KR20140014579A - Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan - Google Patents

Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan Download PDF

Info

Publication number
KR20140014579A
KR20140014579A KR1020120080941A KR20120080941A KR20140014579A KR 20140014579 A KR20140014579 A KR 20140014579A KR 1020120080941 A KR1020120080941 A KR 1020120080941A KR 20120080941 A KR20120080941 A KR 20120080941A KR 20140014579 A KR20140014579 A KR 20140014579A
Authority
KR
South Korea
Prior art keywords
brain
nanocarrier
chitosan
nanocarriers
group
Prior art date
Application number
KR1020120080941A
Other languages
Korean (ko)
Other versions
KR101740895B1 (en
Inventor
태기융
김자영
최원일
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020120080941A priority Critical patent/KR101740895B1/en
Publication of KR20140014579A publication Critical patent/KR20140014579A/en
Application granted granted Critical
Publication of KR101740895B1 publication Critical patent/KR101740895B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/555Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound pre-targeting systems involving an organic compound, other than a peptide, protein or antibody, for targeting specific cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • A61K49/0433X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
    • A61K49/0442Polymeric X-ray contrast-enhancing agent comprising a halogenated group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0085Brain, e.g. brain implants; Spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Psychology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a brain targeting nano-carrier comprising a pluoronic polymer which is partially substituted with chitosan combined with a brain tissue targeting peptide, and brain targeting delivery using the same. According to the present invention, the brain targeting nano-carrier comprising a pluoronic polymer having chitosan combined with a brain tissue targeting peptide is effective in the brain targeting passing through BBB and the drug delivery in a bio-active state. Further, the synergic effect of the peptide having a predetermined brain targeting sequence and chitosan can significantly enhance the targeting effect and extend the accumulation in the brain. Accordingly, the nano-carrier of the present invention is useful as a brain targeting carrier by being combined with protein and genetic material as well as other treatment agents in the future. [Reference numerals] (AA) Chitosan-funtionalized-NC (Chito-NC)

Description

뇌조직에 특이적으로 전달 가능한 뇌조직 표적화 펩티드와 키토산이 결합된 플루로닉 고분자를 포함하는 뇌표적 나노전달체{Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan}Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan }

본 발명은 뇌조직 표적화 펩티드가 결합된 키토산으로 부분 치환된 플루로닉 고분자를 포함하는 나노전달체 및 이를 이용한 뇌표적 전달에 관한 것이다.
The present invention relates to a nanocarrier comprising a pluronic polymer partially substituted with chitosan to which a brain tissue targeting peptide is bound, and brain target delivery using the same.

지난 수년간 종양, 알츠하이머병 및 파킨슨병과 같은 뇌 질환에 대한 표적 약물 전달 또는 영상화가 연구되어 왔다. 비록 몇몇 뇌질환 질병에 효과적인 약들이 존재하지만, 그 응용성은 뇌로의 낮은 축적, 혈액-뇌-장벽(이하, BBB로 표시) 불투과성 등의 이유로 인해 제한되어 있다. Over the years, targeted drug delivery or imaging for brain diseases such as tumors, Alzheimer's disease and Parkinson's disease has been studied. Although drugs effective for some brain disease diseases exist, their application is limited due to low accumulation in the brain, blood-brain-barrier (hereinafter referred to as BBB) impermeability, and the like.

예로, 화학치료법을 위한 약물들은 뇌로의 접근이 허락되지 않으며, 이로 인해 종양제거를 위해 필요한 농도가 형성되지 못한다. 이러한 것은 뇌암에 의한 높은 치사율의 주원인이 된다. 작은 분자량을 가지면서(분자량 400kDa 이하) 높은 지용성인 분자들은 활성 방출 수송체(active efflux transporters)를 위한 기질이 아니면서 BBB를 투과할 수 있지만, 98% 이상의 작은 분자들은 이러한 뇌의 중심에 위치하기 위한 필요조건을 충족시키지 못한다. 게다가, 큰 분자들은 100% 뇌로의 투입이 불가능하다. 현재, 전세계적으로 15억 명에 달하는 사람들이 뇌질환으로 고통받고 있어, 노화 인구들을 위한 중추신경계(이하, CNS로 표시) 약물의 필요성이 증가하고 있는 실정이다. For example, drugs for chemotherapy do not allow access to the brain, which does not form the concentrations needed for tumor removal. This is a major cause of high mortality from brain cancer. Highly soluble molecules of small molecular weight (less than 400kDa molecular weight) can penetrate BBB without being the substrate for active efflux transporters, but more than 98% of small molecules are located in the center of this brain Does not meet the requirements. In addition, large molecules are not able to enter the brain at 100%. Currently, 1.5 billion people around the world suffer from brain diseases, and there is an increasing need for drugs of the central nervous system (hereinafter referred to as CNS) for the aging population.

이러한 치료를 위해서는 원하는 치료 약물을 뇌로 전달하는 적합한 전략이 개발되어야 한다. 뇌를 관통하여 약물이 충분한 시간을 가지고 원하는 위치에서 생물학적 효과를 나타내는 것이 CNS 약물 개발 프로그램의 최종 목표이다. 이러한 목표를 이루기 위해서는 BBB의 관통이 매우 중요하므로 BBB의 투과성을 극복하고 뇌로의 약물전달 효율을 높이기 위해, BBB를 일시적으로 개방하거나, 약물의 투여량을 증가시키거나, 약물을 중추신경으로 직접 주입하는 등의 방법들이 응용되고 있다. 그러나, 이러한 방법들은 침투적이며, 주사와 독성의 위험성이 존재할 뿐 아니라, 전문 기술을 가진 인력이 필수적이다. Such treatments require the development of suitable strategies for delivering the desired therapeutic drug to the brain. The final goal of the CNS drug development program is to penetrate the brain and allow the drug to have sufficient time and to have a biological effect at the desired location. In order to achieve this goal, penetration of BBB is very important, so in order to overcome BBB permeability and increase the efficiency of drug delivery to the brain, temporarily open the BBB, increase the dose of the drug, or inject the drug directly into the central nerve. And other methods are being applied. However, these methods are invasive and present a risk of injection and toxicity, as well as skilled personnel.

이러한 문제점들을 해결하기 위하여 종래 BBB 내의 특정 전달체(specific carrier)에 의해 전달되게 하는 방법이 있으나, 이러한 약물의 수정(modification)은 뇌로 주입된 후, 수용체에 대한 약물의 친화성에 영향을 주거나, 분자량이 400 kDa 이상으로 커지는 원인이 될 수도 있는 문제점이 있다. 또한, 지용성이 증가된 약물의 경우, 뇌 이외의 장기들에 전달되어 혈액속 약물의 농도가 감소될 수 있는 문제점이 있다.In order to solve these problems, there is a method to be delivered by a specific carrier in the conventional BBB, but the modification of these drugs (injection into the brain) affects the affinity of the drug to the receptor, or the molecular weight is There is a problem that may cause the increase to more than 400 kDa. In addition, in the case of a drug having increased fat solubility, it is delivered to organs other than the brain, there is a problem that the concentration of the drug in the blood can be reduced.

이에, 많은 연구자들에 의해 주위의 혈액과 단백질의 직접 접촉을 방지할 수 있는 미셀, 나노입자와 리포솜과 같은 전달계들이 체내 단백질 전달을 위해 연구되어 왔다. Thus, many researchers have been studied for delivery of proteins in the body, such as micelles, nanoparticles and liposomes that can prevent the direct contact of the blood with the surrounding protein.

이중, 나노입자는 입자의 크기가 수 nm에서 수백 nm크기의, 넓은 표면적을 가진 콜로이드상의 불균일 분산 입자 일종으로 지금까지 수많은 연구에 의해 나노 입자의 제조, 특성 규명, 약물 봉입에 관한 연구가 이루어져 약물 전달체로서의 가능성이 충분히 입증되었다. 나노입자가 인체에 투입될 때는 주사, 경구, 피부 등 다양한 방법을 통해 전달되며 이때의 약물의 분포는 다른 전달체와는 구별되는 약물의 분포를 나타내며 이것은 나노 입자의 특성에 따라 조금씩 다르게 나타난다. 예를 들어, 약물을 인체 내에 투여하면 목표로 하는 장기 외에 다른 장소에도 약물이 분포하게 된다.Of these, nanoparticles are a type of colloidal non-uniformly dispersed particles having a large surface area ranging in size from several nm to several hundred nm. Thus, numerous studies have been conducted on the preparation, characterization, and drug encapsulation of nanoparticles. The potential as a carrier has been fully demonstrated. When the nanoparticles are injected into the human body, they are delivered through various methods such as injection, oral, and skin, and the distribution of drugs at this time indicates the distribution of drugs that are distinguished from other carriers. For example, when a drug is administered in a human body, the drug is distributed in other places besides the target organ.

이에 따라, 펩티드 변성 생분해성 고분자(PLGA) 나노입자 및 양자점, 양자막대와 Cy5.5-NHS과 같은 영상화를 위한 특이적 펩티드 결합된 물질뿐 아니라, TAT(전사활성화 인자)와 CTP(세포질 신호전달 펩티드)의 유효성이 보고된 바 있고, 또 다른 경우에서는 종양 혈관계를 표적으로 하는 고리형 펩티드(RGDyK)와 BBB-투과성 Angiopep-2 펩티드를 PAMAM-G5 덴드리머에 표지하여 성공적인 뇌 종양 MRI와 체내 광학 영상을 나타내었다. 나아가, AMT 계는 양전하 물질과 음전하를 띤 원형질막 표면 사이의 정전기적 상호작용에 의해 작동되는 물질로써, 세포 표면 결합 부위와 AMT 계의 상호작용은 세포내 이입과 세포통과를 유도하는 것이 알려져 있다.Accordingly, peptide denatured biodegradable polymer (PLGA) nanoparticles and specific peptide-bound materials for imaging such as quantum dots, quantum rods and Cy5.5-NHS, as well as TAT (transcription activating factor) and CTP (cytoplasmic signaling) Peptide) has been reported, and in another case successful brain tumor MRI and in vivo optical imaging by labeling PAMAM-G5 dendrimers with cyclic peptides (RGDyK) and BBB-permeable Angiopep-2 peptides that target the tumor vasculature Indicated. Furthermore, the AMT system is a substance operated by electrostatic interaction between a positively charged material and a negatively charged plasma membrane surface, and the interaction between the cell surface binding site and the AMT system is known to induce endocytosis and cell passage.

최근, 안지오펩타이드(angiopep)가 결합된 폴리에틸렌글라이콜(PEG)-변성 나노입자 Tet1 펩티드-변성 PEG 전달 매체, TGNPEG-PLGA와 락토페린-PEG PLA 나노입자와 같은 RMT 및 AMT-결합된 나노입자가 뇌를 표적으로 하는 전달을 이해 적용된 바 있다. 그러나, 입자 자체 또는 조영제 전달을 위한 이들 모든 계는 단백질의 뇌 전달을 나타내지 못하는 문제점이 있다.
Recently, angiopeptide bound polyethylene glycol (PEG) -modified nanoparticles, Tet1 peptide-modified PEG delivery media, RMT and AMT-bound nanoparticles such as TGNPEG-PLGA and lactoferrin-PEG PLA nanoparticles Has been applied to understand the brain-targeted transmission. However, all these systems for the particle itself or contrast agent delivery have the problem of not exhibiting brain delivery of the protein.

본 발명의 해결하고자 하는 과제는 표적 뇌조직에 전달될 수 있는 뇌조직 약물 전달시스템으로서, 나노전달체를 제공하는 것이다.The problem to be solved of the present invention is to provide a nano-carrier as a brain tissue drug delivery system that can be delivered to the target brain tissue.

본 발명의 다른 과제는 상기 나노전달체의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the nanocarrier.

본 발명의 또 다른 과제는 상기 나노전달체를 포함하는 뇌질환 치료용 약학적 조성물을 제공하는 것이다.Another object of the present invention to provide a pharmaceutical composition for treating brain disease comprising the nanocarrier.

본 발명의 다른 과제는 상기 나노전달체를 포함하는 뇌질환 진단용 영상화제를 제공하는 것이다.
Another object of the present invention is to provide an imaging agent for diagnosing brain disease comprising the nanocarrier.

상기 목적을 해결하기 위하여, 본 발명은 키토산기 및 뇌조직 표적화 펩티드가 결합된 플루로닉 기반 나노전달체를 제공한다.In order to solve the above object, the present invention provides a pluronic-based nanocarrier coupled to the chitosan group and brain tissue targeting peptide.

또한, 본 발명은 (a) 플루노닉 고분자를 아크릴화된 수용성 키토산으로 부분치환하여 나노전달체를 얻는 단계;In addition, the present invention comprises the steps of (a) partially replacing the pluronic polymer with acrylated water-soluble chitosan to obtain a nanocarrier;

(b) 상기 단계 (a)에서 얻은 나노전달체의 키토산에 포함된 아민기를 말레이미드기(MAL)-폴리에틸렌글라이콜(PEG)-N하이드록시숙신이미드(NHS)와 결합시켜 말레이미드기 및 폴리에틸렌글라이콜이 결합된 나노전달체를 얻는 단계; 및(b) the amine group contained in the chitosan of the nanocarrier obtained in step (a) with a maleimide group (MAL) -polyethylene glycol (PEG) -N hydroxysuccinimide (NHS) Obtaining a nanocarrier to which polyethylene glycol is bound; And

(c) 상기 단계 (b)에서 얻은 말레이미드기 및 폴리에틸렌글라이콜이 결합된 나노전달체에 뇌조직 표적화 펩티드를 결합시키는 단계;를 포함하는 상기 뇌 표적 나노전달체의 제조방법을 제공한다. (c) binding the brain tissue targeting peptide to the nanocarrier to which the maleimide group and polyethylene glycol obtained in step (b) are bound; provides a method for producing the brain target nanocarrier comprising the.

나아가, 본 발명은 상기 나노전달체를 포함하는 뇌질환 치료용 약학적 조성물을 제공한다.Furthermore, the present invention provides a pharmaceutical composition for treating brain disease comprising the nanocarrier.

또한, 본 발명은 상기 나노전달체를 포함하는 뇌질환 진단용 영상화제를 제공한다.
In another aspect, the present invention provides an imaging agent for diagnosing brain disease comprising the nanocarrier.

본 발명에 의한 뇌조직 표적화 펩티드와 키토산이 결합된 플루로닉 고분자를 포함하는 뇌조직 표적화 나노전달체는 BBB를 통과하는 뇌 표적화와 생체활성 상태로서 약물의 전달을 위해서도 효과적일 뿐만 아니라, 뇌표적 특정 서열을 가지는 펩티드와 키토산의 상승효과는 표적화 효능을 크게 증진시키고, 뇌안의 축적을 연장하는 효과가 우수하므로, 본 발명의 나노전달체는 단백질 및 유전물질뿐만 아니라 미래의 다른 치료제와도 조합하여 전달하는 뇌 표적 전달 매체용으로 유용하게 사용될 수 있다.
Brain tissue targeting nanocarriers comprising a pluronic polymer in which the brain tissue targeting peptide and chitosan are coupled to the present invention are not only effective for drug delivery as a brain targeting and bioactive state through BBB, but also for brain target specificity. Since the synergistic effect of the peptide and the chitosan having the sequence greatly enhances the targeting efficacy and the effect of prolonging the accumulation in the brain, the nanocarrier of the present invention is delivered in combination with other therapeutic agents in the future as well as proteins and genetic materials. It may be usefully used for brain target delivery media.

도 1은 본 발명에 따른 일실시예의 뇌조직 표적화 펩티드(광견병 바이러스 당단백질의 단편)와 키토산이 결합된 플루로닉계 나노전달체의 제조방법을 나타낸 모식도이다.
도 2는 본 발명에 따른 일실시예의 나노전달체의 1H-NMR 스펙트럼 결과를 나타내는 도면이다.
도 3은 본 발명에 따른 일실시예의 나노전달체의 온도 감응성 크기 변화를 나타내는 도면이다.
도 4는 본 발명에 따른 일실시예의 나노전달체로부터 β-갈락토시다아제의 방출 양상을 나타내는 도면이다.
도 5는 본 발명에 따른 일실시예의 나노전달체의 정맥 내 주사 후의 누드 마우스의 (a) 체내 및 (b) 체외 NIR 형광 측정 결과를 나타내는 도면이다.
도 6은 본 발명에 따른 일실시예의 나노전달체의 정맥 내 주사 후의 누드 마우스의 희생 후, (a) 뇌에 축적된 나노 전달체 및 (b) 주요 기관에 분포된 나노전달체의 정량화 그래프를 나타내는 도면이다.
도 7은 본 발명에 따른 일실시예의 나노전달체의 (a) 뇌조직 축적 공초점 현미경 사진(스케일바: 200 ㎛) 및 (b) 정량화 그래프를 나타내는 도면이다.
도 8은 본 발명에 따른 일실시예의 나노전달체 투여 후, 누드마우스의 (a) 뇌의 동결절편에서 X-gal 염색에 의해 평가한 β-갈락토시다아제 효소 활성의 분석 및 (b) 뇌 X-gal 염색의 확대 사진(스케일바: 200 μm)을 나타내는 도면이다.
도 9는 본 발명에 따른 일실시예의 나노전달체 투여 후, 누드마우스의 (a) 뇌에서 β-갈락토시다아제 효소 활성을 정량 분석한 그래프 및 (b) 정맥 내 주사 후 48시간에 마우스 뇌, 비장, 간, 심장, 폐와 신장에 대한 조직 무게(g)당 주사 투여량 비율을 나타내는 도면이다.
1 is a schematic diagram showing a method for preparing a pluronic nanocarrier in which a brain tissue targeting peptide (a fragment of rabies virus glycoprotein) and chitosan are combined according to an embodiment of the present invention.
Figure 2 is a diagram showing the 1 H-NMR spectrum results of the nanocarrier of one embodiment according to the present invention.
3 is a view showing the temperature sensitive size change of the nanocarrier of one embodiment according to the present invention.
4 is a view showing the release pattern of β-galactosidase from the nanocarrier of one embodiment according to the present invention.
5 is a view showing the results of (a) in vivo and (b) in vitro NIR fluorescence of nude mice after intravenous injection of nanocarriers of one embodiment according to the present invention.
6 is a diagram showing a quantification graph of (a) the nanocarriers accumulated in the brain and (b) the nanocarriers distributed in major organs after sacrifice of nude mice after intravenous injection of nanocarriers of one embodiment according to the present invention. .
7 is a diagram showing (a) brain tissue accumulation confocal micrograph (scale bar: 200 μm) and (b) quantification graph of a nanocarrier of one embodiment according to the present invention.
Figure 8 shows the analysis of β-galactosidase enzyme activity assessed by X-gal staining in (a) brain frozen sections of nude mice after administration of nanocarriers of one embodiment according to the present invention, and (b) brain X It is an enlarged photograph (scale bar: 200 micrometers) of -gal staining.
9 is a graph of quantitative analysis of (a) β-galactosidase enzyme activity in the brain of nude mice after administration of the nanocarrier of one embodiment according to the present invention, and (b) mouse brain at 48 hours after intravenous injection. The ratio of injection dosage per gram of tissue weight to the spleen, liver, heart, lung and kidney.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명자들은 종래의 혈액-뇌-장벽(BBB)의 침윤성으로 인해 뇌를 표적으로 하는 약물 또는 조영제의 경우, 뇌 내로 전달이 어려운 문제점이 있고, 뇌 조직에 치료용 단백질을 전달하는 것은 단백질의 크기와 물리-화학적 특성에 의해 더욱 제한되는 등의 문제점을 해결하고자, 뇌조직 표적화 펩티드가 결합된 키토산으로 부분 치환된 플루로닉 고분자를 포함하는 뇌 표적 나노전달체를 제조하고, 뇌 조직에 선택적으로 전달될 수 있음을 확인하고 본 발명을 완성하였다.
The present inventors have difficulty in delivering drugs or contrast agents targeting the brain due to the invasiveness of the conventional blood-brain-barrier (BBB), and delivering the therapeutic protein to the brain tissue is the size of the protein. In order to solve the problems such as further limited by the physico-chemical properties, a brain target nanocarrier comprising a pluronic polymer partially substituted with chitosan to which the brain tissue targeting peptide is bound, and selectively delivered to brain tissue It was confirmed that the present invention was completed.

본 발명은 뇌조직 표적화 펩티드가 결합된 키토산으로 부분 치환된 플루로닉 고분자를 포함하는 뇌 표적 나노전달체를 제공한다.
The present invention provides a brain target nanocarrier comprising a pluronic polymer partially substituted with chitosan to which a brain tissue targeting peptide is bound.

이때, 상기 나노전달체에서 플루로닉 고분자와 키토산은 아실화 반응을 통해 플루로닉 고분자와 아크릴화된 수용성 키토산이 결합된 형태이다.
In this case, in the nanocarrier, the pluronic polymer and chitosan are combined with the pluronic polymer and acrylated water-soluble chitosan through an acylation reaction.

또한, 본 발명에 따른 상기 뇌조직 표적화 펩티드는 광견병 바이러스 당단백질 단편이다.In addition, the brain tissue targeting peptide according to the present invention is a rabies virus glycoprotein fragment.

이때, 상기 광견병 바이러스 당단백질 단편은 서열번호 1 내지 5로 이루어지는 군으로부터 선택되는 어느 하나이고, 바람직하게는 서열번호 1에 해당하는 단편이다.
At this time, the rabies virus glycoprotein fragment is any one selected from the group consisting of SEQ ID NO: 1 to 5, preferably a fragment corresponding to SEQ ID NO: 1.

구체적으로, 본 발명에 따른 상기 나노전달체는 플루로닉 고분자와 키토산을 아실화 반응을 수행하여 플루로닉 고분자에 수용성 키토산을 도입하여 표면을 개질하고, 상기 키토산에 뇌조직에 특이적으로 전달 가능한 뇌조직 표적화 펩티드, 예를 들어 광견병 바이러스 당단백질의 단편을 부착시킴으로써, 정맥주사 등에 의해서 표적 뇌조직에 전달될 수 있는 뇌조직 약물 전달시스템으로의 나노전달체이다.
Specifically, the nanocarrier according to the present invention performs an acylation reaction between the pluronic polymer and the chitosan to introduce a water-soluble chitosan to the pluronic polymer to modify the surface thereof, and to specifically deliver the chitosan to the brain tissue. It is a nanocarrier to a brain tissue drug delivery system that can be delivered to target brain tissue by intravenous injection or the like by attaching a brain tissue targeting peptide, eg, a fragment of rabies virus glycoprotein.

나아가, 본 발명에 따른 나노전달체의 크기는 30-100 nm인 것이 바람직하고, 더욱 바람직하게는 50-70 nm이다.Furthermore, the size of the nanocarrier according to the present invention is preferably 30-100 nm, more preferably 50-70 nm.

상기 범위를 벗어나는 경우, 특히, 나노전달체의 크기가 30 nm 미만인 경우, 정맥 주사시, 모세혈관 벽을 통해 유출되어 선택적으로 약물을 전달하기 어려운 문제점이 있고, 100 nm 초과인 경우, 대식세포에 의해 나노전달체가 제거가 될 수 있는 문제점이 있다.
Outside the above range, in particular, when the size of the nanocarrier is less than 30 nm, there is a problem that it is difficult to selectively deliver the drug through the capillary wall during intravenous injection, and if it exceeds 100 nm, by macrophages There is a problem that nanocarriers can be removed.

본 발명의 플루로닉 고분자는 폴리에틸렌옥사이드(PEO)-폴리프로필렌옥사이드(PPO)-폴리에틸렌옥사이드(PEO)의 구조를 갖는 고분자로써, 화학적으로 가교된 안정한 구조, 시험관내 및 체내 안정성, 단백질 담지의 용이성과 효율성 및 비-세포 독성뿐만 아니라, 온도 감응성과 같은 여러 이점이 있는 고분자이다.
Pluronic polymer of the present invention is a polymer having a structure of polyethylene oxide (PEO) -polypropylene oxide (PPO) -polyethylene oxide (PEO), chemically crosslinked stable structure, in vitro and in vivo stability, ease of protein support As well as over-efficiency and non-cytotoxicity, it is a polymer with several advantages such as temperature sensitivity.

이때, 사용가능한 본 발명에서 플루로닉 고분자의 분자량은 8000-15000 달톤(Da)을 사용할 수 있고, 바람직하게는 8500-13000 Da를 사용할 수 있으나, 이에 한정하지 않으며, 상기 범위는 특정 플루로닉의 폴리에틸렌옥사이드 (PEO)-폴리프로필렌옥사이드 (PPO)-폴리에틸렌옥사이드(PEO)의 구조적 특성에 따른 분자량의 범위를 지정하여 선택할 수 있다.
In this case, the molecular weight of the Pluronic polymer in the present invention can be used 8000-15000 Daltons (Da), preferably 8500-13000 Da can be used, but is not limited to this, the range is specific Pluronic The polyethylene oxide (PEO) -polypropylene oxide (PPO) -polyethylene oxide of (PEO) can be selected by specifying the range of the molecular weight according to the structural characteristics.

또한, 본 발명의 키토산은 음전하를 띄는 양이온성 리간드로서 키토산은 나노전달체의 활성 수송을 용이하게 할 수 있으며, 뇌혈관장벽(BBB)의 통과를 용이하게 하기 위하여 도입되었다.In addition, chitosan of the present invention is a negatively charged cationic ligand, and chitosan was introduced to facilitate the active transport of nanocarriers and to facilitate the passage of cerebrovascular barriers (BBB).

이때, 사용가능한 상기 키토산의 분자량은 1-50 킬로달톤(kDa)이고, 바람직하게는 5-10 kDa이다.At this time, the molecular weight of the chitosan that can be used is 1-50 kilodaltons (kDa), preferably 5-10 kDa.

상기 범위에 따라 도입된 수용성 키토산은 나노전달체의 양이온성을 위해 선택된 범위이며, 수용성 키토산으로서의 특성을 위한 분자량의 범위로서 상기 명시된 범위가 적당하다. 해당 범위의 키토산은 분자량에 따라 도입가능하며, 양이온성의 차이에 따라 선택되어질 수 있다.
The water soluble chitosan introduced according to the above range is a range selected for the cationicity of the nanocarrier, and the above-specified range is suitable as the range of the molecular weight for the property as the water soluble chitosan. Chitosan in the range can be introduced depending on the molecular weight and can be selected according to the difference in cationicity.

나아가, 상기 키토산의 탈아세트화도는 80-95%인 것을 사용하는 것이 바람직하다.Furthermore, it is preferable to use the deacetization degree of the chitosan that is 80-95%.

키토산의 탈아세트화도가 높을수록 상기 플루로닉 고분자와의 결합 수율이 높아지는 장점이 있다.
The higher the degree of deacetization of chitosan, the higher the yield of bonding with the pluronic polymer.

또한, 본 발명의 뇌조직에 특이적으로 전달 가능한 서열을 가지는 뇌조직 표적화 펩티드, 예를 들어 광견병 바이러스 당단백질 단편인 RVG는 신경세포에서 니코틴성 아세틸콜린 수용체(AchR)와 특이적으로 상호작용하고 뇌 내에서 역행성 축삭 운반을 매개하고 바이러스성 벡터의 분포를 증가시키는 역할을 수행한다.In addition, brain tissue targeting peptides, such as the rabies virus glycoprotein fragment, RVG, which have sequences specifically deliverable to brain tissues of the present invention, specifically interact with nicotinic acetylcholine receptors (AchRs) in neurons. It plays a role in mediating retrograde axon transport in the brain and increasing the distribution of viral vectors.

본 발명에 따른 나노전달체의 약물 봉입 효율 및 뇌조직에 선택적으로 약물의 전달 효과를 확인하기 위하여 광견병 바이러스 당단백질 단편으로서 특이적 서열을 가지는 펩티드가 결합된 플루로닉계 나노전달체 내 β-갈락토시다아제의 봉입 효율 및 방출 효과, 나노전달체 투여 후, 누드 마우스 뇌의 체내 광학 영상 촬영, 뇌의 체외 영상 측정 및 뇌에 전달된 나노전달체에 봉입된 β-갈락토시다아제의 조직화학 분석, 주요 기관과 뇌에서 β-갈락토시다아제의 체내 효소활성 측정 실험을 수행한 결과, 약물 봉입 효율이 우수하고(실험예 4 및 5 참조), 약물 방출 효과가 우수하고(실험예 6 참조), 누드마우스의 정맥내에 본 발명의 나노전달체를 투여한 결과, 누드마우스의 머리근처에서 나노전달체의 신호가 관찰되었으며, 누드마우스 희생 후, 주요기관의 나노전달체의 위치를 확인한 결과, 다른 기관에 비해서 뇌에 분포되어 있음을 확인하였다(실험예 7 및 8 참조). 또한, 본 발명의 나노전달체를 투여한지 48시간 이내에 뇌의 모든 영역에서 약물에 대한 효과를 나타내는 것을 확인하였다(실험예 9 및 10 참조).
Β-galactosidase in pluronic nanocarriers in which peptides having a specific sequence are bound as rabies virus glycoprotein fragments to confirm the drug encapsulation efficiency and selective drug delivery effect of the nanocarriers according to the present invention. Encapsulation efficiency and release effect of azease, in vivo optical imaging of nude mouse brain after nanocarrier administration, in vitro imaging of brain and histochemical analysis of β-galactosidase encapsulated in nanocarriers delivered to brain, major organs In vitro enzyme activity measurement of β-galactosidase in humans and brain showed excellent drug encapsulation efficiency (see Experimental Examples 4 and 5), excellent drug release effect (see Experimental Example 6), and nude mouse When the nanocarrier of the present invention was administered in the vein of, the signal of the nanocarrier was observed near the head of the nude mouse. As a result of confirming the position of the nanocarrier, it was confirmed that it is distributed in the brain compared to other organs (see Experimental Examples 7 and 8). In addition, it was confirmed that the effect on the drug in all areas of the brain within 48 hours after administration of the nanocarrier of the present invention (see Experimental Examples 9 and 10).

본 발명에 의한 뇌조직 표적화 펩티드와 키토산이 결합된 플루로닉 고분자를 포함하는 나노전달체는 BBB를 통과하는 뇌 표적화와 생체활성 상태로서 약물의 전달을 위해서도 효과적이고, 뿐만 아니라, 뇌조직 표적화 펩티드와 키토산의 상승효과는 크게 표적화 효능을 증진시키고, 뇌 안의 축적을 연장시키는 효과가 우수하므로 본 발명에 따른 나노전달체는 단백질 및 유전물질뿐만 아니라 미래의 다른 치료제와도 조합하여 전달하는 뇌 표적 전달 매체용으로 유용하게 사용될 수 있다.
The nanocarrier comprising a pluronic polymer in which chitosan is bound to the brain tissue targeting peptide according to the present invention is effective for drug delivery as a brain targeting and bioactive state through BBB, as well as with a brain tissue targeting peptide. The synergistic effect of chitosan greatly enhances the targeting efficacy and is excellent in prolonging accumulation in the brain, so that the nanocarriers according to the present invention are used for the delivery of brain target delivery media in combination with proteins and genetic materials as well as other therapeutic agents in the future. It can be usefully used.

나아가, 본 발명은 하기 단계를 포함하는 상기 뇌 표적 나노전달체의 제조방법을 제공한다:Furthermore, the present invention provides a method for producing the brain target nanocarrier comprising the following steps:

(a) 플루노닉 고분자를 아크릴화된 수용성 키토산으로 부분치환하여 나노전달체를 얻는 단계;(a) partially replacing the pluronic polymer with acrylated water-soluble chitosan to obtain a nanocarrier;

(b) 상기 단계 (a)에서 얻은 나노전달체의 키토산에 포함된 아민기와 말레이미드기(MAL)-폴리에틸렌글라이콜(PEG)-N하이드록시숙신이미드(NHS)를 결합시켜 말레이미드기 및 폴리에틸렌글라이콜이 결합된 나노전달체를 얻는 단계; 및(b) combining the amine group and maleimide group (MAL) -polyethylene glycol (PEG) -N hydroxysuccinimide (NHS) contained in the chitosan of the nanocarrier obtained in step (a), and the maleimide group and Obtaining a nanocarrier to which polyethylene glycol is bound; And

(c) 상기 단계 (b)에서 얻은 말레이미드기 및 폴리에틸렌글라이콜이 결합된 나노전달체에 뇌조직에 특이적으로 전달 가능한 뇌조직 표적화 펩티드를 결합시키는 단계.
(c) binding a brain tissue targeting peptide capable of specific delivery to brain tissue to the nanocarrier to which the maleimide group and polyethylene glycol obtained in step (b) are bound.

본 발명에 따른 제조방법에 있어서, 상기 단계 (a)는 플루노닉 고분자 및 수용성 키토산을 이용하여, 키토산으로 부분 치환된 나노전달체를 도입하는 단계로써,플루로닉 고분자 및 아크릴화된 수용성 키토산을 아실화 반응시켜 키토산을 도입하여 표면을 개질하는 단계이다.In the production method according to the present invention, step (a) is a step of introducing a nanocarrier partially substituted with chitosan by using the pluronic polymer and the water-soluble chitosan, and acylating the pluronic polymer and the acrylated water-soluble chitosan. The reaction is to introduce chitosan to modify the surface.

구체적으로, 인산염 완충용액 상에서 플루로닉 고분자와 아크릴화된 수용성 키토산을 2-4시간 동안 반응시켜 본 발명의 플루로닉 고분자의 비닐기를 키토산으로 부분 치환한 후, 광개시제를 첨가한 다음 UV광을 10-20분 동안 조사하여 키토산이 결합된 플루로닉 고분자를 포함하는 나노전달체를 얻을 수 있다.
Specifically, in the phosphate buffer solution, the Pluronic polymer and the acrylated water-soluble chitosan are reacted for 2-4 hours to partially replace the vinyl group of the Pluronic polymer of the present invention with chitosan, add a photoinitiator, and then emit UV light. Irradiation for -20 minutes may yield a nanocarrier comprising a pluronic polymer to which chitosan is bound.

이때, 인산염 완충용액의 산도(pH)는 7.5 내지 8.5로 제조하여 사용할 수 있고, 바람직하게는 8.0 내지 8.2로 제조하여 사용할 수 있다.
In this case, the acidity (pH) of the phosphate buffer solution may be prepared from 7.5 to 8.5, and preferably from 8.0 to 8.2.

또한, 상기 UV광은 1.0 내지 1.5 mW/cm2의 크기로 조사할 수 있으나, 이에 한정하지 않는다.
In addition, the UV light may be irradiated with a size of 1.0 to 1.5 mW / cm 2 , but is not limited thereto.

나아가, 본 발명의 플루로닉 고분자의 분자량은 1800-15000 달톤(Da)을 사용할 수 있고, 바람직하게는 8500-13000 Da를 사용할 수 있다.
Further, the molecular weight of the pluronic polymer of the present invention may be used 1800-15000 Daltons (Da), preferably 8500-13000 Da can be used.

또한, 본 발명에 따른 제조방법에 있어서, 상기 단계 (b)는 상기 단계 (a)에서 얻은 나노전달체의 키토산과 MAL-PEG-NHS를 반응시켜 본 발명의 나노전달체 상의 1차 아미노기와 이종 2 관능성 PEG와 NHS기 사이의 특이적 반응에 의해 MAL-PEG가 결합된 나노전달체를 얻는 단계이다.
In addition, in the preparation method according to the present invention, step (b) is a heterogeneous bifunctional functional group on the nanocarrier of the present invention by reacting chitosan and MAL-PEG-NHS of the nanocarrier obtained in step (a). It is a step of obtaining a nanocarrier to which MAL-PEG is bound by a specific reaction between a sex PEG and an NHS group.

이때, 본 발명의 MAL-PEG-NHS의 첨가 비율은 상기 단계 (a)에서 얻은 나노전달체의 아민기에 대하여 1:1.5-2.5의 몰 비율로 첨가되는 것이 바람직하다.At this time, the addition ratio of MAL-PEG-NHS of the present invention is preferably added in a molar ratio of 1: 1.5-2.5 with respect to the amine group of the nanocarrier obtained in step (a).

상기 범위를 벗어나는 경우, 특히, MAL-PEG-NHS에 따른 첨가 비율이 표적화 펩타이드의 결합과 연관이 있으므로, 나노전달체의 아민기에 대하여 1.5 몰 미만으로 첨가되는 경우, 표적 펩타이드가 적게 결합되어 나노전달체로서의 효율이 떨어지는 문제점이 있고, 2.5 몰 초과로 첨가되는 경우, 나노전달체에 남아있는 아민기의 수가 적어지므로 키토산의 양전하성 효과가 떨어지는 문제점이 있다.
When outside the above range, in particular, since the addition ratio according to MAL-PEG-NHS is associated with the binding of the targeting peptide, when added in less than 1.5 moles to the amine group of the nanocarrier, the target peptide is less bound and serves as a nanocarrier. There is a problem that the efficiency is lowered, and when added in excess of 2.5 moles, the number of amine groups remaining in the nanocarrier is reduced, there is a problem that the positive charge effect of chitosan is lowered.

한편, 본 발명에서는 중간 링커로서 작용하는 NHS-PEG-MAL의 MAL과의 콘쥬게이션을 위해 RVG와 같이 각 펩타이드는 말단에 시스테인 간기가 추가된 펩티드 모델을 사용하였다.
On the other hand, in the present invention, for conjugation of NHS-PEG-MAL with MAL, which acts as an intermediate linker, each peptide, like RVG, used a peptide model in which cysteine interphase was added at the end.

나아가, 본 발명에 따른 제조방법에 있어서, 상기 단계 (c)는 상기 단계 (b)에서 얻은 말레이미드기 및 폴리에틸렌글라이콜이 결합된 나노전달체에 뇌조직에 특이적으로 전달 가능한 서열을 가지는 뇌조직 표적화 펩티드, 예를 들어 광견병 바이러스 당단백질 단편을 결합시키는 단계이다.
Furthermore, in the manufacturing method according to the present invention, the step (c) is a brain having a sequence specifically deliverable to the brain tissue to the nanocarrier to which the maleimide group and polyethylene glycol obtained in the step (b) is bound Binding a tissue targeting peptide such as rabies virus glycoprotein fragment.

상기 단계 (c)에 있어서, 말레이미드기는, 예를 들어 뇌조직 표적화 서열을 가지는 펩티드로서 광견병 바이러스 당단백질 단편인 RVG를 사용하는 경우, 티올기 사이에서 특이적 반응에 의해 뇌조직 표적화 서열을 가지는 펩티드가 키토산 상에 결합될 수 있다.In step (c), the maleimide group has a brain tissue targeting sequence by a specific reaction between thiol groups, for example, when RVG, a rabies virus glycoprotein fragment, is used as a peptide having a brain tissue targeting sequence. Peptides can be bound on chitosan.

이때, 본 발명의 상기 단계 (b)에서 얻은 말레이미드기 및 폴리에틸렌글라이콜이 결합된 나노전달체에는 시스테인과 같은 -SH 서열이 포함된 다양한 특정 펩티드 또한 결합가능하다.
In this case, various specific peptides including -SH sequences such as cysteine can also be bound to the nanocarrier to which the maleimide group and the polyethylene glycol obtained in step (b) of the present invention are bound.

또한, 본 발명은 뇌조직 표적화 펩티드가 결합된 키토산으로 부분 치환된 플루로닉 고분자를 포함하고, 뇌조직에 약물을 전달하기 위한 뇌 표적 나노전달체를 포함하는 뇌질환 치료용 약학적 조성물을 제공한다.
In addition, the present invention provides a pharmaceutical composition for treating brain disease, comprising a pluronic polymer partially substituted with chitosan to which a brain tissue targeting peptide is bound, and comprising a brain target nanocarrier for delivering a drug to brain tissue. .

본 발명의 나노전달체는 약물 봉입 효율이 우수하고(실험예 4 및 5 참조), 약물 방출 효과가 우수하고(실험예 6 참조), 누드마우스의 정맥내에 본 발명의 나노전달체를 투여한 결과, 누드마우스의 머리근처에서 나노전달체의 신호가 관찰되었으며, 누드마우스 희생 후, 주요기관의 나노전달체의 위치를 확인한 결과, 다른 기관에 비해서 뇌에 분포되어 있음을 확인하였다(실험예 7 및 8 참조). 또한, 본 발명의 나노전달체를 투여한지 48시간 이내에 뇌의 모든 영역에서 약물에 대한 효과를 나타내는 효과(실험예 9 및 10 참조)가 있으므로, 나노전달체 내에 약물을 봉입하여 투여함으로써, 뇌질환 치료에 유용하게 사용될 수 있다.
The nanocarriers of the present invention have excellent drug encapsulation efficiency (see Experimental Examples 4 and 5), excellent drug release effects (see Experimental Example 6), and the result of administration of the nanocarriers of the present invention in the vein of nude mice resulted in nudity. The signal of the nanocarrier was observed near the head of the mouse, and after sacrificing nude mice, the position of the nanotransmitter of major organs was confirmed, and it was confirmed that it was distributed in the brain compared to other organs (see Experimental Examples 7 and 8). In addition, since there is an effect (see Experimental Examples 9 and 10) showing effects on drugs in all regions of the brain within 48 hours after the administration of the nanocarriers of the present invention, the drug is enclosed and administered in the nanocarriers to treat brain diseases. It can be usefully used.

이때, 상기 약물은 뇌질환 치료용 약물로써, 레보도파, 렘베르디메본, 가바(GABA), 니플루믹산 및 이의 프로드러그 등의 약물을 본 발명의 나노전달체에 봉입하여 사용할 수 있다.
At this time, the drug is a drug for the treatment of brain diseases, levodopa, lemberdimebon, GABA (GABA), niflumic acid and prodrugs thereof and the like can be encapsulated in the nanocarrier of the present invention.

또한, 상기 뇌질환은 뇌암, HIV 뇌증, 뇌전증(간질), 파킨슨병 및 알츠하이머병 등을 포함한다.
In addition, the brain diseases include brain cancer, HIV encephalopathy, epilepsy (epilepsy), Parkinson's disease, Alzheimer's disease and the like.

나아가, 본 발명은 뇌조직 표적화 펩티드가 결합된 키토산으로 부분 치환된 플루로닉 고분자를 포함하는 뇌 표적 나노전달체를 포함하는 뇌질환 진단용 영상화제를 제공한다.
Furthermore, the present invention provides an imaging agent for diagnosing brain disease, including a brain target nanocarrier comprising a pluronic polymer partially substituted with chitosan to which a brain tissue targeting peptide is bound.

본 발명의 나노전달체는 누드마우스의 다른 기관보다 뇌에 대부분 분포되어 있으므로(실험예 7 및 8 참조), 나노전달체 내에 MRI 및 PET 조영제 등을 봉입함으로써, 뇌질환 진단용 영상화제로 유용하게 사용될 수 있다.
Since the nanocarriers of the present invention are distributed more in the brain than other organs of nude mice (see Experimental Examples 7 and 8), the nanocarriers can be usefully used as imaging agents for diagnosing brain diseases by encapsulating MRI and PET contrast agents. .

이때, 상기 MRI 조영제는 상자성 물질, 가돌리늄과 망간의 착화합물 형태로써, Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-DO3A 및 초상자성 물질인 산화철 등으로 이루어지는 군으로부터 선택되는 1종이고, 상기 PET 조영제로서 방사성 동위원소 18F, 124I, 64Cu, 99 mTc 및 11In 등으로 이루어지는 군으로부터 선택되는 1종이고, 킬레이트 DOTA 및 DTPA 착화합물 형태로서 나노운반체에 도입 가능하다.
In this case, the MRI contrast agent is a paramagnetic material, a complex of gadolinium and manganese, is one selected from the group consisting of Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-DO3A and iron oxide which is a superparamagnetic material. It is one kind selected from the group consisting of radioisotope 18 F, 124 I, 64 Cu, 99 m Tc, 11 In and the like as the PET contrast agent, and can be introduced into the nanocarrier as a chelate DOTA and DTPA complex.

이하, 본 발명을 하기 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the following examples and experimental examples.

하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명이 실시예 및 실험예에 의해 한정되지는 않는다.
The following Examples and Experimental Examples are only illustrative of the present invention, and the present invention is not limited by the Examples and Experimental Examples.

시료sample

(1) 플루로닉 F 127(PEO 100 PPO 65 PEO 100, MW 12,600)(이하, PF 127)을 BASF Corp.(Seoul, Korea)로부터 제공받았다. (1) Pluronic F 127 (PEO 100 PPO 65 PEO 100, MW 12,600) (hereinafter referred to as PF 127) was provided by BASF Corp. (Seoul, Korea).

(2) 아크릴로일 클로라이드, 트리에틸아민, 무수 톨루엔, 시스테아민, 글리시딜 메타크릴레이트(GMA), 닌히드린 시약(2 % 용액), 5-브로모-4-클로로-3-인돌릴 β-D-갈락토피라니시드(X-gal), 칼륨 헥사시아노페레이트(III), 칼륨 헥사시아노페레이트(II) 3수화물, 핵 고속 적색(nuclear fast red) 용액과 β-갈락토시다아제 효소 분석 시약[β-갈락토시다아제(15 kU, 대장균 유래), 인산나트륨, o-니트로페닐 β-D-갈락토시드(ONP-Gal), 염화마그네슘, 2-메르캅토에탄올(2-ME)]은 알드리치(Milwaukee, WI, USA)로부터 구입하였다. (2) acryloyl chloride, triethylamine, anhydrous toluene, cysteamine, glycidyl methacrylate (GMA), ninhydrin reagent (2% solution), 5-bromo-4-chloro-3-indole Reel β-D-galactopyranidide (X-gal), potassium hexacyanoferrate (III), potassium hexacyanoferrate (II) trihydrate, nuclear fast red solution and β- Galactosidase enzyme assay reagent [β-galactosidase (15 kU, from Escherichia coli), sodium phosphate, o-nitrophenyl β-D-galactosid (ONP-Gal), magnesium chloride, 2-mercaptoethanol (2-ME) was purchased from Aldrich (Milwaukee, WI, USA).

(3) 4-(2-히드록시에톡시) 페닐-(2-히드록시-2-프로필) 케톤(Irgacure 2959)은 Ciba Specialty Chemicals Inc.(Basel, Switzerland)으로부터 제공되었다.(3) 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone (Irgacure 2959) was provided from Ciba Specialty Chemicals Inc. (Basel, Switzerland).

(4) 수용성 키토산[키토올리고당, 분자량 약 10 kDa, 탈아세틸화도 = 85.0%]은 Kittolife Co., Ltd.(Seoul, Korea)로부터 구입하였다. (4) A water-soluble chitosan [chitooligosaccharide, molecular weight about 10 kDa, deacetylation ratio = 85.0%] was purchased from Kittolife Co., Ltd. (Seoul, Korea).

(5) Cy5.5의 단일-반응성 히드록시숙신이미드 에스테르(NHS-cy5.5)는 Amersham Bioscience(Piscataway, NJ, USA)로부터 구입하였다. (5) Single-reactive hydroxysuccinimide ester of Cy5.5 (NHS-cy5.5) was purchased from Amersham Bioscience (Piscataway, NJ, USA).

(6) 이종 2관능성 폴리에틸렌 글리콜, α-말레이미드-ω-N-히드록시-숙신이미드 에스테르 폴리에틸렌 글리콜(MAL-PEG-NHS, MW: 2.1 kDa)은 Creative PEGWorks(Winston-Salem, NC, USA)으로부터 구입하였다. (6) Heterodifunctional polyethylene glycol, α-maleimide-ω-N-hydroxy-succinimide ester polyethylene glycol (MAL-PEG-NHS, MW: 2.1 kDa) is produced by Creative PEGWorks (Winston-Salem, NC, USA).

(7) RVG29-시스펩타이드(Cyspeptide)는 AnyGen, Inc.(Gwangju, Korea)로부터 구입하였다. (7) RVG29-Cyspeptide was purchased from AnyGen, Inc. (Gwangju, Korea).

(8) 메르마플루오르 수용성 봉입제(PermaFluor Aqueous Mounting) 매질은 Thermo scientific(Fremont, CA, USA)로부터 구입하였다. 모든 화학물질은 분석용으로, 더 이상 정제하지 않고 사용하였다.
(8) PermaFluor Aqueous Mounting Medium was purchased from Thermo scientific (Fremont, CA, USA). All chemicals were used for analysis and without further purification.

플루로닉계 나노전달체를 단일상 광중합에 의해 제조하였다. 또한 추가 결합을 위한 소수의 아민기가 있는 나노전달체 단독(Bare-형) 또는 키토산-관능화된 나노전달체(Chito-형)를 이전에 보고된 바에 따라 제조하였다.
Pluronic nanocarriers were prepared by single phase photopolymerization. In addition, nanocarriers alone (bare-type) or chitosan-functionalized nanocarriers (chito-type) with few amine groups for further binding were prepared as previously reported.

<< 제조예Manufacturing example 1>  1> 아민이Amine 결합된Combined 플루노닉Pluronic 고분자를 포함하는 베어-형( Bare-type containing polymer ( barebare -- typetype ) 나노전달체의 제조) Preparation of Nanocarrier

베어-형 나노전달체를 제조하기 위하여, 시스테아민(0.35 mg/0.3 ㎖)을 DA-PF 127(14 mg/154 ㎕)와 인산염 완충액(pH 8.1) 중에서 3시간 반응시켜 마이클-타입(Michael-type) 반응에 의해 DA-PF127의 비닐기를 아민기로 부분 치환하였다. 그 다음, 상기 반응 용액을 탈이온수로 희석하여 0.77 중량%의 DA-PF127을 제조하였다. 상기 용액에 광개시제(Irgacure 2959, 0.05 중량%)를 첨가한 다음, UV광(1.3 mW/cm2)을 15분간 조사한 후, 상기 관능화된 나노전달체 용액을 투석막(셀룰로오스 에스테르, MWCO 300 kDa)으로 투석하여 아민이 결합된 플루로닉 고분자를 포함하는 베어-형 나노전달체를 얻었다.To prepare bare-type nanocarriers, cysteamine (0.35 mg / 0.3 mL) was reacted with DA-PF 127 (14 mg / 154 μL) in phosphate buffer (pH 8.1) for 3 hours to give Michael-type (Michael- The vinyl group of DA-PF127 was partially substituted by an amine group by the type) reaction. Then, the reaction solution was diluted with deionized water to prepare 0.77% by weight of DA-PF127. After adding a photoinitiator (Irgacure 2959, 0.05% by weight) to the solution, and irradiated with UV light (1.3 mW / cm 2 ) for 15 minutes, the functionalized nanocarrier solution to a dialysis membrane (cellulose ester, MWCO 300 kDa) Dialysis was carried out to obtain a bare-type nanocarrier comprising a pluronic polymer having an amine bound thereto.

닌히드린 분석법을 이용하여 분석한 결과, 플루로닉 고분자에 대한 아민-관능화도는 2.1 중량%로 확인되었다.
As a result of analysis using the ninhydrin assay, the amine-functionality of the pluronic polymer was found to be 2.1% by weight.

<< 제조예Manufacturing example 2> 키토산이  2> chitosan 결합된Combined 플루로닉Pluronic 고분자를 포함하는  Polymer-containing 키토Quito -형(-brother( ChitoChito -- typetype ) 나노전달체의 제조) Preparation of Nanocarrier

상기 제조예 1에서 시스테아민을 사용하는 대신 아크릴화된 수용성 키토산(2.8 mg, 0.2 μmol)(GMA-chitosan)을 사용하는 것을 제외하고는 동일한 방법을 수행하여 키토산이 결합된 플루로닉 고분자를 포함하는 키토-형 나노전달체를 얻었다. Except for using cysteamine in Preparation Example 1, except that the acrylated water-soluble chitosan (2.8 mg, 0.2 μmol) (GMA-chitosan) was carried out in the same manner to include a chitosan-bound Pluronic polymer A chito-type nanocarrier was obtained.

닌히드린 분석법을 이용하여 분석한 결과, 플루로닉 고분자에 대한 키토산-관능화도는 11.4 중량%로 확인되었다.
As a result of analysis using the ninhydrin assay, the degree of chitosan-functionalization of the pluronic polymer was found to be 11.4 wt%.

<< 실시예Example 1> 광견병 바이러스 당단백질 단편( 1> rabies virus glycoprotein fragment ( RVG29RVG29 -- CysCys ) 및 키토산이 ) And chitosan 결합된Combined 플루로닉Pluronic 고분자를 포함하는  Polymer-containing 키토Quito -형 나노전달체의 제조Preparation of -Type Nanocarriers

단계 1: Step 1: 말레이미드기Maleimide -- PEGPEG 및 키토산이  And chitosan 결합된Combined 플루로닉Pluronic 고분자를 포함하는  Polymer-containing 키토Quito -형 나노전달체의 제조Preparation of -Type Nanocarriers

PBS(pH 8.0, 0.3 ㎖)에서 상기 제조예 2에서 얻은 키토-형 나노전달체(1.6 mg, 1.27 μmol의 아민기)를 MAL-PEG-NHS(0.13 mg, 0.67 μmol, 나노전달체의 아민:MAL-PEG-NHS = 2:1)와 상온에서 3시간 동안 반응시켰다. 미반응 이종 이관능성 PEG를 제거하기 위해서 용액 전체를 투석막(셀룰로오스 에스테르, MWCO 300 kDa)을 이용하여 투석하고 동결건조하여 MAL-PEG-NC를 얻었다.
The chito-type nanocarriers (1.6 mg, 1.27 μmol of amine group) obtained in Preparation Example 2 above were prepared in PBS (pH 8.0, 0.3 mL) using MAL-PEG-NHS (0.13 mg, 0.67 μmol, amine: MAL- of nanocarrier). PEG-NHS = 2: 1) was reacted at room temperature for 3 hours. In order to remove unreacted heterofunctional PEG, the whole solution was dialyzed using a dialysis membrane (cellulose ester, MWCO 300 kDa) and lyophilized to obtain MAL-PEG-NC.

단계 2: 광견병 바이러스 당단백질 단편(Stage 2: Rabies virus glycoprotein fragment ( RVG29RVG29 -- CysCys ) 및 키토산이 ) And chitosan 결합된Combined 플루로닉Pluronic 고분자를 포함하는 키토-형 나노전달체의 제조 Preparation of Chito-type Nanocarriers Including Polymers

상기 단계 1에서 얻은 MAL-PEG-NC를 PBS(pH 7.0, 0.3 ㎖)에서 펩티드 RVG29-Cys(2.9 mg, 0.8 μmol)와 48시간 동안 상온에서 반응시켜 MAL-PEG-NC의 MAL기와 RVG29-Cys의 티올기 사이의 특이적 반응에 의해 나노전달체에 RVG29-Cys를 결합시켰다. 미반응 펩티드 RVG29-Cys를 제거하기 위해서 생성물 용액을 투석하였고(셀룰로오스 에스테르, MWCO 300 kDa), 광견병 바이러스 당단백질 단편(RVG29-Cys) 및 키토산이 결합된 플루로닉 고분자를 포함하는 키토-형 나노전달체를 얻었다.
The MAL-PEG-NC obtained in step 1 was reacted with peptide RVG29-Cys (2.9 mg, 0.8 μmol) in PBS (pH 7.0, 0.3 ml) at room temperature for 48 hours to obtain the MAL group of MAL-PEG-NC and RVG29-Cys. RVG29-Cys was bound to the nanocarrier by specific reaction between thiol groups. Product solution was dialyzed to remove unreacted peptide RVG29-Cys (cellulose ester, MWCO 300 kDa), chito-type nanos comprising a pluronic polymer bound to rabies virus glycoprotein fragment (RVG29-Cys) and chitosan A vehicle was obtained.

<< 비교예Comparative Example 1> 광견병 바이러스 당단백질 단편( 1> rabies virus glycoprotein fragment ( RVG29RVG29 -- CysCys )이 )this 결합된Combined 플루로닉Pluronic 고분자를 포함하는 베어-형 나노전달체의 제조 Preparation of Bare-type Nanocarriers Including Polymers

상기 실시예 1에서 키토-형 나노전달체를 사용하는 대신 상기 제조예 1에서 얻은 베어-형 나노전달체(1.7 mg, 1.34 μmol의 아민기)를 사용하는 것을 제외하고는 동일한 방법을 수행하여 광견병 바이러스 당단백질 단편(RVG29-Cys)이 결합된 플루로닉 고분자를 포함하는 베어-형 나노전달체를 얻었다.
Instead of using the chito-type nanocarriers in Example 1, except for using the bare-type nanocarriers (1.7 mg, 1.34 μmol amine group) obtained in Preparation Example 1 was carried out the same method per rabies virus A bare-type nanocarrier containing a pluronic polymer to which a protein fragment (RVG29-Cys) is bound was obtained.

<< 실험예Experimental Example 1>  1> 1One H-H- NMRNMR 특성 분석 Character analysis

상기 실시예 1 및 비교예 1에서 제조된 광견병 바이러스 당단백질 단편이 결합된 나노전달체를 핵자기공명(NMR) 분광법(DMSO 중, JNM-ECX-400P, JEOL, Japan)에 의해 분석하였다.
Nanocarriers to which the rabies virus glycoprotein fragments prepared in Example 1 and Comparative Example 1 were bound were analyzed by nuclear magnetic resonance (NMR) spectroscopy (JNM-ECX-400P, JEOL, Japan in DMSO).

결과result

도 2에 나타낸 바와 같이, 1) 6.7 ppm 위치에서 NHS-PEG-MAL의 특징적인 MAL기 피크가 확인되었고, 2) RVG-PEG-NC의 MAL기는 없어지는 것을 알 수 있는데, MAL기가 펩티드 RVG29-Cys의 티올기와 반응하였음을 시사하는 것으로써, 본 발명에 따른 광견병 바이러스 당단백질 단편이 결합된 나노전달체의 메틸 양성자는 1.9 ppm 위치에서 확인되었다.
As shown in FIG. 2, 1) the peak of the characteristic MAL group of NHS-PEG-MAL was confirmed at 6.7 ppm, and 2) the MAL group of RVG-PEG-NC disappeared. The MAL group was peptide RVG29- Indicative of the reaction with the thiol group of Cys, the methyl proton of the nanocarrier to which the rabies virus glycoprotein fragment according to the present invention was bound was identified at the 1.9 ppm position.

<< 실험예Experimental Example 2> 광견병 바이러스 당단백질 단편이  2> Rabies virus glycoprotein fragment 결합된Combined 나노전달체의 크기와 표면 전하의 변화 측정 Measurement of changes in nanocarrier size and surface charge

광견병 바이러스 당단백질 단편이 결합된 나노전달체의 온도 감수성 크기 변화 및 표면 전하 변화를 전기영동 광산란 분광계(ELS-Z, Otsuka Electronics Co., Japan)를 이용하여 측정하였다. 무처리군 1 및 2의 광견병 바이러스 당단백질 단편이 결합되지 않은 키토형 나노전달체 및 베어형 나노전달체의 크기 및 표면 전하 데이터는 종래 보고된 자료를 통해 확인하였다.
The temperature sensitive size change and surface charge change of the nanocarriers to which the rabies virus glycoprotein fragment was bound were measured using an electrophoretic light scattering spectrometer (ELS-Z, Otsuka Electronics Co., Japan). The size and surface charge data of chito type nanocarriers and bare type nanocarriers to which rabies virus glycoprotein fragments of untreated groups 1 and 2 were not bound were confirmed through previously reported data.

결과result

(1) 나노전달체의 (1) of nanocarriers 직경diameter 변화 change

하기 표 1 및 도 3에 나타낸 바와 같이, 광견병 바이러스 당단백질 단편을 나노전달체에 부착한 결과, 크기에 유의적인 영향을 주지 않았으며, 본 발명에 따른 실시예 1(광견병 바이러스 당단백질 단편이 결합된 키토형 나노전달체) 및 비교예 1(광견병 바이러스 당단백질 단편이 결합되지 않은 베어형 나노전달체)는 각각 광견병 바이러스 당단백질 단편이 결합되지 않은 키토형 나노전달체(무처리군 1)와 베어형 나노전달체(무처리군 2)의 크기와 유사한 크기로 형성하고 있음을 확인하였으며, 온도 감수성 크기 변화를 나타냄에 따라, 나노전달체에 대한 광견병 바이러스 당단백질 단편의 결합은 나노전달체의 구조에 영향을 주지 않음이 확인되었다. As shown in Table 1 and FIG. 3, as a result of attaching the rabies virus glycoprotein fragment to the nanocarrier, the size of the rabies virus glycoprotein fragment was not significantly influenced. Chito-type nanocarriers) and Comparative Example 1 (bare nanocarriers without rabies virus glycoprotein fragments) were chito-type nanocarriers (untreated group 1) and bare nanocarriers without rabies virus glycoprotein fragments, respectively. It was confirmed that it is formed in a size similar to the size of (non-treated group 2), and as the temperature-sensitive size change is shown, the binding of the rabies virus glycoprotein fragment to the nanocarrier does not affect the structure of the nanocarrier. Confirmed.

구분division 크기(nm)Size (nm) 4 ℃4 ℃ 25 ℃25 ℃ 37 ℃37 ℃ 실시예 1
(RVG-Chito-NC)
Example 1
(RVG-Chito-NC)
511±38
(0.34±0.01)
511 ± 38
(0.34 ± 0.01)
162±22
(0.30±0.01)
162 ± 22
(0.30 ± 0.01)
65±14
(0.30±0.02)
65 ± 14
(0.30 ± 0.02)
비교예 1
(RVG-Bare-NC)
Comparative Example 1
(RVG-Bare-NC)
463±33
(0.28±0.02)
463 ± 33
(0.28 ± 0.02)
155±27
(0.29±0.01)
155 ± 27
(0.29 ± 0.01)
58±12
(0.31±0.01)
58 ± 12
(0.31 ± 0.01)
무처리군 1
(Chito-NC)
Untreated group 1
(Chito-NC)
392±41
(0.27±0.02)
392 ± 41
(0.27 ± 0.02)
142±44
(0.29±0.02)
142 ± 44
(0.29 ± 0.02)
61±12
(0.31±0.02)
61 ± 12
(0.31 ± 0.02)
무처리군 2
(Bare-NC)
Untreated group 2
(Bare-NC)
423±33
(0.22±0.02)
423 ± 33
(0.22 ± 0.02)
148±36
(0.24±0.01)
148 ± 36
(0.24 ± 0.01)
52±10
(0.22±0.02)
52 ± 10
(0.22 ± 0.02)

(2) 나노전달체의 표면 전하 변화(2) Surface charge change of nanocarriers

표 2에 나타낸 바와 같이, 본 발명에 따른 실시예 1 및 비교예 1의 제타 전위 역시 광견병 바이러스 당단백질 단편의 결합에 의해서 영향을 받지 않았으나, 실시예 1의 광견병 바이러스 당단백질 단편이 결합된 키토형 나노전달체는 광광견병 바이러스 당단백질 단편이 결합되지 않은 키토형 나노전달체(무처리군 1)와 유사한 제타 전위를 나타내는 것을 확인하였고, 비교예 1의 광견병 바이러스 당단백질 단편이 결합된 베어형 나노전달체 및 광견병 바이러스 당단백질 단편이 결합되지 않은 베어형 나노전달체(무처리군 2)보다는 제타 전위가 더 큰 것이 확인됨에 따라 되었다. 키토산-결합이 주로 나노전달체의 표면 전하 상태를 결정하는 것으로 판단된다.
As shown in Table 2, the zeta potential of Example 1 and Comparative Example 1 according to the present invention was also not affected by the binding of the rabies virus glycoprotein fragment, but the chitotype to which the rabies virus glycoprotein fragment of Example 1 was bound. It was confirmed that the nanocarrier showed a zeta potential similar to that of the chitotype nanocarrier (untreated group 1) to which the rabies virus glycoprotein fragment was not bound. The rabies virus glycoprotein fragment was found to have a larger zeta potential than the bare nanocarrier (untreated group 2) to which it was not bound. Chitosan-bonds are believed to primarily determine the surface charge state of nanocarriers.

구분division 제타전위
(mV, 25 ℃)
Zeta potential
(mV, 25 ℃)
실시예 1
(RVG-Chito-NC)
Example 1
(RVG-Chito-NC)
11.3±0.611.3 ± 0.6
비교예 1
(RVG-Bare-NC)
Comparative Example 1
(RVG-Bare-NC)
1.9±1.11.9 ± 1.1
무처리군 1
(Chito-NC)
Untreated group 1
(Chito-NC)
12.8±2.412.8 ± 2.4
무처리군 2
(Bare-NC)
Untreated group 2
(Bare-NC)
2.1±1.32.1 ± 1.3

<< 실험예Experimental Example 3> 나노전달체에 대한 광견병 바이러스 당단백질 단편의 결합 효율 측정 3> Measurement of binding efficiency of rabies virus glycoprotein fragments to nanocarriers

도 1에 나타낸 바와 같이, 나노전달체에 대한 광견병 바이러스 당단백질 단편의 결합 효율을 측정하기 위하여 하기 실험을 수행하였다.As shown in Figure 1, the following experiment was performed to determine the binding efficiency of the rabies virus glycoprotein fragment to the nanocarrier.

나노전달체를 근적외선(NIR) 형광색소분자인 Cy5.5 분자로 화학적으로 표지한 후, NHS-Cy5.5를 실시예 1 및 비교예 1의 나노전달체에 남아 있는 아민기와 반응시켜 나노전달체에 부착하였다. 탈이온수(2 ㎖)에서 각각의 나노전달체(15 mg)를 NHS-Cy5.5(25 μg)와 상온에서 5시간 동안 암조건으로 반응시키고, 미반응 염료를 2일 동안 탈이온수 중에서 투석(셀룰로오스 에스테르, MWCO 300 kDa)에 의해 제거한 후, 광광견병 바이러스 당단백질 단편 결합효율을 주사 다중-웰 분광광도계(FL600, Bio-Tek , Winooski, VT, USA)로 광견병 바이러스 당단백질 단편 RVG29-Cys 중 트립토판(Trp) 잔기의 형광세기(Ex = 280 nm, Em = 355 nm)를 측정하였고, 치환도는 형광 분광광도계(F-7000, HITACHI, Japan)에 의해 특성 분석하였다(Ex=675 nm, Em=694 nm).
After the nanocarriers were chemically labeled with Cy5.5 molecules, which are near infrared (NIR) fluorescent dye molecules, NHS-Cy5.5 was attached to the nanocarriers by reacting with the amine groups remaining in the nanocarriers of Example 1 and Comparative Example 1. Each nanocarrier (15 mg) was reacted with NHS-Cy5.5 (25 μg) in deionized water (2 mL) at room temperature for 5 hours under dark conditions, and unreacted dye was dialyzed in deionized water for 2 days (cellulose After removal by ester, MWCO 300 kDa), the rabies virus glycoprotein fragment binding efficiency was measured by scanning multi-well spectrophotometer (FL600, Bio-Tek   , Winooski, VT, USA) were used to measure the fluorescence intensity (Ex = 280 nm, Em = 355 nm) of tryptophan (Trp) residues in the rabies virus glycoprotein fragment RVG29-Cys, and the degree of substitution was measured using a fluorescence spectrophotometer (F-7000). , HITACHI, Japan). (Ex = 675 nm, Em = 694 nm).

결과result

각각의 실시예 1 및 비교예 1의 나노전달체에 대한 광견병 바이러스 당단백질 단편의 결합 효율은 81%(나노전달체 1.8 중량%)인 것으로 확인되었고, 염료 치환도는 0.08% 이하로 측정되었다.
The binding efficiency of the rabies virus glycoprotein fragment to the nanocarriers of each of Example 1 and Comparative Example 1 was found to be 81% (1.8 wt% of nanocarriers), and the dye substitution degree was determined to be 0.08% or less.

<< 실험예Experimental Example 4> 광견병 바이러스 당단백질 단편이  4> Rabies virus glycoprotein fragment 결합된Combined 플루로닉계Pluronic system 나노전달체 내 β- Β- in nanocarriers 갈락토시다아제의Galactosidase 봉입 효율 Encapsulation efficiency

본 발명에 따른 광광견병 바이러스 당단백질 단편이 결합된 플루로닉계 나노전달체 내 β-갈락토시다아제의 봉입 효율을 측정하기 위하여 하기 실험을 수행하였다.The following experiment was carried out to determine the encapsulation efficiency of β-galactosidase in the pluronic nanocarrier to which the rabies virus glycoprotein fragment according to the present invention is bound.

본 발명에 따른 각각의 실시예 1, 비교예 1 및 무처리군 1 및 2의 나노전달체(15 mg)를 100 μg의 β-갈락토시다아제를 함유하는 0.5 ㎖ 수용액과 혼합한 다음, 4 ℃에서 12시간 동안 배양하여 나노전달체 안에 단백질이 자발적으로 담지되도록 유도하였다. The nanocarriers (15 mg) of each of Example 1, Comparative Example 1 and untreated groups 1 and 2 according to the present invention were mixed with a 0.5 ml aqueous solution containing 100 μg of β-galactosidase, followed by 4 ° C. Incubation for 12 hours at induced the spontaneous loading of proteins into nanocarriers.

나노전달체 내 β-갈락토시다아제의 봉입 효율과 담지량을 10분간 상온에서 14,000 rpm으로 스핀 여과 후, 매질 내 잔류 단백질 양을 측정하였다.
Encapsulation efficiency and loading of the β-galactosidase in the nanocarrier were spin filtered at 14,000 rpm at room temperature for 10 minutes, and then the amount of residual protein in the medium was measured.

결과result

측정 결과, 본 발명에 따른 본 발명에 따른 각각의 실시예 1, 비교예 1 및 무처리군 1 및 2의 나노전달체 내에 β-갈락토시다아제가 90% 이상으로 봉입된 것을 확인하였다.
As a result of the measurement, it was confirmed that β-galactosidase was contained in 90% or more in the nanocarriers of each of Example 1, Comparative Example 1, and Untreated Groups 1 and 2 according to the present invention.

<< 실험예Experimental Example 5> β- 5> β- 갈락토시다아제가Galactosidase 봉입된Enclosed 광견병 바이러스 당단백질 단편이  Rabies virus glycoprotein fragment 결합된Combined 플루로닉계Pluronic system 나노전달체의 크기와 표면 전하의 변화 측정 Measurement of changes in nanocarrier size and surface charge

본 발명에 따른 β-갈락토시다아제가 봉입된 광견병 바이러스 당단백질 단편이 결합된 플루로닉계 나노전달체의 크기 및 표면 전하를 측정하기 위하여 상기 실험예 2와 같이, 전기영동 광 산란 분광계(ELS-Z, Otsuka Electronics Co., Japan)를 이용하여 측정하였다. 그 결과를 하기 표 3에 나타내었다.In order to measure the size and surface charge of the pluronic nanocarrier to which the rabies virus glycoprotein fragment packed with β-galactosidase according to the present invention is bound, an electrophoretic light scattering spectrometer (ELS- Z, Otsuka Electronics Co., Japan). The results are shown in Table 3 below.

구분
division
크기(nm)Size (nm) 제타전위
(mV,25 ℃)
Zeta potential
(mV, 25 ℃)
4 ℃4 ℃ 25 ℃25 ℃ 37 ℃37 ℃ 실시예 1
(β-갈락토시다아제 봉입)
Example 1
(beta-galactosidase inclusion)
532±26
(0.31±0.01)
532 ± 26
(0.31 ± 0.01)
148±31
(0.33±0.01)
148 ± 31
(0.33 ± 0.01)
63±32
(0.31±0.01)
63 ± 32
(0.31 ± 0.01)
12.1±0.812.1 ± 0.8
비교예 1
(β-갈락토시다아제 봉입)
Comparative Example 1
(beta-galactosidase inclusion)
503±37
(0.31±0.02)
503 ± 37
(0.31 ± 0.02)
152±28
(0.33±0.01)
152 ± 28
(0.33 ± 0.01)
62±31
(0.31±0.03)
62 ± 31
(0.31 ± 0.03)
2.4±1.22.4 ± 1.2

표 3에 나타낸 바와 같이, 나노전달체에 β-갈락토시다아제를 봉입한 결과, 나노전달체의 크기 및 이의 제타 전위에 있어서 주목할 만한 변화가 전혀 나타나지 않았다. 또한, 크게 음전하를 띤 β-갈락토시다아제(pI ~ 4.4)를 담지한 후 제타 전위 변화가 전혀 없다는 것은 본 발명에 따른 나노전달체에 β-갈락토시다아제가 효율적으로 담지되었다는 것을 뒷받침한다.
As shown in Table 3, the inclusion of β-galactosidase in the nanocarrier showed no significant change in the size of the nanocarrier and its zeta potential. In addition, there is no change in zeta potential after supporting a largely negatively charged β-galactosidase (pI ~ 4.4), supporting the efficient support of β-galactosidase on the nanocarriers according to the present invention.

<< 실험예Experimental Example 6> β- 6> β- 갈락토시다아제가Galactosidase 봉입된Enclosed 광견병 바이러스 당단백질 단편이  Rabies virus glycoprotein fragment 결합된Combined 플루로닉계Pluronic system 나노전달체로부터 β- Β- from nanocarriers 갈락토시다아제의Galactosidase 시험관내In vitro 방출 효과 측정 Release effect measurement

본 발명에 따른 광견병 바이러스 당단백질 단편이 결합된 플루로닉계 나노전달체의 방출량 조절 효과를 알아보기 위하여 하기 실험을 수행하였다.In order to investigate the effect of controlling the release amount of the pluronic nanocarrier conjugated to the rabies virus glycoprotein fragment according to the present invention, the following experiment was performed.

상기 실험예 4에서 얻은 각각의 β-갈락토시다아제가 담지된 나노전달체 현탁액(0.5 ㎖)을 투석막(셀룰로오스 에스테르, MWCO 300 kDa)에 넣고 10% 우태아 혈청(FBS)이 부가된 5 ㎖ 인산 완충 식염수(PBS, 0.05% NaN3)에 위치시키고 37 ℃의 진탕 라커에서 100 rpm으로 유지하여 분석하였다. 각 시점에서 방출 매질 전체를 새로운 것으로 대체하였다. 각 시점에서 방출된 β-갈락토시다아제의 양은 β-갈락토시다아제 효소 분석 장치를 이용하여 분석하였다(n=3). 5 mL phosphoric acid added with 10% fetal calf serum (FBS) was added to a dialysis membrane (cellulose ester, MWCO 300 kDa) loaded with a β-galactosidase-containing nanocarrier suspension obtained in Experimental Example 4. The solution was placed in buffered saline (PBS, 0.05% NaN 3 ) and maintained at 100 rpm in shaking lacquer at 37 ° C. At each time point the entire release medium was replaced with a new one. The amount of β-galactosidase released at each time point was analyzed using a β-galactosidase enzyme assay device (n = 3).

시약들(시약 A: 100 mM 인산나트륨 용액, 시약 B: 100 mM 인산나트륨 완충액, 시약 C: 68 mM ONP-Gal, 시약 D: 30 mM 염화마그네슘 용액, 시약 E: 3.36 M 2-ME)은 Sigma Procedure Information(Sigma Prod., Milwaukee, WI, USA)에 준하여 제조하였다. Reagents (Reagent A: 100 mM sodium phosphate solution, Reagent B: 100 mM sodium phosphate buffer, Reagent C: 68 mM ONP-Gal, Reagent D: 30 mM magnesium chloride solution, Reagent E: 3.36 M 2-ME) were obtained from Sigma. Manufactured according to Procedure Information (Sigma Prod., Milwaukee, WI, USA).

시약 B를 적당한 pH 조건에서(37 ℃에서 pH 7.4) 시약 A와 혼합하고 4 ℃에서 보관하였다. 다음, 이 혼합물(A+B, pH 7.4, 1.3 ㎖)을 시약 D(50 ㎕)와 시약 E(50 ㎕)와 혼합한 다음, β-갈락토시다아제(50 ㎕)를 함유하는 방출 매질을 첨가하였다. 이 혼합액을 37 ℃에서 2분간 배양한 다음, 시약 C(50 ㎕)를 첨가하였다. 410 nm에서 흡광도를 측정하고 β-갈락토시다아제의 기지 농도를 이용하여 얻은 표준 그래프 곡선으로부터 β-갈락토시다아제의 농도를 계산하였다. 그 결과를 도 4에 나타내었다.
Reagent B was mixed with Reagent A at appropriate pH conditions (pH 7.4 at 37 ° C.) and stored at 4 ° C. This mixture (A + B, pH 7.4, 1.3 ml) was then mixed with Reagent D (50 μl) and Reagent E (50 μl), followed by the release medium containing β-galactosidase (50 μl). Added. The mixture was incubated at 37 ° C. for 2 minutes, and then reagent C (50 μl) was added. The absorbance was measured at 410 nm and the concentration of β-galactosidase was calculated from a standard graph curve obtained using the known concentration of β-galactosidase. The results are shown in Fig.

결과result

도 4에 나타낸 바와 같이, 본 발명에 따른 실시예 1, 비교예 1 및 무처리군 1 및 2의 나노전달체들은 표면 변성과 펩티드 결합과 관계없이 방출 양상은 유사하였다. 유사한 방출 패턴에 따라, 각각 상이한 나노전달체로부터 서로 다른 뇌 축적과 단백질의 체내 분포는 각종 나노전달체의 전달 특성에 기인한 것임이 분명하다.As shown in FIG. 4, the nanocarriers of Example 1, Comparative Example 1, and Untreated Groups 1 and 2 according to the present invention showed similar release patterns regardless of surface denaturation and peptide binding. According to similar release patterns, it is clear that different brain accumulations and different body distributions from different nanocarriers are due to the delivery properties of the various nanocarriers.

따라서, 본 발명에 따른 나노전달체는 β-갈락토시다아제와 같은 단백질 약물용 전달 운반체로서 유용하게 사용될 수 있다.
Therefore, the nanocarriers according to the present invention can be usefully used as delivery vehicles for protein drugs such as β-galactosidase.

<< 실험예Experimental Example 7> 누드 마우스 뇌의 체내 광학 영상 촬영 7> In vivo optical imaging of the nude mouse brain

체내 동물 실험을 위해서 6주령의 웅성 흉선 누드 마우스(C3H/HeN, Oriental Bio Co., Seongnam, Korea)를 이용하였고 광주과학기술원(GIST) 실험동물운영위원회의 안내지침에 따라 다루었다. 4종의 실시예 1, 비교예 1 및 무처리군 1 및 2의 나노전달체(5 mg/kg)를 꼬리 정맥을 통해 정맥내 주사하였다. 나노전달체를 정맥내 주사한지 2시간, 16시간, 24시간과 48시간 후에 광학 영상을 IVIS 100 영상 장치(xenogeny Corp., Alameda, CA, USA)를 이용하여 촬영하였다. 형광노출시간은 10초이었고 시야는 12.5 cm로 유지하였다. 675 nm 광을 이용하여 Cy5.5 분자를 여기시키고, 시간-상관 단광자 계수 장치를 이용하여 발광을 수집하였다. For animal experiments, 6-week-old male thymus nude mice (C 3 H / HeN, Oriental Bio Co., Seongnam, Korea) were used and were treated according to the guidelines of the GIST Laboratory Animal Steering Committee. Four different nanocarriers (5 mg / kg) of Example 1, Comparative Example 1 and untreated groups 1 and 2 were injected intravenously through the tail vein. 2, 16, 24 and 48 hours after intravenous injection of nanocarriers, optical images were taken using an IVIS 100 imaging device (xenogeny Corp., Alameda, CA, USA). Fluorescence exposure time was 10 seconds and visual field was maintained at 12.5 cm. Cy5.5 molecules were excited using 675 nm light and luminescence was collected using a time-correlated monophoton counting device.

또한, 주요 기관과 뇌에서 각종 나노전달체의 체내 분포를 얻기 위해서 나노전달체를 마우스에 정맥내 주사한지 2시간, 24시간과 48시간 후에 마우스를 희생시켰다. 뇌, 간, 폐, 비장, 심장과 신장과 같은 적출 기관의 NIR 형광 영상을 얻었다. 그 결과를 도 5에 나타내었다.
In addition, the mice were sacrificed 2 hours, 24 hours and 48 hours after intravenous injection of the nanocarriers into the mice to obtain in vivo distribution of various nanocarriers in the major organs and brain. NIR fluorescence images of the extraction organs such as brain, liver, lung, spleen, heart and kidney were obtained. The results are shown in Fig.

결과result

(1) 나노전달체의 (1) of nanocarriers 정맥내Intravenous 주사 후, 누드 마우스의 체내  After injection, the body of nude mouse NIRNIR 형광 측정 결과 Fluorescence measurement result

도 5a에 나타낸 바와 같이, 무처리군 2(Bare-NC)의 경우에는 전체적으로 약한 NIR 형광 신호가 검출되었다. 초기 시점(2시간)에서는 신장 가까이에서 약한 신호가 검출되었지만, 이후 전신에서 형광 신호가 시간경과에 따라 감소하는 것으로 확인되었고, 이에 비해 무처리군 1(Chito-NC)의 경우에는 2시간째에 신체 다른 부분에 비해 머리 가까이에서 강한 형광신호를 나타내었지만, 이후 시간경과에 따라 감소하는 것으로 확인되었으나, 비교예 1(RVG-Bare-NC)의 경우에는 머리 근처에서 강한 형광세기가 2시간 내지 12시간 그리고 24시간째에는 증가하였지만, 48시간째에는 감소하는 것으로 확인되었다. 이에 따라, 순환 중에 뇌에 대한 일정부분 표적화 가능성이 확인되었다. As shown in FIG. 5A, in the case of no treatment group 2 (Bare-NC), a weak NIR fluorescence signal was detected as a whole. Weak signals were detected near the kidney at the initial time point (2 hours), but later, the fluorescence signal was found to decrease over time in the whole body, compared to 2 hours in the non-treated group 1 (Chito-NC). In comparison with other parts of the body, a strong fluorescence signal was observed near the head, but afterwards, it was found to decrease with time. It increased at time and 24 hours, but decreased at 48 hours. Accordingly, the possibility of some targeting to the brain during circulation was confirmed.

한편, 본 발명에 따른 실시예 1(RVG-Chito-NC)의 경우에는 머리 근처에서 초기부터 매우 강한 신호가 관찰되었고, 48시간까지 크게 감소하지 않고 그대로인 반면에 신체 다른 부분에서의 신호는 48시간째에 명백하게 감소하는 것으로 확인되었다.
On the other hand, in the case of Example 1 (RVG-Chito-NC) according to the present invention, a very strong signal was observed from the beginning near the head. On the contrary, it was confirmed to decrease clearly.

(2) 마우스 희생 후, 주요기관의 체외 (2) After mouse sacrifice, in vitro of major organs NIRNIR 형광 측정 결과 Fluorescence measurement result

도 5b에 나타낸 바와 같이, 보다 정확하게 분석하게 위해서 주사한지 2시간, 24시간과 48시간 후에 마우스를 희생시키고 뇌 뿐 아니라 주요 기관(간, 폐, 비장, 심장과 신장)을 적출하고 이들 기관의 형광세기를 평가하였다. As shown in FIG. 5B, the mice were sacrificed at 2, 24 and 48 hours after injection for more accurate analysis and the brain as well as the major organs (liver, lung, spleen, heart and kidney) were extracted and the fluorescence of these organs was removed. The intensity was evaluated.

그 결과, 도 6a에 나타낸 바와 같이, 본 발명에 따른 실시예 1의 나노전달체(RVG-Chito-NC)는 다른 모든 나노전달체보다 뇌에서 유의적으로 더 높은 세기를 보였는데, 이는 효율적인 뇌 표적화를 위해 키토산과 RVG가 필요하다는 것을 입증하고 있다.As a result, as shown in Figure 6a, the nanocarriers (RVG-Chito-NC) of Example 1 according to the present invention showed significantly higher intensity in the brain than all other nanocarriers, which indicates efficient brain targeting It demonstrates the need for chitosan and RVG.

또한, 도 6b에 나타낸 바와 같이, 48시간 후의 체내 분포 측정 결과, 본 발명에 따른 실시예 1의 나노전달체(RVG-Chito-NC)의 표적-특이적으로 전달하는 것을 확인하였고, 가장 강한 신호는 여전히 간으로부터 비롯되었지만, 실시예 1의 나노전달체는 나머지 나노전달체보다 뇌로부터의 신호가 절대적으로 가장 높은 것으로 확인되었고, 뿐만 아니라, 실시예 1의 나노전달체는 다른 나노전달체보다 간을 포함한 다른 기관에서의 세기에 비해 뇌에서의 세기가 탁월하게 높이 나타나는 것으로 확인되었다.
In addition, as shown in Figure 6b, after 48 hours of measurement of distribution in the body, it was confirmed that the target-specific delivery of the nanocarrier (RVG-Chito-NC) of Example 1 according to the present invention, the strongest signal Although still derived from the liver, the nanocarriers of Example 1 were found to have absolutely the highest signal from the brain than the rest of the nanocarriers, as well as the nanocarriers of Example 1 in other organs, including the liver, than the other nanocarriers. The strength in the brain was found to be higher than that in the brain.

<< 실험예Experimental Example 8> 광견병 바이러스 당단백질 단편이  8> Rabies virus glycoprotein fragment 결합된Combined 나노전달체를  Nanocarriers 정맥내Intravenous 주사한 후 뇌의 체외 영상 측정 In Vitro Imaging of the Brain After Injection

실시예 1 및 비교예 1의 나노전달체에 Cys5.5를 표지한 후, 정맥 내 주사한지 48시간 후에 희생시킨 마우스의 뇌를 PBS로 세척하고, 24시간 동안 4%(w/v) 포름알데히드 용액으로 고정한 후, 탈이온수로 세척하였다. 상기 뇌를 염색시약인 OCT 화합물에서 동결하고, 80 ℃에서 보관한 다음, 20 μm 두께로 절개하였다. 상기 OCT 화합물을 제거하기 위해서 상기 절편을 탈이온수로 5분 동안 2번 세척하고 봉입매로 봉입하였다. 뇌 절편의 영상을 공초점 레이저 주사 현미경(CLSM, Fluo View FV1000, Olympus, Japan)을 이용하여 기록하였다.
After labeling Cys5.5 to the nanocarriers of Example 1 and Comparative Example 1, 48 hours after the intravenous injection, the brains of the sacrificed mice were washed with PBS and 4% (w / v) formaldehyde solution for 24 hours. After fixing with, washed with deionized water. The brain was frozen in OCT compound, a staining reagent, stored at 80 ° C., and cut into 20 μm thick. To remove the OCT compounds, the sections were washed twice with deionized water for 5 minutes and sealed with inclusion medium. Images of the brain sections were recorded using confocal laser scanning microscope (CLSM, Fluo View FV1000, Olympus, Japan).

결과result

도 7a에 나타낸 바와 같이, 뇌에서 Cy5.5-표지된 나노전달체를 나타내는 적색 형광 점들은 비교예 1의 나노전달체(RVG-Bare-NC)보다는 실시예 1의 나노전달체(RVG-Chito-NC)에서 훨씬 더 많이 존재하는 것을 확인되었다. As shown in FIG. 7A, the red fluorescent dots representing the Cy5.5-labeled nanocarriers in the brain are the nanocarriers of Example 1 (RVG-Chito-NC) rather than the nanocarriers of Comparative Example 1 (RVG-Bare-NC). Was found to exist much more.

특히, 하기 표 4 및 도 7b에 나타낸 바와 같이, 4종의 나노전달체의 뇌 축적을 정량 분석 결과, 광견병 바이러스 당단백질 단편(RVG)이 뇌 축적에 효과적이었지만, 키토산과의 상승작용이 훨씬 더 효과적이었음을 명확히 증명하고 있다. 따라서 본 발명에 따른 실시예 1의 나노전달체(RVG-Chito-NC)가 뇌를 표적으로 하는 축적에 있어 최적인 것으로 판단된다. In particular, as shown in Table 4 and FIG. 7B, quantitative analysis of brain accumulation of the four nanocarriers showed that rabies virus glycoprotein fragment (RVG) was effective for brain accumulation, but synergy with chitosan was much more effective. It is clearly proving that it was. Therefore, it is determined that the nanocarrier (RVG-Chito-NC) of Example 1 according to the present invention is optimal for accumulation targeting the brain.

구분division 상대 강도(a.u.)Relative strength (a.u.) 실시예 1
(RVG-Chito-NC)
Example 1
(RVG-Chito-NC)
5.55.5
비교예 1
(RVG-Bare-NC)
Comparative Example 1
(RVG-Bare-NC)
2.72.7
무처리군 1
(Chito-NC)
Untreated group 1
(Chito-NC)
0.10.1
무처리군 2
(Bare-NC)
Untreated group 2
(Bare-NC)
0.10.1

<< 실험예Experimental Example 9> 뇌에 전달된 β- 9> β- delivered to the brain 갈락토시다아제의Galactosidase 조직화학 분석 Histochemical analysis

본 발명에 따른 나노전달체의 BBB 통과 여부를 확인하기 위해서, 하기 실험을 수행하였다.In order to confirm whether the BBB of the nanocarrier according to the present invention passes, the following experiment was performed.

본 발명에 따른 실시예 1, 비교예 1 및 무처리군 1 및 2의 나노전달체 각각을 정맥 내 주사 한지 2시간, 24시간과 48시간 후에, 또한 식염수 또는 β-갈락토시다아제를 정맥 내 주사한 대조군의 뇌와 주요 기관을 희생시켰다. 2 hours, 24 hours and 48 hours after intravenous injection of each of the nanocarriers of Example 1, Comparative Example 1 and untreated groups 1 and 2 according to the present invention, also intravenously with saline or β-galactosidase The brain and major organs of one control group were sacrificed.

뇌에 전달된 β-갈락토시다아제의 특성을 X-gal 염색에 의해 분석하였다. 건조되지 않도록 뇌 절편을 가습실에서 X-gal 모액(DMSO 중 4 % X-gal, 희석 완충액 중 희석비 1:40)과 혼합한 X-gal 희석 완충액(PBS 중 5 mM 칼륨 시안화제2철 결정, 5 mM 칼륨 시안화제2철 삼수화물과 2 mM MgCl2) 중 37 ℃에서 2시간 동안 배양하였다. 뇌 절편을 PBS로 5분간 세척한 후 탈이온수로 세척하였다. 대조 염색을 위해서 절편을 핵 고속 적색 용액으로 5분간 배양한 다음, 탈이온수로 짧은 시간 세척하였다. 이 뇌 절편을 봉입매로 봉입하고 형광 현미경(TE2000-U, Nikon Co, Tokyo, Japan)을 이용하여 관찰하였다.
The properties of β-galactosidase delivered to the brain were analyzed by X-gal staining. To prevent drying, brain sections were mixed with X-gal mother liquor (4% X-gal in DMSO, dilution ratio 1:40 in dilution buffer) in a humidification chamber (5 mM potassium ferric cyanide crystals in PBS). , 5 mM potassium cyanide trihydrate and 2 mM MgCl 2 ) were incubated at 37 ° C. for 2 hours. Brain sections were washed with PBS for 5 minutes and then with deionized water. Sections were incubated for 5 minutes in a nuclear high speed red solution for control staining and then washed briefly with deionized water. This brain slice was enclosed with an inclusion medium and observed using a fluorescence microscope (TE2000-U, Nikon Co, Tokyo, Japan).

결과result

도 8a 및 도 8g에 나타낸 바와 같이, 유리 β-갈락토시다아제를 정맥내 주사하였더니 뇌에서 검출될만한 효소활성을 보이지 않았다. 무처리군 1 및 2의 나노전달체를 사용한 경우, 효소 활성은 초기 시간(2시간)에 희미하게 관찰된 다음, 시간 경과에 따라 사라졌다. 한편, 비교예 1의 나노전달체의 경우, 정맥내 주사한 후에 효소 산물이 뇌에서 조직화학에 의해 분명하게 검출되었지만, 실시예 1의 나노전달체를 이용한 경우에서, 훨씬 크고 긴 효소활성의 검출이 관찰되었다. 특히, 실시예 1의 나노전달체를 정맥내 주사한 지 48시간 내에 뇌의 모든 영역에서 큰 β-갈락토시다아제 활성을 나타내는 것을 확인하였다.
As shown in FIGS. 8A and 8G, intravenous injection of free β-galactosidase did not show detectable enzymatic activity in the brain. When nanotransmitters of untreated groups 1 and 2 were used, the enzyme activity was observed faintly at the initial time (2 hours) and then disappeared over time. On the other hand, in the case of the nanocarrier of Comparative Example 1, the enzyme product was clearly detected by histochemistry in the brain after intravenous injection, but in the case of using the nanocarrier of Example 1, the detection of much larger and longer enzyme activity was observed. It became. In particular, it was confirmed that the β-galactosidase activity was shown in all regions of the brain within 48 hours after intravenous injection of the nanocarrier of Example 1.

<< 실험예Experimental Example 10> 주요 기관과 뇌에서 β- 10> β- in major organs and brain 갈락토시다아제의Galactosidase 체내 효소활성 Enzyme activity in the body

본 발명에 따른 나노전달체에 의한 뇌 및 주요기관에서의 β-갈락토시다아제의 체내 효소 활성을 알아보기 위하여 주요 기관과 뇌 전달을 효소활성 검사를 수행하였다.In order to investigate the enzyme activity of the β-galactosidase in the brain and major organs by the nanocarrier according to the present invention, enzyme activity tests were performed on major organs and brain delivery.

희생시킨 기관(뇌, 간, 폐, 비장, 심장과 신장) 내 β-갈락토시다아제 양을 측정하였다. 탈이온수로 균질화한 후(IKA ULTRA-TURRAX T25 digital, IKA, Japan)(모터 속도: 24,000 rpm에서 1분간), 균질액을 10분간 12,000 rpm에서 원심분리하였다. 상청액을 이용하여 β-갈락토시다아제 효소활성을 측정하였다. β-갈락토시다아제의 시험관내 방출에서 이용한 방법을 이용하여 각 기관 내 β-갈락토시다아제의 농도를 측정하였다.
The amount of β-galactosidase in the sacrificed organs (brain, liver, lung, spleen, heart and kidney) was measured. After homogenization with deionized water (IKA ULTRA-TURRAX T25 digital, IKA, Japan) (motor speed: 1 minute at 24,000 rpm), the homogenate was centrifuged at 12,000 rpm for 10 minutes. The supernatant was used to measure β-galactosidase enzyme activity. The concentration of β-galactosidase in each organ was measured using the method used in the in vitro release of β-galactosidase.

결과result

(1) 뇌 내의 β-(1) β- in the brain 갈락토시다아제Galactosidase 효소 활성의 정량 분석 Quantitative Analysis of Enzyme Activity

도 9a에 나타낸 바와 같이, 본 발명에 따른 실시예 1의 나노전달체를 이용한 경우, 뇌에서 가장 높은 β-갈락토시다아제 효소활성이 발견되었고 또한 뇌에서 오래 잔류하였다. 나아가 식염수 또는 β-갈락토시다아제를 주사한 대조군 마우스는 검출될만한 효소활성을 갖지 않았는데, 이는 상기 실험예 6의 X-gal 염색 결과와 부합한다.
As shown in Figure 9a, when using the nanocarrier of Example 1 according to the present invention, the highest β-galactosidase enzyme activity was found in the brain and also remained long in the brain. Furthermore, control mice injected with saline or β-galactosidase did not have detectable enzymatic activity, which is consistent with the X-gal staining results of Experimental Example 6 above.

또한, 도 9b에 나타낸 바와 같이, 외부 전위를 인가하지 않고도 최적의 실시에 1의 나노전달체는 주사한 지 48시간 이후에 뇌 조직 그램 당 주사 투여량의 25% 이상의 수치를 나타내는 것을 확인하였다.
In addition, as shown in FIG. 9B, it was confirmed that the nanocarrier of 1 in the optimal embodiment exhibited a value of 25% or more of the injection dose per gram of brain tissue 48 hours after the injection without applying an external potential.

한편, 이는 나노전달체의 체내 분포와 동일한 경향성을 나타냈고(도 6b 참조), 이 결과를 통해 뇌 표적화에 대한 RVG와 키토산의 효능과 상승작용이 확인된다. 이에, 본 발명에 따른 나노전달체의 효소 약물에 대한 뇌-표적 전달 매체로서도 효과적이고 전달된 효소는 생물학적 활성이 유지되었음을 명확히 입증되었다.
On the other hand, it showed the same tendency as the distribution of the nanocarriers in the body (see Figure 6b), the results confirm the efficacy and synergy of RVG and chitosan on brain targeting. Thus, it has been clearly demonstrated that the effective and delivered enzyme, as a brain-target delivery medium for the enzyme drug of the nanocarrier according to the present invention, retained its biological activity.

본 발명에 의한 광견병 바이러스 당단백질 단편과 키토산이 결합된 플루로닉 고분자를 포함하는 뇌표적 나노전달체는 BBB를 통과하는 뇌 표적화와 생체활성 상태로서 약물의 전달을 위해서도 효과적이고, 뿐만 아니라, 광견병 바이러스 당단백질 단편과 키토산의 상승효과는 크게 표적화 효능을 증진시키고 뇌 내 축적을 연장하는 효과가 있으므로, 본 발명의 나노전달체는 단백질 및 유전물질뿐만 아니라 미래의 다른 치료제와도 조합하여 전달하는 뇌 표적 전달 매체용으로 유용하게 사용될 수 있다.Brain target nanocarriers comprising a plurionic polymer in which rabies virus glycoprotein fragment and chitosan are coupled to the present invention are effective for drug delivery as a brain targeting and bioactive state through BBB, as well as rabies virus Since the synergistic effect of glycoprotein fragments and chitosan greatly enhances targeting efficacy and extends brain accumulation, the nanocarriers of the present invention deliver brain targets delivered in combination with proteins and genetics as well as other therapeutic agents in the future. It can be usefully used for the medium.

<110> Gwangju Institute of Science and Technology <120> Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan <130> HPC-3265 <160> 5 <170> KopatentIn 2.0 <210> 1 <211> 34 <212> PRT <213> Artificial Sequence <220> <223> RVG PEPTIDE <400> 1 Tyr Thr Trp Met Pro Glu Asn Pro Arg Pro Gly Thr Pro Cys Asp Ile 1 5 10 15 Phe Thr Asn Ser Arg Gly Lys Arg Ala Ser Asn Gly Gly Gly Gly Gly 20 25 30 Gly Cys <210> 2 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> CTP PEPTIDE <400> 2 Gly Ala Thr Cys Cys Gly Cys Gly Gly Cys Gly Gly Cys Gly Gly Cys 1 5 10 15 Gly Gly Cys Gly Gly Cys Gly Thr Gly Cys Gly Cys Gly Gly Cys Gly 20 25 30 Thr Ala Ala Thr Cys 35 <210> 3 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> TGN PEPTIDE <400> 3 Thr Gly Asn Tyr Lys Ala Leu His Pro His Asn Gly Gly Gly Gly Gly 1 5 10 15 Gly Cys <210> 4 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Angiopep-2 PEPTIDE <400> 4 Thr Phe Phe Tyr Gly Gly Ser Arg Gly Lys Arg Asn Asn Phe Lys Thr 1 5 10 15 Glu Glu Tyr Cys 20 <210> 5 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> TAT-1 PEPTIDE <400> 5 His Leu Asn Ile Leu Ser Thr Leu Trp Lys Tyr Arg Cys 1 5 10 <110> Gwangju Institute of Science and Technology <120> Brain targeting nano-carrier containing pluoronic polymer          comprising brain targeting peptide capable of specifice delivery          to brain tissue and chitosan <130> HPC-3265 <160> 5 <170> Kopatentin 2.0 <210> 1 <211> 34 <212> PRT <213> Artificial Sequence <220> <223> RVG PEPTIDE <400> 1 Tyr Thr Trp Met Pro Glu Asn Pro Arg Pro Gly Thr Pro Cys Asp Ile   1 5 10 15 Phe Thr Asn Ser Arg Gly Lys Arg Ala Ser Asn Gly Gly Gly Gly Gly              20 25 30 Gly Cys         <210> 2 <211> 37 <212> PRT <213> Artificial Sequence <220> <223> CTP PEPTIDE <400> 2 Gly Ala Thr Cys Cys Gly Cys Gly Gly Cys Gly Gly Cys Gly Gly Cys   1 5 10 15 Gly Gly Cys Gly Gly Cys Gly Thr Gly Cys Gly Cys Gly Gly Cys Gly              20 25 30 Thr Ala Ala Thr Cys          35 <210> 3 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> TGN PEPTIDE <400> 3 Thr Gly Asn Tyr Lys Ala Leu His Pro His Asn Gly Gly Gly Gly   1 5 10 15 Gly Cys         <210> 4 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Angiopep-2 PEPTIDE <400> 4 Thr Phe Phe Tyr Gly Gly Ser Arg Gly Lys Arg Asn Asn Phe Lys Thr   1 5 10 15 Glu Glu Tyr Cys              20 <210> 5 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> TAT-1 PEPTIDE <400> 5 His Leu Asn Ile Leu Ser Thr Leu Trp Lys Tyr Arg Cys   1 5 10

Claims (16)

뇌조직 표적화 펩티드가 결합된 키토산으로 부분 치환된 플루로닉 고분자를 포함하는 뇌 표적 나노전달체.
A brain target nanocarrier comprising a pluronic polymer partially substituted with chitosan to which a brain tissue targeting peptide is bound.
제1항에 있어서,
상기 플루로닉 고분자 및 수용성 키토산은 플루로닉 고분자와 아크릴화된 수용성 키토산을 아실화 반응을 통해 결합하는 것을 특징으로 하는 나노전달체.
The method of claim 1,
The pluronic polymer and the water-soluble chitosan are nanocarriers, characterized in that to combine the fluorinated polymer and acrylated water-soluble chitosan through an acylation reaction.
제1항에 있어서,
상기 뇌조직 표적화 펩티드는 광견병 바이러스 당단백질 단편인 것을 특징으로 하는 나노전달체.
The method of claim 1,
The brain tissue targeting peptide is a nanocarrier, characterized in that the rabies virus glycoprotein fragment.
제3항에 있어서,
상기 광견병 바이러스 당단백질 단편은 서열번호 1 내지 5로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 나노전달체.
The method of claim 3,
The rabies virus glycoprotein fragment is any one selected from the group consisting of SEQ ID NOs: 1 to 5.
제1항에 있어서,
상기 나노전달체 크기는 300-100 nm인 것을 특징으로 하는 나노전달체.
The method of claim 1,
The nanocarrier size is 300-100 nm, characterized in that the nanocarrier.
제1항에 있어서,
상기 플루로닉 고분자의 분자량은 8000-15000 달톤(Da)인 것을 특징으로 하는 나노전달체.
The method of claim 1,
The molecular weight of the pluronic polymer is 8000-15000 Daltons (Da), characterized in that the nanocarrier.
제1항에 있어서,
상기 키토산의 분자량은 5-15 킬로달톤(kDa)인 것을 특징으로 하는 나노전달체.
The method of claim 1,
The molecular weight of the chitosan is a nanocarrier, characterized in that 5-15 kilodaltons (kDa).
제1항에 있어서,
상기 키토산의 탈아세트화도는 80-95%인 것을 특징으로 하는 나노전달체.
The method of claim 1,
The degree of deacetization of the chitosan is 80-95%, characterized in that the nanocarrier.
(a) 플루노닉 고분자를 아크릴화된 수용성 키토산으로 부분치환하여 나노전달체를 얻는 단계;
(b) 상기 단계 (a)에서 얻은 나노전달체의 키토산에 포함된 아민기를 말레이미드기(MAL)-폴리에틸렌글라이콜(PEG)-N-하이드록시숙신아미드(NHS)와 결합시켜 말레이미드기 및 폴리에틸렌글라이콜이 결합된 나노전달체를 얻는 단계; 및
(c) 상기 단계 (b)에서 얻은 말레이미드기 및 폴리에틸렌글라이콜이 결합된 나노전달체에 뇌조직에 특이적으로 전달 가능한 뇌조직 표적화 펩티드를 결합시키는 단계;를 포함하는 제1항의 뇌 표적 나노전달체의 제조방법.
(a) partially replacing the pluronic polymer with acrylated water-soluble chitosan to obtain a nanocarrier;
(b) an amine group contained in the chitosan of the nanocarrier obtained in step (a) is combined with a maleimide group (MAL) -polyethylene glycol (PEG) -N-hydroxysuccinamide (NHS) and a maleimide group; Obtaining a nanocarrier to which polyethylene glycol is bound; And
(C) the brain target nanoparticles of claim 1 comprising the step of binding the brain tissue targeting peptide specifically deliverable to the brain tissue to the nano-carrier is bonded to the maleimide group and polyethylene glycol obtained in step (b) Method of manufacturing the carrier.
제1항의 뇌 표적 나노전달체를 포함하는 뇌질환 치료용 약학적 조성물.
A pharmaceutical composition for treating brain disease, comprising the brain target nanocarrier of claim 1.
제9항에 있어서,
상기 약학적 조성물은 나노전달체 내에 레보도파, 렘베르디메본, 가바(GABA) 및 니플루믹산으로 이루어지는 군으로부터 선택되는 어느 하나의 약물을 봉입하여 사용되는 것을 특징으로 하는 약학적 조성물.
10. The method of claim 9,
The pharmaceutical composition is a pharmaceutical composition, characterized in that it is used by encapsulating any one drug selected from the group consisting of levodopa, lemberdimebon, GABA and niflumic acid in the nanocarrier.
제9항에 있어서,
상기 뇌질환은 뇌암, HIV 뇌증, 뇌전증, 파킨슨병 또는 알츠하이머병인 것을 특징으로 하는 약학적 조성물.
10. The method of claim 9,
The brain disease is brain cancer, HIV encephalopathy, epilepsy, Parkinson's disease or Alzheimer's disease, characterized in that the pharmaceutical composition.
제1항의 뇌 표적 나노전달체를 포함하는 뇌질환 진단용 영상화제.
Imaging agent for diagnosing brain disease, comprising the brain target nanocarrier of claim 1.
제13항에 있어서,
상기 영상화제의 나노전달체 내에 MRI 또는 PET 조영제로 이루어지는 군으로부터 선택되는 어느 하나를 봉입하여 사용하는 것을 특징으로 하는 뇌질환 진단용 영상화제.
14. The method of claim 13,
Imaging agent for diagnosing brain disease, characterized in that any one selected from the group consisting of MRI or PET contrast agent is used in the nanocarrier of the imaging agent.
제14항에 있어서,
상기 MRI 조영제는 가돌리늄과 망간의 착화합물 형태로써, Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-DO3A 및 초상자성 물질인 산화철로 이루어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 뇌질환 진단용 영상화제.
15. The method of claim 14,
The MRI contrast agent in the form of a complex of gadolinium and manganese, Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-DO3A and a superparamagnetic substance for the diagnosis of brain disease, characterized in that one selected from the group consisting of iron oxide Imaging agent.
제14항에 있어서,
상기 PET 조영제는 방사성 동위원소 18F, 124I, 64Cu, 99 mTc 및 11In로 이루어지는 군으로부터 선택되는 1종이고, 킬레이트 DOTA 또는 DTPA 착화합물 형태로서 나노운반체에 도입 가능한 것을 특징으로 하는 뇌질환 진단용 영상화제.
15. The method of claim 14,
The PET contrast agent is one selected from the group consisting of radioactive isotopes 18 F, 124 I, 64 Cu, 99 m Tc and 11 In, brain disease characterized in that it can be introduced into the nano-carrier in the form of a chelate DOTA or DTPA complex Diagnostic imaging agents.
KR1020120080941A 2012-07-25 2012-07-25 Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan KR101740895B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120080941A KR101740895B1 (en) 2012-07-25 2012-07-25 Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120080941A KR101740895B1 (en) 2012-07-25 2012-07-25 Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan

Publications (2)

Publication Number Publication Date
KR20140014579A true KR20140014579A (en) 2014-02-06
KR101740895B1 KR101740895B1 (en) 2017-05-29

Family

ID=50264445

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120080941A KR101740895B1 (en) 2012-07-25 2012-07-25 Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan

Country Status (1)

Country Link
KR (1) KR101740895B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064202A1 (en) * 2014-10-22 2016-04-28 동국대학교 산학협력단 Thermosensitive pluronic-chitosan oligosaccharide-kartogenin nanocomposite with dual drug release function
KR20170138861A (en) * 2016-06-08 2017-12-18 광주과학기술원 Peptide-chitosan modified nanoparticle and drug carrier comprising the same
KR101867455B1 (en) * 2017-03-09 2018-06-15 광주과학기술원 Nanocarrier, the preparation method thereof and ultrasound enhanced contrast agent comprising the same
WO2018236090A3 (en) * 2017-06-21 2019-03-28 한국세라믹기술원 Chitosan-pluronic complex and nano-carrier comprising same
CN112741837A (en) * 2020-12-03 2021-05-04 暨南大学 Brain-targeting nano-drug delivery system and preparation method thereof
CN115068631A (en) * 2021-03-10 2022-09-20 中国科学院过程工程研究所 CRISPR/Cas9 delivery system and preparation method and application thereof
US11964948B2 (en) 2022-06-07 2024-04-23 Actinium Pharmaceuticals, Inc. Bifunctional chelators and conjugates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102211721B1 (en) 2019-02-11 2021-02-04 경북대학교 산학협력단 Medicament carrier for permeation of a blood-brain barrier comprising bacterial-derived cell outer membrane vesicles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016064202A1 (en) * 2014-10-22 2016-04-28 동국대학교 산학협력단 Thermosensitive pluronic-chitosan oligosaccharide-kartogenin nanocomposite with dual drug release function
KR20170138861A (en) * 2016-06-08 2017-12-18 광주과학기술원 Peptide-chitosan modified nanoparticle and drug carrier comprising the same
KR101867455B1 (en) * 2017-03-09 2018-06-15 광주과학기술원 Nanocarrier, the preparation method thereof and ultrasound enhanced contrast agent comprising the same
WO2018236090A3 (en) * 2017-06-21 2019-03-28 한국세라믹기술원 Chitosan-pluronic complex and nano-carrier comprising same
US11471534B2 (en) 2017-06-21 2022-10-18 Skinmed Co., Ltd. Chitosan-pluronic complex and nano-carrier comprising same
CN112741837A (en) * 2020-12-03 2021-05-04 暨南大学 Brain-targeting nano-drug delivery system and preparation method thereof
CN115068631A (en) * 2021-03-10 2022-09-20 中国科学院过程工程研究所 CRISPR/Cas9 delivery system and preparation method and application thereof
US11964948B2 (en) 2022-06-07 2024-04-23 Actinium Pharmaceuticals, Inc. Bifunctional chelators and conjugates
US11975081B2 (en) 2022-06-07 2024-05-07 Actinium Pharmaceuticals, Inc. Bifunctional chelators and conjugates

Also Published As

Publication number Publication date
KR101740895B1 (en) 2017-05-29

Similar Documents

Publication Publication Date Title
KR20140014579A (en) Brain targeting nano-carrier containing pluoronic polymer comprising brain targeting peptide capable of specifice delivery to brain tissue and chitosan
Sun et al. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers
Tian et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy
Gao et al. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges
Betzer et al. In vivo neuroimaging of exosomes using gold nanoparticles
Xu et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies
US11219692B2 (en) Porphyrin modified telodendrimers
Li et al. In vivo β-catenin attenuation by the integrin α5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis
He et al. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer
Peng et al. Polymeric multifunctional nanomaterials for theranostics
Guo et al. A dual-ligand fusion peptide improves the brain-neuron targeting of nanocarriers in Alzheimer's disease mice
Cook et al. A critical evaluation of drug delivery from ligand modified nanoparticles: Confounding small molecule distribution and efficacy in the central nervous system
Gao et al. Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy
US20050196343A1 (en) Degradable nanoparticles
AU2015301579A1 (en) Dendrimer compositions and use in treatment of neurological and CNS disorders
Fu et al. Targeted transport of nanocarriers into brain for theranosis with rabies virus glycoprotein-derived peptide
Thomas et al. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma
Garbayo et al. Diagnostic and therapeutic uses of nanomaterials in the brain
Das et al. Magnetic micelles for DNA delivery to rat brains after mild traumatic brain injury
Kim et al. Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer
Zhao et al. Chlorotoxin-conjugated nanoparticles for targeted imaging and therapy of glioma
Li et al. Strategies and materials of" SMART" non-viral vectors: Overcoming the barriers for brain gene therapy
Yhee et al. Multifunctional chitosan nanoparticles for tumor imaging and therapy
Gao et al. Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases
US20170326253A1 (en) Ph-sensitive peptides and their nanoparticles for drug delivery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant