KR20140014905A - Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof - Google Patents
Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof Download PDFInfo
- Publication number
- KR20140014905A KR20140014905A KR1020120082181A KR20120082181A KR20140014905A KR 20140014905 A KR20140014905 A KR 20140014905A KR 1020120082181 A KR1020120082181 A KR 1020120082181A KR 20120082181 A KR20120082181 A KR 20120082181A KR 20140014905 A KR20140014905 A KR 20140014905A
- Authority
- KR
- South Korea
- Prior art keywords
- poly
- hollow fiber
- methyl
- carbon dioxide
- membrane
- Prior art date
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 120
- 239000012528 membrane Substances 0.000 title claims abstract description 111
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 76
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 60
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 58
- 239000002131 composite material Substances 0.000 title claims abstract description 47
- 238000000926 separation method Methods 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 238000000746 purification Methods 0.000 title abstract description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims abstract description 93
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 52
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 41
- -1 polyethylene Polymers 0.000 claims abstract description 40
- 229920000642 polymer Polymers 0.000 claims abstract description 33
- 229920000573 polyethylene Polymers 0.000 claims abstract description 25
- 238000009987 spinning Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 24
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 18
- 239000000654 additive Substances 0.000 claims abstract description 17
- 230000000996 additive effect Effects 0.000 claims abstract description 14
- 239000003960 organic solvent Substances 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 238000003756 stirring Methods 0.000 claims abstract description 4
- 230000009977 dual effect Effects 0.000 claims abstract 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 24
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 21
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 claims description 20
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 18
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 17
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 15
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 229920002492 poly(sulfone) Polymers 0.000 claims description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- 239000004697 Polyetherimide Substances 0.000 claims description 8
- 229920001601 polyetherimide Polymers 0.000 claims description 8
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 7
- 239000004695 Polyether sulfone Substances 0.000 claims description 7
- 229920006393 polyether sulfone Polymers 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 claims description 6
- KRPRVQWGKLEFKN-UHFFFAOYSA-N 3-(3-aminopropoxy)propan-1-amine Chemical compound NCCCOCCCN KRPRVQWGKLEFKN-UHFFFAOYSA-N 0.000 claims description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 6
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 claims description 6
- 229920000515 polycarbonate Polymers 0.000 claims description 6
- 239000004417 polycarbonate Substances 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- 229920002301 cellulose acetate Polymers 0.000 claims description 5
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 229920000666 Poly[dimethylsiloxane-co-methyl(3-hydroxypropyl)siloxane]-graft-poly(ethylene glycol) methyl ether Polymers 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- SNMVRZFUUCLYTO-UHFFFAOYSA-N n-propyl chloride Chemical compound CCCCl SNMVRZFUUCLYTO-UHFFFAOYSA-N 0.000 claims description 4
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 3
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 claims description 3
- CWXAYEQCHXOEIW-UHFFFAOYSA-N 1,1-diethoxyethanol Chemical compound CCOC(C)(O)OCC CWXAYEQCHXOEIW-UHFFFAOYSA-N 0.000 claims description 3
- ABFQGXBZQWZNKI-UHFFFAOYSA-N 1,1-dimethoxyethanol Chemical compound COC(C)(O)OC ABFQGXBZQWZNKI-UHFFFAOYSA-N 0.000 claims description 3
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 claims description 3
- HRRAHRNQUBBIAR-UHFFFAOYSA-N 2,2-dimethoxyoxolane Chemical compound COC1(OC)CCCO1 HRRAHRNQUBBIAR-UHFFFAOYSA-N 0.000 claims description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 claims description 3
- 229910000975 Carbon steel Inorganic materials 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- CRHLZRRTZDFDAJ-UHFFFAOYSA-N butoxymethanol Chemical compound CCCCOCO CRHLZRRTZDFDAJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010962 carbon steel Substances 0.000 claims description 3
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 claims description 3
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 238000004382 potting Methods 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims 1
- 150000001983 dialkylethers Chemical class 0.000 claims 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims 1
- 239000007789 gas Substances 0.000 description 37
- 230000035699 permeability Effects 0.000 description 22
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 229940093476 ethylene glycol Drugs 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000001112 coagulating effect Effects 0.000 description 5
- 239000004205 dimethyl polysiloxane Substances 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000005201 scrubbing Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/02—Evaporators with heating coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/38—Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/70—Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
- B01D2256/245—Methane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
본 발명은 바이오가스 정제공정에서 이산화탄소/메탄의 혼합기체로부터 이산화탄소를 선택적으로 분리하는 중공사 복합막, 이를 포함하는 막모듈 및 그 제조방법에 관한 것으로, 보다 상세하게는 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체를 유리상 고분자 재질의 중공사막 표면에 코팅함으로써 이산화탄소의 투과도가 크게 향상되어 바이오가스 정제공정에서 이산화탄소/메탄의 혼합기체로부터 이산화탄소를 선택적으로 분리 및 제거하고 분리공정 효율을 개선할 수 있는 중공사 복합막, 이를 포함하는 막모듈 및 그 제조방법에 관한 것이다.TECHNICAL FIELD The present invention relates to a hollow composite membrane for selectively separating carbon dioxide from a mixed gas of carbon dioxide and methane in a biogas purification process, a membrane module including the composite membrane and a method for producing the same, and more particularly, to a membrane composite module using polyethylene glycol or polyethylene / The coating of the organopolysiloxane copolymer grafted with the repeating unit containing the polymer on the surface of the hollow fiber membrane of glassy polymer greatly improves the permeability of the carbon dioxide to selectively remove and remove carbon dioxide from the mixed gas of carbon dioxide and methane in the biogas purification process And to improve the efficiency of the separation process, a membrane module including the same, and a manufacturing method thereof.
바이오가스는 슬러지류 및 음식물쓰레기, 가축분뇨 등의 유기성 폐자원이 미생물에 의해 분해하면서 생성되는 메탄과 이산화탄소 등을 포함하는 기체 상태의 연료를 일컫고, 이러한 바이오가스 중에서 이산화탄소 및 일부 다른 가스가 제거된 메탄가스를 바이오메탄이라고 하는데, 최근에는 천연가스와 같이 청정연료로 사용될 수 있어 에너지원으로 각광받고 있다.Biogas refers to a gaseous fuel including methane and carbon dioxide produced by decomposition of organic waste resources such as sludge, food waste, and livestock manure by microorganisms. In the biogas, carbon dioxide and some other gases are removed Methane gas is called biomethane, and recently it can be used as a clean fuel like natural gas, and is attracting attention as an energy source.
그러나 바이오가스에 함유된 메탄 조성은 약 50~70% 수준으로 열량(5,000kcal/m3 이하)이 작아 운송용 연료나 도시가스로는 사용이 어려우며 천연가스와 비슷한 열량을 맞추기 위해서는 바이오가스 중의 메탄 함량을 95%이상으로 향상시켜야 하는 과제를 안고 있다. 따라서 바이오가스 중의 대부분을 차지하고 있는 이산화탄소/메탄 혼합기체를 분리하는 공정이 적용되어 고질화를 통해 원거리 공급이 가능해야 비로소 발전, 보일러, 공장 및 자동차 연료 또는 도시가스 등으로 사용이 가능하게 되는 것이다.However, the methane contained in the biogas composition is to about 50 to 70% of calories (5,000kcal / m 3 or less) is small transporting fuel or town gas is difficult to use the methane content of the biogas to qualify a similar amount of heat and gas 95% or more. Therefore, the process of separating carbon dioxide / methane mixed gas, which accounts for most of the biogas, is applied and it can be used for power generation, boiler, factory, automobile fuel, city gas or the like.
현재까지 알려진 바이오가스 중의 이산화탄소 정제기술로는 흡착법(pressure swing adsorption), 흡수법(water scrubbing, methanol scrubbing, polyethylene glycol scrubbing 등), 막분리법(membrane separation), 초저온 액화기술, 가스하이드레이트 기술 등이 있다.Currently known carbon dioxide purification technologies in biogas include pressure swing adsorption, water scrubbing, methanol scrubbing, polyethylene glycol scrubbing, membrane separation, cryogenic liquefaction technology, and gas hydrate technology .
흡착법은 흡착제와 혼합가스의 압력순환에 의해서 생기는 흡착 평형량의 차이를 이용하여 혼합가스 중 특정 성분을 선택적으로 분리하는 기술로 주로 고압에서 이산화탄소를 흡착하고 메탄을 정제하며 저압에서 흡착성분을 탈착한다. 그러나 흡착법은 비정상 상태의 운전이기 때문에 운전단계 중에 여러 가지 운전변수의 예측과 설계가 어려우며 흡착제에 따라 수분에 대한 전처리가 필요하다는 단점이 있다.The adsorption method is a technique for selectively separating specific components of the mixed gas using the difference in the adsorption equilibrium amount caused by the pressure cycling between the adsorbent and the mixed gas. It mainly adsorbs carbon dioxide at high pressure, refines methane, and desorbs the adsorbed component at low pressure . However, since the adsorption method is an abnormal state operation, it is difficult to predict and design various operating parameters during the operation step, and there is a disadvantage that pretreatment for moisture is required depending on the adsorbent.
한편, 흡수법으로는 주로 water scrubbing process가 적용되는데, 이 공정은 흡수액의 종류, 기액 접촉면적, 가스와 물의 온도에 따라 성능이 좌우된다. 그렇지만 정제된 메탄가스에 수분이 포화되어 수분을 제거해야 하는 후처리 공정이 수반되는 문제점을 안고 있다.On the other hand, the water scrubbing process is mainly applied as the absorption method, which depends on the type of the absorbing liquid, the gas-liquid contact area, and the temperature of gas and water. However, there is a problem in that a post-treatment process in which moisture is saturated with purified methane gas is required to remove moisture.
막분리법은 분리막을 사용하여 특정 성분을 선택적으로 투과하여 기체를 분리하는 방법으로서, 분리막을 이용한 기체분리는 용해 및 확산 과정을 거쳐 기체를 분리하며 상변화를 동반하지 않아 에너지 소모가 적고, 설치면적이 작아 유지 보수가 용이하다는 장점이 있어 근래에 기체분리 및 정제기술로 주목받고 있다. 이러한 막분리법을 이용한 바이오가스 중의 이산화탄소 제거에는 주로 고분자막이 사용되는바, 상용화된 이산화탄소/메탄 분리막은 주로 폴리술폰, 폴리에테르술폰, 폴리카보네이트, 폴리이미드, 폴리에테르이미드 등을 소재로 하여 제조된 것이 대부분이며, 용해 및 확산 과정을 통해 기체가 투과될 때 확산에 지배적인 영향을 받아 이산화탄소/메탄의 투과속도 차이에 따라 분리가 이루어지게 되는 것이다.Membrane separation is a method of selectively permeating certain components using a membrane to separate gases. Gas separation using membranes separates gases through dissolution and diffusion processes, and does not involve phase changes, resulting in low energy consumption and installation area. Because of its small size and easy maintenance, it is recently attracting attention as a gas separation and purification technology. Polymer membranes are mainly used for removing carbon dioxide in the biogas by such a membrane separation method. Commercialized carbon dioxide / methane separation membranes are mainly made of polysulfone, polyethersulfone, polycarbonate, polyimide, polyetherimide, etc. Mostly, when the gas is permeated through the dissolution and diffusion process, it is dominantly influenced by the diffusion, and the separation is performed according to the difference of the permeation rate of carbon dioxide / methane.
또한, 상기 분리막은 막의 재질에 따라 단일막 또는 복합막으로, 막의 구조에 따라 대칭막 또는 비대칭막으로, 막의 형태에 따라 평막 또는 중공사막으로 분류하는데, 통상 기체분리용으로 연구개발 되거나 상업화 되는 것은 기체의 투과도 및 선택도의 trade-off 관계를 개선하고자 비대칭 중공사 복합막이 주류를 이루고 있다.In addition, the separation membrane is classified into a single membrane or a composite membrane according to the material of the membrane, a symmetric membrane or an asymmetric membrane according to the structure of the membrane, and a flat membrane or hollow fiber membrane depending on the shape of the membrane, which is usually researched or developed for gas separation Asymmetric hollow fiber composite membranes are the mainstream to improve the trade-off relationship between gas permeability and selectivity.
예를 들어, 미국특허 제4,230,463호에는 다공성 폴리술폰 중공사막의 표면에 폴리디메틸실록산 용액을 코팅한 복합막이 개시되어 있고, 이산화탄소의 투과도는 38GPU, 이산화탄소/메탄의 선택도는 17로 나타났다. 또한, 미국특허 제4,871,494호 및 4,880,441호에서는 폴리술폰 용액 내에 유기용매 첨가제에 의한 복합체를 형성하고, 이를 방사 비용매에 응고시킴으로써 비대칭 중공사막을 제조한 후, 여기에 폴리디메틸실록산 용액을 코팅하여 복합막을 제조하였으며, 이산화탄소의 투과도는 65~155GPU, 이산화탄소/메탄의 선택도는 9.5~9.8을 나타내었다. 또한, 대한민국 등록특허공보 제644366호에는 폴리에테르술폰을 NMP, DMAc 또는 아세톤의 혼합 용매에 녹인 용액을 고비점의 양용매와 비용매로 이루어진 내부응고제를 이용하여 중공사를 제조한 후, 폴리디메틸실록산 용액으로 코팅하여 비대칭 중공사 복합막을 얻었으며, 이산화탄소/메탄의 혼합기체로부터 이산화탄소의 투과도는 34~43GPU, 이산화탄소/메탄의 선택도는 24~28을 나타내었다.For example, US Pat. No. 4,230,463 discloses a composite membrane in which a polydimethylsiloxane solution is coated on the surface of a porous polysulfone hollow fiber membrane. The permeability of carbon dioxide is 38 GPU and the selectivity of carbon dioxide / methane is 17. In addition, U.S. Pat. Nos. 4,871,494 and 4,880,441 disclose a method of forming an asymmetric hollow fiber membrane by forming a composite of an organic solvent additive in a polysulfone solution and solidifying it in a spin-spinning solvent, and then coating the solution with a polydimethylsiloxane solution The permeability of carbon dioxide was 65 ~ 155 GPU and the selectivity of carbon dioxide / methane was 9.5 ~ 9.8. Korean Patent Publication No. 644366 discloses a hollow fiber obtained by dissolving a polyether sulfone in a mixed solvent of NMP, DMAc or acetone using an internal coagulant having a high boiling point and a non-solvent, The permeability of carbon dioxide was 34 ~ 43 GPU and the selectivity of carbon dioxide / methane was 24 ~ 28 from the mixed gas of carbon dioxide and methane.
그러나 상기 선행문헌들을 포함하여 대부분의 비대칭 중공사 복합막은 일반적인 중공사막에 폴리디메틸실록산 용액을 코팅한 것들로 코팅 용액에 한계가 있고, 또한, 이들 막의 이산화탄소/메탄의 혼합기체로부터 이산화탄소의 투과도는 바이오가스 정제공정에서 사용되어 이산화탄소를 선택적으로 분리함으로써 메탄의 함량을 높이기에는 상대적으로 낮다는 문제점을 안고 있다.However, most of the asymmetric hollow fiber composite membranes, including the above mentioned literature, are coated with a solution of polydimethylsiloxane in a general hollow fiber membrane. Therefore, the coating solution has a limitation, and the permeability of carbon dioxide from the carbon dioxide / It has a problem that it is relatively low to increase the methane content by selectively separating the carbon dioxide used in the gas purification process.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 통상의 폴리디메틸실록산 용액이 아닌 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액을 유리상 고분자 재질의 중공사막 표면에 코팅함으로써 이산화탄소의 투과도가 크게 향상되어 바이오가스 정제공정에서 이산화탄소/메탄의 혼합기체로부터 이산화탄소를 선택적으로 분리 및 제거하고 분리공정 효율을 개선할 수 있는 중공사 복합막, 이를 포함하는 막모듈 및 그 제조방법을 제공하고자 하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide an organic polysiloxane copolymer solution in which a repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol is not a conventional polydimethylsiloxane solution, A hollow composite membrane capable of selectively separating and removing carbon dioxide from the mixed gas of carbon dioxide and methane in the biogas purification process and improving the efficiency of the separation process by coating the surface of the hollow fiber membrane made of a polymer material, And a method of manufacturing the same.
상기한 바와 같은 목적을 달성하기 위한 본 발명은 유리상 고분자 재질의 중공사막 표면에 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체로 코팅된 이산화탄소/메탄 분리용 중공사 복합막을 제공한다.In order to accomplish the above object, the present invention provides a hollow fiber membrane for carbon dioxide / methane separation coated with an organopolysiloxane copolymer having a repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol on the surface of a hollow fiber membrane of a glass- Thereby providing a composite membrane.
상기 유리상 고분자는 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리카보네이트, 폴리아크릴로니트릴 또는 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것임을 특징으로 한다.Wherein the glassy polymer is any one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polycarbonate, polyacrylonitrile, and cellulose acetate.
상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) [3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물인 것임을 특징으로 한다.The organopolysiloxane copolymer in which the repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol is grafted is poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene glycol) , Poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene / propylene glycol) methyl ether, poly [dimethylsiloxane- (Ethylene / propylene glycol), poly [dimethylsiloxane-co-methyl (3-hydroxy-3-hydroxypropyl) siloxane] graft-poly (ethylene glycol) (Ethyleneglycol) 3-aminopropyl ether or poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] - graft- Trimethylammonio) propyl chloride. Lauryl group, or a mixture thereof.
또한, 본 발명은 도 3에 나타낸 바와 같이 상기 중공사 복합막을 포함하는 막모듈을 제공한다.The present invention also provides a membrane module comprising the hollow composite membrane as shown in FIG.
상기 막모듈의 하우징 내에는 1,000~150,000 가닥의 중공사 다발이 삽입되고, 막모듈의 양 말단은 포팅제에 의해 차단되는 것임을 특징으로 한다.Wherein 1,000 to 150,000 hollow fiber bundles are inserted into the housing of the membrane module and both ends of the membrane module are blocked by a potting agent.
상기 막모듈의 하우징은 알루미늄, 탄소강 또는 스테인레스로 이루어진 군으로부터 선택된 어느 하나의 재료로 제작되는 것임을 특징으로 한다.The housing of the membrane module is made of any one material selected from the group consisting of aluminum, carbon steel, and stainless steel.
또한, 본 발명은 하기 단계를 포함하는 이산화탄소/메탄 분리용 중공사 복합막의 제조방법을 제공한다.The present invention also provides a process for producing a hollow fiber composite membrane for carbon dioxide / methane separation comprising the steps of:
i) 유리상 고분자를 유기용매에 용해시켜 고분자 용액을 얻는 단계; ii) 상기 i) 단계에서 얻어진 고분자 용액에 첨가제를 혼합하고 교반하여 균일한 방사용액을 얻는 단계; iii) 상기 ii) 단계에서 얻어진 방사용액을 이중 방사구금을 통하여 방사함으로써 중공사막을 제공하는 단계; 및 iv) 상기 iii) 단계의 중공사막의 표면에 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액을 코팅하는 단계.i) dissolving the glassy polymer in an organic solvent to obtain a polymer solution; ii) mixing an additive to the polymer solution obtained in step i) and stirring to obtain a uniform spinning solution; iii) providing a hollow fiber membrane by spinning the spinning solution obtained in the step ii) through a double spinneret; And iv) coating a solution of an organopolysiloxane copolymer having a repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol on the surface of the hollow fiber membrane in step iii).
상기 i) 단계의 유리상 고분자는 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리카보네이트, 폴리아크릴로니트릴 또는 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것임을 특징으로 한다.The glassy polymer in step i) is any one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polycarbonate, polyacrylonitrile, and cellulose acetate.
상기 i) 단계의 유기용매는 N-메틸피롤리돈(NMP), 디메틸아세트아미드(DMAc) 또는 디메틸포름아미드(DMF)로 이루어진 군으로부터 선택된 어느 하나의 것임을 특징으로 한다.The organic solvent in step i) is any one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), and dimethylformamide (DMF).
상기 i) 단계의 고분자 용액은 20~40 중량% 농도인 것임을 특징으로 한다.And the polymer solution in step i) is 20 to 40% by weight.
상기 ii) 단계의 첨가제는 테트라히드로퓨란, 메틸에틸케톤, 에틸아세테이트, 트리클로로에탄, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르, 디메틸에테르 또는 디에틸에테르로 이루어진 군으로부터 선택된 어느 하나의 것과, 메탄올, 에탄올, 2-프로판올, 2-펜탄올, 메톡시에탄올, 부톡시에탄올, 퍼퍼릴알코올 또는 터셔리아밀알코올로 이루어진 군으로부터 선택된 어느 하나의 것을 혼합하여 첨가하는 것임을 특징으로 한다.The additive in step ii) may be any one selected from the group consisting of tetrahydrofuran, methyl ethyl ketone, ethyl acetate, trichloroethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dimethyl ether, , And any one selected from the group consisting of methanol, ethanol, 2-propanol, 2-pentanol, methoxyethanol, butoxyethanol, perlyl alcohol and tertiary amyl alcohol is mixed and added.
상기 ii) 단계의 첨가제는 방사용액 100 중량부에 대하여 10~30 중량부를 첨가하는 것임을 특징으로 한다.The additive of step ii) is characterized in that for adding 10 to 30 parts by weight based on 100 parts by weight of the spinning solution.
상기 iii) 단계의 이중 방사구금은 물, 이소프로판올, 부탄올, 에틸렌글리콜, 폴리에틸렌글리콜, 글리세롤, 디메톡시에탄올, 디에톡시에탄올, 부톡시메탄올, 디메톡시부틸렌옥시드 또는 디글리시딜디메틸에테르로 이루어진 군으로부터 선택된 어느 하나의 것을 내부응고액으로 사용하는 것임을 특징으로 한다.The double spinneret of step iii) is water, isopropanol, butanol, ethylene glycol, polyethylene glycol, glycerol, dimethoxyethanol, diethoxyethanol, butoxymethanol, dimethoxybutylene oxide or diglycidyl dimethyl ether It is characterized in that to use any one selected from the internal coagulation solution.
상기 iv) 단계의 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) [3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물인 것임을 특징으로 한다.The organopolysiloxane copolymer in which the repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol in step iv) above is grafted is poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft- Methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene / propylene glycol) methyl ether, poly [dimethylsiloxane-co- Poly (dimethylsiloxane-co-methyl) siloxane] - graft-poly (ethylene / propylene glycol), poly [dimethylsiloxane-co-methyl (Ethyleneglycol) 3-aminopropyl ether or poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft- poly (ethylene glycol) [3- (trimethylammonio) propyl cro Jethro is characterized in that in any one or a mixture thereof selected from the group consisting of.
상기 iv) 단계의 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액은 탄소수 1 내지 5의 지방족 알코올, 탄소수 5 내지 10의 지방족 또는 지환족 알칸, 할로겐화 알칸, 디알킬에테르 또는 이들의 혼합물을 용매로 사용하여 얻어지는 것임을 특징으로 한다.The organopolysiloxane copolymer solution in which the repeating unit containing polyethylene glycol or polyethylene / propylene glycol in the step iv) is grafted may be prepared by reacting an aliphatic alcohol having 1 to 5 carbon atoms, an aliphatic or alicyclic alkane having 5 to 10 carbon atoms, Alkyl ether or a mixture thereof is used as a solvent.
상기 iv) 단계의 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액은 1~5 중량% 농도인 것임을 특징으로 한다.The organopolysiloxane copolymer solution in which the repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol in the step iv) is grafted is characterized by a concentration of 1 to 5% by weight.
본 발명에서는 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액을 유리상 고분자 재질의 중공사막 표면에 코팅함으로써 이산화탄소의 투과도가 크게 향상되어 바이오가스 정제공정에서 이산화탄소/메탄의 혼합기체로부터 이산화탄소를 선택적으로 분리 및 제거하고 분리공정 효율을 개선할 수 있는 중공사 복합막을 제공할 수 있다.In the present invention, the permeability of carbon dioxide is greatly improved by coating a solution of an organopolysiloxane copolymer having a repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol on the surface of a glassy polymer hollow fiber membrane, and thus the carbon dioxide / methane It is possible to provide a hollow fiber composite membrane capable of selectively separating and removing carbon dioxide from the mixed gas of the gas mixture and improving the efficiency of the separation process.
도 1은 중공사막 제조장치.
도 2는 본 발명에 따른 중공사 복합막을 포함하는 막모듈.
도 3은 본 발명에 따른 중공사 복합막 표면층의 전자주사현미경 사진.
도 4는 본 발명에 따른 중공사 복합막의 기체투과도 측정 장치.1 is a hollow fiber membrane manufacturing apparatus.
Figure 2 is a membrane module comprising a hollow fiber composite membrane according to the present invention.
3 is an electron scanning micrograph of the hollow fiber composite membrane surface layer according to the present invention.
Figure 4 is a gas permeability measuring device of the hollow fiber composite membrane according to the present invention.
이하에서는 본 발명에 따른 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액을 유리상 고분자 재질의 중공사막 표면에 코팅함으로써 이산화탄소의 투과도가 크게 향상되어 바이오가스 정제공정에서 이산화탄소/메탄의 혼합기체로부터 이산화탄소를 선택적으로 분리 및 제거하고 분리공정 효율을 개선할 수 있는 중공사 복합막에 관하여 상세히 설명하기로 한다.Hereinafter, the permeability of carbon dioxide is greatly improved by coating the surface of the hollow fiber membrane of the glass-like polymer material with the organopolysiloxane copolymer solution in which the repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol according to the present invention is grafted, A hollow fiber composite membrane capable of selectively separating and removing carbon dioxide from a mixed gas of carbon dioxide and methane and improving the efficiency of the separation process will now be described in detail.
먼저, 본 발명의 중공사 복합막은 다공성 지지체로서 유리상 고분자를 사용하는 바, 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리에테르이미드, 폴리아미드, 폴리카보네이트, 폴리아크릴로니트릴 또는 셀룰로오즈아세테이트로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있고, 폴리술폰 또는 폴리에테르이미드가 더욱 바람직하다. 일반적으로 기체를 분리하는 경우에는 투과도는 낮지만 상대적으로 높은 선택도를 기대할 수 있다는 점에서 고분자 사슬간의 인력이 높은 유리상의 고분자를 기재로 이용한다.First, the hollow fiber composite membrane of the present invention uses glass-like polymer as the porous support, and the hollow fiber composite membrane is prepared from the group consisting of polysulfone, polyethersulfone, polyimide, polyetherimide, polyamide, polycarbonate, polyacrylonitrile or cellulose acetate Any one selected may be used, and polysulfone or polyetherimide is more preferable. In general, when gas is separated, a glassy polymer having high attractive force between polymer chains is used as a substrate in view of low permeability but relatively high selectivity.
또한, 본 발명에 따른 중공사 복합막은 중공사막의 표면에 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체로 코팅된 것인바, 상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) [3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물을 사용한다. 종래 대부분의 중공사 복합막이 중공사막 표면에 단지 폴리디메틸실록산만을 코팅한 것과는 달리 본 발명에 따라 중공사막의 표면에 다양한 코팅제로서 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체를 코팅함으로써 이산화탄소의 용해도가 크게 증가하여 이산화탄소/메탄의 혼합기체로부터 이산화탄소의 투과도가 현저하게 향상되는 것이다.In addition, the hollow composite membrane according to the present invention is coated on the surface of the hollow fiber membrane with an organopolysiloxane copolymer in which a repeating unit including polyethylene glycol or polyethylene / propylene glycol is grafted. The polyethylene glycol or polyethylene / propylene glycol (Ethylene glycol) methyl ether, poly [dimethylsiloxane-co-methyl (dimethylsiloxane) -cyclohexane (3-hydroxypropyl) siloxane] -graft-poly (ethylene / propylene glycol) methyl ether, poly [dimethylsiloxane- Poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene / propylene glycol), poly [dimethylsiloxane- (Ethyleneglycol) 3-aminopropyl ether or poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] - graft-poly (ethylene glycol) ) Propyl chloride, or a mixture thereof. Unlike conventional hollow fiber composite membranes coated with only polydimethylsiloxane on the surface of the hollow fiber membrane according to the present invention, a variety of coating agents, such as polyethylene glycol or polyethylene / propylene glycol-grafted repeating units, By coating the copolymer, the solubility of carbon dioxide is greatly increased and the permeability of carbon dioxide from the mixed gas of carbon dioxide / methane is remarkably improved.
또한, 본 발명에서는 도 2에 도시한 바와 같이 상기 중공사 복합막을 포함하는 막모듈을 제공하는데, 막모듈의 하우징 내에는 1,000~150,000 가닥의 중공사 다발이 삽입되고, 막모듈의 양 말단은 포팅제에 의해 차단된다. 상기 막모듈의 하우징은 알루미늄, 탄소강 또는 스테인레스로 이루어진 군으로부터 선택된 어느 하나의 재료로 제작한다.The present invention also provides a membrane module including the hollow composite membrane as shown in FIG. 2, wherein a hollow fiber bundle of 1,000 to 150,000 fibers is inserted into the housing of the membrane module, Lt; / RTI > The housing of the membrane module is made of any one material selected from the group consisting of aluminum, carbon steel, and stainless steel.
이하에서는 본 발명에 따른 중공사 복합막을 제조하는 방법에 대하여 구체적으로 설명하기로 한다. 중공사 복합막을 얻기 위한 첫 번째 단계로서 상기 유리상 고분자들을 유기용매에 용해시켜 고분자 용액을 얻게 되는데, 유기용매로서는 상대적으로 비점이 높은 양용매를 사용하는 것이 바람직하다. 비점이 낮으면 고온의 중공사 방사과정에서 유기용매의 급격한 증발로 인하여 중공사의 선택층에 결함이 발생할 수 있고, 비점이 너무 높으면 방사용액이 공기를 통과하는 동안 유기용매의 증발이 일어나지 않아 원활한 선택층을 얻을 수 없게 된다. 따라서 상기 유기용매로서는 N-메틸피롤리돈(NMP), 디메틸아세트아미드(DMAc) 또는 디메틸포름아미드(DMF)로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있으며, N-메틸피롤리돈(NMP)이 더욱 바람직하다.Hereinafter, a method of manufacturing the hollow fiber composite membrane according to the present invention will be described in detail. As a first step to obtain a hollow fiber composite membrane, the glassy polymers are dissolved in an organic solvent to obtain a polymer solution. It is preferable to use a good solvent having a relatively high boiling point as the organic solvent. If the boiling point is low, defects may occur in the selective layer of the hollow fiber due to the rapid evaporation of the organic solvent in the high-temperature hollow fiber spinning process. If the boiling point is too high, the organic solvent does not evaporate while the spinning solution passes through the air, so the selection is smooth. No floor can be obtained. Therefore, as the organic solvent, any one selected from the group consisting of N-methylpyrrolidone (NMP), dimethylacetamide (DMAc) or dimethylformamide (DMF) can be used, and N-methylpyrrolidone (NMP) This is more preferable.
또한, 상기 고분자 용액은 20~40 중량% 농도로 조절하는데, 그 농도가 20 중량% 미만이면 중공사의 기계적 강도가 약하여 다공성 지지체로서의 역할을 수행하기 어렵고, 농도가 40 중량%를 초과하면 기체투과도가 매우 낮아질 수 있으므로, 상기 범위로 농도를 유지하는 것이 바람직하다.In addition, the polymer solution is adjusted to a concentration of 20 to 40% by weight, if the concentration is less than 20% by weight, the mechanical strength of the hollow fiber is weak to serve as a porous support, when the concentration exceeds 40% by weight gas permeability Since it can be very low, it is desirable to maintain the concentration in the above range.
다음으로 상기 고분자 용액에 첨가제를 혼합하고 교반함으로써 균일한 방사용액을 얻는다. 첨가제로는 고분자 용액의 점도를 다소 감소시키고 고분자 용액의 상태를 균일하게 유지하는 역할을 하는 테트라히드로퓨란, 메틸에틸케톤, 에틸아세테이트, 트리클로로에탄, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르, 디메틸에테르 또는 디에틸에테르로 이루어진 군으로부터 선택된 어느 하나의 것과, 메탄올, 에탄올, 2-프로판올, 2-펜탄올, 메톡시에탄올, 부톡시에탄올, 퍼퍼릴알코올 또는 터셔리아밀알코올로 이루어진 군으로부터 선택된 어느 하나의 것을 혼합하여 첨가하는 것이 바람직하고, 테트라히드로퓨란과 에탄올을 혼합하여 첨가하는 것이 더욱 바람직하다.Next, a uniform spinning solution is obtained by mixing and stirring an additive in the polymer solution. Examples of the additives include tetrahydrofuran, methyl ethyl ketone, ethyl acetate, trichloroethane, diethylene glycol dimethyl ether, and diethylene glycol diethyl ether, which function to reduce the viscosity of the polymer solution to some extent and maintain the state of the polymer solution uniformly , Dimethyl ether or diethyl ether and one or more selected from the group consisting of methanol, ethanol, 2-propanol, 2-pentanol, methoxy ethanol, butoxy ethanol, peryl alcohol or tertiary amyl alcohol It is preferable that any one selected is mixed and added, and it is more preferable to mix tetrahydrofuran and ethanol.
또한, 첨가제는 방사용액 100 중량부에 대하여 10~30 중량부를 첨가하는 것인바, 첨가제의 함량이 10 중량부 미만이면 고분자 용액의 점도를 감소시키면서 균일한 방사용액을 얻는 것이 어렵고, 30 중량부를 초과하면 방사용액의 농도가 너무 낮아 중공사의 기계적 강도가 저하되므로, 상기 범위로 첨가제의 함량을 유지하는 것이 바람직하다.When the content of the additive is less than 10 parts by weight, it is difficult to obtain a homogeneous spinning solution while decreasing the viscosity of the polymer solution. When the content of the additive exceeds 30 parts by weight Since the concentration of the spinning solution is too low, the mechanical strength of the hollow fiber decreases. Therefore, it is preferable to maintain the content of the additive within the above range.
도 1에 나타낸 중공사막 제조 장치를 이용하여 상기 방사용액을 이중 방사구금을 통하여 방사함으로써 중공사막을 얻는다. 먼저, 방사용액은 기포를 없애고, 필터를 사용하여 이물질을 제거한 후, 기어펌프를 통하여 60~80℃, 에어 갭 10~30cm를 유지한 상태에서 이중 방사구금으로 보낸다. 이어서 방사용액이 이중 방사구금의 바깥쪽 노즐을 통해서 나오게 되며, 이중 방사구금의 안쪽으로는 내부응고액을 토출시켜 중공사를 방사한다. 이 때, 내부응고액으로는 물, 이소프로판올, 부탄올, 에틸렌글리콜, 폴리에틸렌글리콜, 글리세롤, 디메톡시에탄올, 디에톡시에탄올, 부톡시메탄올, 디메톡시부틸렌옥시드 또는 디글리시딜디메틸에테르로 이루어진 군으로부터 선택된 어느 하나의 것을 사용할 수 있는데, 물을 사용하는 것이 더욱 바람직하다. 또한, 외부응고액인 물이 수용된 외부응고조는 15~20℃로 유지하여 상전이 과정을 거쳐 중공사를 권취하고, 흐르는 물에 2~3일간 세척하여 잔류 용매와 첨가제를 제거한 후, 메탄올에 3~5시간 동안 침적하고, n-헥산에 다시 3~5시간 동안 침적하여 메탄올을 n-헥산으로 치환한 다음, 70~80℃ 진공오븐에서 3시간 이상 건조시켜 중공사막을 얻는다.The hollow fiber membrane is obtained by spinning the spinning solution through the double spinneret using the hollow fiber membrane production apparatus shown in FIG. 1. First, the spinning solution removes air bubbles, removes foreign substances using a filter, and then sends the double spinning spinneret while maintaining a 60 to 80 ° C. and an air gap of 10 to 30 cm through a gear pump. Subsequently, the spinning solution comes out through the outer nozzle of the double spinneret, and the inside of the double spinneret discharges the internal coagulating solution to spin the hollow fiber. At this time, the internal coagulating solution is water, isopropanol, butanol, ethylene glycol, polyethylene glycol, glycerol, dimethoxyethanol, diethoxyethanol, butoxymethanol, dimethoxybutylene oxide or diglycidyl dimethyl ether Any one selected may be used, more preferably water. The external coagulation bath containing the external coagulating solution is maintained at 15 to 20 ° C, and the hollow fiber is wound through the phase transition process. The residual coagulating bath is washed with flowing water for 2 to 3 days to remove the residual solvent and additives, And then immersed in n-hexane for 3 to 5 hours to replace the methanol with n-hexane and then dried in a vacuum oven at 70 to 80 ° C for 3 hours or more to obtain a hollow fiber membrane.
본 발명에서는 상기 중공사막의 표면에 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액을 코팅함으로써 중공사 복합막을 제조한다.In the present invention, a hollow composite membrane is prepared by coating a solution of an organopolysiloxane copolymer having a repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol on the surface of the hollow fiber membrane.
상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜) 메틸 에테르, 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌/프로필렌 글리콜), 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 3-아미노프로필 에테르 또는 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) [3-(트리메틸암모니오)프로필 클로라이드로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 혼합물을 사용한다.The organopolysiloxane copolymer in which the repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol is grafted is poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene glycol) , Poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene / propylene glycol) methyl ether, poly [dimethylsiloxane- (Ethylene / propylene glycol), poly [dimethylsiloxane-co-methyl (3-hydroxy-3-hydroxypropyl) siloxane] graft-poly (ethylene glycol) (Ethyleneglycol) 3-aminopropyl ether or poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] - graft- Trimethylammonio) propyl chloride. Lauryl group, or a mixture thereof.
중공사막의 표면에 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체가 코팅됨으로써 이산화탄소의 용해도를 증가시켜 바이오가스 정제공정에서 이산화탄소/메탄의 혼합기체로부터 이산화탄소를 선택적으로 분리 및 제거하고 분리공정 효율을 개선할 수 있다.The organic polysiloxane copolymer in which a repeating unit including polyethylene glycol or polyethylene / propylene glycol is grafted on the surface of the hollow fiber membrane is coated to increase the solubility of carbon dioxide to selectively remove carbon dioxide from the carbon dioxide / methane mixture gas in the biogas purification process Separation and removal and improve the efficiency of the separation process.
또한, 상기 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액은 탄소수 1 내지 5의 지방족 알코올, 탄소수 5 내지 10의 지방족 또는 지환족 알칸, 할로겐화 알칸, 디알킬에테르 또는 이들의 혼합물을 용매로 사용하여 얻는다. 이 때, 상기 코팅용액은 1~5 중량% 농도로 조절하는데, 코팅용액의 농도가 1 중량% 미만이면 중공사 외부 표면의 결함을 코팅하기에 너무 농도가 낮아 코팅이 제대로 되지 않음으로써 중공사 복합막의 선택도가 감소하게 되고, 그 농도가 5 중량%를 초과하면 중공사의 외부 표면에 새로운 코팅층을 형성함으로써 투과도가 감소하는 문제점이 있으므로, 상기 범위 내에서 코팅용액의 농도를 조절하는 것이 바람직하다.In addition, the organopolysiloxane copolymer solution in which the repeating unit grafted with polyethylene glycol or polyethylene / propylene glycol is grafted can be obtained by reacting an aliphatic alcohol having 1 to 5 carbon atoms, an aliphatic or alicyclic alkane having 5 to 10 carbon atoms, a halogenated alkane, Or a mixture thereof is used as a solvent. When the concentration of the coating solution is less than 1 wt%, the coating solution is too low to coat the defects on the outer surface of the hollow fiber, so that the coating solution is not properly applied. The selectivity of the membrane is decreased. If the concentration exceeds 5 wt%, a new coating layer is formed on the outer surface of the hollow fiber to decrease the permeability. Therefore, it is preferable to adjust the concentration of the coating solution within the above range.
이하 구체적인 실시예를 상세히 설명한다.
Hereinafter, specific embodiments will be described in detail.
(( 실시예Example 1) One)
교반기가 부착된 2L 반응기에 N-메틸피롤리돈 500g을 투입하고 폴리에테르이미드 300g을 서서히 가하여 고분자 용액을 얻었다. 상기 고분자 용액에 첨가제로 테트라히드로퓨란 5g과 에탄올 15g을 첨가, 혼합하여 균일한 방사용액을 얻었다. 상기 방사용액은 기포를 없애고, 60μm필터를 이용하여 이물질을 제거하였다. 이어서 기어펌프를 통하여 방사온도 60℃, 에어 갭 10cm를 유지한 상태에서 이중 방사구금으로 보냈다. 이 때, 이중 방사구금의 내부응고액으로는 상온의 물을 사용하였다. 물이 수용된 외부응고조의 온도를 15℃로 하여 상전이 과정을 거친 후 중공사를 권취하였으며, 흐르는 물에 2일간 세척하여 잔존하는 용매와 첨가제를 제거하였다. 그 후 메탄올에 3시간 침적하고, n-헥산에 다시 3시간 동안 침적하여 메탄올을 헥산으로 치환한 후, 70℃ 진공오븐에서 4시간 동안 건조시켜 중공사막을 얻었다. 상기 얻어진 중공사막을 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르를 에탄올에 5 중량% 용해시킨 코팅용액에 딥 코팅한 후, 80℃에서 12시간 건조하여 중공사 복합막을 제조하였다. 상기 실시예 1로부터 최종적으로 제조된 중공사 복합막의 표면 구조를 전자주사현미경으로 분석하여 그 결과를 도 3에 나타내었고, 다공성 지지체인 중공사막 표면에 코팅층이 형성된 것을 확인할 수 있었다.
500 g of N-methylpyrrolidone was added to a 2 L reactor equipped with a stirrer, and 300 g of polyetherimide was slowly added to obtain a polymer solution. 5 g of tetrahydrofuran and 15 g of ethanol were added as an additive to the polymer solution and mixed to obtain a homogeneous spinning solution. The spinning solution was used to remove air bubbles and remove foreign matter using a 60-μm filter. Then, it was sent through the gear pump to the double spinneret while maintaining the radiation temperature of 60 ° C and the air gap of 10 cm. At this time, room temperature water was used as the internal coagulating solution of double spinneret. The external coagulation bath containing water was cooled to 15 ° C, and the hollow fiber was wound around the tube. The remaining solvent and additives were removed by washing with running water for 2 days. Subsequently, it was immersed in methanol for 3 hours, immersed again in n-hexane for 3 hours, the methanol was replaced with hexane, and dried in a vacuum oven at 70 캜 for 4 hours to obtain a hollow fiber membrane. The resultant hollow fiber membrane was dip-coated on a coating solution prepared by dissolving 5 wt% of poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene glycol) methyl ether in ethanol, Lt; 0 > C for 12 hours to prepare a hollow fiber composite membrane. The surface structure of the hollow composite membrane finally produced from Example 1 was analyzed by an electron scanning microscope. The results are shown in FIG. 3, and it was confirmed that a coating layer was formed on the surface of the hollow fiber membrane as the porous support.
(( 실시예Example 2) 2)
교반기가 부착된 2L 반응기에 N-메틸피롤리돈 500g을 투입하고 폴리술폰300g을 서서히 가하여 고분자 용액을 얻었다. 상기 고분자 용액에 첨가제로 테트라히드로퓨란 10g과 에탄올 10g을 첨가, 혼합하여 균일한 방사용액을 얻었으며, 나머지 공정은 실시예 1과 동일하게 수행하여 중공사 복합막을 제조하였다.
500 g of N-methylpyrrolidone was added to a 2 L reactor equipped with a stirrer, and 300 g of polysulfone was slowly added to obtain a polymer solution. 10 g of tetrahydrofuran and 10 g of ethanol were added as an additive to the polymer solution and mixed to obtain a homogeneous spinning solution. The remaining steps were performed in the same manner as in Example 1 to prepare hollow composite membranes.
(( 비교예Comparative Example 1) One)
실시예 1과 동일한 방법으로 중공사막을 얻었고, 코팅 공정은 실시하지 않았다.A hollow fiber membrane was obtained in the same manner as in Example 1, and the coating step was not carried out.
(( 비교예Comparative Example 2) 2)
실시예 2와 동일한 방법으로 중공사막을 얻었고, 코팅 공정은 실시하지 않았다.
A hollow fiber membrane was obtained in the same manner as in Example 2, and the coating step was not carried out.
(( 시험예Test Example ) 중공사막의 기체투과도 측정Measurement of Gas Permeability of Hollow Fiber Membrane
상기 실시예 1, 2에서 제조한 중공사 복합막 및 비교예 1, 2에서 제조한 중공사막의 기체투과도를 도 4에 나타낸 기체투과도 측정 장치를 이용하여 측정하였다. 혼합기체로는 99.99%의 이산화탄소와 메탄을 각각 사용하였고, 5기압 하에서 5개의 동일한 중공사막 모듈을 제조하여 이산화탄소 및 메탄의 평균 투과도와 선택도를 측정하였다. 기체투과도는 유량계를 이용하여 측정하였고, 기체투과단위는 GPU(Gas Permeation Unit, 10-6 x cm3/cm2sec·cmHg)를 사용하여 그 결과를 아래 표 1에 나타내었다.The gas permeabilities of the hollow composite membranes prepared in Examples 1 and 2 and the hollow fiber membranes prepared in Comparative Examples 1 and 2 were measured using the gas permeability measurement apparatus shown in FIG. The average permeability and selectivity of carbon dioxide and methane were measured by preparing 5 identical hollow fiber membrane modules under 5 atmospheres, using 99.99% carbon dioxide and methane as the mixer, respectively. The gas permeability was measured using a flow meter, and the gas permeation unit was GPU (Gas Permeation Unit, 10 -6 × cm 3 / cm 2 sec · cmHg). The results are shown in Table 1 below.
(PCO2, GPU)Carbon dioxide permeability
(P CO2 , GPU)
(PCH4, GPU)Methane permeability
(P CH4 , GPU)
(PCO2/PCH4)Carbon dioxide / methane selectivity
(P CO2 / P CH4 )
상기 표 1에서와 같이 본 발명의 실시예 1, 2에서 제조된 폴리[디메틸실록산-co-메틸(3-히드록시프로필)실록산]-그라프트-폴리(에틸렌 글리콜) 메틸 에테르로 코팅된 중공사 복합막은 각각 비교예 1, 2의 코팅되지 않은 중공사막에 비하여 이산화탄소의 투과도는 크게 증가된 반면, 메탄의 투과도는 변함이 없어 바이오가스 정제공정에서 이산화탄소/메탄의 혼합기체로부터 이산화탄소를 선택적으로 분리할 수 있는 성능이 크게 향상되었음을 확인할 수 있다.As shown in Table 1, the hollow fibers coated with poly [dimethylsiloxane-co-methyl (3-hydroxypropyl) siloxane] -graft-poly (ethylene glycol) methyl ether prepared in Examples 1 and 2 of the present invention The permeability of carbon dioxide was greatly increased in the composite membranes compared to the uncoated hollow fiber membranes of Comparative Examples 1 and 2, but the permeability of methane remained unchanged, thereby selectively separating carbon dioxide from the mixed gas of carbon dioxide and methane in the biogas purification process The performance can be greatly improved.
Claims (16)
i) 유리상 고분자를 유기용매에 용해시켜 고분자 용액을 얻는 단계;
ii) 상기 i) 단계에서 얻어진 고분자 용액에 첨가제를 혼합하고 교반하여 균일한 방사용액을 얻는 단계;
iii) 상기 ii) 단계에서 얻어진 방사용액을 이중 방사구금을 통하여 방사함으로써 중공사막을 제공하는 단계; 및
iv) 상기 iii) 단계의 중공사막의 표면에 폴리에틸렌 글리콜 또는 폴리에틸렌/프로필렌 글리콜을 포함하는 반복단위가 그라프트된 유기폴리실록산 공중합체 용액을 코팅하는 단계.Method for producing a hollow fiber composite membrane for carbon dioxide / methane separation comprising the following steps.
i) dissolving the glassy polymer in an organic solvent to obtain a polymer solution;
ii) mixing an additive to the polymer solution obtained in step i) and stirring to obtain a uniform spinning solution;
iii) providing a hollow fiber membrane by spinning the spinning solution obtained in the step ii) through a double spinneret; And
iv) coating an organopolysiloxane copolymer solution grafted with repeating units comprising polyethylene glycol or polyethylene / propylene glycol on the surface of the hollow fiber membrane of step iii).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120082181A KR101461199B1 (en) | 2012-07-27 | 2012-07-27 | Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120082181A KR101461199B1 (en) | 2012-07-27 | 2012-07-27 | Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140014905A true KR20140014905A (en) | 2014-02-06 |
KR101461199B1 KR101461199B1 (en) | 2014-11-18 |
Family
ID=50264713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120082181A KR101461199B1 (en) | 2012-07-27 | 2012-07-27 | Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101461199B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101598818B1 (en) | 2015-05-27 | 2016-03-03 | 주식회사 한국가스기술공사 | Parallel type gas purification apparatus for production of methane and liquid carbon dioxide using pressure swing adsorption and membrane separation |
KR20170123726A (en) * | 2016-04-07 | 2017-11-09 | (주)에어레인 | Method for purification of biogas using adsorption-membrane combined process |
KR20190047309A (en) * | 2017-10-27 | 2019-05-08 | (주)에어레인 | Composite hollow fiber membrane for production of high-quality biogas, membrane module comprising the same and manufacturing method thereof |
KR20190127524A (en) * | 2018-05-04 | 2019-11-13 | 한국화학연구원 | Method of preparing gas separation membrane and the gas separation membrane thereby |
KR20220073197A (en) * | 2020-11-26 | 2022-06-03 | (주)에어레인 | Anti-static hollow fiber membrane module and system for semiconductor manufacturing process |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2007010961A1 (en) | 2005-07-20 | 2009-01-29 | 東レ株式会社 | Modified substrate and production method thereof |
KR100693361B1 (en) * | 2005-11-03 | 2007-03-09 | 한국화학연구원 | Composite hollow fiber membranes for gases and vapors separation |
KR101035717B1 (en) | 2007-10-01 | 2011-05-19 | 한국화학연구원 | A preparation of asymmetric porous PEBA membrane for composite membrane |
-
2012
- 2012-07-27 KR KR1020120082181A patent/KR101461199B1/en active IP Right Grant
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101598818B1 (en) | 2015-05-27 | 2016-03-03 | 주식회사 한국가스기술공사 | Parallel type gas purification apparatus for production of methane and liquid carbon dioxide using pressure swing adsorption and membrane separation |
KR20170123726A (en) * | 2016-04-07 | 2017-11-09 | (주)에어레인 | Method for purification of biogas using adsorption-membrane combined process |
KR20190047309A (en) * | 2017-10-27 | 2019-05-08 | (주)에어레인 | Composite hollow fiber membrane for production of high-quality biogas, membrane module comprising the same and manufacturing method thereof |
KR20190127524A (en) * | 2018-05-04 | 2019-11-13 | 한국화학연구원 | Method of preparing gas separation membrane and the gas separation membrane thereby |
KR20220073197A (en) * | 2020-11-26 | 2022-06-03 | (주)에어레인 | Anti-static hollow fiber membrane module and system for semiconductor manufacturing process |
Also Published As
Publication number | Publication date |
---|---|
KR101461199B1 (en) | 2014-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation | |
KR101063697B1 (en) | Membrane for carbon dioxide/hydrogen separation in dme preparation process | |
US9623380B2 (en) | Gas separation membrane | |
Zhou et al. | Cellulose acetate ultrafiltration membranes reinforced by cellulose nanocrystals: Preparation and characterization | |
Korminouri et al. | Surface modification of polysulfone hollow fiber membrane spun under different air-gap lengths for carbon dioxide absorption in membrane contactor system | |
KR101461199B1 (en) | Composite hollow fiber membrane for separation of carbon dioxide/methane in the biogas purification process, membrane module comprising the same and manufacturing method thereof | |
Sukitpaneenit et al. | Fabrication and use of hollow fiber thin film composite membranes for ethanol dehydration | |
Mansourizadeh et al. | Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO2 absorption | |
Zheng et al. | PAN electrospun nanofiber skeleton induced MOFs continuous distribution in MMMs to boost CO2 capture | |
KR100644366B1 (en) | New spinning processes for asymmetric gas separation hollow fiber membranes | |
Hua et al. | Thin-film composite tri-bore hollow fiber (TFC TbHF) membranes for isopropanol dehydration by pervaporation | |
CN110975646B (en) | Preparation method of hollow fiber composite membrane for separating carbon dioxide in mixed gas | |
CN115430295A (en) | Preparation method of composite enhanced polypropylene hollow fiber microporous membrane | |
Zhao et al. | Preparation of nano-porous poly (ether ether ketone) hollow fiber membrane and its performance for desalination in vacuum membrane distillation | |
Liu et al. | Effects of spinning temperature on the morphology and performance of poly (ether sulfone) gas separation hollow fiber membranes | |
CN107803122B (en) | PVP-VA copolymer-containing hydrophilic ultrafiltration membrane and preparation method thereof | |
Khan et al. | A comprehensive review on dual-layer organic hollow fiber membranes fabrication via co-extrusion: Mechanistic insights, water treatment and gas separation applications | |
Gao et al. | Preparation of heat-treated PAN/SiO2 hybrid hollow fiber membrane contactor for acetylene absorption | |
KR101984893B1 (en) | Composite hollow fiber membrane for production of high-quality biogas, membrane module comprising the same and manufacturing method thereof | |
KR101467906B1 (en) | Method of manufacturing pervaporation using metal ion complex | |
KR101506334B1 (en) | Composite hollow fiber membrane for separation of pentane/nitrogen gas in the expanded polystyrene preparation process and manufacturing method thereof | |
Xiao et al. | Preparation of asymmetric chitosan hollow fiber membrane and its pervaporation performance for dimethyl carbonate/methanol mixtures | |
KR101474547B1 (en) | Method for manufacturing asymmetric hollow fiber membranes for gas separation using hybrid phase separation and asymmetric hollow fiber membranes for gas separation manufactured thereby | |
Yue et al. | Synthesis and performance of comb-shape poly (arylene ether sulfone) with flexible aliphatic brush | |
CN110756058B (en) | Hydrophilic high-molecular polymer film and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170905 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20181106 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20191024 Year of fee payment: 6 |