KR20140016220A - Coating layer with nano multi-layer, method and apparatus for forming the smae - Google Patents

Coating layer with nano multi-layer, method and apparatus for forming the smae Download PDF

Info

Publication number
KR20140016220A
KR20140016220A KR1020130166817A KR20130166817A KR20140016220A KR 20140016220 A KR20140016220 A KR 20140016220A KR 1020130166817 A KR1020130166817 A KR 1020130166817A KR 20130166817 A KR20130166817 A KR 20130166817A KR 20140016220 A KR20140016220 A KR 20140016220A
Authority
KR
South Korea
Prior art keywords
coating layer
gas
layer
nano
forming
Prior art date
Application number
KR1020130166817A
Other languages
Korean (ko)
Other versions
KR101926881B1 (en
Inventor
여인웅
홍웅표
최광훈
강혁
박상진
오윤석
Original Assignee
현대자동차주식회사
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 현대제철 주식회사 filed Critical 현대자동차주식회사
Priority to KR1020130166817A priority Critical patent/KR101926881B1/en
Publication of KR20140016220A publication Critical patent/KR20140016220A/en
Application granted granted Critical
Publication of KR101926881B1 publication Critical patent/KR101926881B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Disclosed are a nanomulti-layer coating layer, a method and an apparatus for forming the same. The method for forming a nanomulti-layer coating layer by using a physical vapor deposition system having a sputtering apparatus and an arc ion plating apparatus comprises: a first coating step for forming a Mo coating layer on a basic material by using Ar gas and a Mo target of the sputtering apparatus; a nitrating step for forming a nitride thin film formation atmosphere by using N2 gas and Ar gas of the arc ion plating apparatus; a second coating step for forming a nanocomplex coating layer of Cr-Mo-N on the basic material by using Ar gas and the Mo target of the sputtering apparatus, and a Cr source, N2 gas, and Ar gas of the arc ion plating apparatus at the same time; and a multi-coating step for coating the basic material with a multi-layer where the nanocomplex coating layer of Cr-Mo-N and the Mo coating layer are repeated by revolving the basic material around a rotation axis. [Reference numerals] (AA) Start; (BB) End; (S100) First coating step; (S200) Nitrating step; (S300) Second coating step; (S400) Multi-coating step

Description

나노멀티레이어 코팅층, 그 형성방법 및 형성장치 {COATING LAYER WITH NANO MULTI-LAYER, METHOD AND APPARATUS FOR FORMING THE SMAE}Nano multilayer coating layer, method for forming and forming device {COATING LAYER WITH NANO MULTI-LAYER, METHOD AND APPARATUS FOR FORMING THE SMAE}

본 발명은 결정성장 방향을 제어하여 내식성과 전기전도도를 향상시키는 나노멀티레이어 코팅층, 그 형성방법 및 형성장치에 관한 것이다.
The present invention relates to a nano-layer coating layer, a method for forming the same and a forming apparatus for controlling the direction of crystal growth to improve corrosion resistance and electrical conductivity.

일반적으로 플라즈마 코팅기술은 진공상태에서 플라즈마 현상을 이용하여 피처리물에 제3의 물질을 코팅시켜 원래의 모재에 갖지 못하는 기계적 및 기능적 특성을 부가하는 것으로, 보통 화학기상증착법(CVD; Chemical vapor deposition)과 물리기상증착법(PVD: Physical vapor deposition)으로 크게 구분된다.In general, plasma coating technology is to apply a third material to the workpiece by using a plasma phenomenon in a vacuum state to add mechanical and functional properties that the original base material does not have, usually chemical vapor deposition (CVD) ) And physical vapor deposition (PVD).

물리기상증착법으로는 진공증착(vacuum deposition), 스퍼터링(sputtering), 이온 플레이팅(Ion plating) 등의 방법이 널리 이용되고 있으며, 이중, 이온 플레이팅은 플라즈마의 활성화 및 코팅물질의 이온화 방법에 따라 여러 가지 형태의 코팅 방법으로 명명되어 분류되고 있다.As physical vapor deposition, vacuum deposition, sputtering, ion plating, and the like are widely used. Of these, ion plating is dependent on plasma activation and coating material ionization. It is named after various types of coating methods.

상기 아크 이온플레이팅 방법은 코팅물질(타겟)을 음극으로 하여 아크 방전을 이용하여 타겟을 증발 이온화시키는 것으로 빠른 증발율에 의해 코팅속도가 빨라 생산성이 우수하고, 높은 이온화, 충돌, 이동 에너지를 갖고 있어 경질 코팅에 유용하게 이용되어 왔다. The arc ion plating method is to evaporate and ionize a target by using an arc discharge using a coating material (target) as a cathode. The coating speed is fast due to a rapid evaporation rate, and thus the productivity is high, and has high ionization, collision, and moving energy. It has been usefully used for hard coatings.

그러나 일반적으로 내식성이 우수한 코팅재는 전도성이 떨어지는 문제점이 있다. 예를 들어, CrN의 경우 우수한 내식 및 내마모 특성을 가지고 있으나 전기전도도가 낮은 특성이 있다. 기존에는 CrN 코팅층에 Cr2N 상을 형성시켜 전기 전도성을 향상시켜 내식, 전기전도성이 필요한 연료전지분라판 같은 부품의 표면코팅재로 사용하였으나, 전기전도도 특성이 다소 부족하였다. However, coating materials having excellent corrosion resistance generally have a problem of poor conductivity. For example, CrN has excellent corrosion and abrasion resistance but low electrical conductivity. Conventionally, the Cr 2 N phase was formed on the CrN coating layer to improve the electrical conductivity, which was used as a surface coating material for parts such as fuel cell separators requiring corrosion resistance and electrical conductivity, but the electrical conductivity characteristics were somewhat insufficient.

본 발명은 CrN 코팅층에 전도성이 우수한 기능성 메탈을 미세조직 및 멀티레이어층에 사용하고 코팅공정중 바이어스전압 조절을 통해 결정성장 방향을 제어하여 내식성과 전기전도도를 향상시키는 것에 목적이 있다.
An object of the present invention is to improve the corrosion resistance and electrical conductivity by using a functional metal having excellent conductivity in the CrN coating layer for the microstructure and the multilayer layer and controlling the direction of crystal growth through controlling the bias voltage during the coating process.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as an admission that the prior art is known to those skilled in the art.

JP 2004-323883 AJP 2004-323883 A

본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 결정성장 방향을 제어하여 내식성과 전기전도도를 향상시킬 수 있는 나노멀티레이어 코팅층, 그 형성방법 및 형성장치를 제공하는데 그 목적이 있다.
The present invention has been proposed to solve the above problems, and an object of the present invention is to provide a nano-layer coating layer, a method for forming the same, and a device for improving the corrosion resistance and electrical conductivity by controlling the direction of crystal growth.

상기의 목적을 달성하기 위한 본 발명에 따른 나노멀티레이어 코팅층 형성방법은, 스퍼터링기구와 아크이온플레이팅기구를 이용한 코팅층 형성방법으로서, 모재에 스퍼터링기구의 Mo 타겟과 Ar 가스를 이용하여 Mo코팅층을 형성하는 제1코팅단계; 아크이온플레이팅기구의 Ar 가스 및 N2 가스를 이용하여 질화물 박막 형성 분위기를 형성하는 질화단계; 모재에 스퍼터링기구의 Mo 타겟과 Ar 가스 및 아크이온플레이팅기구의 Ar 가스, N2 가스 및 Cr 소스를 동시에 이용하여 Cr-Mo-N의 나노복합코팅층을 형성하는 제2코팅단계; 및 모재에 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되는 멀티레이어로 코팅하되, 모재에 바이어스전압 -250~-150V를 가함으로써 Cr-Mo-N의 주성장면에 [220]이 포함되도록 하는 멀티코팅단계;를 포함한다.Nano-layer coating layer forming method according to the present invention for achieving the above object, as a coating layer forming method using a sputtering mechanism and an arc ion plating mechanism, the Mo coating layer using the Mo target and Ar gas of the sputtering mechanism to the base material Forming a first coating step; A nitriding step of forming a nitride thin film forming atmosphere using Ar gas and N 2 gas of the arc ion plating apparatus; A second coating step of forming a nano-composite coating layer of Cr-Mo-N on the base material by using the Mo target of the sputtering mechanism and the Ar gas of the sputtering mechanism and the Ar gas, the N 2 gas, and the Cr source simultaneously; And coated with a multi-layer repeating nano-composite coating layer and Mo coating layer of Cr-Mo-N on the base material, by applying a bias voltage of -250 ~ -150V to the base material to include the main growth surface of Cr-Mo-N [220] It includes; multi-coating step to be.

상기 멀티코팅단계는 스퍼터링기구 아크이온플레이팅기구는 상호간의 중심축간 각도가 60~120도를 유지하도록 할 수 있다.In the multi-coating step, the sputtering mechanism and the arc ion plating mechanism may maintain an angle between 60 and 120 degrees between central axes.

상기 멀티코팅단계는 스퍼터링기구의 Ar 가스를 60 sccm의 유량으로 제어하고, 아크이온플레이팅기구의 Ar 가스를 20 sccm으로 제어하며 N2 가스를 40~100 sccm의 유량으로 제어할 수 있다.The multi-coating step may control the Ar gas of the sputtering mechanism at a flow rate of 60 sccm, the Ar gas of the arc ion plating mechanism is controlled at 20 sccm, and the N 2 gas may be controlled at a flow rate of 40 to 100 sccm.

상기 멀티코팅단계는 스퍼터링기구의 파워를 50~1000 W로 제어할 수 있다.The multi-coating step may control the power of the sputtering mechanism to 50 ~ 1000 W.

상기 멀티코팅단계는 챔버내 온도를 150~350℃로 유지할 수 있다.The multi-coating step may maintain the temperature in the chamber at 150 ~ 350 ℃.

상기 멀티코팅단계에서는 Cr-Mo-N의 주성장면에 [111], [200] 및 [220]이 포함되도록 할 수 있다.In the multi-coating step, [111], [200] and [220] may be included in the main growth surface of Cr-Mo-N.

본 발명의 나노멀티레이어 코팅층 형성장치는, 모재가 회전할 수 있도록 마련된 챔버; 상기 챔버내에서 Mo 타겟과 Ar 가스를 일정범위로 제공하는 스퍼터링기구; 상기 챔버내에서 Ar 가스, N2 가스 및 Cr 소스를 일정범위로 제공하는 아크이온플레이팅기구; 및 상기 스퍼터링기구의 Mo 타겟과 Ar 가스를 제어하여 모재에 Mo코팅층이 형성되도록 하고, 아크이온플레이팅기구의 Ar 가스 및 N2 가스를 제어하여 질화물 박막 형성 분위기를 형성하며, 스퍼터링기구의 Mo 타겟과 Ar 가스 및 아크이온플레이팅기구의 Ar 가스, N2 가스 및 Cr 소스를 동시에 제어하여 모재에 Cr-Mo-N의 나노복합코팅층이 형성되도록 하고, 모재에 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되어 형성되도록 하되, 모재에 가해지는 바이어스전압을 -250~-150V로 함으로써 Cr-Mo-N의 주성장면에 [220]이 포함되도록 하는 제어부;를 포함한다.Nano-layer coating layer forming apparatus of the present invention, the chamber is provided so that the base material can rotate; A sputtering mechanism for providing a Mo target and an Ar gas in a predetermined range in the chamber; An arc ion plating mechanism for providing an Ar gas, an N 2 gas, and a Cr source in a predetermined range in the chamber; And controlling the Mo target and the Ar gas of the sputtering mechanism to form a Mo coating layer on the base material, and controlling the Ar gas and the N 2 gas of the arc ion plating mechanism to form a nitride thin film forming atmosphere, and the Mo target of the sputtering mechanism. And control the Ar gas, N 2 gas and Cr source of the Ar gas and arc ion plating apparatus at the same time to form a nano-composite coating layer of Cr-Mo-N on the base material, and nano-composite coating layer of Cr-Mo-N on the base material And a Mo coating layer to be repeatedly formed, the control unit to be included in the main growth surface of the Cr-Mo-N by the bias voltage applied to the base material -250 ~ -150V.

이러한 나노멀티레이어 코팅층 형성방법에 의해 제조된 코팅층은, Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복하여 나노멀티레이어로 적층되되, 모재의 바이어스 전압이 -250~-150V로 제어됨으로써 Cr-Mo-N의 주성장면에 [220]이 포함될 수 있다.The coating layer prepared by the method for forming the nano-layer coating layer, Cr-Mo-N nano-composite coating layer and Mo coating layer is repeatedly laminated with a nano multi-layer, the bias voltage of the base material is controlled by -250 ~ -150V Cr [220] may be included in the main growth plane of -Mo-N.

또한, Cr-Mo-N의 주성장면은 [111], [200] 및 [220]일 수 있다.
In addition, the main growth surfaces of Cr-Mo-N may be [111], [200], and [220].

상술한 바와 같은 구조로 이루어진 나노멀티레이어 코팅층, 그 형성방법 및 형성장치에 따르면, 기존 CrN 코팅층에 기능성 메탈 나노복합화 및 레이어 미세구조 제어를 통한 전기전도도의 획기적 향상을 통하여 연료전지분리판용 표면처리에 이용 및 코팅재 적용된 부품의 전기전도도 및 그에 따른 용접성을 향상시킬 수 있다.According to the nano multi-layer coating layer, the formation method and the forming device having the structure as described above, in the surface treatment for fuel cell separator plate through a significant improvement in electrical conductivity through functional metal nanocomposite and control of the microstructure of the existing CrN coating layer It is possible to improve the electrical conductivity and thus the weldability of the parts used and coating material applied.

또한, 기존 CrN 코팅층과 비교하여 내식성뿐만 아니라 전기전도도를 확보하고 경도가 향상된다.
In addition, as compared with the existing CrN coating layer, not only corrosion resistance but also electric conductivity is secured and hardness is improved.

도 1은 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층 형성방법의 순서도.
도 2는 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층 형성장치의 구성도.
도 3은 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층의 미세조직사진.
도 4는 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층의 바이어스전압에 따른 상변화를 나타낸 그래프.
도 5 내지 7은 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층의 효과를 나타낸 그래프.
1 is a flow chart of the nano-layer coating layer forming method according to an embodiment of the present invention.
Figure 2 is a block diagram of a nano-layer coating layer forming apparatus according to an embodiment of the present invention.
Figure 3 is a microstructure photograph of the nano-layer coating layer according to an embodiment of the present invention.
Figure 4 is a graph showing the phase change according to the bias voltage of the nano-layer coating layer according to an embodiment of the present invention.
5 to 7 is a graph showing the effect of the nano-layer coating layer according to an embodiment of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 나노멀티레이어 코팅층, 그 형성방법 및 형성장치에 대하여 살펴본다.Hereinafter, with reference to the accompanying drawings looks at with respect to the nano-layer coating layer according to a preferred embodiment of the present invention, a method of forming and forming apparatus.

도 1은 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층 형성방법의 순서도로서, 본 발명의 나노멀티레이어 코팅층 형성방법은, 스퍼터링기구와 아크이온플레이팅기구를 이용한 코팅층 형성방법으로서, 모재에 스퍼터링기구의 Mo 타겟과 Ar 가스를 이용하여 Mo코팅층을 형성하는 제1코팅단계(S100); 아크이온플레이팅기구의 Ar 가스 및 N2 가스를 이용하여 질화물 박막 형성 분위기를 형성하는 질화단계(S200); 모재에 스퍼터링기구의 Mo 타겟과 Ar 가스 및 아크이온플레이팅기구의 Ar 가스, N2 가스 및 Cr 소스를 동시에 이용하여 Cr-Mo-N의 나노복합코팅층을 형성하는 제2코팅단계(S300); 및 모재를 회전축을 중심으로 공전시킴으로써 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되는 멀티레이어로 코팅하는 멀티코팅단계(S400);를 포함한다.1 is a flow chart of a method for forming a nano-layer coating layer according to an embodiment of the present invention, the method for forming a nano-layer coating layer of the present invention, a method for forming a coating layer using a sputtering mechanism and an arc ion plating mechanism, sputtering on the base material A first coating step S100 of forming a Mo coating layer using an Mo target and an Ar gas of the apparatus; Nitriding step (S200) to form a nitride film forming atmosphere using the Ar gas and N 2 gas of the arc ion plating mechanism; A second coating step (S300) of forming a nano-composite coating layer of Cr-Mo-N by simultaneously using a Mo target of the sputtering mechanism, an Ar gas, and an Ar gas, an N 2 gas, and a Cr source of the sputtering mechanism; And a multi-coating step (S400) of coating the base material with a multi-layer in which the nano-composite coating layer of Cr-Mo-N and the Mo coating layer are repeated by revolving around the rotation axis.

본 발명의 나노멀티레이어 코팅층 형성방법은 기본적으로 물리기상증착기를 이용한 것으로서, 스퍼터링기구(100)와 아크이온플레이팅기구(300)를 사용한다.The method for forming a nano-layer coating layer of the present invention basically uses a physical vapor deposition machine, and uses a sputtering device 100 and an arc ion plating device 300.

도 2는 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층 형성장치의 구성도로서, 챔버(C) 내부에는 모재(M)가 내부의 회전축(H)을 기준으로 자전하며 동시에 공전할 수 있도록 마련된다. 그리고 그러한 모재(M)의 측방에는 스퍼터링기구(100)와 아크이온플레이팅기구(300)가 이격되어 설치된다. 이러한 스퍼터링기구(100)는 챔버(C)내에서 Mo 타겟과 Ar 가스를 일정범위로 제공하고, 아크이온플레이팅기구(300)는 챔버(C)내에서 Ar 가스, N2 가스 및 Cr 소스를 일정범위로 제공한다. 2 is a configuration diagram of a nano-layer coating layer forming apparatus according to an embodiment of the present invention, the base material (M) inside the chamber (C) is provided to rotate and rotate at the same time based on the rotating shaft (H) in the interior do. And the sputtering mechanism 100 and the arc ion plating mechanism 300 are spaced apart from the side of the base material (M). The sputtering mechanism 100 provides Mo target and Ar gas in a range within the chamber C, and the arc ion plating mechanism 300 supplies Ar gas, N 2 gas, and Cr source in the chamber C. Provided in a certain range.

이를 통해 모재(M)는 공전을 하면서 스퍼터링기구(100)의 영향에 의해 코팅이 되거나 또는 스퍼터링기구(100)와 아크플레이팅기구(300)에 의해 동시에 영향을 받으며 코팅되도록 한다. 또한, 동시에 모재(M)는 자전을 하도록 설치되어 전면에 고르게 코팅이 될 수 있도록 한다. 이러한 장치는 '하이브리드형 물리기상증착기'로 표현되기도 하며, 그러한 장치가 바로 하기에서 살펴볼 본 발명의 나노멀티레이어 코팅층 형성장치이다.
Through this, the base material (M) is coated by the influence of the sputtering mechanism (100) while being idle or is simultaneously affected by the sputtering mechanism (100) and the arc plating mechanism (300). In addition, the base material (M) is installed to rotate at the same time to be evenly coated on the front. Such a device is also referred to as a "hybrid type physical vapor deposition machine," such a device is a device for forming a nano-layer coating layer of the present invention will be described below.

구체적으로, 본 발명은 기능성 메탈(Mo)을 이용한 나노복합화 및 나노멀티레이어(Nano multi-layer)를 형성하는 것으로서, Mo를 이용한 나노복합코팅(Cr-Mo-N)형성 및 Cr-Mo-N / Mo 나노멀티레이어 구조를 두 개의 이온소스를 이용하여 각 원소를 증착하며, 소스 전력, 증착 시간 및 지그 자전/공전 속도 등을 조절함으로써 형성할 수 있는 것이다. 그리고, 바이어스전압 조절을 통하여 결정방향을 제어함으로써Cr-Mo-N의 주성장면에 [220]이 포함되도록 제어할 수 있게 되는 것이다.
Specifically, the present invention is to form a nano-composite and nano multi-layer using a functional metal (Mo), forming a nano-composite coating (Cr-Mo-N) and Cr-Mo-N using Mo / Mo nanolayer structure can be formed by depositing each element using two ion sources, and controlling the source power, deposition time and jig rotation / revolution speed. Then, by controlling the crystallization direction by adjusting the bias voltage it can be controlled to include [220] in the main growth surface of the Cr-Mo-N.

먼저, 본 발명의 실시를 위해서는 코팅을 위한 장치로서 각각 비대칭 마그네트론 스퍼터링(sputtering)과 아크이온플레이팅(Arc ion plating, AIP)이 구비된 하이브리드 형의 물리기상증착기를 사용하였다.First, in order to implement the present invention, a hybrid physical vapor deposition machine equipped with asymmetric magnetron sputtering and arc ion plating (AIP), respectively, was used as an apparatus for coating.

그리고 증착용 모재는 각각의 스퍼터링용 타겟(120)과 이온플레이팅용 타겟(320)의 유효 높이(120mm) 구간 내에 지그를 사용하여 고정하고, 각 타겟과의 거리는 80~150mm 이내로 조정하여 증착공정을 위한 모재 위치를 고정하였다.And the base material for deposition is fixed using a jig within the effective height (120mm) section of each sputtering target 120 and the ion plating target 320, the distance from each target is adjusted to within 80 ~ 150mm to adjust the deposition process The base material position was fixed.

그리고 증착을 위한 준비단계의 진공 수준은 2*10^-2 torr이며, 4*10^-5 torr가 될 때까지 진공수준을 조절하였다.The vacuum level of the preparation step for deposition was 2 * 10 ^ -2 torr, and the vacuum level was adjusted until 4 * 10 ^ -5 torr.

그 후 증착 공정 중 모재 고정용 지그를 RPM 2~10 이내의 속도로 공전시켜, 균일한 막구조와 나노스케일의 단일금속조성의 중간 다층막을 형성하였다. Thereafter, the base fixing jig was revolved at a speed of within 2 to 10 RPM during the deposition process to form an intermediate multilayer film having a uniform film structure and a nanoscale single metal composition.

먼저, 다성분계 기능층을 형성하기 전에 시료와의 부착성 증대 등을 위한 금속(Mo)버퍼 층을 형성을 한다. 즉, 모재에 스퍼터링기구의 Mo 타겟과 Ar 가스를 이용하여 Mo코팅층을 형성하는 제1코팅단계(S100)를 수행한다. 이를 위해 Ar (1~100 sccm, 스퍼터링 영역)분위기에서 Mo 타겟을 이용하여 스퍼터링 증착을 수행한다. First, before forming the multi-component functional layer, a metal (Mo) buffer layer for increasing adhesion with a sample is formed. That is, a first coating step (S100) is performed to form a Mo coating layer using an Mo target and an Ar gas of the sputtering mechanism on the base material. To this end, sputtering deposition is performed using an Mo target in an Ar (1-100 sccm, sputtering region) atmosphere.

그리고 아크이온플레이팅기구의 Ar 가스 및 N2 가스를 이용하여 질화물 박막 형성 분위기를 형성하는 질화단계(S200)를 수행한다. 이를 위해 스퍼터링측 Ar 가스량을 줄이고 이온플레이팅측 Ar 가스를 투입함과 동시에 N2 가스를 투입하여 다성분계 질화물 박막 형성을 위한 분위기를 제공한다.In addition, a nitriding step (S200) is performed to form a nitride thin film forming atmosphere using Ar gas and N 2 gas of the arc ion plating apparatus. To this end, the amount of Ar gas to be sputtered is reduced, the Ar gas to the ion-plating side is added, and the N 2 gas is added to provide an atmosphere for forming a multi-component nitride thin film.

그리고 모재에 스퍼터링기구의 Mo 타겟과 Ar 가스 및 아크이온플레이팅기구의 Ar 가스, N2 가스 및 Cr 소스를 동시에 이용하여 Cr-Mo-N의 나노복합코팅층을 형성하는 제2코팅단계(S300) 및 모재를 회전축을 중심으로 공전시킴으로써 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되는 멀티레이어로 코팅하는 멀티코팅단계(S400)를 수행하는 것이다. 이를 위해 증착 진공도를 8*10^-3 torr로 유지한 상태로 스퍼터기구(Mo) 와 아크이온플레이팅기구(Cr)의 소스를 동시에 사용하여 Cr-Mo-N 다성분계 나노복합코팅을 형성하는 것이다.And a second coating step (S300) of forming a nano-composite coating layer of Cr-Mo-N by simultaneously using a Mo target of an sputtering mechanism, an Ar gas, and an Ar gas, an N 2 gas, and a Cr source on a base material. And by performing a multi-coating step (S400) to coat the base material by the revolving axis around the nano-composite coating layer of Cr-Mo-N and a multi-coating layer repeated Mo. For this purpose, Cr-Mo-N multicomponent nanocomposite coating is formed by simultaneously using the source of sputtering device (Mo) and arc ion plating device (Cr) while maintaining the deposition vacuum at 8 * 10 ^ -3 torr. will be.

한편, 상기 멀티코팅단계(S400)는 스퍼터링기구와 아크이온플레이팅기구는 상호간의 중심축간 각도가 60~120도를 유지하도록 한다. 왜냐하면, 모재(M)의 회전이 스퍼터링기구(100)와 아크이온플레이팅기구(300)의 공통된 소스공급 범위를 벗어나는 각도에 위치되는 경우, 나노복합 그레인(grain)만이 형성되며 기능성 금속으로 이루어진 다층의 막이 형성이 불가하기 때문이다. On the other hand, the multi-coating step (S400) is the sputtering mechanism and the arc ion plating mechanism to maintain the angle between the center axis between the 60 to 120 degrees. Because, when the rotation of the base material (M) is located at an angle outside the common source supply range of the sputtering device 100 and the arc ion plating device 300, only nanocomposite grains are formed and a multilayer made of functional metal This is because the film cannot be formed.

즉, 스퍼터링기구(100)와 아크이온플레이팅기구(300)는 상호간의 중심축간 각도가 60~120도를 유지하도록 함으로써 중첩되는 소스 공급 구간에서 Cr-Mo-N 다성분계 나노복합코팅층이 형성되도록 하는 것이다. 그리고 Mo 코팅층의 경우는 스퍼터링기구(100)의 소스 공급범위에만 포함되는 영역에서 코팅이 이루어지게 되고, 결국 모재(M)는 공전을 하면서 1회 공전시 Mo 코팅층과 Cr-Mo-N 코팅층이 각각 1개 층씩 형성되는 것이다.That is, the sputtering mechanism 100 and the arc ion plating mechanism 300 maintain the Cr-Mo-N multicomponent nanocomposite coating layer in an overlapping source supply section by maintaining an angle between 60 and 120 degrees between central axes. It is. In the case of the Mo coating layer, the coating is made in an area included only in the source supply range of the sputtering apparatus 100. As a result, the Mo coating layer and the Cr-Mo-N coating layer each have one revolution while the base material M rotates. It is formed by one layer.

또한, 스퍼터링기구(100) 소스 측에 N2가 투입되거나, 챔버 내에서 전체적으로 N2 가스가 투입되는 경우에는 기능성 금속으로 이루어진 다층막 형성이 불가하기 때문에 N2가스는 반드시 아크이온플레이팅기구(300)측에만 공급이 되도록 해야 한다.
In addition, when N 2 is introduced into the source side of the sputtering apparatus 100 or N 2 gas is entirely injected into the chamber, the N 2 gas is necessarily an arc ion plating mechanism 300 because a multilayer film made of a functional metal cannot be formed. Supply only to the side.

또한, 상기 멀티코팅단계(S400)는 모재(M)에 가해지는 바이어스전압이 -250~-150V가 되도록 할 수 있다. 이는 -250~-150V의 바이어스전압이 모재(M)에 가해진 경우 Cr-Mo-N의 주성장면에 [220]이 포함되어 전도성과 경도 및 내식성이 모두 구비될 수 있기 때문이다.In addition, the multi-coating step (S400) may be such that the bias voltage applied to the base material (M) is -250 ~ -150V. This is because when the bias voltage of -250 ~ -150V is applied to the base material (M), it is included in the main growth surface of Cr-Mo-N can be provided with both conductivity and hardness and corrosion resistance.

도 4는 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층의 바이어스전압에 따른 상변화를 나타낸 그래프로서, -80V의 바이어스전압의 경우 주성장면이 [111], [200]이나, -200V의 바이어스전압을 걸었을 경우에는 주성장면에 [220]이 포함됨으로서, -250~-150V의 바이어스전압 범위에서 전도성과 내식성이 우수함을 알 수 있다.4 is a graph showing a phase change according to a bias voltage of a nano-layer coating layer according to an embodiment of the present invention. In the case of a bias voltage of -80V, the main growth surface is [111], [200] or -200V. In the case of applying a voltage, [220] is included in the main growth surface, and it can be seen that the conductivity and corrosion resistance are excellent in the bias voltage range of -250 to -150V.

좀 더 구체적으로, 도 5와 같이 바이어스 전압 -140V부터 Cr-Mo-N의 주성장면이 [220]으로 나타난다. 그리고 바이어스 전압 -500V 이하의 경우에는 [220] 주성장면이 관찰되지 않는다. 따라서, 바이어스 전압은 -150V를 넘기지 않아야 하는 것이다. 도 6은 그에 따른 전도성 평가의 그래프로서, 바이어스 전압 -140V부터 저항이 감소되어 -200V에서 최저임을 알 수 있다. 따라서, 바이어스 전압은 -150V를 넘기지 않아야 하고, 이는 바로 Cr-Mo-N의 주성장면에 [220]이 포함되기 때문인 것이다.More specifically, as shown in FIG. 5, the main growth surface of Cr-Mo-N is represented by [220] from the bias voltage of -140V. In the case of the bias voltage of −500 V or less, the main growth surface is not observed. Therefore, the bias voltage should not exceed -150V. Figure 6 is a graph of the conductivity evaluation accordingly, it can be seen that the resistance is reduced from the bias voltage -140V, the lowest at -200V. Therefore, the bias voltage should not exceed -150V, because [220] is included in the main growth surface of Cr-Mo-N.

한편, 도 5에서는 Cr-Mo-N의 주성장면 [111]이 바이어스 전압 -300V일 때부터 관찰되지 않는 것을 알 수 있다. 그리고, 그에 따른 경도 평가 결과인 도 7에 비추어보면, Cr-Mo-N의 주성장면 [111]이 바이어스 전압 -300V일 때부터 관찰되지 않는 현상과 함께 하여 -300V부터 경도가 심하게 저하되어 25GPa 이하로서 차량 부품으로 사용이 어려운 수준임을 알 수 있다. 따라서, 최소한 바이어스 전압은 -200V와 -300V의 사이인 -250V는 넘어야 함을 알 수 있다.On the other hand, in Fig. 5 it can be seen that the main growth surface [111] of Cr-Mo-N is not observed when the bias voltage is -300V. In addition, in view of FIG. 7, which is a result of the hardness evaluation, the hardness of the steel is significantly lowered from -300 V to 25 GPa with the phenomenon that the main growth surface [111] of Cr-Mo-N is not observed when the bias voltage is -300 V. As a result, it can be seen that it is difficult to use as a vehicle component. Thus, it can be seen that at least the bias voltage must exceed -250V, which is between -200V and -300V.

따라서, 이러한 시험결과로도 뒷받침되듯이, 멀티코팅단계에서 모재에 가해지는 바이어스 전압은 -250~-150V 인 경우가 전기전도도와 내구성 및 경도의 측면에서 가장 필요로 하는 주성장면을 모두 갖춤으로써 효과적인 것이다.
Therefore, as supported by these test results, the bias voltage applied to the base material in the multi-coating step is effective by having the main growth surface that is most needed in terms of electrical conductivity, durability and hardness. will be.

한편, 상기 멀티코팅단계(S400)는 스퍼터링기구의 Ar 가스를 60 sccm의 유량으로 제어하고, 아크이온플레이팅기구의 Ar 가스를 20 sccm으로 제어하며 N2 가스를 40~100 sccm의 유량으로 제어하도록 한다.On the other hand, the multi-coating step (S400) controls the Ar gas of the sputtering mechanism at a flow rate of 60 sccm, the Ar gas of the arc ion plating mechanism is controlled at 20 sccm, and the N 2 gas is controlled at a flow rate of 40-100 sccm Do it.

그리고, 상기 멀티코팅단계(S400)는 스퍼터링기구의 파워를 50~1000W로 제어하며, 챔버내 온도를 150~350℃로 유지한 상태에서 Mo 코팅층과 Cr-Mo-N 코팅층을 교대로 형성하도록 한다.In addition, the multi-coating step (S400) to control the power of the sputtering mechanism to 50 ~ 1000W, to form the Mo coating layer and Cr-Mo-N coating layer alternately while maintaining the temperature in the chamber at 150 ~ 350 ℃ .

도 3은 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층의 미세조직사진으로서, 두께가 상대적으로 두꺼운 Cr-Mo-N 코팅층과 두께가 상대적으로 얇은 Mo 코팅층이 멀티코팅단계(S400)를 통하여 교대로 코팅되었음을 알 수 있다.
Figure 3 is a microstructure photograph of the nano-layer coating layer according to an embodiment of the present invention, the relatively thick Cr-Mo-N coating layer and the relatively thin Mo coating layer alternate through the multi-coating step (S400) It can be seen that the coating.

한편, 도 2는 본 발명의 일 실시예에 따른 나노멀티레이어 코팅층 형성장치의 구성도로서, 본 발명의 나노멀티레이어 코팅층 형성장치는, 모재(M)가 자전과 동시에 내부 축(H)을 기준으로 공전할 수 있도록 마련된 챔버(C); 상기 챔버(C)내에서 Mo 타겟과 Ar 가스를 일정범위로 제공하는 스퍼터링기구(100); 상기 챔버(C)내에서 Ar 가스, N2 가스 및 Cr 소스를 일정범위로 제공하는 아크이온플레이팅기구(300); 및 상기 스퍼터링기구(100)의 Mo 타겟과 Ar 가스를 제어하여 모재(M)에 Mo코팅층이 형성되도록 하고, 아크이온플레이팅기구(300)의 Ar 가스 및 N2 가스를 제어하여 질화물 박막 형성 분위기를 형성하며, 스퍼터링기구(100)의 Mo 타겟과 Ar 가스 및 아크이온플레이팅기구(300)의 Ar 가스, N2 가스 및 Cr 소스를 동시에 제어하여 모재(M)에 Cr-Mo-N의 나노복합코팅층이 형성되도록 하고, 모재(M)를 회전축(H)을 중심으로 공전시켜 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되어 형성되도록 하는 제어부(700);를 포함한다.On the other hand, Figure 2 is a block diagram of a nano-layer coating layer forming apparatus according to an embodiment of the present invention, the nano-layer coating layer forming apparatus of the present invention, the base material (M) is rotated on the basis of the internal axis (H) A chamber (C) provided to revolve; A sputtering mechanism (100) for providing Mo target and Ar gas in a predetermined range in the chamber (C); An arc ion plating mechanism (300) for providing Ar gas, N 2 gas, and Cr source in a predetermined range in the chamber (C); And controlling the Mo target and the Ar gas of the sputtering mechanism 100 so that the Mo coating layer is formed on the base material M, and controlling the Ar gas and the N 2 gas of the arc ion plating mechanism 300 to form a nitride thin film formation atmosphere. And control the Mo target of the sputtering mechanism 100 and the Ar gas and the Ar gas, N 2 gas and the Cr source of the arc ion plating mechanism 300 at the same time to control the nano-material of Cr-Mo-N in the base material (M) And a control unit 700 for forming a composite coating layer and revolving the base material M about the rotation axis H so that the nanocomposite coating layer of Cr-Mo-N and the Mo coating layer are repeatedly formed.

챔버(C)의 내부는 제어부(700)에 의해 온도가 제어되며, 내부의 회전축(H)에는 모재(M)가 공전하며 자전할 수 있도록 제어부(700)에 의해 제어된다. 그리고 스퍼터링기구(100)에는 Mo 타겟(120)이 설치되고 Ar 가스 공급기가 마련되며 파워제공부(140)가 마련된다. 한편, 아크이온플레이팅기구(300)에는 Cr 소스(320)가 설치되고 Ar 가스 및 N2 가스 공급기가 마련되며 파워제공부(340)가 마련된다. 그리고 챔버(C)에는 모재(M)에 바이어스전압을 공급하는 바이어스전압생성부(500)가 마련된다.The temperature of the chamber C is controlled by the controller 700, and the inside of the chamber C is controlled by the controller 700 so that the base material M rotates and rotates. In addition, the Mo target 120 is installed in the sputtering mechanism 100, an Ar gas supply is provided, and a power supply unit 140 is provided. Meanwhile, the arc ion plating mechanism 300 is provided with a Cr source 320, an Ar gas and an N 2 gas supplier, and a power providing unit 340. In the chamber C, a bias voltage generation unit 500 for supplying a bias voltage to the base material M is provided.

제어부(700)는 이러한 스퍼터링기구(100)와 아크이온플레이팅기구(300)의 작동을 제어토록 한다.The control unit 700 controls the operation of the sputtering mechanism 100 and the arc ion plating mechanism 300.

제어부(700)는 상기 스퍼터링기구(100)의 Mo 타겟(120)과 Ar 가스를 제어하여 모재(M)에 Mo코팅층이 형성되도록 하고, 아크이온플레이팅기구(300)의 Ar 가스 및 N2 가스를 제어하여 질화물 박막 형성 분위기를 형성하며, 스퍼터링기구(100)의 Mo 타겟(120)과 Ar 가스 및 아크이온플레이팅기구(300)의 Ar 가스, N2 가스 및 Cr 소스(320)를 동시에 제어하여 모재(M)에 Cr-Mo-N의 나노복합코팅층이 형성되도록 하고, 모재(M)를 회전축(H)을 중심으로 공전시켜 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되어 형성되도록 한다. 이를 통해 도 3과 같은 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되도록 하는 것이다.
The controller 700 controls the Mo target 120 and the Ar gas of the sputtering mechanism 100 so that the Mo coating layer is formed on the base material M, and the Ar gas and the N 2 gas of the arc ion plating mechanism 300. To form a nitride thin film formation atmosphere, and simultaneously control the Mo target 120 and the Ar gas, the N 2 gas and the Cr source 320 of the Ar gas and the arc ion plating mechanism 300 of the sputtering mechanism 100. To form a nano-composite coating layer of Cr-Mo-N on the base material (M), and revolve the base material (M) around the rotation axis (H) to form the nano-composite coating layer and Cr coating layer of Cr-Mo-N repeatedly. Be sure to This is to repeat the nano-composite coating layer and Mo coating layer of Cr-Mo-N as shown in FIG.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.

100 : 스퍼터링기구 300 : 아크이온플레이팅기구
500 : 바이어스전압생성부 700 : 제어부
C : 챔버 M : 모재
100: sputtering mechanism 300: arc ion plating mechanism
500: bias voltage generation unit 700: control unit
C: Chamber M: Base Material

Claims (9)

스퍼터링기구와 아크이온플레이팅기구를 이용한 코팅층 형성방법으로서,
모재에 스퍼터링기구의 Mo 타겟과 Ar 가스를 이용하여 Mo코팅층을 형성하는 제1코팅단계(S100);
아크이온플레이팅기구의 Ar 가스 및 N2 가스를 이용하여 질화물 박막 형성 분위기를 형성하는 질화단계(S200);
모재에 스퍼터링기구의 Mo 타겟과 Ar 가스 및 아크이온플레이팅기구의 Ar 가스, N2 가스 및 Cr 소스를 동시에 이용하여 Cr-Mo-N의 나노복합코팅층을 형성하는 제2코팅단계(S300); 및
모재에 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되는 멀티레이어로 코팅하되, 모재에 바이어스전압 -250~-150V를 가함으로써 Cr-Mo-N의 주성장면에 [220]이 포함되도록 하는 멀티코팅단계(S400);를 포함하는 나노멀티레이어 코팅층 형성방법.
As a method of forming a coating layer using a sputtering mechanism and an arc ion plating mechanism,
A first coating step (S100) of forming a Mo coating layer using a Mo target and an Ar gas of a sputtering mechanism on a base material;
Nitriding step (S200) to form a nitride film forming atmosphere using the Ar gas and N 2 gas of the arc ion plating mechanism;
A second coating step (S300) of forming a nano-composite coating layer of Cr-Mo-N by simultaneously using a Mo target of the sputtering mechanism and an Ar gas of the sputtering mechanism and an Ar gas, an N 2 gas, and a Cr source of the arc ion plating mechanism; And
The nanocomposite coating layer of the Cr-Mo-N and the Mo coating layer are coated on the base material with a repeating multilayer, and the main growth surface of the Cr-Mo-N is included by applying a bias voltage of -250 ~ -150V to the base material. Nano coating layer forming method comprising a; multi-coating step (S400).
청구항 1에 있어서,
상기 멀티코팅단계(S400)는 스퍼터링기구와 아크이온플레이팅기구는 상호간의 중심축간 각도가 60~120도를 유지하도록 하는 것을 특징으로 하는 나노멀티레이어 코팅층 형성방법.
The method according to claim 1,
The multi-coating step (S400) is a method for forming a nano-layer coating layer, characterized in that the sputtering mechanism and the arc ion plating mechanism to maintain the angle between the center axis between 60 to 120 degrees.
청구항 1에 있어서,
상기 멀티코팅단계(S400)는 스퍼터링기구의 Ar 가스를 60 sccm의 유량으로 제어하고, 아크이온플레이팅기구의 Ar 가스를 20 sccm으로 제어하며 N2 가스를 40~100 sccm의 유량으로 제어하는 것을 특징으로 하는 나노멀티레이어 코팅층 형성방법.
The method according to claim 1,
The multi-coating step (S400) to control the Ar gas of the sputtering mechanism to a flow rate of 60 sccm, to control the Ar gas of the arc ion plating mechanism to 20 sccm and to control the N 2 gas at a flow rate of 40 ~ 100 sccm Nano-layer coating layer forming method characterized in that.
청구항 1에 있어서,
상기 멀티코팅단계(S400)는 스퍼터링기구의 파워를 50~1000 W로 제어하는 것을 특징으로 하는 나노멀티레이어 코팅층 형성방법.
The method according to claim 1,
The multi-coating step (S400) is a method for forming a nano-layer coating layer, characterized in that to control the power of the sputtering mechanism to 50 ~ 1000 W.
청구항 1에 있어서,
상기 멀티코팅단계(S400)는 챔버내 온도를 150~350℃로 유지하는 것을 특징으로 하는 나노멀티레이어 코팅층 형성방법.
The method according to claim 1,
The multi-coating step (S400) is a method for forming a nano-layer coating layer, characterized in that to maintain the temperature in the chamber at 150 ~ 350 ℃.
청구항 1에 있어서,
상기 멀티코팅단계(S400)에서는 Cr-Mo-N의 주성장면에 [111], [200] 및 [220]이 포함되도록 하는 것을 특징으로 하는 나노멀티레이어 코팅층 형성방법.
The method according to claim 1,
In the multi-coating step (S400), [111], [200] and [220] are included in the main growth surface of Cr-Mo-N.
모재(M)가 회전할 수 있도록 마련된 챔버(C);
상기 챔버(C)내에서 Mo 타겟과 Ar 가스를 일정범위로 제공하는 스퍼터링기구(100);
상기 챔버(C)내에서 Ar 가스, N2 가스 및 Cr 소스를 일정범위로 제공하는 아크이온플레이팅기구(300); 및
상기 스퍼터링기구(100)의 Mo 타겟과 Ar 가스를 제어하여 모재(M)에 Mo코팅층이 형성되도록 하고, 아크이온플레이팅기구(300)의 Ar 가스 및 N2 가스를 제어하여 질화물 박막 형성 분위기를 형성하며, 스퍼터링기구(100)의 Mo 타겟과 Ar 가스 및 아크이온플레이팅기구(300)의 Ar 가스, N2 가스 및 Cr 소스를 동시에 제어하여 모재(M)에 Cr-Mo-N의 나노복합코팅층이 형성되도록 하고, 모재(M)에 Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복되어 형성되도록 하되, 모재(M)에 가해지는 바이어스전압을 -250~-150V로 함으로써 Cr-Mo-N의 주성장면에 [220]이 포함되도록 하는 제어부(700);를 포함하는 나노멀티레이어 코팅층 형성장치.
A chamber C provided to rotate the base material M;
A sputtering mechanism (100) for providing Mo target and Ar gas in a predetermined range in the chamber (C);
An arc ion plating mechanism (300) for providing Ar gas, N 2 gas, and Cr source in a predetermined range in the chamber (C); And
By controlling the Mo target and the Ar gas of the sputtering mechanism 100 to form a Mo coating layer on the base material (M), by controlling the Ar gas and N 2 gas of the arc ion plating mechanism 300 to create a nitride thin film formation atmosphere The nano-composite of Cr-Mo-N in the base material M is formed by simultaneously controlling the Mo target of the sputtering device 100 and the Ar gas, the N 2 gas, and the Cr source of the arc ion plating device 300. The coating layer is formed, and the nano-composite coating layer and the Mo coating layer of Cr-Mo-N are repeatedly formed on the base material (M), but the Cr-Mo by applying a bias voltage applied to the base material (M) to -250 ~ -150V. Nano-layer coating layer forming apparatus comprising a; control unit 700 to be included in the main growth surface of -N.
청구항 1의 나노멀티레이어 코팅층 형성방법에 의해 제조된 코팅층으로서,
Cr-Mo-N의 나노복합코팅층과 Mo코팅층이 반복하여 나노멀티레이어로 적층되되, 모재의 바이어스 전압이 -250~-150V로 제어됨으로써 Cr-Mo-N의 주성장면에 [220]이 포함된 것을 특징으로 하는 나노멀티레이어 코팅층.
As a coating layer prepared by the method for forming a nano-layer coating layer of claim 1,
Nano-composite coating layer and Mo-coating layer of Cr-Mo-N are repeatedly stacked with nano multi-layer, but the bias voltage of the base material is controlled to be -250 ~ -150V so that [220] is included in the main growth surface of Cr-Mo-N. Nano multilayer coating layer, characterized in that.
청구항 8에 있어서,
Cr-Mo-N의 주성장면은 [111], [200] 및 [220]이 포함된 것을 특징으로 하는 나노멀티레이어 코팅층.
The method according to claim 8,
Nano-layer coating layer characterized in that the main growth surface of the Cr-Mo-N [111], [200] and [220].
KR1020130166817A 2013-12-30 2013-12-30 Coating layer with nano multi-layer, method and apparatus for forming the smae KR101926881B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130166817A KR101926881B1 (en) 2013-12-30 2013-12-30 Coating layer with nano multi-layer, method and apparatus for forming the smae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130166817A KR101926881B1 (en) 2013-12-30 2013-12-30 Coating layer with nano multi-layer, method and apparatus for forming the smae

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020110126658A Division KR20130060544A (en) 2011-11-30 2011-11-30 Method and apparatus for forming coating layer with nano multi-layer

Publications (2)

Publication Number Publication Date
KR20140016220A true KR20140016220A (en) 2014-02-07
KR101926881B1 KR101926881B1 (en) 2018-12-07

Family

ID=50265398

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130166817A KR101926881B1 (en) 2013-12-30 2013-12-30 Coating layer with nano multi-layer, method and apparatus for forming the smae

Country Status (1)

Country Link
KR (1) KR101926881B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180023795A (en) * 2016-08-24 2018-03-07 현대자동차주식회사 Coating method for moving part of vehicle and moving part of vehicle manufactured by the same
US10737462B2 (en) 2016-08-24 2020-08-11 Hyundai Motor Company Method for coating surface of moving part of vehicle and moving part of vehicle manufactured by the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003036525A (en) 2001-07-25 2003-02-07 Fuji Electric Co Ltd Perpendicular magnetic recording medium and its manufacturing method
JP4402898B2 (en) * 2003-04-22 2010-01-20 株式会社神戸製鋼所 Physical vapor deposition equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180023795A (en) * 2016-08-24 2018-03-07 현대자동차주식회사 Coating method for moving part of vehicle and moving part of vehicle manufactured by the same
US10737462B2 (en) 2016-08-24 2020-08-11 Hyundai Motor Company Method for coating surface of moving part of vehicle and moving part of vehicle manufactured by the same

Also Published As

Publication number Publication date
KR101926881B1 (en) 2018-12-07

Similar Documents

Publication Publication Date Title
KR20130060544A (en) Method and apparatus for forming coating layer with nano multi-layer
CN100467664C (en) Method for manufacturing diamond-like film and part with coating manufactured thereby
CN107130213B (en) Multicomponent alloy laminated film Preparation equipment and preparation method
CN102912298B (en) Cr-doped DLC (diamond-like carbon) coating with anticorrosion and antifriction properties and preparation method
Tan et al. Fabrication and characterization of in-situ duplex plasma-treated nanocrystalline Ti/AlTiN coatings
US10006116B2 (en) Forming method of intermediate layer formed between base material and DLC film, DLC film forming method, and intermediate layer formed between base material and DLC film
CN105908126A (en) High Al content AlTiN composite coating and preparation method thereof
CN103874780A (en) Drill having a coating
CN106011752A (en) Preparation method of hard metal film
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
KR20140016220A (en) Coating layer with nano multi-layer, method and apparatus for forming the smae
CN101591765B (en) Method for preparing chromium-titanium-aluminum-zirconium nitride multicomponent hard reaction gradient film
CN101591766B (en) Method for preparing titanium-aluminum-zirconium nitride multicomponent hard reaction gradient film
JP2010084153A (en) Film deposition method and film deposition apparatus
RU2699700C1 (en) Method of depositing amorphous-crystalline coating on metal cutting tool
KR102036974B1 (en) MANUFACTURING METHOD FOR HIGHLY CORROSION RESISTIVE CrAlSiN HARD COATINGS BY INSERTING CrAlSiON LAYER USING OXYGEN SUPPLY AND DIE CASTING MOLD THEREBY
CN103774092B (en) It is a kind of to prepare conductive and corrosion-resistant finishes method in Mg alloy surface
KR20040058650A (en) Deposition method for hard coating membrane in Ti-Al-Si-N field
Xian et al. Structure and mechanical properties of Zr/TiAlN films prepared by plasma-enhanced magnetron sputtering
KR20150061617A (en) HIGH HARDNESS AND LOW FRICTION Cr-Ti-B-N COATING AND MANUFACTURING METHOD THEREOF
WO2017026343A1 (en) Sputtering apparatus and film formation method
Bohlmark et al. Evaluation of arc evaporated coatings on rounded surfaces and sharp edges
KR101637945B1 (en) Nitride coating layer and the method thereof
US20240011145A1 (en) Molybdenum nitride based multilayer coating for wear and friction reduction
KR20060020415A (en) Method for depositing superhard cr-si-n nanocomposite film

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2015101003835; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150703

Effective date: 20180518

S901 Examination by remand of revocation
E902 Notification of reason for refusal
GRNO Decision to grant (after opposition)
GRNT Written decision to grant