KR20140019615A - Solid acid catalyst and method for preparing biodiesel using the catalyst - Google Patents

Solid acid catalyst and method for preparing biodiesel using the catalyst Download PDF

Info

Publication number
KR20140019615A
KR20140019615A KR1020120085960A KR20120085960A KR20140019615A KR 20140019615 A KR20140019615 A KR 20140019615A KR 1020120085960 A KR1020120085960 A KR 1020120085960A KR 20120085960 A KR20120085960 A KR 20120085960A KR 20140019615 A KR20140019615 A KR 20140019615A
Authority
KR
South Korea
Prior art keywords
oil
acid
catalyst
biodiesel
microalgae
Prior art date
Application number
KR1020120085960A
Other languages
Korean (ko)
Other versions
KR101411952B1 (en
Inventor
이철균
성동호
임상민
류영진
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020120085960A priority Critical patent/KR101411952B1/en
Publication of KR20140019615A publication Critical patent/KR20140019615A/en
Application granted granted Critical
Publication of KR101411952B1 publication Critical patent/KR101411952B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)

Abstract

The present invention relates to a solid acid catalyst and a method for preparing biodiesel using the same. The method for preparing biodiesel includes a step of preparing biochar and a step of adding acid to the prepared biochar and sintering at 250-600 deg. C for 1-5 seconds. [Reference numerals] (AA) Dunalliella skim cell; (BB) Dunalliella bio-charcoal; (CC) Acid solid catalyst

Description

고체산성촉매 및 이를 이용한 바이오디젤의 제조방법{Solid acid catalyst and method for preparing biodiesel using the catalyst}Technical Field [0001] The present invention relates to a solid acid catalyst and a method for preparing the same,

본 발명은 바이오디젤 제조에 유용한 신규 고체촉매 및 이의 제조방법과 이를 이용한 바이오디젤의 제조방법에 관한 것이다.The present invention relates to a novel solid catalyst useful for producing biodiesel, a method for preparing the same, and a method for preparing biodiesel using the same.

지속가능한 신재생에너지인 바이오디젤은 화석연료의 사용에 따른 환경오염의 해소와 에너지고갈 문제를 해결할 수 있는 청정에너지이다. 바이오디젤은 지방산의 알킬에스터(alkyl ester)로서 석유디젤과 유사한 동점도를 가지고 있어서 기존 디젤엔진에 적용성이 우수한 액체연료이다. 통상적으로 트리글리세리드(triglyceride) 자체를 직접 디젤엔진에 사용 시 엔진에 잔류물을 침착시켜서 엔진성능을 저하시킨다. 이에 따라, 트리글리세리드를 저급알콜 특히 가격이 저렴한 메탄올과 글리세리드를 치환한 지방산의 메틸에스터로 만든 바이오 디젤을 청정에너지로서 널리 사용하고 있다. Biodiesel, a sustainable renewable energy, is a clean energy that can solve the problem of eliminating environmental pollution and energy depletion caused by the use of fossil fuel. Biodiesel is an alkyl ester of fatty acids, and has similar kinematic viscosity to petroleum diesel, making it a liquid fuel with excellent applicability to existing diesel engines. Typically triglyceride (triglyceride) itself when used in a diesel engine deposits residues in the engine to reduce the engine performance. Accordingly, biodiesel made of triglycerides made of lower alcohols, especially inexpensive methanol and methyl esters of fatty acids substituted with glycerides, has been widely used as clean energy.

바이오 디젤로의 에스터전환반응(transesterification)에는 촉매가 필요하며 알카리촉매와 산촉매가 널리 사용된다. 현재 공업적으로 수산화나트륨, 수산화칼륨, 나트륨메톡시드와 같은 알카리촉매와 황산과 같은 산촉매가 널리 사용된다. 그러나 상기 촉매들은 모두 반응액인 기질과 메탄올 중에 용해되어 반응하는 호모지니어스(homogeneous) 촉매로서 반응이 종료 후에도 반응액 중에 녹은 상태로 남아 있어서 회수가 어려워 일단 사용 후에는 폐기하고 있다. 성질도 강알카리성 또는 강산성을 띄어, 중화하여 폐기하여야 하며, 중화 시 생성되는 다량의 무기염도 환경에 악영향을 미친다. 또한, 반응 촉매를 일회사용하고 폐기하므로 촉매의 생산 비용과 중화제의 비용이 발생하므로 바이오디젤의 경제적인 제조를 위하여 반복적으로 재사용이 가능한 바이오디젤 제조용 촉매의 개발이 필요하다. 한편 반응액에 녹지 않는 헤테로지니어스(heterogeneous) 촉매, 즉 고체촉매를 바이오디젤 제조에 사용할 경우 반응액과 촉매의 분리가 용이하고 촉매와 분리된 반응액에 혼재한 분리가 곤란한 불순물로 작용했던 촉매가 쉽게 제거되므로 바이오디젤의 정제가 용이해지며 촉매비용이 절감되어 제조원가를 줄일 수 있는 장점이 있다. Catalyst is required for transesterification of biodiesel and alkaline catalyst and acid catalyst are widely used. Currently, alkaline catalysts such as sodium hydroxide, potassium hydroxide, sodium methoxide and acid catalysts such as sulfuric acid are widely used. However, all of the above catalysts are homogeneous catalysts which dissolve in methanol and react with a substrate as a reaction liquid. As a result, the homogeneous catalyst remains dissolved in the reaction solution even after completion of the reaction. It also has strong alkali or strong acidity, so it needs to be neutralized and disposed of, and the large amount of inorganic salts produced during neutralization also adversely affects the environment. In addition, since the reaction catalyst is used for one company and disposed of, the production cost of the catalyst and the cost of the neutralizing agent are generated, and thus, it is necessary to develop a catalyst for biodiesel production that can be repeatedly reused for economic production of biodiesel. On the other hand, when a heterogeneous catalyst which does not dissolve in the reaction liquid, that is, a solid catalyst, is used in the production of biodiesel, a catalyst which can be easily separated from the reaction liquid and catalyst and functions as an impurity, It is easy to purify the biodiesel because it is easily removed, and the cost of the catalyst is reduced, thereby reducing the manufacturing cost.

지금까지 바이오디젤 제조 원료로 대두유, 팜유 및 유채유 등 식용유가 주로 사용되고 있으나, 식량기근 문제를 일으킬 수 있다. 따라서 식량자원과 경합하지 않으며 보다 많은 기름을 생산할 수 있는 자원개발에 많은 관심을 보이고 있다. 그 중에 광합성하는 미생물인 미세조류는 지질생산성이 우수하여 바이오디젤 생산용 지질 생산원으로 많은 연구가 진행되고 있으며, 미세조류로부터 바이오디젤을 경제적으로 생산하기 위해서는 지질뿐 아니라 지질을 추출하고 남은 탈지미세조류세포박의 경제적인 활용도 주요한 과제이다. So far, edible oils such as soybean oil, palm oil and rapeseed oil are mainly used as raw materials for biodiesel production, but may cause food famine. Therefore, there is much interest in developing a resource that does not compete with food resources and can produce more oil. In order to produce biodiesel from microalgae economically, microalgae, which are microorganisms that are photosynthetic microorganisms, have excellent lipid productivity and are being developed as lipid production sources for biodiesel production. In order to economically produce biodiesel from microalgae, The economic utilization of avian cell pellets is also a major challenge.

바이오디젤 제조에 유용한 촉매개발을 위해 많은 연구자들이 고체촉매의 개발 연구를 하였으며 마사카즈 토다 등(Toda M., et al., Nature, 438(7065):178, 2005)은 포도당 또는 설탕을 탄화시키고 황산화하여 바이오디젤제조에 사용하는 고체촉매를 만들었으며, 아미르 메디 데코다 등(Amir Mehdi Dehkhoda, et al., Applied Catalysis A: General, 382(2):197-204, 2010)은 열분해하여 생산된 경질 목재 숯을 원료로 황산화하여 고체촉매를 제조하였다. 그러나 포도당과 설탕은 중요한 식량자원이라는 점에서 경질목재의 숯은 주요 연료자원이라는 점에서 촉매 제조 원료로 사용하기에는 아쉬움이 있는 원료들이다. 도라 에 로페지 등(Dora E. Lopez, et al., Journal of Catalysis, 245(2):381~391, 2007)은 이온교환 수지인 나피온을 촉매로 사용하였고, 안톤 A 키스 등(Anton A. Kiss, et al., Advanced Synthesis & Catalysis, 348(1-2):75-81, 2006)은 황산화 지르코니아를 바이오디젤 제조 촉매로 사용한 바 있다.(Toda M., et al., Nature , 438 (7065): 178, 2005) carbonized glucose or sugar and used sulfuric acid (Amir Mehdi Dehkhoda, et al., Applied Catalysis A : General, 382 (2): 197-204, 2010) was used to produce a solid catalyst for use in the production of biodiesel , Solid wood charcoal was sulfated with the raw material to prepare a solid catalyst. However, in the sense that glucose and sugar are important food resources, hardwood char is a raw material for use as a catalyst raw material in that it is a major fuel resource. Dora E. Lopez et al., Journal of Catalysis , 245 (2): 381-391, 2007) used Nafion, an ion exchange resin, as a catalyst, and Anton A Kiss, et al., Advanced Synthesis & Catalysis , 348 (1-2): 75-81, 2006) used sulfurized zirconia as a catalyst for biodiesel production.

그러나 고체촉매의 제조가 어렵고 고가의 원료를 사용하여 제조하므로 매우고가이며 반응 중에 고체촉매의 활성이 소실되는 문제점이 있어서 바이오디젤을 저렴하고 경제적으로 만들기 위해서는 경제적인 재료로 활성이 우수하며 안정성이 우수한 촉매의 개발이 필요하다. However, since it is difficult to produce a solid catalyst and it is produced using an expensive raw material, there is a problem that the catalyst is very expensive and the activity of the solid catalyst disappears during the reaction. Therefore, in order to make the biodiesel economical and economical, The development of a catalyst is required.

본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 경제적이며, 촉매활성이 우수하고 안정적인 바이오디젤 제조용 고체 산성촉매 및 이의 제조방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.DISCLOSURE Technical Problem The present invention is intended to solve various problems including the above problems, and it is an object of the present invention to provide a solid acid catalyst which is economical, has excellent catalytic activity and is stable, and a method for producing the same. However, these problems are exemplary and do not limit the scope of the present invention.

본 발명의 일 관점에 따르면, 탈지 미세조류 유래의 바이오숯(biochar)에 산을 첨가하고 소성된, 바이오디젤 제조용 고체 산성촉매가 제공된다.According to an aspect of the present invention, an acid is added to a biochar derived from degreasing microalgae and calcined to provide a solid acid catalyst for producing biodiesel.

상기 바이오디젤 제조용 고체 산성촉매에 있어서, 상기 미세조류는 두날리엘라(Dunalliella), 클라미도모나스(Chlamydomonas), 쎄네데무스(Scenedesmus), 클로렐라(Chlorella), 유글레나(Euglena), 테트라셀미스(Tetraselmis), 보트리오코커스(Botryococcus), 난노클로롭시스(Nannochloropsis), 코코믹사(Coccomyxa), 패오닥티룸(Phaeodactylum), 시조키트리움(Schizochytrium) 및 아르스로피라(Arthrospira)로 구성된 군으로부터 선택되는 속에 속하는 미세조류 중 하나 이상일 수 있다. In the biodiesel for preparing the solid acid catalyst, wherein the microalgae are two throwing away Ella (Dunalliella), Chlamydomonas (Chlamydomonas), theta nede mousse (Scenedesmus), Chlorella (Chlorella), euglena (Euglena), tetra-cell Miss (Tetraselmis ) Selected from the group consisting of Botryococcus , Nannochloropsis , Coccomyxa , Phaeodactylum , Schizochytrium and Arthrospira . May be one or more of the microalgae belonging to the genus.

상기 미세조류는 두날리엘라 아시도필리아(D. acidophila), 두날리엘라 바르다윌(D. bardawil), 두날리엘라 바이오쿠라타(D. bioculata), 두날리엘라 라테랄리스(D. lateralis), 두날리엘라 마리티마(D. maritima), 두날리엘라 미누타(D. minuta), 두날리엘라 파바(D. parva), 두날리엘라 페어세이(D. peircei), 두날리엘라 폴리모파(D. polymorpha), 두날리엘라 프리모렉타(D. primolecta), 두날리엘라 슈도살리나(D. pseudosalina), 두날리엘라 쿼토렉타(D. quartolecta), 두날리엘라 살리나 테오도르(D. salina Teodor.), 두날리엘라 테티오렉타(D. tertiolecta), 두날리엘라 살리나(D. salina) 또는 두날리엘라 비리디스(D. viridis)일 수 있다.The microalgae may be selected from the group consisting of D. acidophila , D. bardawil , D. bioculata , D. lateralis , < RTI ID = 0.0 > D. maritima , D. minuta , D. parva , D. peircei , Dnaliella polyomorpha ( D) polymorpha , D. primolecta , D. pseudosalina , D. quartolecta , D. salina teodor . ), It may be D. tertiolecta , D. salina , or D. viridis . ≪ RTI ID = 0.0 >

상기 산은 황산일 수 있다.The acid may be sulfuric acid.

상기 바이오디젤 제조용 고체 산성촉매는 재사용될 수 있으며, 1~200회 재사용이 가능하다. The solid acid catalyst for the production of biodiesel can be reused and re-used from 1 to 200 times.

본 발명의 일 실시예에 따른 바이오디젤 제조용 고체 산성촉매는 지질을 추출하고 남은 부산물인 탈지 미세조류 세포박을 원료로 제조하였기 때문에 경제적이며, 또한 제조된 고체촉매를 반복하여 사용하며 사용이 가능하므로 산업상 이용 가능성이 매우 우수하다.The solid acidic catalyst for producing biodiesel according to an embodiment of the present invention is economical since the degreasing microalgal cell foil, which is a by-product of the extraction of lipids, is used as a raw material, and thus, the solid catalyst can be repeatedly used and used. Industrial availability is very good.

본 발명의 다른 관점에 따르면, (a) 탈지 미세조류를 소성하여, 바이오숯(biochar)을 제조하는 단계; 및 (b) 상기 제조된 미세조류 유래의 바이오숯에 산을 첨가하고 소성하는 단계를 포함하는, 바이오디젤 제조용 고체 산성촉매의 제조방법이 제공된다.According to another aspect of the invention, (a) calcining the degreasing microalgae, to produce a biochar (biochar); And (b) adding an acid to the prepared microalgae-derived biochar and firing the acid, thereby providing a solid acid catalyst for preparing biodiesel.

상기 제조방법에 있어서, 상기 단계 (a)의 소성은 미세조류를 가열하여, 열분해반응을 수행하는 것을 의미하며, 250 ~ 600℃에서 1초 ~ 5시간 동안 수행될 수 있다.In the above production method, the calcination of step (a) means to heat the microalgae, to perform a pyrolysis reaction, it may be performed for 1 second to 5 hours at 250 ~ 600 ℃.

또한, 상기 단계 (b)의 산은 바이오숯 1 중량부를 기준으로 1~50 중량부를 첨가할 수 있으며, 상기 산은 황산일 수 있다.The acid of step (b) may be added in an amount of 1 to 50 parts by weight based on 1 part by weight of biochar, and the acid may be sulfuric acid.

상기 단계 (b)의 소성은 50~300℃에서 0.5~3시간 동안 수행할 수 있다.The firing of step (b) may be performed at 50 to 300 ° C. for 0.5 to 3 hours.

본 발명의 또 다른 관점에 따르면, 상술한 바이오디젤 제조용 고체 산성촉매의 존재 하에, 유지, 유지로부터 유도된 지방산 또는 이들의 혼합물을 알코올과 트랜스에스테르화(trans-esterification) 또는 에스테르화(esterification)반응시키는 공정을 포함하는 바이오디젤의 제조방법이 제공될 수 있다.According to another aspect of the present invention, in the presence of the above-mentioned solid acidic catalyst for producing biodiesel, the fatty acid derived from fat or oil, or a mixture thereof is transesterified or esterified with alcohol. There can be provided a method for producing biodiesel comprising the step of making.

상기 유지는 대두유, 유채유, 옥수수유, 평지유, 해바라기유, 피마자유, 팜유, 아마인유, 양귀비유, 호두유, 땅콩유, 면실유, 미강유, 동백유, 올리브유, 우지(牛脂), 돈지(豚脂), 양지(羊脂), 어유(魚油), 경유(鯨油), 미세조류유 및 이들에서 유도된 지방산으로 구성된 군으로부터 선택되는 1종 이상일 수 있다.The fats and oils include soybean oil, rapeseed oil, corn oil, rapeseed oil, sunflower oil, castor oil, palm oil, linseed oil, poppy oil, walnut oil, peanut oil, cottonseed oil, rice bran oil, camellia oil, olive oil, tallow oil, pork ), Sunny, fish oil, light oil, microalgae oil and fatty acids derived from them.

상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 경제적이며, 촉매의 활성이 우수하여 재사용이 가능한, 바이오디젤 제조용 고체 산성촉매를 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to one embodiment of the present invention made as described above, it is economical and excellent in the activity of the catalyst can be implemented, it is possible to implement a solid acid catalyst for biodiesel production. Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일 실시예에 따른 바이오디젤 제조용 고체 산성촉매의 제조원료인 탈지 미세조류인 두날리엘라 탈지세포, 이를 소성하여 제조한 바이오숯, 및 상기 바이오숯에 산을 첨가하여 소성하여 제조한 고체산성 촉매(미세조류 고체촉매)를 나타낸 도이다.
도 2는 본 발명의 일 실시예에 따른 바이오디젤 제조용 고체 산성촉매의 바이오디젤 전환율을 나타낸 그래프이다.
도 3은 본 발명의 일 실시예에 따른 바이오디젤 제조용 고체 산성촉매 재사용시의 바이오디젤 전환율을 나타낸 그래프이다.
1 is a denaliella degreasing cells of the degreasing microalgae of the raw material of the solid acid catalyst for producing biodiesel according to an embodiment of the present invention, the biochar prepared by firing it, and calcined by adding acid to the biochar Fig. 1 shows the prepared solid acid catalyst (microalgae solid catalyst).
FIG. 2 is a graph showing the conversion of biodiesel of a solid acid catalyst for biodiesel production according to an embodiment of the present invention.
3 is a graph illustrating conversion of biodiesel at the time of reusing a solid acid catalyst for biodiesel production according to an embodiment of the present invention.

이하, 실시예 및 실험예를 통하여 본 발명을 더 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시예 및 실험예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예 및 실험예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. It should be understood, however, that the invention is not limited to the disclosed embodiments and examples, but may be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, It is provided to fully inform the owner of the scope of the invention.

실시예 1: 탈지미세조류세포박을 사용한 바이오숯의 제조Example 1: Preparation of bio-charcoal using defatted microalgae cell foil

미세조류인 두날리엘라 터티올렉타(Dunaliela tertiolecta)의 젖은 세포 640g을 크로로포름-메탄올 혼합비 1:2의 혼합용매를 사용하여 지질을 추출하고, 남은 세포를 건조하여 탈지 두날리엘라 세포박 172 g을 수득하였으며 탈지 건조세포를 막자사발로 곱게 분쇄하였다. 그 후, 상기 탈지건조세포 30 g을 둥근바닥 플라스크에 넣고 질소가스를 흘리면서 400℃에서 2.5시간동안 가열환류하였다. 그 후, 남은 탄화물을 메탄올로 세척하고, 40℃에서 하룻밤 건조하여 검은색의 탈지 미세조류 세포박 유래 바이오숯(biochar)를 15.6 g 수득하였다(도 1 참조). Lipids were extracted from 640 g of wet cells of microalgae Dunaliela tertiolecta using a mixed solvent of chloroform-methanol mixture ratio of 1: 2, and the remaining cells were dried to prepare a degreasing dwarf el / g, and the defatted dried cells were crushed finely with a mortar. Thereafter, 30 g of the above degreased and dried cells was placed in a round bottom flask and heated under reflux at 400 ° C for 2.5 hours while flowing a nitrogen gas. Thereafter, the remaining carbide was washed with methanol, and dried overnight at 40 ° C to obtain 15.6 g of biochar from black defatted microalgae cells (see FIG. 1).

실시예 2: 미세조류 산성고체촉매의 제조Example 2: Preparation of microalgae acidic solid catalyst

상기 실시예 1에서 수득한 탈지 미세조류 세포박 유래 바이오숯 5 g에 30 ㎖의 98% 진한 황산을 넣고 가열환류하여 150℃에서 1.5시간 반응시켰다. 그리고 메탄올로 세척하며, 세척액에 산성이 없어질 때까지 세척하고 건조하여 3.86 g의 탈지 미세조류 세포박 황산화 산성고체촉매를 수득하였다(도 1 참조). 원소분석한 결과 탄소 54.8%, 수소 3.1%, 질소 7.7%, 산소 14.7% 및 황 2.9%로 확인되었다.30 ml of 98% concentrated sulfuric acid was added to 5 g of the biochar char derived from the degreased microalgae cell membrane obtained in Example 1, and the mixture was heated to reflux and reacted at 150 ° C for 1.5 hours. Washed with methanol, washed and dried until the washings had no acidity, yielding 3.86 g of a defatted microalgae cellulosic sulfuric acid acidic solid catalyst (see FIG. 1). Elemental analysis showed that carbon was 54.8%, hydrogen 3.1%, nitrogen 7.7%, oxygen 14.7% and sulfur 2.9%.

실시예 3: 미세조류 산성고체촉매를 사용한 바이오디젤의 제조Example 3: Preparation of biodiesel using microalgae acidic solid catalyst

올레인산을 10%(w/v)으로 메탄올에 용해한 용액 1 ㎖에 미세조류 산성고체촉매 10 mg을 2 ㎖ 캡튜브에 넣고 밀봉한 다음 65℃에서 4 cm 진폭으로 120 rpm으로 왕복운동으로 교반하며 반응하며 시간별 반응율을 가스 크로마토그래피를 사용하여 측정하였다. 탄소수 17의 포화지방산의 메틸에스터(methyl ester)를 내부 표준 물질로 사용하여 생성된 올레인산 메틸에스터를 정량하였다. 전환율은 하기 수학식 1을 통하여 계산하였다. 10 mg of a microalgae acidic solid catalyst (10 mg) was sealed in 1 ml of a solution of oleic acid dissolved in methanol at 10% (w / v) in methanol, sealed, and then stirred at 65 rpm with a 4 cm amplitude at 120 rpm, And the reaction rate over time was measured using gas chromatography. A methyl ester of a saturated fatty acid having 17 carbon atoms was used as an internal standard material to quantify the produced methyl oleate. The conversion rate was calculated by the following equation (1).

Figure pat00001
Figure pat00001

그 결과, 12시간 반응에서 84.5% 수율로 반응되었으며, 시간별 반응율은 첨부한 도2와 같다.As a result, the reaction was carried out at a yield of 84.5% in the 12-hour reaction, and the reaction rate by time was as shown in FIG.

실시예 4: 미세조류 산성고체촉매의 재사용시의 바이오디젤 제조Example 4: Preparation of biodiesel at the time of reuse of a microalgae acidic solid catalyst

올레인산을 10%(w/v)으로 메탄올에 용해한 용액 1 ㎖에 미세조류 산성고체촉매 10 mg을 2 ㎖ 캡튜브에 넣고 밀봉한 다음 65℃에서 실시예 3과 동일한 방법으로 12시간 반응하고 전환율을 분석하였다. 이때 상기 미세조류 산성고체 촉매는 1회 사용한 촉매로, 1회 사용 후 원심분리하여 고체촉매를 분리한 다음 메탄올로 세척하고 40℃에서 하룻밤 건조한 다음 10%(w/v) 올레인산과 반응시켰다. 10 mg of a microalgae acidic solid catalyst was placed in a 2 ml cap tube and sealed at 1 ml of a solution prepared by dissolving oleic acid in 10% (w / v) methanol, followed by reaction at 65 ° C for 12 hours in the same manner as in Example 3, Respectively. At this time, the microcavity acidic solid catalyst was used as a once catalyst and centrifuged once to separate the solid catalyst, followed by washing with methanol, drying at 40 ° C overnight, and then reacting with 10% (w / v) oleic acid.

상기와 같이 사용한 촉매를 원심분리, 세척, 건조 및 올레인산과의 반응 단계를 반복하여 수행하며 전환율을 확인하였을 때, 7번째 재사용시에도 1회 재사용시의 전환율과 유사한 약 67.8%를 나타냈다(도 3 참조). 3회 재사용시 전환율이 다소 낮게 나타났는데 이는 반응 중 용기밀봉이 불충분하여, 메탄올이 새어나와 반응이 정상적으로 이루어지지 않았기 때문이다. When the conversion rate was confirmed by repeating the steps of centrifugation, washing, drying, and oleic acid, the catalyst was found to have a conversion rate of about 67.8%, which is similar to the conversion rate at the time of reuse at the seventh reuse Reference). The conversion rate was slightly lower in the case of three times of reuse because the container sealing was insufficient during the reaction and the methanol leaked and the reaction was not normally performed.

재사용recycle 전환율(%)Conversion Rate (%) 1회1 time 86.086.0 2회Episode 2 81.681.6 3회3rd time 68.168.1 4회4 times 92.792.7 5회5 times 74.774.7 6회6 times 66.966.9 7회7 times 67.867.8

본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
While the present invention has been described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. Accordingly, the true scope of the present invention should be determined by the technical idea of the appended claims.

Claims (12)

탈지 미세조류 유래의 바이오숯(biochar)에 산을 첨가하고 소성된, 바이오디젤 제조용 고체 산성촉매.Solid acid catalyst for biodiesel production, which is calcined by adding acid to biochar derived from skim microalgae. 제1항에 있어서,
상기 미세조류는 두날리엘라(Dunalliella), 클라미도모나스(Chlamydomonas), 쎄네데무스(Scenedesmus), 클로렐라(Chlorella), 유글레나(Euglena), 테트라셀미스(Tetraselmis), 보트리오코커스(Botryococcus), 난노클로롭시스(Nannochloropsis), 코코믹사(Coccomyxa), 패오닥티룸(Phaeodactylum), 시조키트리움(Schizochytrium) 및 아르스로피라(Arthrospira) 구성된 군으로부터 선택되는 속 중 하나 이상인, 바이오디젤 제조용 고체 산성촉매.
The method of claim 1,
Wherein the microalgae are two throwing away Ella (Dunalliella), Chlamydomonas (Chlamydomonas), theta nede mousse (Scenedesmus), Chlorella (Chlorella), euglena (Euglena), tetra-cell Miss (Tetraselmis), boat Rio Rhodococcus (Botryococcus), nanno claw drop system (Nannochloropsis), nose comic four (Coccomyxa), L ohdak tea room (Phaeodactylum), progenitor kit Solarium (Schizochytrium) and Ars as pyrazole (Arthrospira) at least one of the genus selected from the group consisting of biodiesel for preparing solid acidic catalyst .
제1항에 있어서,
상기 미세조류는 두날리엘라 아시도필리아(D. acidophila), 두날리엘라 바르다윌(D. bardawil), 두날리엘라 바이오쿠라타(D. bioculata), 두날리엘라 라테랄리스(D. lateralis), 두날리엘라 마리티마(D. maritima), 두날리엘라 미누타(D. minuta), 두날리엘라 파바(D. parva), 두날리엘라 페어세이(D. peircei), 두날리엘라 폴리모파(D. polymorpha), 두날리엘라 프리모렉타(D. primolecta), 두날리엘라 슈도살리나(D. pseudosalina), 두날리엘라 쿼토렉타(D. quartolecta), 두날리엘라 살리나 테오도르(D. salina Teodor.), 두날리엘라 테티오렉타(D. tertiolecta), 두날리엘라 살리나(D. salina) 또는 두날리엘라 비리디스(D. viridis)인, 바이오디젤 제조용 고체 산성촉매.
The method of claim 1,
The microalgae are Dunaliella asidophilia ( D. acidophila ), Dunaliella Bardawil ( D. bardawil ), Dunaliella Biocurata ( D. bioculata ), Dunaliella Lateralis ( D. lateralis ), two flying it Ella Thermotoga maritima (D. maritima), two flying it Ella minu other (D. minuta), two flying it Ella paba (D. parva), two flying it Ella pair assays (D. peircei), two flying it Ella mopa poly (D polymorpha , D. primolecta , D. prismolina , D. pseudosalina , D. quartolecta , D. salina Teodor. Solid acid catalyst for biodiesel production, which is Dunaliella teiolecta , Dunaliella salina , or Dunaliella viridis .
제1항에 있어서,
상기 산은 황산인, 바이오디젤 제조용 고체 산성촉매.
The method of claim 1,
Wherein the acid is sulfuric acid.
제1항에 있어서,
상기 바이오디젤 제조용 고체 산성촉매는 재사용이 가능한, 바이오디젤 제조용 고체 산성촉매.
The method of claim 1,
The solid acid catalyst for the production of biodiesel is reusable.
(a) 탈지 미세조류를 소성하여, 바이오숯(biochar)을 제조하는 단계; 및
(b) 상기 제조된 미세조류 유래의 바이오숯에 산을 첨가하고 소성하는 단계를 포함하는, 바이오디젤 제조용 고체 산성촉매의 제조방법.
(a) calcining degreasing microalgae to produce biochar; And
(b) adding an acid to the prepared microalgae-derived biochar and firing the acid;
제6항에 있어서,
상기 단계 (a)의 소성은 250 ~ 600℃에서 1초 ~ 5시간 동안 수행하는, 바이오디젤 제조용 고체 산성촉매의 제조방법.
The method according to claim 6,
Wherein the calcination of the step (a) is carried out at 250 to 600 ° C for 1 second to 5 hours.
제6항에 있어서,
상기 단계 (b)의 산은 바이오숯 1 중량부를 기준으로 1~50 중량부를 첨가하는, 바이오디젤 제조용 고체 산성촉매의 제조방법.
The method according to claim 6,
Wherein the acid of step (b) is added in an amount of 1 to 50 parts by weight based on 1 part by weight of biochar.
제6항에 있어서,
상기 단계 (b)의 소성은 50~300℃에서 0.5~3시간 동안 수행하는, 바이오디젤 제조용 고체 산성촉매의 제조방법.
The method according to claim 6,
Firing of the step (b) is carried out for 0.5 to 3 hours at 50 ~ 300 ℃, a method for producing a solid acid catalyst for biodiesel production.
제6항에 있어서,
상기 단계 (b)의 산은 황산인, 바이오디젤 제조용 고체 산성촉매의 제조방법.
The method according to claim 6,
Wherein the acid of step (b) is sulfuric acid.
제1항 내지 제5항의 바이오디젤 제조용 고체 산성촉매의 존재 하에,
유지, 유지로부터 유도된 지방산 또는 이들의 혼합물을 알코올과 트랜스에스테르화(trans-esterification) 또는 에스테르화(esterification)반응시키는 공정을 포함하는, 바이오디젤의 제조방법.
In the presence of a solid acidic catalyst for producing biodiesel of claim 1,
Comprising the step of trans-esterifying or esterifying a fatty acid derived from a fatty acid, a fatty acid, a fatty acid, a fatty acid derived from a fatty acid, a fatty acid derived from a fatty acid,
제11항에 있어서,
상기 유지는 대두유, 유채유, 옥수수유, 평지유, 해바라기유, 피마자유, 팜유, 아마인유, 양귀비유, 호두유, 땅콩유, 면실유, 미강유, 동백유, 올리브유, 우지(牛脂), 돈지(豚脂), 양지(羊脂), 어유(魚油), 경유(鯨油), 미세조류유 및 이들에서 유도된 지방산으로 구성된 군으로부터 선택되는 1종 이상인, 바이오디젤의 제조방법.
12. The method of claim 11,
The fats and oils include soybean oil, rapeseed oil, corn oil, rapeseed oil, sunflower oil, castor oil, palm oil, linseed oil, poppy oil, walnut oil, peanut oil, cottonseed oil, rice bran oil, camellia oil, olive oil, tallow oil, pork ), Sun grease, fish oil, diesel oil, microalgal oil and at least one selected from the group consisting of fatty acids derived from them.
KR1020120085960A 2012-08-06 2012-08-06 Solid acid catalyst and method for preparing biodiesel using the catalyst KR101411952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120085960A KR101411952B1 (en) 2012-08-06 2012-08-06 Solid acid catalyst and method for preparing biodiesel using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120085960A KR101411952B1 (en) 2012-08-06 2012-08-06 Solid acid catalyst and method for preparing biodiesel using the catalyst

Publications (2)

Publication Number Publication Date
KR20140019615A true KR20140019615A (en) 2014-02-17
KR101411952B1 KR101411952B1 (en) 2014-06-26

Family

ID=50267022

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120085960A KR101411952B1 (en) 2012-08-06 2012-08-06 Solid acid catalyst and method for preparing biodiesel using the catalyst

Country Status (1)

Country Link
KR (1) KR101411952B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160068072A (en) 2014-12-04 2016-06-15 한국생산기술연구원 Method for preparing heterogeneous bronsted acid catalysts and heterogeneous bronsted acid catalysts prepared thereby
KR20160105965A (en) 2016-08-29 2016-09-08 한국생산기술연구원 Heterogeneous bronsted acid catalysts and esterification of fatty acid with polyhydric alcohol using the same
KR20160144894A (en) 2015-06-09 2016-12-19 한국석유관리원 Heterogeneous solid acid catalyst using biochar derived biomass and preparing method thereof
KR20220076801A (en) * 2020-12-01 2022-06-08 한국에너지기술연구원 Solid acid catalyst for biodiesel production, solid base catalyst for biodiesel production, methods for preparing the same, and methods for producing biodiesel using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160068072A (en) 2014-12-04 2016-06-15 한국생산기술연구원 Method for preparing heterogeneous bronsted acid catalysts and heterogeneous bronsted acid catalysts prepared thereby
KR20160144894A (en) 2015-06-09 2016-12-19 한국석유관리원 Heterogeneous solid acid catalyst using biochar derived biomass and preparing method thereof
KR20160105965A (en) 2016-08-29 2016-09-08 한국생산기술연구원 Heterogeneous bronsted acid catalysts and esterification of fatty acid with polyhydric alcohol using the same
KR20220076801A (en) * 2020-12-01 2022-06-08 한국에너지기술연구원 Solid acid catalyst for biodiesel production, solid base catalyst for biodiesel production, methods for preparing the same, and methods for producing biodiesel using the same
WO2022119062A1 (en) * 2020-12-01 2022-06-09 한국에너지기술연구원 Solid acid catalyst for producing biodiesel, solid base catalyst for producing biodiesel, methods for preparing same, and method for producing biodiesel using these catalysts

Also Published As

Publication number Publication date
KR101411952B1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
Avhad et al. A review on recent advancement in catalytic materials for biodiesel production
ES2662743T3 (en) Process for preparing biodiesel with lipase and dehydration in a separate line
Yaakob et al. Overview of the production of biodiesel from waste cooking oil
Atadashi et al. The effects of catalysts in biodiesel production: A review
Chakraborty et al. Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment
Liu et al. Biodiesel production by direct methanolysis of oleaginous microbial biomass
Melero et al. Biodiesel production with heterogeneous sulfonic acid-functionalized mesostructured catalysts
Basumatary Transesterification with heterogeneous catalyst in production of biodiesel: A Review
Yingying et al. Biodiesel production from crude Jatropha curcas L. oil with trace acid catalyst
JP5001287B2 (en) Process for the preparation of hydrocarbon fuels
CN100485016C (en) Method for refining biologic diesel oil, phospholipid and glycerin by using leftovers of vegetable oil
KR101411952B1 (en) Solid acid catalyst and method for preparing biodiesel using the catalyst
CA2827063A1 (en) Improved process for the preparation of fatty acid alkyl esters (biodiesel) from triglyceride oils using eco-friendly solid base catalysts
CN101880603A (en) Method for preparing low condensation point biodiesel from high acid value oil
CN105132187A (en) Method for catalytic preparation of biodiesel by binuclear sulfonic-functionalized ionic liquid
KR101498987B1 (en) The method for preparing solid acid catalyst for biodiesel
Ngadi et al. Production of biodiesel from palm oil using egg shell waste as heterogeneous catalyst
Okoronkwo et al. Advances in Biodiesel synthesis: from past to present
CN103436368A (en) Method for synchronously preparing biodiesel and glycerol carbonate by using alkali-earth oxide as catalyst
Jazie et al. In-Situ Dodecylbenzenesulfonic acid-Catalyzed Transesterification of Micro Algae Chlorella Sp. for Biodiesel Production
CN106179297A (en) A kind of biomass slagging scorification solid base catalyst and the application of preparation biodiesel thereof
Math et al. Optimization of restaurant waste oil methyl ester yield
Zhao et al. Optimization of transesterification of beef tallow for biodiesel production catalyzed by solid catalysts
CN102993005A (en) Method for preparing fatty acid alkyl ester by using long-chain alkyl sulfonic acid functional polyoxometalate as catalyst
CN202610209U (en) High acid value oil and fat preparation biodiesel device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170223

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190408

Year of fee payment: 6