KR20140027735A - Method for simultaneous determination of phenol compound in biological material - Google Patents

Method for simultaneous determination of phenol compound in biological material Download PDF

Info

Publication number
KR20140027735A
KR20140027735A KR1020120093684A KR20120093684A KR20140027735A KR 20140027735 A KR20140027735 A KR 20140027735A KR 1020120093684 A KR1020120093684 A KR 1020120093684A KR 20120093684 A KR20120093684 A KR 20120093684A KR 20140027735 A KR20140027735 A KR 20140027735A
Authority
KR
South Korea
Prior art keywords
biological sample
analyzing
present
phenolic compound
phenol
Prior art date
Application number
KR1020120093684A
Other languages
Korean (ko)
Other versions
KR101390818B1 (en
Inventor
이정애
이수현
정봉철
표희수
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020120093684A priority Critical patent/KR101390818B1/en
Publication of KR20140027735A publication Critical patent/KR20140027735A/en
Application granted granted Critical
Publication of KR101390818B1 publication Critical patent/KR101390818B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to a method for the simultaneous analysis of a phenol compound in a biological material, and more specifically, to a method for the simultaneous analysis of a phenol compound in a biological material, wherein the method includes a step of adjusting the pH of a living body sample and a step of extracting a phenolic compound from the living body sample in a liquid phase. According to one embodiment of the present invention, the pH of the living body sample is adjusted using potassium carbonate (K2CO3).

Description

생체 시료 내 페놀 화합물 동시 분석 방법{Method for simultaneous determination of phenol compound in biological material}TECHNICAL FIELD The present invention relates to a method for simultaneous determination of a phenol compound in a biological sample,

본 발명은 생체 시료 내 페놀 화합물을 동시에 분석할 수 있는 방법에 관한 것이다.
The present invention relates to a method for simultaneously analyzing a phenolic compound in a biological sample.

페놀 화합물은 내분비계의 정상적인 기능을 방해하는 내분비계 장애 유발 물질로, 체내에 유입되면 생식 능력의 감소, 호르몬의 불균형 또는 뇌신경계와 면역계의 이상을 유발하며, 심혈관계 질환 및 암의 원인이 되기도 한다. 페놀 화합물은 비이온계 계면 활성제의 성분으로 널리 사용되어 왔으며, 석유 화학, 철강, 식품 등의 분야에서는 산화 방지제 및 안정제로 사용되어 왔기에, 플라스틱, 유리병 등과 같은 다양한 일상 생활 제품에 포함될 뿐만 아니라 농약, 항생제, 쓰레기 소각물에도 포함되어 있어, 많은 사람들이 페놀 화합물에 쉽게 노출되고 있다. Phenolic compounds are endocrine disruptors that interfere with the normal function of the endocrine system. When they enter the body, they cause a decrease in reproductive capacity, hormone imbalance, or abnormalities of the cranial nervous system and the immune system. do. Phenol compounds have been widely used as a component of nonionic surfactants and have been used as antioxidants and stabilizers in the fields of petrochemical, steel and foods. They are not only included in various daily products such as plastics and glass bottles It is also contained in pesticides, antibiotics, and waste incineration, and many people are easily exposed to phenolic compounds.

페놀 화합물이 체내에 유입되면 대사 과정을 거쳐 주로 뇨로 배출되며, 지방 조직 및 혈액에서도 일부 검출된다. 생체 시료는 페놀 화합물로서 알킬페놀과 클로로페놀을 포함하는데, 이들은 화학적 성질이 서로 달라 동시에 분석하기가 어려우므로 알킬페놀 또는 클로로페놀 중 선택한 하나의 페놀 화합물만을 분석하거나, 100 mL 이상 과량의 생체 시료를 채취하여 페놀 화합물을 분석하였었다. 이와 같이 종전의 방법은 복잡하고 시간 및 비용 소모가 많으므로, 보다 효율적이고 간편하게 생체 시료 내 페놀 화합물을 분석할 수 있는 방법에 대한 요구가 존재하였다.
When a phenolic compound enters the body, it is excreted mainly into the urine after metabolism, and some of it is also detected in adipose tissue and blood. Biological samples contain phenol compounds such as alkylphenol and chlorophenol which are difficult to analyze at the same time because they have different chemical properties. Therefore, it is necessary to analyze only one phenol compound selected from alkyl phenol or chlorophenol, And phenolic compounds were analyzed. Thus, there is a demand for a method for analyzing phenol compounds in a biological sample more efficiently and easily because the conventional method is complicated and time consuming and costly.

Biomed Environ Sci, XIAO Jing 등, 24 (2011), 40-46쪽Biomed Environ Sci, XIAO Jing et al., 24 (2011), pp. 40-46

본 발명은 우수한 감도 및 정확성을 가지고 비교적 간편하면서도 낮은 비용으로 생체 시료 중 여러 페놀 화합물을 동시에 분석할 수 있는 방법 및 그 방법을 행할 수 있는 키트를 제공하고자 한다.
The present invention provides a method for simultaneously analyzing a plurality of phenolic compounds in a biological sample at a relatively simple and low cost with excellent sensitivity and accuracy, and a kit capable of performing the method.

본 발명의 일측면은 생체 시료의 pH를 6 내지 8로 조절하는 단계; 및 상기 단계에서 pH를 조절한 생체 시료 내 페놀 화합물을 액체상 추출하는 단계를 포함하는 생체 시료 내 페놀 화합물 분석 방법을 제공한다.According to an aspect of the present invention, there is provided a method for preparing a biological sample, comprising: adjusting a pH of a biological sample to 6 to 8; And a step of extracting a phenol compound in a biological sample, the pH of which is adjusted in the step, in a liquid phase.

본 발명의 다른 일측면은 생체 시료의 pH를 6 내지 8로 조절하는 pH 조절부; 및 생체 시료의 페놀 화합물을 액체상 추출하는 추출부를 포함하는 생체 시료 내 페놀 화합물 분석용 키트를 제공한다.
According to another aspect of the present invention, there is provided a biosensor comprising: a pH adjuster for adjusting a pH of a biological sample to 6 to 8; And an extracting unit for extracting a phenol compound of the biological sample in a liquid phase. The present invention also provides a kit for analyzing a phenolic compound in a biological sample.

본 발명에 따른 페놀 화합물 분석 방법 및 분석용 키트는 우수한 감도 및 정확성을 가지고 상당히 간편하면서도 낮은 비용으로 생체 시료 중 페놀 화합물을 분석할 수 있으며, 단일 처리만으로도 여러 페놀 화합물을 동시에 분석할 수 있다. 이와 같이 본 발명에 따른 페놀 화합물 분석 방법 및 분석용 키트는 다수의 생체 시료에 대해 페놀 화합물 존재 여부 및 그 농도를 높은 감도로 신속하게 탐지할 수 있으므로, 대상의 페놀 화합물 노출 정도를 효과적으로 탐지할 수 있고, 그에 대한 대응을 신속하게 할 수 있게 한다. 나아가 본 발명에 따른 페놀 화합물 분석 방법 및 분석용 키트는 페놀 화합물의 농도를 분석하여, 체내의 페놀 화합물 노출 정도에 따른 영향을 판정하기 위한 지표로 용이하게 활용할 수 있게 한다.
The phenolic compound assay method and assay kit according to the present invention can analyze phenolic compounds in biological samples with considerable simplicity and low cost with excellent sensitivity and accuracy, and can simultaneously analyze various phenolic compounds with a single treatment. As described above, the method and the kit for analyzing a phenol compound according to the present invention can quickly detect the presence or the concentration of a phenol compound in a large number of biological samples at a high sensitivity, So that the user can quickly respond to the request. Furthermore, the method and the kit for analyzing a phenol compound according to the present invention can be used as an index for determining the influence of phenol compound exposure in a body by analyzing the concentration of the phenol compound.

도 1은 15종 페놀 화합물의 전체 이온 크로마토그램(total ion chromatogram)이다: 1. 2,4-디클로로페놀(2,4-DCP), 2. t-부틸페놀(t-BP), 3. 2,5-디클로로페놀(2,5-DCP), 4. 2,4-DCP-d3, 5. n-부틸페놀(n-BP), 6. 2,4,6-트리클로로페놀(2,4,6-TCP), 7. 2,4,5-트리클로로페놀(2,4,5-TCP), 8. 펜틸페놀(n-PP), 9. n-헥실페놀(n-HX), 10. t-옥틸페놀(t-OP), 11. n-헵틸페놀(n-HP), 12. 노닐페놀(NP), 13. t-옥틸페놀(t-OP), 14. 벤조페논-3(BP-3), 15. 트리클로산(TCS), 16. 비스페놀 A(BPA), 17. BPA-d8 1 is a total ion chromatogram of 15 phenolic compounds: 1. 2,4-dichlorophenol (2,4-DCP), 2. t-butylphenol (t-BP), 3. 2 , 5-dichlorophenol (2,5-DCP), 4. 2,4-DCP-d 3 , 5. n-butylphenol (n-BP), 6. 2,4,6-trichlorophenol (2, 4,6-TCP), 7. 2,4,5-trichlorophenol (2,4,5-TCP), 8. pentylphenol (n-PP), 9. n-hexylphenol (n-HX), 10. t-octylphenol (t-OP), 11.n-heptylphenol (n-HP), 12. nonylphenol (NP), 13. t-octylphenol (t-OP), 14. benzophenone-3 (BP-3), 15. Triclosan (TCS), 16. Bisphenol A (BPA), 17. BPA-d 8

본 명세서에서, "생체 시료"는 생물에서 유래한 시료를 모두 포괄하는 개념이며, 구체적으로 뇨, 혈액 또는 피부 조직을 포함한다. 생체 시료에서 페놀 화합물의 농도가 상승하는 경우 체내에 페놀 화합물이 유입되었거나 유입되고 있다고 볼 수 있다. 따라서 생체 시료 중 페놀 화합물을 분석함으로써, 대상이 페놀 화합물에 노출되었는지를 평가할 수 있다. 페놀 화합물이 대상에 노출되면 대사 과정을 거쳐 주로 뇨로 배출되므로, 본 발명의 일측면에서는 생체 시료 중에서도 뇨의 페놀 화합물을 검출하여 대상의 프탈레이트에 대한 노출 정도를 분석할 수 있다. 본 명세서에서, 대상은 페놀 화합물의 노출에 의해 영향을 받을 수 있는, 인간을 포함한 동물을 포함한다.As used herein, the term "biological sample" is intended to encompass all samples derived from an organism, and specifically includes urine, blood or skin tissue. When the concentration of the phenolic compound in the biological sample increases, it is considered that the phenolic compound has been introduced into the body or is being introduced into the body. Therefore, by analyzing phenolic compounds in biological samples, it is possible to evaluate whether the subject is exposed to phenolic compounds. Since the phenol compound is excreted into the urine mainly through metabolism after metabolism, one aspect of the present invention can detect the phenol compound of the urine among the biological samples and analyze the degree of exposure to the phthalate of the subject. As used herein, an object includes an animal, including a human, that can be affected by exposure of the phenolic compound.

본 명세서에서, 페놀 화합물은 페놀기를 포함하는 화합물을 모두 포함하는 개념이다. 본 발명의 일측면에서, 페놀 화합물은 알킬페놀 및 클로로페놀 중 하나 이상을 포함한다. 본 명세서에서, 알킬페놀은 C1 내지 C15, 구체적으로 C3 내지 C10의 알킬기를 포함하는 페놀 화합물을 포함하며, 클로로페놀은 1 내지 6개, 구체적으로 2 내지 4개의 클로로기를 포함하는 페놀 화합물을 포함한다.In the present specification, a phenol compound is a concept including all compounds containing a phenol group. In one aspect of the invention, the phenolic compound comprises at least one of an alkyl phenol and a chlorophenol. As used herein, an alkylphenol comprises a phenolic compound comprising a C 1 to C 15 , specifically a C 3 to C 10 alkyl group, wherein the chlorophenol is a phenol containing from 1 to 6, in particular from 2 to 4, chloro groups ≪ / RTI >

본 발명의 다른 일측면에서, 페놀 화합물은 t-부틸페놀(t-BP, 화학식 1), n-부틸페놀(n-BP, 화학식 2), n-펜틸페놀(n-PP, 화학식 3), n-헥실페놀(n-HX, 화학식 4), n-헵틸페놀(n-HP, 화학식 5), t-옥틸페놀(t-OP, 화학식 6), n-옥틸페놀(n-OP, 화학식 7), 노닐페놀(NP, 화학식 8), 비스페놀 A(BPA, 화학식 9) 및 벤조페논-3(BP-3, 화학식 10) 중 하나 이상을 포함하는 알킬페놀 또는 2,4-디클로로페놀(2,4-DCP, 화학식 11), 2,5-디클로로페놀(2,5-DCP, 화학식 12), 2,4,6-트리클로로페놀(2,4,6-TCP, 화학식 13), 2,4,5-트리클로로페놀(2,4,5-TCP, 화학식 14) 및 트리클로산(TCS, 화학식 15) 중 하나 이상을 포함하는 클로로페놀을 포함한다.In another aspect of the present invention, the phenolic compound is selected from the group consisting of t-butylphenol (t-BP, Formula 1), n-butylphenol (n-BP, Formula 2), n-pentylphenol (n-HX, Formula 4), n-heptylphenol (n-HP, Formula 5), t-octylphenol (t-OP, Formula 6), n-octylphenol (2, 3, or 4), at least one of nonylphenol (NP, Formula 8), bisphenol A (BPA, Formula 9), and benzophenone- 4-DCP, Formula 11), 2,5-dichlorophenol (2,5-DCP, Formula 12), 2,4,6-trichlorophenol , 5-trichlorophenol (2,4,5-TCP, Formula 14), and triclosan (TCS, Formula 15).

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

Figure pat00009
Figure pat00009

Figure pat00010
Figure pat00010

Figure pat00011
Figure pat00011

Figure pat00012
Figure pat00012

Figure pat00013
Figure pat00013

Figure pat00014
Figure pat00014

Figure pat00015
Figure pat00015

본 발명의 일측면에 따른 생체 시료 내 페놀 화합물 분석 방법은 생체 시료에 대해 단일 처리만을 행한 후 생체 시료 내 포함되어 있는 알킬페놀 화합물 및 클로로페놀 화합물을 동시에 분석할 수 있다. 구체적으로, 상기 화학식 1 내지 15의 페놀 화합물을 동시에 분석할 수 있다. 종전에는 서로 다른 화학적 특성을 가지는 생체 시료 내 포함된 페놀 화합물들을 동시에 분석하기가 어려웠기에, 하나의 생체 시료에 대해 1 내지 4가지 소수의 페놀 화합물만을 선택적으로 분석하였다. 반면 본 발명의 일측면에 따른 생체 시료 내 페놀 분석 방법은 하나의 생체 시료에 대해 단일 처리만을 행한 후 서로 다른 화학적 성질을 가지는 여러 페놀 화합물, 구체적으로 5 내지 20종, 더 구체적으로 7 내지 18종, 보다 더 구체적으로 10 내지 15종의 페놀 화합물을 동시에 분석할 수 있으므로, 분석에 소요되는 시간 및 비용을 줄일 수 있어 간편하고 효율적으로 분석을 행할 수 있다. 아울러 페놀 화합물을 정확하면서도 정밀하게 검출할 수 있다.According to one aspect of the present invention, a method for analyzing a phenolic compound in a biological sample can simultaneously analyze an alkylphenol compound and a chlorophenol compound contained in a biological sample after performing a single treatment on a biological sample. Specifically, the phenol compounds of the above-mentioned formulas (1) to (15) can be simultaneously analyzed. Previously, it was difficult to simultaneously analyze the phenolic compounds contained in biological samples having different chemical characteristics. Therefore, only one to four small phenolic compounds were selectively analyzed for one biological sample. On the other hand, according to one aspect of the present invention, there is provided a method for analyzing a phenol in a biological sample, which comprises performing a single treatment with respect to one biological sample and then analyzing various phenolic compounds having different chemical properties, specifically 5 to 20 species, , More specifically 10 to 15 kinds of phenol compounds can be analyzed at the same time, so that the time and cost required for the analysis can be reduced, so that the analysis can be performed easily and efficiently. In addition, phenol compounds can be detected accurately and precisely.

본 발명의 일측면에 따른 생체 시료 내 페놀 화합물 분석 방법은 0.01 내지 5 ml, 구체적으로 0.1 내지 4 ml, 보다 더 구체적으로 1 내지 3 ml의 소량의 생체 시료만으로도 여러 페놀 화합물, 구체적으로 10 내지 15종의 페놀 화합물을 동시에 분석할 수 있으므로, 다량의 시료 채취를 요하지 않아 편리하다.According to an aspect of the present invention, there is provided a method for analyzing a phenolic compound in a biological sample, which comprises preparing a plurality of phenol compounds, specifically, 10 to 15, more preferably 10 to 15, Since phenol compounds of species can be analyzed at the same time, it is convenient because a large amount of sample is not required.

본 발명의 일측면에 따른 생체 시료 내 페놀 화합물 분석 방법은 생체 시료를 효소로 가수 분해하는 단계를 포함할 수 있다. 알킬페놀과 클로로페놀과 같은 페놀 화합물은 황산(sulfuric acid) 또는 글루쿠론산(glucuronic acid)과 결합된 형태로 뇨 등으로 배출되기 때문에 이들과 결합되지 않은 페놀 화합물을 분석하기 위해 가수 분해 단계가 필요할 수 있다. 일반적으로 사용하는 산 또는 염기를 이용한 가수 분해 방법과 달리 효소 가수 분해 방법은 페놀 화합물 분석의 방해 물질(background) 매트릭스를 감소시키면서 페놀 화합물의 우수한 회수율을 확보할 수 있어 적합하다. 본 발명의 다른 일측면에서, 가수 분해에 사용되는 효소는 황산 또는 클루쿠론산을 가수 분해할 수 있는 효소를 포함하며, 구체적으로 β-글루쿠로니다제(β-glucuronidase) 및 아릴설파타제(arylsulfatase) 중 하나 이상을 포함한다. 본 발명의 또 다른 일측면에서, 효소로 가수 분해하는 단계는 4 내지 6의 약산성 조건에서 진행될 수 있으며, 생체 시료를 약산성 조건으로 함에 있어 아세트산 완충 용액을 이용할 수 있다.The method for analyzing a phenolic compound in a biological sample according to an aspect of the present invention may include a step of hydrolyzing a biological sample with an enzyme. Since phenol compounds such as alkylphenols and chlorophenols are released into urine in the form of sulfuric acid or glucuronic acid, a hydrolysis step is required to analyze phenol compounds that are not associated with them. . Unlike the hydrolysis method using an acid or base generally used, the enzyme hydrolysis method is suitable because it can secure an excellent recovery rate of the phenol compound while reducing the background matrix of the phenolic compound analysis. In another aspect of the present invention, the enzyme used in the hydrolysis includes an enzyme capable of hydrolyzing sulfuric acid or hydrochloric acid, specifically,? -Glucuronidase and arylsulfatase arylsulfatase). In another aspect of the present invention, the step of hydrolyzing the enzyme may be carried out at a weakly acidic condition of 4 to 6, and an acetic acid buffer solution may be used in setting the biological sample to a slightly acidic condition.

본 발명의 일측면에 따른 생체 시료 내 페놀 화합물 분석 방법은 생체 시료를 효소로 가수 분해하는 단계 이후, 생체 시료의 pH를 6 내지 8, 구체적으로 6.5 내지 7.5로 조절하는 단계를 포함한다. 이와 같이 생체 시료의 pH를 중성으로 조절하는 단계를 포함함으로써, 본 발명의 일측면에 따른 방법은 화학적 성질이 서로 다른 페놀 화합물들, 구체적으로 알킬페놀과 클로로페놀을 우수한 회수율 및 정확도로 동시에 분석할 수 있다.The method for analyzing a phenolic compound in a biological sample according to an aspect of the present invention includes a step of hydrolyzing a biological sample with an enzyme and then adjusting the pH of the biological sample to 6 to 8, specifically 6.5 to 7.5. By including the step of neutralizing the pH of the biological sample in this manner, the method according to one aspect of the present invention can simultaneously analyze phenolic compounds having different chemical properties, specifically alkylphenol and chlorophenol, with excellent recovery and accuracy .

본 발명의 일측면에서, 생체 시료의 pH는 탄산염, 구체적으로 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3), 탄산칼슘(CaCO3) 또는 탄산마그네슘(MgCO3)을 예로 들 수 있는 알칼리 금속 또는 알칼리토금속 탄산염으로 조절할 수 있다. 본 발명의 다른 일측면에서, 1 내지 10%, 구체적으로 3 내지 7%의 탄산염 수용액으로 생체 시료의 pH를 조절할 수 있다.In one aspect of the invention, pH of the biological sample is sodium carbonate as a carbonate, in particular (Na 2 CO 3), are exemplified potassium carbonate (K 2 CO 3), calcium carbonate (CaCO 3) or magnesium carbonate (MgCO 3) Lt; RTI ID = 0.0 > alkaline < / RTI > In another aspect of the present invention, the pH of the biological sample can be adjusted with an aqueous carbonate solution of 1 to 10%, specifically 3 to 7%.

본 발명의 일측면에 따른 생체 시료 내 페놀 화합물 분석 방법은 생체 시료의 pH를 조절하는 단계 이후, 생체 시료 내 페놀 화합물을 액체상 추출하는 단계를 포함한다. 본 발명의 일측면에서, 생체 시료의 액체상 추출은 메틸-tert-부틸 에테르(methyl-tert-butyl ether), 에틸 아세테이트(ethyl acetate) 및 에테르 중 선택된 하나 이상의 추출 용매, 구체적으로 우수한 페놀 화합물 회수를 가능하게 하는 메틸-tert-부틸 에테르로 생체 시료를 추출할 수 있다. 본 발명의 일측면에 따른 방법은 고체상 추출이 아닌 액체상 추출을 행함으로써, 알킬페놀과 클로로페놀과 같이 서로 다른 화학적 성질을 가지는 페놀 화합물을 단일 처리만으로도 동시에 분석할 수 있다.The method for analyzing a phenolic compound in a biological sample according to an aspect of the present invention includes a step of controlling the pH of the biological sample and then extracting a liquid phase of the phenolic compound in the biological sample. In one aspect of the present invention, the liquid phase extraction of a biological sample is carried out by one or more extraction solvents selected from among methyl-tert-butyl ether, ethyl acetate and ether, Lt; RTI ID = 0.0 > methyl-tert-butyl < / RTI > The method according to one aspect of the present invention can simultaneously analyze phenol compounds having different chemical properties such as alkylphenol and chlorophenol by a single treatment by performing liquid phase extraction instead of solid phase extraction.

본 발명의 일측면에서, 추출 용매는 생체 시료 부피 대비 0.9 내지 2배, 구체적으로 1 내지 1.5배의 부피로 사용할 수 있다. 본 발명의 다른 일측면에서, 추출 용매를 1 내지 5회, 구체적으로 2 내지 3회 가하여 여러 번 추출할 수 있다.In one aspect of the present invention, the extraction solvent may be used in a volume of 0.9 to 2 times, in particular 1 to 1.5 times, the volume of the biological sample. In another aspect of the present invention, the extraction solvent may be extracted several times by adding 1 to 5 times, specifically 2 to 3 times.

본 발명의 일측면에 따른 생체 시료 내 페놀 화합물 분석 방법은 페놀 화합물을 액체상 추출하는 단계 이후에, 기체크로마토그래피-질량 분석기로 페놀 화합물을 정량 분석하는 단계를 더 포함할 수 있다. 본 단계를 통해 생체 시료 내 페놀 화합물의 양과 농도를 분석할 수 있다.The method for analyzing a phenolic compound in a biological sample according to an aspect of the present invention may further include a step of quantitatively analyzing a phenol compound by a gas chromatography-mass spectrometer after extracting a liquid phase of the phenolic compound. This step can be used to analyze the amount and concentration of phenolic compounds in biological samples.

본 발명의 일측면에서 정량 분석하는 단계는 내부 표준법을 사용할 수 있다. 내부 표준법은, 먼저 시료에 여러 가지 농도비로 표준 물질을 넣어 분석하고, 피크 높이(넓이)의 비와 농도비를 이용하여 검량 곡선을 만든다. 정확한 양의 내부 표준 물질을 미지의 시료에 넣어 내부 표준 물질과 시료의 피크 높이의 비를 측정한 다음, 만들어 둔 검량 곡선 상에서 미지의 시료와 내부 표준 물질의 농도비를 구하는 정량 분석 방법을 의미한다. 본 발명의 일측면에서, 내부 표준 물질로는, 즉, 알킬페놀에 대한 내부 표준 물질로는 비스페놀-에이-d8(BPA-d8, 화학식 16), 클로로페놀의 내부 표준 물질로는 2,4-디클로로페놀-d3 (2,4-DCP-d3, 화학식 17)을 사용할 수 있다.In one aspect of the present invention, the internal standard method can be used for quantitative analysis. In the internal standard method, first, standard substances are added to samples in various concentration ratios, and a calibration curve is made using the ratio of the peak height (width) and the concentration ratio. Means a quantitative analysis method in which an accurate amount of an internal standard substance is put into an unknown sample to measure the ratio of the peak height between the internal standard substance and the sample and then the concentration ratio of the unknown sample and the internal standard substance is determined on the resulting calibration curve. In one aspect of the invention, the internal standard is as, that is, as an internal standard for the alkyl phenol is bisphenol-A in -d 8 (BPA-d 8, Formula 16), an internal standard of 2-chlorophenol, 4-Dichlorophenol-d 3 (2,4-DCP-d 3 , Formula 17) can be used.

Figure pat00016
Figure pat00016

Figure pat00017
Figure pat00017

본 발명의 일측면 중 정량 분석하는 단계에서 GC-MS의 SIM(Selective Ion Monitoring) 모드로 분석할 수 있다. SIM 모드는 선택된 몇 가지 이온에 대해서만 질량 대 하전비(m/z)로 모니터링함으로써, 정량 분석의 정밀성과 정확성을 향상시킬 수 있다. 또한 SIM 모드는 여러 개의 분석 대상 분석을 위해 용리 시간별 이온에 대한 시간 프로그래밍이 가능하다. In one aspect of the present invention, the quantitative analysis can be performed in a selective ion monitoring (SIM) mode of the GC-MS. The SIM mode monitors the mass to charge ratio (m / z) for only a few selected ions, thereby improving the precision and accuracy of quantitative analysis. The SIM mode also allows time programming of ions by elution time for analysis of several analytes.

본 발명의 일측면에 따른 생체 시료 내 페놀 화합물 분석 방법은 생체 시료 내 페놀 화합물을 검출하는 방법 및 생체 시료 내 페놀 화합물의 양 또는 농도를 분석하는 방법을 포함한다.
The method for analyzing a phenolic compound in a biological sample according to an aspect of the present invention includes a method for detecting a phenolic compound in a biological sample and a method for analyzing the amount or concentration of a phenolic compound in the biological sample.

본 발명의 일측면은 생체 시료의 pH를 6 내지 8로 조절하는 pH 조절부; 및 생체 시료의 페놀 화합물을 액체상 추출하는 추출부를 포함하는 생체 시료 내 페놀 화합물 분석용 키트를 제공한다. 본 발명의 일측면에 따른 생체 시료 내 페놀 화합물 분석용 키트는 본 발명의 다른 일측면에 따른 생체 시료 내 페놀 화합물 분석 방법을 수행할 수 있게 할 수 있다.According to an aspect of the present invention, there is provided a biosensor comprising: a pH controller for adjusting a pH of a biological sample to 6 to 8; And an extracting unit for extracting a phenol compound of the biological sample in a liquid phase. The present invention also provides a kit for analyzing a phenolic compound in a biological sample. The kit for analyzing a phenolic compound in a biological sample according to an aspect of the present invention may enable a method of analyzing a phenolic compound in a biological sample according to another aspect of the present invention.

본 발명의 일측면에 따른 키트에서 pH 조절부는 생체 시료 내 페놀 화합물의 pH를 6 내지 8, 구체적으로 6.5 내지 7.5로 조절할 수 있으며, 탄산나트륨(Na2CO3), 탄산칼륨(K2CO3), 탄산칼슘(CaCO3) 또는 탄산마그네슘(MgCO3)을 예로 들 수 있는 탄산염 수용액으로 생체 시료의 pH를 조절할 수 있다.In the kit according to one aspect of the present invention, the pH adjuster may adjust the pH of the phenolic compound in the biological sample to 6 to 8, specifically, 6.5 to 7.5, and may include sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ) , Calcium carbonate (CaCO 3 ), or magnesium carbonate (MgCO 3 ) can be used to adjust the pH of the biological sample.

본 발명의 일측면에 따른 키트에서 추출부는 메틸-tert-부틸 에테르(methyl-tert-butyl ether), 에틸 아세테이트(ethyl acetate) 및 에테르 중 선택된 하나 이상의 추출 용매를 사용하여 생체 시료를 액체상 추출할 수 있다.In the kit according to one aspect of the present invention, the extracting unit can be subjected to liquid-phase extraction of a biological sample using at least one extraction solvent selected from among methyl-tert-butyl ether, ethyl acetate and ether have.

본 발명의 일측면에 따른 키트는 생체 시료를 효소 가수 분해하는 가수 분해부를 더 포함할 수 있으며, 효소로 β-글루쿠로니다제 및 아릴설파타제 중 하나 이상을 포함할 수 있다.The kit according to one aspect of the present invention may further comprise a hydrolyzing unit for enzymatic hydrolysis of a biological sample, and the enzyme may include at least one of? -Glucuronidase and arylsulfatase.

본 발명의 일측면에 따른 키트는 0.01 내지 5 ml, 구체적으로 0.1 내지 4 ml, 보다 더 구체적으로 1 내지 3 ml의 소량의 생체 시료만을 이용하여 생체 시료 내 알킬페놀 및 클로로페놀, 구체적으로 t-부틸페놀, n-부틸페놀, n-펜틸페놀, n-헥실페놀, n-헵틸페놀, t-옥틸페놀, n-옥틸페놀, 노닐페놀, 비스페놀 A, 벤조페논-3, 2,4-디클로로페놀, 2,5-디클로로페놀, 2,4,6-트리클로로페놀, 2,4,5-트리클로로페놀 및 트리클로산을 동시에 분석할 수 있어 유용하다.The kit according to one aspect of the present invention is characterized by using only a small amount of a biological sample of 0.01 to 5 ml, specifically 0.1 to 4 ml, more specifically, 1 to 3 ml, to convert the alkylphenol and chlorophenol in the biological sample, Butylphenol, n-butylphenol, n-pentylphenol, n-hexylphenol, n-heptylphenol, t-octylphenol, n-octylphenol, nonylphenol, bisphenol A, benzophenone-3,4-dichlorophenol , 2,5-dichlorophenol, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol and triclosan can be simultaneously analyzed.

본 발명의 일측면에 따른 키트는 생체 시료 내 페놀 화합물 검출용 키트 또는 생체 시료 내 페놀 화합물 농도 분석용 키트를 포함한다.A kit according to one aspect of the present invention includes a kit for detecting a phenol compound in a biological sample or a kit for analyzing a phenol compound concentration in a biological sample.

본 발명의 일측면에 따른 키트는 생체 시료 내 페놀 화합물 분석 또는 검출 방법을 개시한 지시서를 더 포함할 수 있다.
The kit according to one aspect of the present invention may further include an instruction that discloses a method for analyzing or detecting a phenol compound in a biological sample.

이하, 실험예를 들어 본 발명의 구성 및 효과를 보다 구체적으로 설명한다. 아래 실험예는 본 발명에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 발명의 범주 및 범위가 그에 의해 제한되는 것은 아니다.
Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to experimental examples. The following experimental examples are provided for illustrative purposes only in order to facilitate understanding of the present invention, but the scope and scope of the present invention are not limited thereto.

[실험예][Experimental Example]

1. 뇨 시료의 처리1. Treatment of urine samples

내부 표준 물질로서 BPA-d8 2,4-DCP-d3(C/D/N isotope사, 퀘벡, 캐나다)가 각각 1 μg/mL, 5 μg/mL의 농도로 첨가된 뇨 시료 2 mL에, 1 mL의 0.2 M 소디움 아세테이트 완충 용액(0.2 M Sodium acetate buffer, pH 5.2)을 넣어 pH를 4.5 내지 5로 조절하였다. 이후, 50 ㎕의 β-글루쿠로니다제/아릴설파타제(β-glucuronidase/arylsulfatase)를 가하여, 55℃에서 1시간 동안 가수 분해시켰다. 가수 분해 시킨 뇨 시료에 5% 탄산칼륨(K2CO3) 수용액을 50 내지 100 ㎕ 첨가하여 pH를 6.5 내지 7.5로 조절하였다. 다음으로 2.5 mL의 MTBE(methyl-tert-butyl ether)를 추출 용매로 가하고 2회 반복 추출하였다. 수득한 추출물을 40℃에서 Turbo Vap LV 질소 증발기를 사용하여 증발시킨 후, P2O5/KOH를 이용하여 진공 건조기(vacuum desiccator)에서 30분 이상 충분히 건조시켰다.
BPA-d 8 as an internal standard substance To 2 mL of a urine sample to which 2,4-DCP-d 3 (C / D / N isotope, Quebec, Canada) was added at concentrations of 1 μg / mL and 5 μg / mL, respectively, 1 mL of 0.2 M sodium acetate The pH was adjusted to 4.5 to 5 by adding a buffer solution (0.2 M sodium acetate buffer, pH 5.2). Then, 50 μl of β-glucuronidase / arylsulfatase was added and hydrolyzed at 55 ° C. for 1 hour. To the hydrolyzed urine sample, 50 to 100 μl of a 5% aqueous solution of potassium carbonate (K 2 CO 3 ) was added to adjust the pH to 6.5 to 7.5. Next, 2.5 mL of MTBE (methyl-tert-butyl ether) was added as an extraction solvent and extracted twice. The obtained extract was evaporated at 40 ° C using a Turbo Vap LV nitrogen evaporator and sufficiently dried in a vacuum desiccator for 30 minutes or longer using P 2 O 5 / KOH.

2. 기체 크로마토그래피-질량 분석기(GC-MS) 분석2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

시료의 휘발성을 증대시키고, 다른 페놀 화합물과 효과적으로 분리하기 위해, 50 ㎕의 BSTFA/TMCS 100:1(v/v) 혼합 용액(Sigma-Aldrich사, 슈타인하임, 독일)을 시료에 가하고 60℃에서 15분간 반응시켜 유도체화하였다. 유도체화한 시료 2 ㎕를 GC-MS 기기에 주입하였다. GC-MS 기기는 애질런트(Agilent) 테크놀로지사(캘리포니아, 미국)의 Agilent 7890 Plus 가스크로마토그래프에 직접 연결된 Agilent 5975 질량 선택적 탐지기를 사용하였다. 또한 Agilent 7683B 시리즈 주입기를 사용하여 GC에 시료를 주입하였다.50 μl of BSTFA / TMCS 100: 1 (v / v) mixed solution (Sigma-Aldrich, Steinheim, Germany) was added to the sample in order to increase the volatility of the sample and to effectively separate it from other phenol compounds. The reaction was allowed to proceed for 15 minutes to be derivatized. 2 μl of the derivatized sample was injected into the GC-MS instrument. The GC-MS instrument used an Agilent 5975 mass selective detector connected directly to an Agilent 7890 Plus gas chromatograph from Agilent Technologies, Calif., USA. The sample was also injected into the GC using an Agilent 7683B series injector.

분리관은 Ultra-2(크로스-연결된(crosslinked) 5% 페닐메틸 폴리실록산, 길이 25m, 내경 0.25 ㎜ I.D., 필름 두께 0.33 ㎛)를 사용하였으며, 휘발용 온도 프로그래밍은 초기 온도 120℃에서 1분간 머무른 후 130℃까지 20℃/분으로 상승시키고, 다시 150℃까지 5℃/분으로 상승시키며, 320℃까지 20℃/분으로 상승시킨 후에 2분간 유지하도록 설정하였다. 시료 주입량은 2 ㎕이었고, 순도 99.999%의 헬륨 가스를 1.0mL/분의 유속으로 흘려주었으며, 주입부 모드는 스플릿 모드(ratio 5 : 1)로 설정하였다. 이온화에 사용한 전자 에너지는 70 eV이고, 분석 물질 중 몇 개의 특정 이온만을 선택하여 검출하는 방법(selected ion monitoring, SIM 모드)을 이용하였다. GC-MS 작동 조건을 아래 표에 정리하였다. The separation tube used was Ultra-2 (crosslinked 5% phenylmethylpolysiloxane, length 25 m, ID 0.25 mm ID, film thickness 0.33 탆) and temperature programming for volatilization was carried out at an initial temperature of 120 ° C for 1 minute The temperature was raised to 130 占 폚 at 20 占 폚 / min, the temperature was further raised to 150 占 폚 at 5 占 폚 / min, the temperature was raised to 320 占 폚 at 20 占 폚 / min, The sample injection amount was 2 μl, and helium gas having a purity of 99.999% was flowed at a flow rate of 1.0 mL / min. The injection mode was set to a split mode (ratio 5: 1). The electron energy used for ionization was 70 eV, and selected ion monitoring (SIM mode) was used. GC-MS operating conditions are summarized in the table below.

파라미터parameter 조건Condition 분리관Separator ultra-2(크로스-연결된 5% 페닐메틸 폴리실록산
25 m × 0.25 mm I.D. × 0.33 μm 필름 두께)
ultra-2 (cross-linked 5% phenylmethylpolysiloxane
25 m x 0.25 mm ID x 0.33 m film thickness)
운반 기체Carrier gas 헬륨(유속 1.0 mL/분)Helium (flow rate 1.0 mL / min) 주입부 모드Injection mode 스플릿 모드(5 : 1)Split mode (5: 1) 주입량Dose 2 ㎕2 μl 획득 모드Acquisition mode GC-MSD에서 SIM 모드SIM mode in GC-MSD 이온화Ionization EI at 70 eVEI at 70 eV 용매 지연 시간Solvent delay time 5 분5 minutes 총 시간Total time 16 분16 minutes 온도프로그래밍Temperature programming 초기 120 ℃Initial 120 ° C ## 승온 속도(℃/분)Heating rate (° C / min) 온도(℃)Temperature (℃) 시간(분)Time (minutes) 1One 00 120120 1One 22 2020 130130 0.50.5 33 55 150150 44 44 2020 320320 8.58.5 55 00 320320 22

내부 표준 물질 및 표준 물질을 이용하여 각 분석 대상의 머무름 시간들을 비교하고, 내부 표준 물질 피크에 대한 분석 대상 페놀 화합물의 피크 높이비를 대조하여 피크를 동정하였다. 15종의 페놀 화합물의 전체 이온 크로마토그램(total ion chromatogram, TIC)을 도 1에 나타내었다. 크로마토그램 상 분리되지 않은 페놀 화합물들도 각각 다른 m/z 값을 나타내어 SIM 모드에서 충분히 구별되었다. 도 1에서 각 피크의 동정 결과는 다음과 같다: 1. 2,4-디클로로페놀(2,4-DCP), 2. t-부틸페놀(t-BP), 3. 2,5-디클로로페놀(2,5-DCP), 4. 2,4-DCP-d3, 5. n-부틸페놀(n-BP), 6. 2,4,6-트리클로로페놀(2,4,6-TCP), 7. 2,4,5-트리클로로페놀(2,4,5-TCP), 8. 펜틸페놀(n-PP), 9. n-헥실페놀(n-HX), 10. t-옥틸페놀(t-OP), 11. n-헵틸페놀(n-HP), 12. 노닐페놀(NP), 13. t-옥틸페놀(t-OP), 14. 벤조페논-3(BP-3), 15. 트리클로산(TCS), 16. 비스페놀 A(BPA), 17. BPA-d8 The retention times of the analytes were compared using the internal reference material and the reference material, and the peaks were identified by comparing the peak height ratios of the phenol compounds to be analyzed with respect to the internal standard material peaks. The total ion chromatogram (TIC) of 15 phenolic compounds is shown in FIG. Phenolic compounds that were not separated on chromatogram showed different m / z values and were sufficiently distinguished in SIM mode. The results of the identification of each peak in Figure 1 are as follows: 1. 2,4-Dichlorophenol (2,4-DCP), 2. t-butylphenol (t-BP), 3. 2,5-Dichlorophenol 2,5-DCP), 4. 2,4-DCP-d 3 , 5. n-butyl phenol (n-BP), 6. 2,4,6- trichlorophenol , 7. 2,4,5-trichlorophenol (2,4,5-TCP), 8. pentyl phenol (n-PP), 9. n-hexyl phenol (n-HX), 10. t- (t-OP), 11. n-heptylphenol (n-HP), 12. nonylphenol (NP), 13. t-octylphenol (t-OP), 14. benzophenone- 15. Triclosan (TCS), 16. Bisphenol A (BPA), 17. BPA-d 8

SIM 모드 분석을 위한 질량 스펙트럼 상에서의 특정 이온들을 표 2에 나타내었다. Specific ions on the mass spectrum for SIM mode analysis are shown in Table 2.

페놀 화합물Phenol compound 머무름 시간Retention time 선택 이온Selected ion t-BPt-BP 5.605.60 207, 222, 151 207 , 222, 151 n-BPn-BP 6.556.55 179, 222, 207 179 , 222, 207 n-PPn-PP 7.637.63 179, 236, 221 179 , 236, 221 n-HXn-HX 8.568.56 179, 250, 235 179 , 250, 235 n-HPn-HP 9.349.34 179, 264. 249 179 , 264. 249 t-OPt-OP 8.778.77 207, 278, 263 207 , 278, 263 n-OPn-OP 10.0410.04 179, 278, 263 179 , 278, 263 NPNP 9.51 ~ 9.889.51 ~ 9.88 221, 193, 249 221 , 193, 249 2,4-DCP2,4-DCP 5.575.57 219, 234 219 , 234 2,5-DCP2,5-DCP 5.835.83 219, 234 219 , 234 2,4,6-TCP2,4,6-TCP 7.377.37 255, 270 255 , 270 2,4,5-TCP2,4,5-TCP 7.637.63 255, 270 255 , 270 BPABPA 12.3112.31 357, 372, 207 357 , 372, 207 BP-3BP-3 11.7211.72 285, 242, 300 285 , 242, 300 TCSTCS 11.9811.98 347, 362, 200 347 , 362, 200 BPA-d8 BPA-d 8 12.2712.27 365, 380, 211 365 , 380, 211 2,4-DCP-d3 2,4-DCP-d 3 5.825.82 222, 237 222 , 237

3. 검정 곡선의 작성3. Creating a calibration curve

뇨 시료 중 15종의 페놀 화합물, 구체적으로 알킬페놀인 t-부틸페놀(t-BP), n-부틸페놀(n-BP), n-펜틸페놀(n-PP), n-헥실페놀(n-HX), n-헵틸페놀(n-HP), t-옥틸페놀(t-OP), n-옥틸페놀(n-OP), 노닐페놀(NP), 비스페놀 A(BPA) 및 벤조페논-3(BP-3)과 클로로페놀인 2,4-디클로로페놀(2,4-DCP), 2,5-디클로로페놀(2,5-DCP), 2,4,6-트리클로로페놀(2,4,6-TCP), 2,4,5-트리클로로페놀(2,4,5-TCP) 및 트리클로산(TCS)을 분석하였다. 페놀 화합물의 검정 범위는 인간 뇨 시료 내에서 검출되는 농도에 따라 노닐 페놀과 비스페놀 A는 0.2 ~ 50 ng/mL, 이를 제외한 나머지 페놀 화합물은 0.1 ~ 50 ng/mL로 결정되었다. 검량 곡선 농도 범위는 페놀 표준 물질 혼합액에 대하여 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 및 50 ng/mL의 농도를 선택하여 본 발명의 실험예와 실질적으로 동일한 방법으로 측정하여 설정하였다. 검출 한계 측정은 신호 대 잡음비(S/N; Signal to noise) 방법을 이용하였으며, 신호 대 잡음비가 10 이상으로 나타나는 농도를 정량 한계(LOQ)로 나타내었다. 각 화합물의 검정 범위와 직선성 상관 계수를 아래 표 3에 정리하였다. 아래 결과에서 볼 수 있듯이, 모든 페놀 화합물에 대한 검량 곡선은 정량 범위 내에서 직선성(r2 > 0.996)을 나타내었다. (N-BP), n-pentyl phenol (n-PP) and n-hexyl phenol (n-butyl phenol) Octylphenol (n-OP), nonylphenol (NP), bisphenol A (BPA), and benzophenone-3 (2,4-dichlorophenol), 2,5-dichlorophenol (2,5-DCP), 2,4,6-trichlorophenol (2,4- , 6-TCP), 2,4,5-trichlorophenol (2,4,5-TCP) and triclosan (TCS) were analyzed. The assay range of phenol compounds was determined to be 0.2 to 50 ng / mL for nonylphenol and bisphenol A, and 0.1 to 50 ng / mL for other phenol compounds, depending on the concentrations detected in human urine samples. The calibration curve concentration range was determined by selecting the concentration of 0.1, 0.2, 0.5, 1, 2, 5, 10, 20 and 50 ng / mL for the phenol standard substance mixture in the substantially same manner as the experimental example of the present invention Respectively. The detection limit was measured by the signal to noise (S / N) method and the concentration at which the signal-to-noise ratio was 10 or more was expressed as the quantitative limit (LOQ). The calibration range and linearity correlation coefficient of each compound are summarized in Table 3 below. As can be seen from the results below, the calibration curve for all phenolic compounds showed linearity (r 2 > 0.996) within the quantitative range.

화합물compound 검정 범위
(ng/mL)
Black range
(ng / mL)
기울기inclination 절편Intercept R2 R 2 검출 한계 (ng/mL)Detection limits (ng / mL) 정량 한계 (ng/mL)Quantitation limits (ng / mL)
t-BPt-BP 0.1 ~ 500.1 to 50 0.04610.0461 0003500035 0.99940.9994 0.050.05 0.10.1 n-BPn-BP 0.1 ~ 500.1 to 50 0.06510.0651 -0.0099-0.0099 0.99970.9997 0.020.02 0.10.1 n-PPn-PP 0.1 ~ 500.1 to 50 0.08800.0880 0.00660.0066 0.99870.9987 0.020.02 0.10.1 n-HXn-HX 0.1 ~ 500.1 to 50 0.09800.0980 0.01850.0185 0.99970.9997 0.020.02 0.10.1 n-HPn-HP 0.1 ~ 500.1 to 50 0.10360.1036 0.00500.0050 0.99820.9982 0.020.02 0.10.1 t-OPt-OP 0.1 ~ 500.1 to 50 0.11700.1170 0.08510.0851 0.99950.9995 0.050.05 0.10.1 n-OPn-OP 0.1 ~ 500.1 to 50 0.11210.1121 0.00180.0018 0.99930.9993 0.050.05 0.10.1 NPNP 0.2 ~ 500.2 to 50 0.00310.0031 0.03140.0314 0.99710.9971 0.050.05 0.20.2 2,4-DCP2,4-DCP 0.1 ~ 500.1 to 50 0.04390.0439 0.00180.0018 1.00001.0000 0.050.05 0.10.1 2,5-DCP2,5-DCP 0.1 ~ 500.1 to 50 0.03330.0333 0.00250.0025 1.00001.0000 0.050.05 0.10.1 2,4,6-TCP2,4,6-TCP 0.1 ~ 500.1 to 50 0.05490.0549 0.04220.0422 0.99670.9967 0.050.05 0.10.1 2,4,5-TCP2,4,5-TCP 0.1 ~ 500.1 to 50 0.11940.1194 0.00290.0029 0.99910.9991 0.050.05 0.10.1 BPABPA 0.2 ~ 500.2 to 50 0.12980.1298 0.09060.0906 0.99900.9990 0.050.05 0.20.2 BP-3BP-3 0.1 ~ 500.1 to 50 0.10120.1012 -0.0140-0.0140 0.99970.9997 0.050.05 0.10.1 TCSTCS 0.1 ~ 500.1 to 50 0.01640.0164 0.00110.0011 0.99980.9998 0.050.05 0.10.1

4. 유효성의 검증4. Verification of validity

또한, 15종의 페놀 화합물 표준 물질 혼합액에 대한 정확도 및 정밀도 평가를 위하여 0.5, 1 및 5 ng/mL의 농도를 선택하여 측정하였다. 0.5, 1 및 5 ng/mL의 농도에 대하여, 동일한 농도의 시료를 5회 반복 처리한 결과와 5일간 반복 처리한 결과를 기초로 회수율(Recovery, %), 정확도(accuracy, %) 및 정밀도(precision, %)를 평가하여 아래 표 4(알킬페놀) 및 표 5(클로로페놀)에 나타내었다. 표 4 및 표 5에서 볼 수 있듯이, 모든 페놀 화합물의 회수율은 82.1% 내지 110.5%, 정밀도는 0.1% 내지 17.4%, 정확도는 88.5% 내지 116.4%의 범위를 나타내어, 뛰어난 회수율, 정밀도 및 정확도를 가짐을 알 수 있다. In addition, concentrations of 0.5, 1, and 5 ng / mL were selected for the accuracy and precision of 15 phenolic compound standards. (Recovery,%), Accuracy (%) and Accuracy (%) based on the results of 5 replicates and 5 replicates for 0.5, 1, and 5 ng / precision,%) were evaluated and shown in Table 4 (alkylphenol) and Table 5 (chlorophenol) below. As can be seen in Tables 4 and 5, the recovery rates of all phenolic compounds ranged from 82.1% to 110.5%, with precision ranging from 0.1% to 17.4% and accuracy ranging from 88.5% to 116.4%, with excellent recovery, accuracy and accuracy .

알킬 페놀Alkylphenol 농도
(ng/mL)
density
(ng / mL)
5회 반복 처리Repeat 5 times 5일간 반복 처리Repeat for 5 days
회수율Recovery rate 정밀도Precision 정확도accuracy 회수율Recovery rate 정밀도Precision 정확도accuracy t-BPt-BP 0.50.5 99.099.0 4.34.3 107.5107.5 89.989.9 3.53.5 101.7101.7 1One 94.494.4 4.24.2 108.7108.7 98.398.3 1.81.8 109.1109.1 55 88.688.6 7.97.9 107.8107.8 92.492.4 1.61.6 99.199.1 n-BPn-BP 0.50.5 102.3102.3 10.910.9 92.792.7 83.683.6 4.04.0 100.2100.2 1One 88.088.0 11.711.7 104.7104.7 93.793.7 2.92.9 109.3109.3 55 87.887.8 3.83.8 93.993.9 89.389.3 0.20.2 103.3103.3 n-PPn-PP 0.50.5 103.3103.3 4.74.7 95.695.6 91.191.1 9.69.6 97.697.6 1One 92.292.2 8.38.3 93.593.5 87.887.8 4.74.7 109.0109.0 55 86.786.7 5.45.4 106.7106.7 89.689.6 1.51.5 97.797.7 n-HXn-HX 0.50.5 87.987.9 17.417.4 106.8106.8 87.887.8 2.02.0 103.8103.8 1One 92.992.9 8.98.9 96.496.4 90.890.8 6.66.6 111.8111.8 55 96.796.7 10.810.8 96.996.9 85.285.2 5.65.6 99.399.3 n-HPn-HP 0.50.5 97.597.5 7.97.9 90.490.4 89.589.5 7.87.8 97.797.7 1One 97.597.5 11.611.6 99.699.6 84.884.8 11.011.0 104.4104.4 55 107.1107.1 6.16.1 98.798.7 82.882.8 7.67.6 107.7107.7 t-OPt-OP 0.50.5 102.8102.8 7.17.1 95.995.9 90.890.8 0.50.5 100.4100.4 1One 98.898.8 7.67.6 93.693.6 90.490.4 4.64.6 107.7107.7 55 89.989.9 9.79.7 88.588.5 86.186.1 1.51.5 97.497.4 n-OPn-OP 0.50.5 92.792.7 6.96.9 96.596.5 91.591.5 6.76.7 104.8104.8 1One 104.4104.4 14.814.8 98.798.7 96.996.9 6.56.5 97.597.5 55 85.285.2 4.54.5 93.393.3 88.488.4 2.12.1 101.9101.9 NPNP 0.50.5 110.5110.5 9.99.9 106.0106.0 90.190.1 5.55.5 99.099.0 1One 96.896.8 9.89.8 98.398.3 102.3102.3 4.04.0 108.3108.3 55 105.6105.6 6.06.0 95.895.8 106.4106.4 3.13.1 97.297.2 BPABPA 0.50.5 88.188.1 8.38.3 102.1102.1 93.393.3 4.14.1 99.699.6 1One 91.391.3 7.47.4 116.4116.4 83.983.9 5.45.4 102.2102.2 55 109.5109.5 5.95.9 109.8109.8 107.5107.5 5.05.0 101.1101.1 BP-3BP-3 0.50.5 97.597.5 5.65.6 105.7105.7 105.5105.5 1.61.6 106.6106.6 1One 107.9107.9 6.26.2 113.2113.2 92.392.3 9.79.7 106.4106.4 55 101.8101.8 4.94.9 96.496.4 83.583.5 6.56.5 98.198.1

클로로페놀Chlorophenol 농도
(ng/mL)
density
(ng / mL)
5회 반복 처리Repeat 5 times 5일간 반복 처리Repeat for 5 days
회수율Recovery rate 정밀도Precision 정확도accuracy 회수율Recovery rate 정밀도Precision 정확도accuracy 2,4-
DCP
2,4-
DCP
0.50.5 88.288.2 8.88.8 103.4103.4 98.998.9 1.71.7 101.9101.9
1One 108.0108.0 5.05.0 111.7111.7 103.9103.9 3.43.4 106.5106.5 55 97.697.6 2.02.0 100.2100.2 109.2109.2 8.08.0 93.193.1 2,5-
DCP
2,5-
DCP
0.50.5 91.291.2 6.16.1 100.7100.7 82.182.1 8.78.7 102.2102.2
1One 107.3107.3 5.45.4 113.2113.2 93.793.7 4.54.5 94.094.0 55 106.0106.0 3.33.3 106.2106.2 103.0103.0 5.35.3 91.391.3 2,4,6-TCP2,4,6-TCP 0.50.5 92.692.6 6.56.5 101.2101.2 83.383.3 2.82.8 104.4104.4 1One 87.387.3 4.64.6 103.6103.6 97.497.4 3.83.8 109.4109.4 55 104.0104.0 6.16.1 101.3101.3 101.1101.1 9.49.4 96.396.3 2,4,5-TCP2,4,5-TCP 0.50.5 89.789.7 8.28.2 100.8100.8 83.583.5 0.10.1 101.8101.8 1One 106.7106.7 10.510.5 110.7110.7 85.985.9 6.26.2 108.0108.0 55 103.6103.6 3.53.5 97.697.6 106.7106.7 3.23.2 91.391.3 TCSTCS 0.50.5 85.085.0 2.82.8 98.698.6 101.8101.8 9.99.9 104.1104.1 1One 109.5109.5 7.47.4 111.3111.3 100.6100.6 6.76.7 110.6110.6 55 105.8105.8 3.63.6 97.697.6 106.7106.7 3.23.2 91.691.6

이상과 같이, 본 발명에 따른 생체 시료 내 페놀 화합물 분석 방법의 유효성을 검증하였다. 따라서 본 발명에 따른 방법은 생체 시료 내 15종의 페놀 화합물을 동시에 검출 및 분석할 수 있음을 확인할 수 있다.As described above, the effectiveness of the method for analyzing phenolic compounds in a biological sample according to the present invention was verified. Therefore, it can be confirmed that the method according to the present invention can simultaneously detect and analyze 15 kinds of phenol compounds in a biological sample.

Claims (11)

생체 시료의 pH를 6 내지 8로 조절하는 단계; 및
상기 단계에서 pH를 조절한 생체 시료 내 페놀 화합물을 액체상 추출하는 단계를 포함하는 생체 시료 내 페놀 화합물 분석 방법.
Adjusting the pH of the biological sample to 6-8; And
Method for analyzing a phenolic compound in a biological sample comprising the step of liquid phase extraction of the phenolic compound in the biological sample adjusted to pH in the step.
제 1 항에 있어서,
생체 시료는 0.01 ml 내지 5 ml의 뇨를 포함하는 방법.
The method of claim 1,
The biological sample comprises 0.01 ml to 5 ml of urine.
제 1 항에 있어서,
생체 시료의 pH를 조절하는 단계는 탄산칼륨(K2CO3)으로 pH를 조절하는 방법.
The method of claim 1,
Adjusting the pH of the biological sample is a method of adjusting the pH with potassium carbonate (K 2 CO 3 ).
제 1 항에 있어서,
액체상 추출하는 단계는 메틸-tert-부틸 에테르(methyl-tert-butyl ether), 에틸 아세테이트(ethyl acetate) 및 에테르 중 선택된 하나 이상의 추출 용매를 사용하는 방법.
The method of claim 1,
The liquid phase extraction may be performed using at least one extraction solvent selected from methyl-tert-butyl ether, ethyl acetate and ether.
제 1 항에 있어서,
pH를 조절하는 단계 이전에, 생체 시료를 효소로 가수 분해하는 단계를 더 포함하는 방법.
The method of claim 1,
and prior to adjusting the pH, hydrolyzing the biological sample with an enzyme.
제 1 항에 있어서,
액체상 추출하는 단계 이후에, 기체크로마토그래피-질량 분석기로 페놀 화합물을 분석하는 단계를 더 포함하는 방법.
The method of claim 1,
Further comprising the step of analyzing the phenolic compound with a gas chromatography-mass spectrometer after the step of liquid phase extraction.
제 1 항에 있어서,
페놀 화합물은 알킬페놀 및 클로로페놀을 포함하는 방법.
The method of claim 1,
Phenolic compounds include alkylphenols and chlorophenols.
제 1 항에 있어서,
방법은 생체 시료 내 t-부틸페놀, n-부틸페놀, n-펜틸페놀, n-헥실페놀, n-헵틸페놀, t-옥틸페놀, n-옥틸페놀, 노닐페놀, 비스페놀 A, 벤조페논-3, 2,4-디클로로페놀, 2,5-디클로로페놀, 2,4,6-트리클로로페놀, 2,4,5-트리클로로페놀 및 트리클로산을 동시에 분석하는 방법.
The method of claim 1,
The method comprises t-butylphenol, n-butylphenol, n-pentylphenol, n-hexylphenol, n-heptylphenol, t-octylphenol, n-octylphenol, nonylphenol, bisphenol A, benzophenone-3 in biological samples , 2,4-dichlorophenol, 2,5-dichlorophenol, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol and triclosan at the same time.
생체 시료의 pH를 6 내지 8로 조절하는 pH 조절부; 및
생체 시료의 페놀 화합물을 액체상 추출하는 추출부를 포함하는 생체 시료 내 페놀 화합물 분석용 키트.
PH adjusting unit for adjusting the pH of the biological sample to 6 to 8; And
A kit for analyzing a phenolic compound in a biological sample, comprising an extraction unit for extracting a phenolic compound in a biological sample in a liquid phase.
제 9 항에 있어서,
추출부는 메틸-tert-부틸 에테르(methyl-tert-butyl ether), 에틸 아세테이트(ethyl acetate) 및 에테르 중 선택된 하나 이상의 추출 용매를 포함하는 키트.
The method of claim 9,
Wherein the extract comprises at least one extraction solvent selected from methyl-tert-butyl ether, ethyl acetate and ether.
제 9 항에 있어서,
키트는 생체 시료 내 t-부틸페놀, n-부틸페놀, n-펜틸페놀, n-헥실페놀, n-헵틸페놀, t-옥틸페놀, n-옥틸페놀, 노닐페놀, 비스페놀 A, 벤조페논-3, 2,4-디클로로페놀, 2,5-디클로로페놀, 2,4,6-트리클로로페놀, 2,4,5-트리클로로페놀 및 트리클로산을 동시에 분석하는 키트.
The method of claim 9,
The kit includes t-butylphenol, n-butylphenol, n-pentylphenol, n-hexylphenol, n-heptylphenol, t-octylphenol, n-octylphenol, nonylphenol, bisphenol A, benzophenone-3 in biological samples. , Kit for simultaneously analyzing 2,4-dichlorophenol, 2,5-dichlorophenol, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol and triclosan.
KR1020120093684A 2012-08-27 2012-08-27 Method for simultaneous determination of phenol compound in biological material KR101390818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120093684A KR101390818B1 (en) 2012-08-27 2012-08-27 Method for simultaneous determination of phenol compound in biological material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120093684A KR101390818B1 (en) 2012-08-27 2012-08-27 Method for simultaneous determination of phenol compound in biological material

Publications (2)

Publication Number Publication Date
KR20140027735A true KR20140027735A (en) 2014-03-07
KR101390818B1 KR101390818B1 (en) 2014-05-02

Family

ID=50641513

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120093684A KR101390818B1 (en) 2012-08-27 2012-08-27 Method for simultaneous determination of phenol compound in biological material

Country Status (1)

Country Link
KR (1) KR101390818B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239240A (en) * 2018-11-25 2019-01-18 丁立平 The gas chromatography of underwater trace 2,4,6- trichlorophenol and trichloro pyridyl sodium alcoholate is drunk in a kind of measurement
CN109633070A (en) * 2019-02-26 2019-04-16 江阴市产品质量监督检验所 A kind of method that High Performance Liquid Chromatography detects nonyl phenol and bisphenol-A in Food Plastic Packaging Material
CN110045043A (en) * 2019-05-22 2019-07-23 珠海格力电器股份有限公司 A method of measurement 4- nonyl phenol and/or 4- nonyl phenol ethoxy compound content
CN110274979A (en) * 2019-07-26 2019-09-24 广州众力针织品有限公司 The detection system of polystream phenol in a kind of dyestuff
KR20200074363A (en) * 2018-12-14 2020-06-25 대한민국(농촌진흥청장) Quantitative analysis method of Phenolic acid compounds using internal standard method
CN112213423A (en) * 2020-09-30 2021-01-12 青岛啤酒股份有限公司 Method for simultaneously detecting multiple volatile phenol odor in beer/wort
CN112684024A (en) * 2020-12-01 2021-04-20 深圳市计量质量检测研究院 Synchronous detection method for various isomers of pentylphenol in textiles
CN113960237A (en) * 2021-10-12 2022-01-21 苏州市信测标准技术服务有限公司 Method for detecting content of ten phenolic substances in product
CN114813992A (en) * 2022-03-09 2022-07-29 上海交通大学医学院 Method for detecting phenols, esters and pesticide intermediates in urine
CN117147720A (en) * 2023-08-30 2023-12-01 阳江市检测检验中心 Method for detecting triclosan and triclocarban in vegetables

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075422A (en) * 2001-09-05 2003-03-12 Showa Denko Kk Method and apparatus for analyzing endcrine disruptors

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239240A (en) * 2018-11-25 2019-01-18 丁立平 The gas chromatography of underwater trace 2,4,6- trichlorophenol and trichloro pyridyl sodium alcoholate is drunk in a kind of measurement
KR20200074363A (en) * 2018-12-14 2020-06-25 대한민국(농촌진흥청장) Quantitative analysis method of Phenolic acid compounds using internal standard method
CN109633070A (en) * 2019-02-26 2019-04-16 江阴市产品质量监督检验所 A kind of method that High Performance Liquid Chromatography detects nonyl phenol and bisphenol-A in Food Plastic Packaging Material
CN110045043A (en) * 2019-05-22 2019-07-23 珠海格力电器股份有限公司 A method of measurement 4- nonyl phenol and/or 4- nonyl phenol ethoxy compound content
CN110274979A (en) * 2019-07-26 2019-09-24 广州众力针织品有限公司 The detection system of polystream phenol in a kind of dyestuff
CN112213423A (en) * 2020-09-30 2021-01-12 青岛啤酒股份有限公司 Method for simultaneously detecting multiple volatile phenol odor in beer/wort
CN112213423B (en) * 2020-09-30 2022-03-01 青岛啤酒股份有限公司 Method for simultaneously detecting multiple volatile phenol odor in beer/wort
CN112684024A (en) * 2020-12-01 2021-04-20 深圳市计量质量检测研究院 Synchronous detection method for various isomers of pentylphenol in textiles
CN112684024B (en) * 2020-12-01 2022-09-02 深圳市计量质量检测研究院 Synchronous detection method for various isomers of pentylphenol in textiles
CN113960237A (en) * 2021-10-12 2022-01-21 苏州市信测标准技术服务有限公司 Method for detecting content of ten phenolic substances in product
CN114813992A (en) * 2022-03-09 2022-07-29 上海交通大学医学院 Method for detecting phenols, esters and pesticide intermediates in urine
CN117147720A (en) * 2023-08-30 2023-12-01 阳江市检测检验中心 Method for detecting triclosan and triclocarban in vegetables

Also Published As

Publication number Publication date
KR101390818B1 (en) 2014-05-02

Similar Documents

Publication Publication Date Title
KR101390818B1 (en) Method for simultaneous determination of phenol compound in biological material
Simonsen et al. A validated method for simultaneous screening and quantification of twenty-three benzodiazepines and metabolites plus zopiclone and zaleplone in whole blood by liquid-liquid extraction and ultra-performance liquid chromatography-tandem mass spectrometry
Beck et al. Amphetamines detected in exhaled breath from drug addicts: a new possible method for drugs-of-abuse testing
Silva et al. Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry
Juan et al. Development and validation of a liquid chromatography tandem mass spectrometry method for the analysis of β-agonists in animal feed and drinking water
Gunnar et al. Determination of 14 benzodiazepines and hydroxy metabolites, zaleplon and zolpidem as tert-butyldimethylsilyl derivatives compared with other common silylating reagents in whole blood by gas chromatography–mass spectrometry
Fr. Schröder et al. Anabolic, doping, and lifestyle drugs, and selected metabolites in wastewater—detection, quantification, and behaviour monitored by high-resolution MS and MS n before and after sewage treatment
Cirimele et al. Screening for forensically relevant benzodiazepines in human hair by gas chromatography-negative ion chemical ionization-mass spectrometry
Johansen et al. Simultaneous determination of γ-hydroxybutyrate (GHB) and its analogues (GBL, 1.4-BD, GVL) in whole blood and urine by liquid chromatography coupled to tandem mass spectrometry
Studnitz et al. Determination of 3-methoxy-4-hydroxymandelic acid in urine by high-voltage paper electrophoresis
De Wasch et al. LC-MS-MS to detect and identify four beta-agonists and quantify clenbuterol in liver
Gunnar et al. Fast gas chromatography–negative‐ion chemical ionization mass spectrometry with microscale volume sample preparation for the determination of benzodiazepines and α‐hydroxy metabolites, zaleplon and zopiclone in whole blood
Quintela et al. A validated method for the detection of Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in oral fluid samples by liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry
CN111239267B (en) Method for detecting short-chain fatty acids in serum and lymph tissue based on GC-MS
Zhu et al. Determination of bromadiolone and brodifacoum in human hair by liquid chromatography/tandem mass spectrometry and its application to poisoning cases
Sabatini et al. A method for routine quantitation of urinary 8‐hydroxy‐2′‐deoxyguanosine based on solid‐phase extraction and micro‐high‐performance liquid chromatography/electrospray ionization tandem mass spectrometry
Feás et al. Phthalates determination in physiological saline solutions by HPLC–ES-MS
Du et al. Simultaneous qualitative and quantitative analysis of 28 components in Isodon rubescens by HPLC‐ESI‐MS/MS
Fedtke et al. Detection of 2, 5-hexanedione in the urine of persons not exposed to n-hexane
Concheiro et al. Ethylglucuronide determination in urine and hair from alcohol withdrawal patients
KR101505064B1 (en) Discrimination of sitosterolemia in a dried blood spot
Freire et al. Microwave assisted extraction for the determination of ethyl glucuronide in urine by gas chromatography‐mass spectrometry
Crow et al. A simple and cost effective method for the quantification of 8‐hydroxy‐2′‐deoxyguanosine from urine using liquid chromatography tandem mass spectrometry
Forsman et al. Urinary detection times and excretion patterns of flunitrazepam and its metabolites after a single oral dose
Zhao et al. Determination of microcystins in water using integrated solid-phase microextraction with microbore high-performance liquid chromatography—Electrospray quadruple time-of-flight mass spectrometry

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170403

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee