the Si alloy-shape memory alloy composite for a lithium secondary battery negative electrode active material.
제 1 항에 있어서,
상기 제조된 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체 표면을 도전재로 코팅하는 단계를 추가로 포함하는 리튬 2차 전지 음극 활물질용 Si 합금-형상 기억 합금 복합체의 제조 방법.
The method according to claim 1,
The method of manufacturing a Si alloy-shaped memory alloy composite for a lithium secondary battery negative electrode active material, further comprising coating the surface of the prepared Si alloy-shaped memory alloy composite for a lithium secondary battery negative active material.
KR1020120108498A 2012-09-28 2012-09-28 MANUFACTURING METHOD OF Si ALLOY-SHAPE MEMORY ALLOY COMPLEX FOR LITHIUM RECHARGEBLE ANODE ACTIVE MATERIAL, AND Si ALLOY-SHAPE MEMORY ALLOY COMPLEX MADE BY THE SAME KR101914070B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120108498A KR101914070B1 (en) 2012-09-28 2012-09-28 MANUFACTURING METHOD OF Si ALLOY-SHAPE MEMORY ALLOY COMPLEX FOR LITHIUM RECHARGEBLE ANODE ACTIVE MATERIAL, AND Si ALLOY-SHAPE MEMORY ALLOY COMPLEX MADE BY THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120108498A KR101914070B1 (en) 2012-09-28 2012-09-28 MANUFACTURING METHOD OF Si ALLOY-SHAPE MEMORY ALLOY COMPLEX FOR LITHIUM RECHARGEBLE ANODE ACTIVE MATERIAL, AND Si ALLOY-SHAPE MEMORY ALLOY COMPLEX MADE BY THE SAME

Publications (2)

Publication Number Publication Date
KR20140042146A true KR20140042146A (en) 2014-04-07
KR101914070B1 KR101914070B1 (en) 2018-11-01

Family

ID=50651389

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120108498A KR101914070B1 (en) 2012-09-28 2012-09-28 MANUFACTURING METHOD OF Si ALLOY-SHAPE MEMORY ALLOY COMPLEX FOR LITHIUM RECHARGEBLE ANODE ACTIVE MATERIAL, AND Si ALLOY-SHAPE MEMORY ALLOY COMPLEX MADE BY THE SAME

Country Status (1)

Country Link
KR (1) KR101914070B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099086A (en) * 2015-12-18 2016-11-09 华南理工大学 Micro-nano Porous Cu zinc-aluminum shape memory alloy composite and preparation method and application
WO2018161742A1 (en) * 2017-03-09 2018-09-13 华南理工大学 Nanoporous copper-zinc-aluminum shape memory alloy and preparation method and application thereof
KR20190065182A (en) 2017-12-01 2019-06-11 대주전자재료 주식회사 Negative active material comprising silicon composite oxide for non-aqueous electrolyte secondary battery and manufacturing method of the same
WO2019112325A1 (en) 2017-12-05 2019-06-13 대주전자재료 주식회사 Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing same
KR20190066596A (en) 2017-12-05 2019-06-13 대주전자재료 주식회사 Negative active material for non-aqueous electrolyte secondary battery and manufacturing method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043653A (en) * 2003-11-05 2005-05-11 소니 가부시끼 가이샤 Anode and battery
KR20050087148A (en) * 2004-02-25 2005-08-31 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR20100080479A (en) * 2008-12-30 2010-07-08 주식회사 엘지화학 Anode active material for secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043653A (en) * 2003-11-05 2005-05-11 소니 가부시끼 가이샤 Anode and battery
KR20050087148A (en) * 2004-02-25 2005-08-31 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR20100080479A (en) * 2008-12-30 2010-07-08 주식회사 엘지화학 Anode active material for secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADVANCED ENERGY MATERIALS 2 (2012) 1226-1231 *
JOURNAL OF MATERIALS CHEMISTRY 21 (2011) 11213-11216 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099086A (en) * 2015-12-18 2016-11-09 华南理工大学 Micro-nano Porous Cu zinc-aluminum shape memory alloy composite and preparation method and application
CN106099086B (en) * 2015-12-18 2018-07-20 华南理工大学 The porous copper-zinc-aluminum shape memory alloy composite material and preparation method of micro-nano and application
WO2018161742A1 (en) * 2017-03-09 2018-09-13 华南理工大学 Nanoporous copper-zinc-aluminum shape memory alloy and preparation method and application thereof
KR20190065182A (en) 2017-12-01 2019-06-11 대주전자재료 주식회사 Negative active material comprising silicon composite oxide for non-aqueous electrolyte secondary battery and manufacturing method of the same
WO2019112325A1 (en) 2017-12-05 2019-06-13 대주전자재료 주식회사 Negative electrode active material for non-aqueous electrolyte secondary battery and method for producing same
KR20190066596A (en) 2017-12-05 2019-06-13 대주전자재료 주식회사 Negative active material for non-aqueous electrolyte secondary battery and manufacturing method of the same

Also Published As

Publication number Publication date
KR101914070B1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US11984555B2 (en) Sulfide-based solid electrolyte, method for producing the sulfide-based solid electrolyte, and method for producing all-solid-state battery
CN105580185B (en) The manufacturing method of all-solid-state battery and electrode active material
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
US8968939B2 (en) Solid electrolyte material, electrode element that includes solid electrolyte material, all-solid battery that includes solid electrolyte material, and manufacturing method for solid electrolyte material
KR102283287B1 (en) Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery, method for manufacturing electrode for secondary battery, and lithium ion secondary battery
EP2731179B1 (en) Anode comprising silicon-based material and carbon material, and lithium secondary battery comprising same
EP3005450B1 (en) Electrode composition, electrochemical cell and method of making electrochemical cells
TWI449246B (en) New electrode formulations for lithium-ion batteries and method for obtaining it
EP3358656B1 (en) Carbonaceous material for negative electrode of nonaqueous-electrolyte secondary battery, and process for producing same
Xiong et al. Carbon-polytetrahydrofuran double-coated Na3V2 (PO4) 2F3 submicron-composite as high-energy/power cathode material for sodium metal battery
Han et al. High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries
CN106104863A (en) The negative material of electrical storage device
JPWO2018047946A1 (en) Electrode layer material, sheet for all solid secondary battery electrode and all solid secondary battery, electrode sheet for all solid secondary battery, and method for manufacturing all solid secondary battery
JP2011159534A (en) Lithium battery
KR102323025B1 (en) Negative electrode plate for secondary battery and secondary battery comprising the same
CN104094455A (en) Anode active material for secondary battery, and secondary battery including same
US20150171420A1 (en) Negative electrode active material, method for manufacturing the same, and lithium rechargable battery including the same
Peng et al. Amorphous carbon nano-interface-modified aluminum anodes for high-performance dual-ion batteries
EP3985757A1 (en) Anode layer for all-solid secondary battery and all-solid secondary battery including the same
KR20140104269A (en) Composite binder for battery, anode and lithium battery containing the binder
KR101914070B1 (en) MANUFACTURING METHOD OF Si ALLOY-SHAPE MEMORY ALLOY COMPLEX FOR LITHIUM RECHARGEBLE ANODE ACTIVE MATERIAL, AND Si ALLOY-SHAPE MEMORY ALLOY COMPLEX MADE BY THE SAME
Park et al. Control of interfacial layers for high-performance porous Si lithium-ion battery anode
EP2793302B1 (en) Si/C COMPOSITE , METHOD OF PREPARATION THE SAME, AND ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY INCLUDING THE Si/C COMPOSITE
JP2014086254A (en) Silicon oxide and process of manufacturing the same, negative electrode, and lithium ion secondary battery and electrochemical capacitor
Dai et al. Ultrastable Anode/Electrolyte Interface in Solid-State Lithium-Metal Batteries Using LiCu x Nanowire Network Host

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right