KR20140013106A - Novel microalgae nostoc sp. knua003 and method for producing alkane, fatty alcohol, and fatty acid from the same - Google Patents

Novel microalgae nostoc sp. knua003 and method for producing alkane, fatty alcohol, and fatty acid from the same Download PDF

Info

Publication number
KR20140013106A
KR20140013106A KR1020140000457A KR20140000457A KR20140013106A KR 20140013106 A KR20140013106 A KR 20140013106A KR 1020140000457 A KR1020140000457 A KR 1020140000457A KR 20140000457 A KR20140000457 A KR 20140000457A KR 20140013106 A KR20140013106 A KR 20140013106A
Authority
KR
South Korea
Prior art keywords
knua003
nostoc
strain
acid
biodiesel
Prior art date
Application number
KR1020140000457A
Other languages
Korean (ko)
Inventor
윤호성
홍지원
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020140000457A priority Critical patent/KR20140013106A/en
Publication of KR20140013106A publication Critical patent/KR20140013106A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a novel microalgae Nostoc KNUA003 (Nostocsp. KNUA003) strain (KCTC 12063BP) and a method for producing heptadecane, hexadecenol, and fatty acids of C16-C18. The Nostoc KNUA003 strain of the present invention can autotrophically biosynthesize heptadecane (C17H36), which can directly be used as a fuel, while not requiring transesterification, as well as produce major components such as a fatty alcohol (hexadecenol (C20H40O)) and other general microalgae biodiesel components (palmitic acid (C16:0), palmitoleic acid (C16:1), linoleic acid (C18:2) and linolenic acid (C18:3)). Therefore, Nostocsp. KNUA003 can be effectively be used as raw material for producing biodiesel.

Description

신규한 미세조류 노스톡 KNUA003 균주 및 이로부터의 알칸, 지방 알코올 및 지방산 생산 방법{Novel Microalgae Nostoc sp. KNUA003 and method for producing alkane, fatty alcohol, and fatty acid from the same}Novel microalgae Nostoc KNUFA03 strain and method for producing alkanes, fatty alcohols and fatty acids therefrom {Novel Microalgae Nostoc sp. KNUA003 and method for producing alkane, fatty alcohol, and fatty acid from the same}

본 발명은 신규한 미세조류 노스톡 (Nostoc sp.) KNUA 003 균주 및 이로부터 헵타데칸, 헥사데세놀 및 C16 내지C18의 지방산을 생산하는 방법에 관한 것이다. The present invention relates to a novel microalgal Nostoc sp. KNUA 003 strain and a method for producing heptadecane, hexadecenol and fatty acids of C 16 to C 18 therefrom.

인류는 무분별한 화석연료 사용으로 지구온난화와 에너지원 고갈이라는 이중고에 직면하고 있어 재생 가능한 지속적 에너지 자원에 대한 전 세계적인 요구는 매년 지수적으로 증가되고 있다. 국내에서도 최근 신·재생에너지 개발에 적극 적으로 나서고 있지만 아직까지는 시작 단계이다. 바이오에너지는 화석에너지와는 달리 이산화탄소를 발생시키지 않는 친환경적 에너지로서, 이산화탄소와 태양에너지를 포획하는 광합성 과정을 통하여 에너지가 축적된 유기 탄소 화합물이 생성되고 이렇게 해서 저장된 바이오매스로부터 에너지를 추출하는 것이다.Humanity is facing the double grief of global warming and depletion of energy sources due to reckless use of fossil fuels, and the worldwide demand for sustainable and renewable energy resources is increasing exponentially every year. In Korea, it has been actively developing new and renewable energy, but it is still in the beginning stage. Unlike fossil energy, bioenergy is eco-friendly energy that does not generate carbon dioxide, and organic carbon compounds in which energy is accumulated are generated through a photosynthesis process that captures carbon dioxide and solar energy, and energy is extracted from the stored biomass.

바이오에너지는 재생가능하며 유해성분이 거의 없는 비독성 에너지이고, 미생물에 의해 완전히 분해되며 이산화탄소를 고정해서 생산되므로 온실효과를 감소시킨다. 현재 육상자원을 이용한 바이오에너지 연구가 진행되고 있으나, 식량자원 및 식량 재배면적과의 경쟁 등 육상자원 이용의 한계점이 드러나면서 해양자원(미세조류 및 해조류)을 이용하고자 하는 정책과 연구들이 전 세계적으로 시작되고 있다.Bioenergy is renewable and non-toxic energy with almost no harmful components, and it is completely decomposed by microorganisms and produced by fixing carbon dioxide, thereby reducing the greenhouse effect. Currently, bioenergy research using terrestrial resources is being conducted, but policies and studies to use marine resources (microalgae and algae) are being conducted worldwide as limitations in the use of terrestrial resources such as competition with food resources and food cultivation area are revealed It is starting.

바이오에너지는 대표적으로 바이오에탄올/부탄올과 바이오디젤이 있는데, 거대조류(macroalgae)를 중심으로 바이오에탄올/부탄올의 생산 연구가 진행되고 있으며, 미세조류(microalgae)를 중심으로 바이오디젤 연구가 진행되고 있다.
Bioenergy is typically bioethanol/butanol and biodiesel. Research on the production of bioethanol/butanol is being conducted centering on macroalgae, and biodiesel research is being conducted centering on microalgae. .

*특히, 남조류(cyanobacteria)를 포함하는 미세조류들은, 육지 공급원들에 비해 더욱 높은 광합성 효율 및 오일 수율로 인해 바이오연료 생산에 매력적인 후보가 되고 있다 (Huntley and Redalje 2007; Li 등 2008). *In particular, microalgae, including cyanobacteria, are attractive candidates for biofuel production due to their higher photosynthetic efficiency and oil yield compared to land sources (Huntley and Redalje 2007; Li et al. 2008).

바이오디젤은 바이오매스에 포함된 지방산(fatty acid)의 트랜스에스테르화 (transesterification) 과정에 의해 메틸 에스터 또는 에틸 에스터 형태로 생산되며 부산물로 글리세롤이 생성된다. 바이오디젤(biodiesel)은 페트로디젤(petrodiesel)과는 달리 연소될 때 배출되는 독성물질이 현저하게 낮은 친환경적 에너지이다.Biodiesel is produced in the form of methyl ester or ethyl ester by transesterification of fatty acid contained in biomass, and glycerol is produced as a by-product. Unlike petrodiesel, biodiesel is an eco-friendly energy with significantly low toxic substances emitted when burned.

미세조류의 태양에너지 이용 효율은 5%로, 육상식물의 0.2%에 비해 약 25배 정도 높으며, 이산화탄소 고정화 속도는 소나무의 15배로 매우 효율적이다. 현재 미세조류는 사료나 생물학적 비료로 이용될 뿐 아니라, 다양한 건강식품으로 이용되고 있다. 미세조류는 현미경적 크기로 육상식물과 비슷한 광합성 메커니즘을 가지지만, 물과 이산화탄소와 다른 여러 영양분의 접근이 효율적인 수중환경에서 서식하므로 태양에너지를 바이오매스로 전환함에 있어서 더욱 효과적이다.The solar energy utilization efficiency of microalgae is 5%, about 25 times higher than 0.2% of land plants, and the carbon dioxide immobilization rate is 15 times that of pine trees, which is very efficient. Currently, microalgae are used not only as feed or biological fertilizer, but also as a variety of health foods. Microalgae have a photosynthetic mechanism similar to terrestrial plants in microscopic size, but are more effective in converting solar energy into biomass because they live in an aquatic environment where access to water, carbon dioxide and other nutrients is efficient.

최근 해외에서도 미세조류를 이용한 바이오디젤 생산 연구가 활발하게 진행되고 있다. 2007년 12월에는 세계적 정유회사인 Shell사와 HR Biopetroleum이 공동으로 바이오디젤 생산을 목적으로 미세조류 배양 시설을 하와이에 설치하였으며, 2008년 1월에는 미국의 Solazyme사가 Soladiesel이라고 하는 시제품을 Mercedes-Benz의 디젤자동차에 제공하여 성능을 시험하기로 하였다고 발표하였고, Chevron사는 Solazyme사와 협약을 맺고 공동 기술 개발을 하기로 하였다. 최근 프랑스에서는 3년간 280만 유로의 예산을 Shamash 프로그램에 배정하여 해조류 활용에 대한 활발한 연구를 추진 중이며, Shamash 프로그램은 국립연구청이 실현 가능한 생산모델의 개발을 위해서 프랑스 대학의 7개 연구팀을 구성하여 미세조류에서 나온 지방산의 생산과 함께 이를 바이오에너지로 변형하는 연구를 수행 중에 있다.Recently, research on the production of biodiesel using microalgae has been actively conducted overseas. In December 2007, Shell and HR Biopetroleum, a world refining company, jointly installed a microalgae culture facility in Hawaii for the purpose of producing biodiesel. In January 2008, Solazyme of the United States introduced a prototype called Soladiesel by Mercedes-Benz. It was announced that it would provide it to diesel vehicles to test its performance, and Chevron signed an agreement with Solazyme to develop joint technology. Recently, in France, a budget of 2.8 million euros has been allocated to the Shamash program for three years, and active research on the use of algae is being promoted. Along with the production of fatty acids from algae, research is underway to transform them into bioenergy.

국내에서도 중소업체를 중심으로 바이오디젤 생산 공정 기술 개발, 바이오디젤 에너지의 발굴 등의 연구를 하고 있으며, 현재 해조류를 이용한 바이오디젤 생산에 대한 연구를 진행 중에 있다. 그러나, 극복되어야만 할 다수의 기술적 장벽들이 여전히 많이 존재하고 있다.In Korea, small and medium-sized companies are focusing on the development of biodiesel production process technology and the discovery of biodiesel energy, and research on biodiesel production using seaweed is currently underway. However, there are still many technical barriers that must be overcome.

미세조류 바이오디젤 생산에서 가장 큰 과제들 중 하나는 전체 생산 에너지 소비의 90%에 달하는 지질 추출 비용을 감소시키는 것이다(Lardon 등 2009). 조류 바이오디젤은 산성 또는 염기성 촉매 존재 하에서 알코올을 이용한 조류 오일의 에스테르 교환 반응에 의해 수득되는 것이 일반적이다 (Meher 등 2006; Demirbas 2007; Johnson & Wen 2009). 메탄올은, 그 낮은 비용으로 인해, 이 공정에서 가장 흔하게 사용되는 알코올인데(Demirbas 2005), 저렴한 메탄올조차도 바이오디젤 생산에서의 총 에너지 소비의 47%를 차지하는 것으로 보고되어 왔다(de Souza 등 2010). Schirmer 등 (2010)의 최근 연구는 일부 남조류 균주가 펜타데칸(C15H32) 및 헵타데칸(C17H36)과 같은 알칸계 탄화수소를 천연적으로 생산할 수 있음을 보여주었다. 페트로디젤은 8개에서 약 20개의 탄소 원자들을 갖는 알칸들의 혼합으로 구성되므로, 이들 남조류에서 합성된 알칸들은 트리글리세리드들을 액상 탄화수소로 전환하지 않고 바이오디젤로서 직접 사용될 수 있으며, 따라서 석유 연료를 대체가능한 후보로서의 역할을 할 수 있을 것이다.One of the biggest challenges in microalgal biodiesel production is to reduce the cost of lipid extraction, which amounts to 90% of the total production energy consumption (Lardon et al. 2009). Algal biodiesel is generally obtained by transesterification of algal oil with alcohol in the presence of an acidic or basic catalyst (Meher et al. 2006; Demirbas 2007; Johnson & Wen 2009). Methanol, due to its low cost, is the most commonly used alcohol in this process (Demirbas 2005), and even cheap methanol has been reported to account for 47% of the total energy consumption in biodiesel production (de Souza et al. 2010). A recent study by Schirmer et al. (2010) has shown that some blue-green algae strains can naturally produce alkane-based hydrocarbons such as pentadecane (C 15 H 32 ) and heptadecane (C 17 H 36 ). Since petrodiesel consists of a mixture of alkanes having 8 to about 20 carbon atoms, alkanes synthesized from these blue-green algae can be used directly as biodiesel without converting triglycerides to liquid hydrocarbons, and thus can be used as a substitute for petroleum fuel. You will be able to play a role as

이에, 본 발명자들은 사상체를 이루는(filamentous) 질소고정 남조류 Nostoc sp. KNUA003을 한국 대청호에서 여름철 녹조 시료(summer bloom sample)로부터 무균적으로 분리하였으며, 이 남조류는 최적 성장 조건 하에서 헵타데칸 뿐 아니라 미세조류 바이오디젤 구성성분들을 독립영양적으로 생산할 수 있음을 보여주어 바이오디젤 원료(biodiesel feedstock)로서 바이오에너지 생산에 기여할 것으로 기대된다. Thus, the inventors of the present invention constitute a filamentous nitrogen-fixed blue-green algae Nostoc sp. KNUA003 was aseptically isolated from summer bloom samples in Daecheong Lake, Korea, and this blue-green algae was shown to be capable of autotrophically producing not only heptadecane but also microalgal biodiesel components under optimal growth conditions. It is expected to contribute to bioenergy production as a biodiesel feedstock.

본 발명의 목적은 헵타데칸, 헥사데세놀 및 C16 내지C18의 지방산을 생산하는 신규한 미세조류 노스톡 sp. KNUA003을 제공함에 목적이 있다. 상기 KNUA003은 에스테르교환반응을 필요로 하지 않으면서 연료로서 직접 사용될 수 있는 헵타데칸(C17H36)과 같은 알칸계 탄화수소를 독립영양적으로 생산할 수 있으며, 지방 알코올(헥사데세놀(C20H40O)) 및 기타 일반적인 미세조류 바이오디젤 구성성분들(팔미트산 (C16:0), 팔미톨레산 (C16:1), 레놀레산 (C18:2) 및 리놀렌산(C18:3))도 주요 지방산으로서 KNUA003 균주에 의해 생산된다. An object of the present invention is hepta-decane, hexadecane and senol having C 16 to novel microalgae to produce fatty acids of C 18 no stock sp. The purpose is to provide KNUA003. The KNUA003 can autotrophically produce alkane-based hydrocarbons such as heptadecane (C 17 H 36 ) that can be directly used as fuel without requiring transesterification , and fatty alcohols (hexadecenol (C 20 H 40 O)) and other common microalgal biodiesel components (palmitic acid (C16:0), palmitoleic acid (C16:1), lenoleic acid (C18:2) and linolenic acid (C18:3)) are also major It is produced by the KNUA003 strain as a fatty acid.

또한 본 발명은 상기 신규 노스톡 KNUA003 균주로부터 헵타데칸, 헥사데세놀 및 C16 내지C18의 지방산의 생산방법을 제공함에 목적이 있다. Another object of the present invention is to provide a method for producing heptadecane, hexadecenol, and fatty acids of C 16 to C 18 from the novel Nostock KNUA003 strain.

본 발명은 헵타데칸, 헥사데세놀 및 C16 내지 C18의 지방산을 생산하는 미세조류인 노스톡 KNUA003(Nostoc sp. KNUA003) 균주 (KCTC 12063BP)를 제공한다. The invention hepta-decane, hexadecane and senol having C 16 to microalgae of the furnace stock KNUA003 (Nostoc sp to produce fatty acids of C 18. KNUA003) A strain (KCTC 12063BP) is provided.

또한, 본 발명은 상기 노스톡 KNUA003(Nostoc sp. KNUA003) 균주 (KCTC 12063BP)를 배양하고, 그 배양액으로부터 헵타데칸, 헥사데세놀 및 C16 내지C18의 지방산을 분리하는 것을 특징으로 하는 헵타데칸, 헥사데세놀 및 C16 내지C18의 지방산의 생산방법을 제공한다.In addition, the present invention is the Nostoc KNUA003 (Nostoc sp. KNUA003) Strain Method of production of a hepta-decane, of hexa to senol and C 16 to C 18 fatty acid which comprises culturing (KCTC 12063BP) and to separate the fatty acids of heptanoic decane, hexadecane having senol and C 16 to C 18 from the culture medium Provides.

또한, 본 발명은 상기 노스톡 KNUA003(Nostoc sp. KNUA003) 균주 (KCTC 12063BP)에서 생산된 C16 내지C18의 지방산을 트랜스 에스테르화시켜 지방산 에스테르 및 글리세롤을 생성하는 것을 특징으로 하는, 바이오디젤의 제조 방법을 제공한다. In addition, the present invention is the Nostoc KNUA003 (Nostoc sp. KNUA003) It provides a method for producing biodiesel, characterized in that fatty acid esters and glycerol are produced by transesterification of C 16 to C 18 fatty acids produced in the strain (KCTC 12063BP).

나아가, 본 발명은 상기 신규 노스톡 KNUA003 균주로부터 생산된 C16 내지C18의 지방산을 트랜스 에스테르화시켜 지방산 에스테르를 생산하는 바이오디젤 제조 방법을 제공함에 목적이 있다.Furthermore, an object of the present invention is to provide a biodiesel production method for producing fatty acid esters by transesterifying fatty acids of C 16 to C 18 produced from the novel Nostock KNUA003 strain.

기존의 미세조류 바이오디젤은 산성 또는 염기성 촉매 존재 하에서 알코올을 이용한 미세조류 오일(algal oil)의 에스테르교환반응에 의해 수득되는 것이 일반적이었으며 이러한 방법에 의할 경우 지질 추출 비용이 매우 크게 소요되는 단점이 있었다. 본 발명은 신규 미세조류 노스톡 sp. KNUA003 균주를 이용하여 기존의 방식으로 바이오디젤을 생산 할 수 있을 뿐만 아니라, 헵타데칸과 같은 알칸계 탄화수소를 천연적으로 생산하여 액상 탄화 수소로 전환하는 과정 없이 직접 바이오디젤을 생산할 수 있는 효과를 가진다. Conventional microalgal biodiesel is generally obtained by transesterification of algal oil using alcohol in the presence of an acidic or basic catalyst, and this method has a disadvantage that the cost of lipid extraction is very high. there was. The present invention is a novel microalgae Nostock sp. Using the KNUA003 strain, not only can biodiesel be produced in the conventional way, but also alkane-based hydrocarbons such as heptadecane can be produced naturally and have the effect of directly producing biodiesel without conversion to liquid hydrocarbons. .

도 1은 노스톡 KNUA003 (Nostoc sp. KNUA003) KCTC 12063BP 균주의 현미경 관찰 결과를 나타낸 도이다.
도 2는 노스톡 KNUA003 (Nostoc sp. KNUA003) KCTC 12063BP 균주의 온도 조건에 따른 성장의 차이를 나타낸 도이다.
도 3은 노스톡 KNUA003 (Nostoc sp. KNUA003) KCTC 12063BP 균주의 pH 조건에 따른 성장의 차이를 나타낸 도이다.
도 4는 노스톡 KNUA003 (Nostoc sp. KNUA003) KCTC 12063BP 균주의 염도 조건에 따른 성장의 차이를 나타낸 도이다.
도 5는 노스톡 KNUA003(a), 노스톡 PCC6720(b), 노스톡 PCC7120(c)의 GC/MS 분석 결과를 나타낸 도이다.
도 6은 노스톡 KNUA003에 의해 생산된 헵타데칸(a)과 헥사데세놀(b)의 electron impact (EI) mass spectra를 나타낸 도이다.
1 shows Nostoc KNUA003 (Nostoc sp. KNUA003) It is a diagram showing the microscopic observation results of the KCTC 12063BP strain.
Figure 2 shows Nostoc KNUA003 (Nostoc sp. KNUA003) is a diagram showing the difference in growth according to temperature conditions of the KCTC 12063BP strain.
Figure 3 shows Nostoc KNUA003 (Nostoc sp. KNUA003) It is a diagram showing the difference in growth according to the pH condition of the KCTC 12063BP strain.
Figure 4 is a diagram showing the difference in growth according to the salinity condition of the Nostoc KNUA003 (Nostoc sp. KNUA003) KCTC 12063BP strain.
5 is a diagram showing the GC/MS analysis results of Nostock KNUA003(a), Nostock PCC6720(b), and Nostock PCC7120(c).
6 is a diagram showing the electron impact (EI) mass spectra of heptadecane (a) and hexadecenol (b) produced by Nostock KNUA003.

본 발명은 헵타데칸, 헥사데세놀 및 C16 내지C18의 지방산을 생산하는 미세조류인 노스톡 KNUA003(Nostoc sp. KNUA003) 균주 (KCTC 12063BP)를 제공한다. The present invention is a microalgae producing heptadecane, hexadecenol and C 16 to C 18 fatty acids, Nostoc KNUA003 (Nostoc sp. KNUA003) strain (KCTC 12063BP) is provided.

상기 노스톡 KNUA003 (Nostoc sp. KNUA003) 2009년 9월 대청호(36°22'N, 127°28'E)에서 채집한 후, 한천 상에 획선접종(streaking)하여 형성된 단일 콜로니를 선발하여 16S rRNA, phycocyanin(PC) 및 rbcLX 유전자 서열 분석을 통하여 동정하였다. 상기 남조류 노스톡 KNUA003 (Nostoc sp. KNUA003)균주는 한국생명공학연구원(KCTC)에 2011년 11월 9일자로 기탁하였다(기탁번호: KCTC 12063BP). The Nostoc KNUA003 (Nostoc sp. KNUA003) was collected from Daecheong Lake (36°22'N, 127°28'E) in September 2009, and then selected single colonies formed by streaking on agar and selected 16S rRNA, phycocyanin (PC) and rbcLX. It was identified through gene sequence analysis. The blue-green algae Nostok KNUA003 ( Nostoc sp. KNUA003) strain was deposited with the Korea Research Institute of Bioscience and Biotechnology (KCTC) on November 9, 2011 (accession number: KCTC 12063BP).

상기 노스톡 KNUA003 균주는 알칸계 탄화수소, 바람직하게는 헵타데칸(C17H36)을 생산한다. 또한, 상기 노스톡 KNUA003 균주는 주요 지방산으로서 탄소수가 16이며 이중결합수가 0 또는 1인 지방산 (16:0, 16:1 지방산) 및 탄소수가 18이며 이중 결합수가 2 또는 3인 지방산 (18:2, 18:3 지방산)을 생산하는 것을 특징으로 한다. 또한, 상기 노스톡 KNUA003 균주는 C20의 지방 알콜, 바람직하게는 헥사데세놀을 생산한다.
The Nostock KNUA003 strain produces an alkane hydrocarbon, preferably heptadecane (C 17 H 36 ). In addition, the Nostock KNUA003 strain is a major fatty acid having 16 carbon atoms and 0 or 1 double bonds (16:0, 16:1 fatty acids) and 18 carbon atoms and 2 or 3 double bonds (18:2 , 18:3 fatty acids). In addition, the Nostock KNUA003 strain produces a C 20 fatty alcohol, preferably hexadecenol.

또한, 본 발명은 In addition, the present invention

1) 노스톡 KNUA003 균주를 배양하는 단계; 1) culturing the Nostock KNUA003 strain;

2) 상기 1) 단계에서 얻은 배양액으로부터 헵타데칸, 헥사데세놀 및 C16 과C18의 지방산을 추출하는 단계;를 포함하는 헵타데칸, 헥사데세놀 및 C16 과C18의 지방산의 생산 방법을 제공한다. 2) extracting heptadecane, hexadecenol, and fatty acids of C 16 and C 18 from the culture medium obtained in step 1); A method for producing heptadecane, hexadecenol and fatty acids of C 16 and C 18 comprising to provide.

상기 균주의 성장 조건으로, 배양 온도는 15℃에서 30℃, 배양 pH는 4.0에서 12 그리고 0.2M 이하의 NaCl 하에서 배양될 수 있다. 균주 배양 배지는 당업계에서 일반적으로 통용되는 배지를 이용할 수 있다.As the growth conditions of the strain, the culture temperature may be 15 ℃ to 30 ℃, culture pH of 4.0 to 12, and can be cultured under NaCl of 0.2M or less. As the strain culture medium, a medium commonly used in the art may be used.

균주 배양액으로부터 헵타데칸, 헥사데세놀 및 C16 내지C18의 지방산을 추출하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다. 상기 추출용매는 펜탄, 핵산, 사이클로헥산, 톨루엔, 메틸렌클로라이드, 에틸아세테이트, 아세톤, 크로로포름, 메탄올 및 이들의 혼합용매로 이루어진 군으로부터 선택될 수 있다.
As a method for extracting heptadecane, hexadecenol, and fatty acids of C 16 to C 18 from the culture medium of the strain, any method known in the art may be used. The extraction solvent may be selected from the group consisting of pentane, nucleic acid, cyclohexane, toluene, methylene chloride, ethyl acetate, acetone, chloroform, methanol, and a mixed solvent thereof.

또한, 본 발명은 노스톡 KNU003 균주로부터 생산된 트라이글리세리드를 트랜스에스테르화시켜 지방산 에스테르와 글리세롤을 분리하여 바이오디젤을 제조할 수 있다. 상기 지방산 에스테르는 바람직하게는, 지방산 메틸 에스테르 또는 지방산 에틸 에스테르일 수 있으나, 이에 제한되지는 않는다. 상기 바이오디젤은 바이오매스에 포함된 지방산의 트랜스에스테르화 과정에 의해 메틸 에스테르 또는 에틸 에스테르 형태로 생산될 수 있다. 상기 트랜스에스테르화 과정은 바이오매스에 포함된 지방의 크고 가지를 낸 분자 구조를 정규 디젤 엔진이 요구하는 작고 직선 사슬의 분자로 변형시키는 방법을 말한다. 상기 트랜스에스테르화 과정의 유화제로서 Triton X-100 또는 Tween 60 등을 첨가할 수 있으나, 이에 제한되지는 않는다. 상기 유화제는 바이오오일의 계면 안정을 도모하고 잘 혼합되도록 하여 반응 수율을 높여서 바이오디젤의 회수 비용을 절약할 수 있게 한다. 또한, 상기 트랜스에스테르화 과정의 반응 촉매제로서 수산화나트륨 또는 수산화칼륨을 사용할 수 있으나, 이에 제한되지는 않는다.
In addition, the present invention can transesterify triglycerides produced from Nostock KNU003 strain to separate fatty acid esters and glycerol to prepare biodiesel. The fatty acid ester may preferably be a fatty acid methyl ester or a fatty acid ethyl ester, but is not limited thereto. The biodiesel may be produced in the form of methyl ester or ethyl ester by transesterification of fatty acids contained in biomass. The transesterification process refers to a method of transforming a large, branched molecular structure of fat contained in biomass into a small, straight-chain molecule required by a regular diesel engine. Triton X-100 or Tween 60 may be added as an emulsifier in the transesterification process, but is not limited thereto. The emulsifier promotes the interfacial stability of the bio-oil and mixes well, thereby increasing the reaction yield, thereby reducing the cost of recovering biodiesel. In addition, sodium hydroxide or potassium hydroxide may be used as a reaction catalyst for the transesterification process, but is not limited thereto.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples.

<실시예><Example>

1. 시료 채집 및 남조류 분리1. Sample collection and separation of blue-green algae

남조류 시료를 2009년 9월 대청호(36°22'N, 127°28'E)에서 채집하였다. 그 후, 채집한 시료를 실험실로 가져와서 시료 중 1ml를, 250 ug/ml 농도의 사이클로헥사마이드(cycloheximide, Sigma, St. Louis, MO, USA)가 있는 100 ml BG-11 배지(Rippka 등 1979)에 접종하였다. 플라스크들을 25°C에서 160rpm으로 진탕배양하면서, 확연한 바이오매스가 관찰될 때까지 배양하였다.Blue-green algae samples were collected from Daecheong Lake (36°22'N, 127°28'E) in September 2009. Thereafter, the collected sample was brought to the laboratory, and 1 ml of the sample was transferred to 100 ml BG-11 medium (Rippka et al. 1979) containing cycloheximide (cycloheximide, Sigma, St. Louis, MO, USA) at a concentration of 250 ug/ml. ) Was inoculated. The flasks were incubated with shaking at 160 rpm at 25 °C, and incubated until a pronounced biomass was observed.

잘 배양된 배양액(1.5 ml)을 3,000g에서 15분(Centrifuge 5424, Eppendorf, Hamburg, Germany) 동안 원심분리하였다. 원심분리된 펠렛들을 이미페넴(100ug/ml) (imipenem, Choongwae Pharma Corporation, Seoul, 한국)과 사이클로헥사마이드(20ug/ml)를 함유하는 BG-11 한천 상에 획선접종하고, 24시간 동안 암실에서 배양하여 무균 배양물을 분리하였다. 그 후 플레이트들을 광:암(16시간:8시간) 주기로 25℃에서 배양하고 사상체의 성장을 매일 관찰하였다. 플레이트 바깥쪽으로 자라나는 노스톡 사상체들이 나안으로 볼 수 있을 정도로 자랐을 때, 이들을 새로운 BG-11 플레이트들로 무균적으로 접종시켜 오염 세균들로부터 분리하였다(Hong 등 2010). 그 후, 노스톡 사상체를 R2A 및 LB 한천 플레이트들(Becton, Dickinson and Company, Sparks, MD, USA) 상으로 획선접종하고, 암실에서 14일 동안 배양하여 배양물의 무균 상태를 확인하였다. 상기 무균 상태의 배양물을 KNUA003으로 명명하였다.
A well-cultured culture solution (1.5 ml) was centrifuged at 3,000 g for 15 minutes (Centrifuge 5424, Eppendorf, Hamburg, Germany). Centrifuged pellets were inoculated on BG-11 agar containing imipenem (100ug/ml) (imipenem, Choongwae Pharma Corporation, Seoul, Korea) and cyclohexamide (20ug/ml), and cultured in the dark for 24 hours. Thus, the sterile culture was isolated. Thereafter, the plates were incubated at 25° C. in a light: dark (16 hours: 8 hours) cycle, and the growth of filamentous bodies was observed daily. When the Nostalgic filaments growing outside the plate grew to the extent that they could be seen with the naked eye, they were aseptically inoculated with new BG-11 plates to isolate them from contaminating bacteria (Hong et al. 2010). Thereafter, Nostock filamentous bodies were inoculated onto R2A and LB agar plates (Becton, Dickinson and Company, Sparks, MD, USA), and cultured in the dark for 14 days to confirm the sterility of the culture. The sterile culture was named KNUA003.

2. 형태학 및 분자 확인2. Morphology and Molecular Identification

상기 KNUA003의 형태적 분석을 위하여 20일동안 BG-11 배지에서 질소원 없이 배양하였다. 살아있는 세포들을 수확하여 멸균된 증류수에 현탁시키고, 차등간섭대비(DIC) 광학렌즈가 설치된 Zeiss Axioskop 2 광 현미경 (Carl Zeiss, Standort Gottingen, Vertrieb, Germany) 상에서 400배 배율로 관찰하였다. For the morphological analysis of KNUA003, it was cultured without a nitrogen source in BG-11 medium for 20 days. Live cells were harvested and suspended in sterilized distilled water, and observed at 400 times magnification on a Zeiss Axioskop 2 optical microscope (Carl Zeiss, Standort Gottingen, Vertrieb, Germany) equipped with a differential interference contrast (DIC) optical lens.

결과는 도 1에 나타내었다.The results are shown in FIG. 1.

도 1에 나타낸 바와 같이, 균주 KNUA003은 Nostoc. 속의 일반적인 특징들을 가졌다. 상기 미생물은, 염주형태의 영양세포들(vegetative cells)로 구성된 곧거나 약간 굽은 형태의 세포사(trichomes)를 갖는 사상체로 이루어졌으며, 중간(intercalary) 및 말단 이형세포들이 모두 관찰되었다. 색상은 녹색 내지 암녹색이었으며, 밀집하게 응집된 사상체들은 육안으로도 관찰이 가능한 매트(mats)를 형성하였다. 전체적으로, 균주 KNUA003의 형태학적 특징들은 Nostoc. 속에 속한다는 것을 제시하였다.
As shown in Figure 1, strain KNUA003 is Nostoc . It has the general characteristics of the genus. The microorganism was composed of filamentous bodies having straight or slightly curved trichomes composed of vegetative cells in the form of beads, and both intercalary and terminal heterozygous cells were observed. The color was green to dark green, and densely aggregated filaments formed mats that can be observed with the naked eye. Overall, the morphological features of strain KNUA003 were found in Nostoc . Suggested that it belongs to the genus.

*분자생물학적 접근을 통해 균주의 분류학적 위치를 확인하기 위하여, Nostoc sp.로의 동정은 16S rRNA와 rbcLX, PC-IGS 유전자 서열분석을 실시하였다. 16S rRNA 유전자 단편들의 증폭에, Nubel 등 (1997)에 의해 설명된 프라이머 세트인 CYA106F 및 CYA781R(a) 및 CYA781R(b)을 사용하였다. 파이코사이아닌 암호화 오페론 유전자간 스페이서(phycocyanin encoding operon intergenic spacer: PC-IGS) 영역을 남조류에 특이적인 프라이머쌍인 PCβF 및 PCαR을 이용하여 증폭하였다 (Neilan 등 1995). RuBisCO (리불로오스-1,5-비스포스페이트 카르복실라아제/옥시게나아제) rbcLX의 영역을 프라이머 CW 및 CX를 이용하여, 선행기술에 설명된 것과 같이 증폭하였다(Rudi 등 1998). 본 연구에서 사용된 프라이머들의 합성 및 DNA 서열분석은 Macrogen 사(Macrogen, Seoul, 대한민국)에서 수행하였다. Nostoc sp. PCC 6720은 프랑스 파스퇴르 남조류 균주은행(Pasteur Culture Collection of Cyanobacteria, PCC, Paris, France)으로부터, Anabaenopsis circularis NIES21 및 Nostoc sp. NIES219는 일본 환경연구원 미생물 균주은행(National Institute for Environmental Studies, NIES, Ibaraki, Japan)으로부터 각각 구입하였다. 본 연구에서 얻어진 DNA 염기서열들을 NCBI 데이터베이스에 제출하고 이들의 기탁 번호들을 표 1 및 2에 나타내었다.* In order to confirm the taxonomic location of the strain through a molecular biology approach, the identification of Nostoc sp. was performed by sequence analysis of 16S rRNA, rbcLX, and PC-IGS genes. For the amplification of 16S rRNA gene fragments, the primer sets CYA106F and CYA781R(a) and CYA781R(b) described by Nubel et al. (1997) were used. The phycocyanin encoding operon intergenic spacer (PC-IGS) region was amplified using the primer pairs PCβF and PCαR specific to blue-green algae (Neilan et al. 1995). The region of RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) rbc LX was amplified as described in the prior art using primers CW and CX (Rudi et al. 1998). Synthesis and DNA sequencing of the primers used in this study were performed by Macrogen (Macrogen, Seoul, Korea). Nostoc sp. PCC 6720 is from the Pasteur Culture Collection of Cyanobacteria, PCC, Paris, France, Anabaenopsis circularis NIES21 and Nostoc sp. NIES219 was purchased from the National Institute for Environmental Studies (NIES, Ibaraki, Japan), respectively. The DNA sequences obtained in this study were submitted to the NCBI database, and their accession numbers are shown in Tables 1 and 2.

16S rRNA 서열 데이터에 근거하여, 균주 KNUA003은 Nostoc sp. PCC6720, Anabaenopsis circularis NIES21 및 Nostoc sp. HK-01 (Nostoc sp. NIES2109와 동일한 균주) 균주들과 100%의 염기서열 상동성을 보였다. 하지만, 가변 영역이 적은 16S rRNA 유전자의 특성으로 인해 PC-IGS 및 RuBisCO rbcLX와 같은 다른 유전자 영역들을 분석하였으며, 그 결과 Nostoc sp. KNUA003에 가장 유사하게 연관된 남조류인, Nostoc sp. PCC6720 만을 추가의 분석을 위해 선발하였다.Based on the 16S rRNA sequence data, strain KNUA003 was identified as Nostoc sp. PCC6720, Anabaenopsis circularis NIES21 and Nostoc sp. It showed 100% sequence homology with the strains HK-01 ( Nostoc sp. NIES2109 and the same strain). However, due to the characteristics of the 16S rRNA gene with a small variable region, other gene regions such as PC-IGS and RuBisCO rbc LX were analyzed. As a result, Nostoc sp. The blue-green algae most closely related to KNUA003, Nostoc sp. Only PCC6720 was selected for further analysis.

KNUA003의 16S rRNA, rbcLX, PC-IGS 블라스트 검색(BLAST Search) 결과16S rRNA, rbcLX, PC-IGS BLAST Search results of KNUA003 마커
유전자
Marker
gene
접근번호Access number Closest match
(GenBank 접근번호)
Closest match
(GenBank access number)
중첩
(%)
Nesting
(%)
시퀀스
유사성
(%)
sequence
Similarity
(%)
16S rRNA16S rRNA JF740671JF740671 Nostoc sp. PCC6720 (DQ185240)
Anabaenopsis circularis NIES21 (AF247595)
Nostoc sp. HK-01 (AB085687)a
Nostoc sp. PCC6720 (DQ185240)
Anabaenopsis circularis NIES21 (AF247595)
Nostoc sp. HK-01 (AB085687) a
100
100
100
100
100
100
100
100
100
100
100
100
PC-IGSPC-IGS JF740672JF740672 Nodularia spumigena KNUA005 (HM241946) Nodularia spumigena KNUA005 (HM241946) 100100 8686 RuBisCO
rbcLX
RuBisCO
rbc LX
JN251745JN251745 Nostoc sp. PCC6720 (DQ185297) Nostoc sp. PCC6720 (DQ185297) 7272 100100

Nostoc sp. HK-01는 Nostoc sp. NIES-2109와 동일한 균주. Nostoc sp. HK-01 is Nostoc sp. The same strain as NIES-2109.

16S rRNA, PC-IGS, RuBisCO rbcLX 염기서열 비교 결과16S rRNA, PC-IGS, RuBisCO rbc LX sequence comparison result 남조류Blue-green algae Nostoc sp. KNUA003 와 염기 서열 비교 Nostoc sp. Base sequence comparison with KNUA003 16S rRNA
16S rRNA
PC-IGS
PC-IGS
RuBisCO rbcLX
RuBisCO rbc LX
Nostoc sp. PCC6720 Nostoc sp. PCC6720 100% 상동
(DQ185240)
100% same
(DQ185240)
1 bp 다름
(JF740673)
1 bp different
(JF740673)
100% 상동
(JN251746)
100% same
(JN251746)
Anabaenopsis circularis NIES21 Anabaenopsis circularis NIES21 100% 상동
(AF247595)
100% same
(AF247595)
1 bp 다름
(JF740674)
1 bp different
(JF740674)
2 bp 다름
(JN251747)
2 bp different
(JN251747)
Nostoc sp. NIES2109 Nostoc sp. NIES2109 100% 상동
(AB085687)
100% same
(AB085687)
1 bp 다름
(JF740675)
1 bp different
(JF740675)
1 bp 다름
(JN251748)
1 bp different
(JN251748)

3. 균주 KNUA 003의 생리학적 특성3. Physiological characteristics of strain KNUA 003

균주 KNUA 003의 생리학적 특성을 확인하기 위하여, 온도, pH, 염도 및 탄소원을 달리하면서 실험을 진행하였다. 20일 된 균주 KNUA003의 종균 배양액(Seed culture 1 ml)을, 3회 반복으로, BG-11 배지(100ml) 내에 접종시키고, 20일 동안 배양하였다. 배양물의 최적 온도를 알기 위하여, 균주 KNUA003의 생존 및 성장을 5, 10, 15, 20, 25 및 30℃에서 관찰하였다. 염도 및 산성 내성 시험은 최적 생장 온도인 25℃에서 수행하였다. 염도 및 산도는, 각각 0.1, 0.2, 0.3 및 0.4 M 염화나트륨(NaCl)과 3.0에서 13.0의 pH범위였다. 대체 탄소원(alternative carbon source) 이용성 시험도 역시 25℃에서 글루코오스, 수크로오스, 프럭토오스, 리보오스, 나트륨 아세테이트, 글리세롤 및 글리콜산을 이용하여, Miura and Yokota (2006)에 기재된 대로 실시하였다. 배양물의 광학 밀도를 Optimizer 2120UV 분광기(Mecasys Co. Ltd., Daejeon, 대한민국)에서 750nm에서 측정하여 균주 KNUA 003 밀도를 측정하였다. In order to confirm the physiological characteristics of strain KNUA 003, experiments were conducted while varying temperature, pH, salinity and carbon source. The seed culture (1 ml) of the 20-day-old strain KNUA003 was inoculated into BG-11 medium (100 ml) by repeating 3 times, and cultured for 20 days. In order to know the optimum temperature of the culture, the survival and growth of strain KNUA003 were observed at 5, 10, 15, 20, 25 and 30°C. Salinity and acid resistance tests were carried out at an optimum growth temperature of 25°C. Salinity and acidity were 0.1, 0.2, 0.3, and 0.4 M sodium chloride (NaCl) and a pH range of 3.0 to 13.0, respectively. The alternative carbon source availability test was also carried out as described in Miura and Yokota (2006) using glucose, sucrose, fructose, ribose, sodium acetate, glycerol and glycolic acid at 25°C. The optical density of the culture was measured at 750 nm in an Optimizer 2120UV spectrometer (Mecasys Co. Ltd., Daejeon, Korea) to measure the density of strain KNUA 003.

결과는 도 2 내지 도 4, 및 표 3에 나타내었다. Results are shown in FIGS. 2 to 4 and Table 3.

균주 KNUA 003의 생리학적 특징Physiological characteristics of strain KNUA 003 생리학적 요소Physiological factor 성장growth 온도
pH
NaCl 내성
대체 탄소원 이용성:
글루코오스(Glucose)
수크로오스(Sucrose)
리보오스(Ribose)
아세테이트(Acetate)
프룩토오스(Fructose)
글리세롤(Glycerol)
글리콜산(Glycolic acid)
질소-프리-매질
Temperature
pH
NaCl resistance
Alternative carbon source availability:
Glucose
Sucrose
Ribose
Acetate
Fructose
Glycerol
Glycolic acid
Nitrogen-free-medium
15 ℃~30℃
pH 4 ~pH 12
Up to 0.2 M

×
×
×
×

×
×
×
15℃~30℃
pH 4 ~pH 12
Up to 0.2 M

×
×
×
×

×
×
×

도 2 내지 도 4, 및 표 3 에 나타낸 바와 같이, 균주 KNUA003의 최적 성장 온도는 25℃였으나, 20℃ 및 30℃에서도 성장가능하였다. 그러나, 이 미생물은 10℃ 이하에서는 생존할 수 없었으며, 15℃에서의 배양에서는 현저히 지연된 성장이 관찰되었다. 성장 pH는 pH 4.0부터 12.0 범위였으며, 최적 pH는 pH 7.4였다. 균주 KNUA003은 0.2 M보다 높은 NaCl 농도는 견딜 수 없었다. 균주 KNUA003이 프럭토오스를 대체 탄소원으로 이용할 수 있는 특성이 관찰되었다.
2 to 4, and as shown in Table 3, the optimum growth temperature of the strain KNUA003 was 25 ℃, but it was possible to grow at 20 ℃ and 30 ℃. However, this microorganism was not able to survive below 10°C, and significantly delayed growth was observed in culture at 15°C. The growth pH ranged from pH 4.0 to 12.0, and the optimum pH was pH 7.4. Strain KNUA003 could not tolerate NaCl concentrations higher than 0.2 M. It was observed that strain KNUA003 can use fructose as an alternative carbon source.

4. GC/MS 분석 결과 확인4. Check GC/MS analysis results

GC/MS 분석을 위하여, Nostoc sp. KNUA003을 두 개의 비교 균주들, Nostoc sp. PCC6720 및PCC7120과 함께 3 회 반복으로 BG-11 배지(pH 7.4)에 접종하고, 25℃에서 20일 동안 배양하였다. 세포들을 3,220 g (Centrifuge 5810R, Eppendorf, Hamburg, Germany)에서 원심분리하여 수확하고, 일부 수정된 블라이-다이어(Bligh-Dyer)법(Lee 등 2010)을 이용하여 미세조류 지질을 추출하였다. 구체적으로, 클로로포름:메탄올(2:1) 용매 혼합물을 이용하여 동결건조된 남조류 바이오매스로부터 지질 성분을 추출하였다. 지질과 메탄올간의 에스테르교환반응에 의하여 바이오디젤을 수득하였으며, 수산화칼륨 (KOH)이 기본 촉매로서 사용되었다. 배양물의 지방산 조성을, 한국 기초과학연구센터(Korea Basic Science Institute (KBSI)) 대구센터에서, GC/MS (Agilent 6890N GC가 장착된 Jeol JMS700 질량 분광기)로 측정하였다. Nostoc sp. PCC7120는 헵타데칸을 생합성하는 것으로 알려져 있으므로 이 균주를 헵타데칸 생산 및 분석에 대한 양성 대조 균주로서 포함시켰다. 또한, 균주 Nostoc sp. PCC6720도 선택되었는데, 이 균주가16S rRNA, PC-IGS 및 RuBisCO rbcLX (표2)로부터의 분자적 증거에 기초하여 균주 KNUA003에 가장 가깝게 연관되었기 때문이다. For GC/MS analysis, Nostoc sp. KNUA003 was compared to two comparative strains, Nostoc sp. It was inoculated in BG-11 medium (pH 7.4) with PCC6720 and PCC7120 in three repetitions, and cultured at 25°C for 20 days. Cells were harvested by centrifugation at 3,220 g (Centrifuge 5810R, Eppendorf, Hamburg, Germany), and microalgal lipids were extracted using a partially modified Bligh-Dyer method (Lee et al. 2010). Specifically, a lipid component was extracted from the lyophilized blue-green algae biomass using a chloroform:methanol (2:1) solvent mixture. Biodiesel was obtained by transesterification between lipid and methanol, and potassium hydroxide (KOH) was used as a basic catalyst. The fatty acid composition of the culture was measured by GC/MS (Jeol JMS700 mass spectrometer equipped with Agilent 6890N GC) at the Daegu Center of the Korea Basic Science Institute (KBSI). Nostoc sp. PCC7120 is known to biosynthesize heptadecane, so this strain was included as a positive control strain for heptadecane production and analysis. In addition, strain Nostoc sp. PCC6720 was also selected as this strain was most closely associated with strain KNUA003 based on molecular evidence from 16S rRNA, PC-IGS and RuBisCO rbc LX (Table 2).

결과는 도 5, 도 6 및 표 4에 나타내었다. The results are shown in FIGS. 5, 6 and 4.

Nostoc sp. KNUA003, PCC6720 그리고 PCC7120의 알칸, 지방산, 지방알코올 조성 성분 Nostoc sp. Alkanes, Fatty Acids, Fatty Alcohol Composition Components of KNUA003, PCC6720 and PCC7120 성분ingredient KNUA003(%)KNUA003(%) PCC6720(%)PCC6720(%) PCC7120(%)PCC7120(%) Heptadecane (C17H36)Heptadecane (C 17 H 36 ) 14.5 ±7.1 14.5 ±7.1 19.1 ±9.7 19.1 ±9.7 1.3 ±0.3 1.3 ±0.3 Myristic acid (C14H28O2 = C14:0)Myristic acid (C 14 H 28 O 2 = C14:0) 0.3 ±0.1 0.3 ±0.1 0.3 ±0.2 0.3 ±0.2 0.2 ±0.0 0.2 ±0.0 Heneicosane (C21H44)Heneicosane (C 21 H 44 ) 2.7 ±1.7 2.7 ±1.7 1.5 ±1.2 1.5 ±1.2 2.0 ±1.2 2.0 ±1.2 Palmitoleic acid (C16H30O2 = C16:1)Palmitoleic acid (C 16 H 30 O 2 = C16:1) 17.6 ±3.5 17.6 ±3.5 14.0 ±4.5 14.0 ±4.5 25.4 ±1.7 25.4 ±1.7 Palmitic acid (C16H32O2 = C16:0)Palmitic acid (C 16 H 32 O 2 = C16:0) 25.1 ±5.7 25.1 ±5.7 22.0 ±1.9 22.0 ±1.9 25.3 ±4.8 25.3 ±4.8 Methyl palmitoleate (C17H32O2)Methyl palmitoleate (C 17 H 32 O 2 ) 0.4 ±0.3 0.4 ±0.3 1.2 ±0.6 1.2 ±0.6 1.1 ±0.3 1.1 ±0.3 Heptadecanoic acid (C17H34O2 = C17:0)Heptadecanoic acid (C 17 H 34 O 2 = C17:0) 0.1 ±0.1 0.1 ±0.1 0.8 ±0.1 0.8 ±0.1 0.0 ±0.0 0.0 ±0.0 Linoleic acid (C18H32O2 = C18:2)Linoleic acid (C 18 H 32 O 2 = C18:2) 8.5 ±2.4 8.5 ±2.4 7.2 ±3.2 7.2 ±3.2 13.8 ±1.9 13.8 ±1.9 Linolenic acid (C18H30O2 = C18:3)Linolenic acid (C 18 H 30 O 2 = C18:3) 17.6 ±5.8 17.6 ±5.8 15.5 ±5.4 15.5 ±5.4 24.5 ±2.8 24.5 ±2.8 Oleic acid (C18H34O2 = C18:1)Oleic acid (C 18 H 34 O 2 = C18:1) 0.8 ±0.4 0.8 ±0.4 0.9 ±0.7 0.9 ±0.7 1.3 ±0.2 1.3 ±0.2 Hexadecenol (C20H40O)Hexadecenol (C 20 H 40 O) 11.1 ±6.5 11.1 ±6.5 13.9 ±4.7 13.9 ±4.7 3.9 ±0.7 3.9 ±0.7 Strearic acid (C18H36O2 = C18:0)Strearic acid (C 18 H 36 O 2 = C18:0) 0.9 ±0.5 0.9 ±0.5 2.4 ±0.8 2.4 ±0.8 1.1 ±0.4 1.1 ±0.4

도 5 및 표 4에 나타낸 바와 같이, GC/MS 결과들은 본 연구에서 시험된 모든 남조류 균주들, Nostoc sp. KNUA003(a), Nostoc sp. PCC7120(b), Nostoc sp. PCC6720(c)은 헥사데세놀(C20H40O)과 함께 헵타데칸(C17H36), 팔미트산(C16:0), 팔미톨레산(C16:1), 리놀레산(C18:2) 및 리놀렌산(C18:3)과 같은 지방산들을 생합성할 수 있음을 확인하였다. 특히, 균주 KNUA003 및 PCC6720은 헵타데칸 및 헥사데세놀을 이들의 주요 지질 성분으로 함유하였다.As shown in Fig. 5 and Table 4, the GC/MS results were obtained from all blue-green algae strains tested in this study, Nostoc sp. KNUA003(a), Nostoc sp. PCC7120(b), Nostoc sp. PCC6720 (c) is heptadecane (C 17 H 36 ), palmitic acid (C16:0), palmitoleic acid (C16: 1), linoleic acid (C18:2) with hexadecenol (C 20 H 40 O). And it was confirmed that fatty acids such as linolenic acid (C18:3) can be biosynthesized. In particular, strains KNUA003 and PCC6720 contained heptadecane and hexadecenol as their main lipid components.

도 6에 나타낸 바와 같이, electron impact (EI) mass spectra을 이용하여 노스톡 KNUA003에 의해 생산된 헵타데칸(a)과 헥사데세놀(b)을 확인할 수 있었다. As shown in Figure 6, it was possible to confirm the heptadecane (a) and hexadecenol (b) produced by Nostock KNUA003 using an electron impact (EI) mass spectra.

5. 알칸 생합성에 관련된 유전자의 검출 및 확인5. Detection and identification of genes related to alkane biosynthesis

Nostoc sp. KNUA003에서 헵타데칸이 합성되는 것을 확인하기 위하여, 알칸 생합성에 관련된 유전자를 검출하였다. Nostoc sp. In order to confirm that heptadecane was synthesized in KNUA003, genes related to alkanes biosynthesis were detected.

알데히드 디카르보닐라아제 및 아실-아실 운반 단백질(acyl carrier protein, ACP) 환원효소를 Nostoc sp. KNUA003으로부터 증폭시키기 위하여, 2개의 프라이머 세트들을 이미 전체 염기서열이 알려진 Nostoc sp. PCC7120을 근거로 설계하였다. Nostoc sp. KNUA003에서 두 유전자의 부분 단편들을, 상기 프라이머 세트들에 의해 성공적으로 증폭시켰으며, 이 때 사용된 프라이머 세트들은 각각 alr5283F-3 및 alr5283R, 및 alr5284F-5 및 alr5284R-5 였다. 지놈 워킹-PCR(Genome-walking PCR) (Clontech, Mountain View, CA, USA)을 이용하여 상기 PCR 반응을 통해 부분적으로만 얻어진 각 유전자 염기서열의 앞뒤 서열을 분석하였다. 구체적으로, DNA를 제한 효소들 DraI, EcoRV, PvuII 및 StuI 제한효소로 절단하고, 각각의 DNA 단편들 양 끝에 GenomeWalker 어댑터들(adaptors)을 부착시켰다. 구축된 각 GenomeWalker 라이브러리를 어댑터 프라이머들(AP1 및 AP2) 및 설계된 두 개의 유전자-특이적 프라이머들(GSP1 및 GSP2)을 사용하여 2차례의 nested-PCR 반응을 시켰다. 그 후, 2 차 PCR 생성물들을 아가로오스 젤로부터 잘라내어 분석하였다. 마지막으로, Nostoc sp. KNUA003 및 PCC6720에서의 오픈 리딩 프레임들(Open Reading Frames: ORFs)을 포함하는 전체 (full length)의 알데히드 디카르보닐라아제 및 아실-ACP 환원효소를 프라이머 세트들(KNUA003_5283F 및 KNUA003_5283R 그리고 KNUA003_5284F 및 KNUA003_5284R)에 의해 증폭시켰다. 본 연구에서 사용된 모든 프라이머들은 Primer3Plus 소프트웨어(Untergasser 등 2007)를 사용하여 설계되었으며, 이를 표 5에 나타내었다. 결과는 표 6에 나타내었다. Aldehyde dicarbonylase and acyl-acyl carrier protein (ACP) reductase were used in Nostoc sp. In order to amplify from KNUA003, two primer sets were already prepared in Nostoc sp. It was designed based on PCC7120. Nostoc sp. In KNUA003, partial fragments of the two genes were successfully amplified by the above primer sets, and the primer sets used at this time were alr5283F-3 and alr5283R, and alr5284F-5 and alr5284R-5, respectively. Using Genome-walking PCR (Clontech, Mountain View, CA, USA), the sequence before and after each gene sequence obtained only partially through the PCR reaction was analyzed. Specifically, DNA was digested with restriction enzymes Dra I, Eco RV, Pvu II and Stu I restriction enzymes, and GenomeWalker adapters were attached to both ends of each DNA fragment. Each constructed GenomeWalker library was subjected to two nested-PCR reactions using adapter primers (AP1 and AP2) and two designed gene-specific primers (GSP1 and GSP2). Then, the secondary PCR products were cut out from the agarose gel and analyzed. Finally, Nostoc sp. Full length aldehyde dicarbonylase and acyl-ACP reductase including Open Reading Frames (ORFs) in KNUA003 and PCC6720 were applied to primer sets (KNUA003_5283F and KNUA003_5283R and KNUA003_5284F and KNUA003_5284R). Amplified by. All primers used in this study were designed using Primer3Plus software (Untergasser et al. 2007), and are shown in Table 5. The results are shown in Table 6.

실험에 사용된 프라이머의 종류Type of primer used in the experiment 이름name 서열 (5'->3')Sequence (5'->3') 길이 (bp)Length (bp) 유전자gene alr5283F-3
(forward)
서열번호1
alr5283F-3
(forward)
SEQ ID NO: 1
GGG GAA CAA GAA GCA TAC GAGGG GAA CAA GAA GCA TAC GA 2020 partial aldehyde decarbonylasepartial aldehyde decarbonylase
alr5283R-3
(reverse)
서열번호2
alr5283R-3
(reverse)
SEQ ID NO:2
TTA AGC TGC TGT AAG TCC GTTTA AGC TGC TGT AAG TCC GT 2020 partial aldehyde decarbonylasepartial aldehyde decarbonylase
alr5284F-5
(forward)
서열번호3
alr5284F-5
(forward)
SEQ ID NO:3
CTT GCT TTT TAC CGG AGA TGC TAG CCTT GCT TTT TAC CGG AGA TGC TAG C 2525 partial acyl-ACP reductasepartial acyl-ACP reductase
alr5284R-5
(reverse)
서열번호4
alr5284R-5
(reverse)
SEQ ID NO:4
AGA GCA TAG ATT CCG CAA AAC AAG CAGA GCA TAG ATT CCG CAA AAC AAG C 2525 partial acyl-ACP reductasepartial acyl-ACP reductase
5283_GSP1R
(upstream)
서열번호5
5283_GSP1R
(upstream)
SEQ ID NO: 5
GTA TTC ATC TTT GAC TAC ACC CTC AGTGTA TTC ATC TTT GAC TAC ACC CTC AGT 2727 partial aldehyde decarbonylase GSP1partial aldehyde decarbonylase GSP1
5283_GSP2R
(upstream)
서열번호6
5283_GSP2R
(upstream)
SEQ ID NO: 6
GAA TCA GTA AGC AAG TGA CAA CGT TACGAA TCA GTA AGC AAG TGA CAA CGT TAC 2727 partial aldehyde decarbonylase GSP2partial aldehyde decarbonylase GSP2
5284_GSP1F
(downstream)
서열번호7 
5284_GSP1F
(downstream)
SEQ ID NO: 7
ATA CAC ACA CTG CCT ACA TTA TCT GTCATA CAC ACA CTG CCT ACA TTA TCT GTC 2727 partial acyl-ACP reductase GSP1partial acyl-ACP reductase GSP1
5284_GSP2F
(downstream)
서열번호8 
5284_GSP2F
(downstream)
SEQ ID NO: 8
GAA AGC AAC AGT AGC TAT ATG TGG AGGAA AGC AAC AGT AGC TAT ATG TGG AG 2626 Partial acyl-ACP reductase GSP2Partial acyl-ACP reductase GSP2
5284_GSP1R
(upstream)
서열번호9 
5284_GSP1R
(upstream)
SEQ ID NO: 9
TAT AGC TAC TGT TGC TTT CGA CAG TTCTAT AGC TAC TGT TGC TTT CGA CAG TTC 2727 partial acyl-ACP reductase GSP1partial acyl-ACP reductase GSP1
5284_GSP2R
(upstream)
서열번호10
5284_GSP2R
(upstream)
SEQ ID NO: 10
GAC AGA TAA TGT AGG CAG TGT GTG TATGAC AGA TAA TGT AGG CAG TGT GTG TAT 2727 partial acyl-ACP reductase GSP2partial acyl-ACP reductase GSP2
KNUA003_5283F
(forward)
서열번호11
KNUA003_5283F
(forward)
SEQ ID NO: 11
CGG TCT GTA CTG TTC TTA ATT CTG GCGG TCT GTA CTG TTC TTA ATT CTG G 2525 full aldehyde decarbonylasefull aldehyde decarbonylase
KNUA003_5283R
(reverse)
서열번호12
KNUA003_5283R
(reverse)
SEQ ID NO: 12
TTA AGC TGC TGT AAG TCC GTA GGTTA AGC TGC TGT AAG TCC GTA GG 2323 full aldehyde decarbonylasefull aldehyde decarbonylase
KNUA003_5284F
(forward)
서열번호13
KNUA003_5284F
(forward)
SEQ ID NO: 13
ATC CCT GTT GCT GAT GAT TTT GATC CCT GTT GCT GAT GAT TTT G 2222 full acyl-ACP reductasefull acyl-ACP reductase
KNUA003_5284R
(reverse)
서열번호14
KNUA003_5284R
(reverse)
SEQ ID NO: 14
GAC TTT GCT AAA GCA GCA GAG GGAC TTT GCT AAA GCA GCA GAG G 2222 full acyl-ACP reductasefull acyl-ACP reductase

Nostoc sp. KNUA003 와 PCC6720의 알데히드 디카르보닐라아제 유전자 및 아실-ACP 환원효소 유전자 Nostoc sp. Aldehyde dicarbonylase gene and acyl-ACP reductase gene of KNUA003 and PCC6720 유전자gene 번역된 아미노산Translated amino acids 유사도
(접근 번호 / % ID)
Similarity
(Access number /% ID)
Nostoc sp. KNUA003 (접근번호 / 길이) Nostoc sp. KNUA003 (Access Number / Length) Nostoc sp. PCC6720
(접근번호 / 길이)
Nostoc sp. PCC6720
(Access Number / Length)
알데히드
디카르보닐라아제
Aldehyde
Dicarbonylase
가설적 알데히드 디카르보닐라아제 (JN391509 / 232 amino acids)b Hypothetical aldehyde dicarbonylase (JN391509 / 232 amino acids) b 가설적 알데히드 디카르보닐라아제 (JN581686 / 232 amino acids)c Hypothetical aldehyde dicarbonylase (JN581686 / 232 amino acids) c 가설적 단백질 Ava_2533 [Anabaena variabilis ATCC29413]
(YP 323043 / 86%) &
가설적 단백질 alr5283
[Nostoc sp. PCC7120]
(NP 489323 / 86%)
Hypothetical protein Ava_2533 [ Anabaena variabilis ATCC29413]
(YP 323043 / 86%) &
Hypothetical protein alr5283
[ Nostoc sp. PCC7120]
(NP 489323 / 86%)
아실-ACP
환원효소
Acyl-ACP
Reductase
가설적 아실-ACP 환원효소
(JN391510 / 340 amino acids)d
Hypothetical acyl-ACP reductase
(JN391510 / 340 amino acids) d
가설적 아실-ACP 환원효소
(JN581687 / 340 amino acids)e
Hypothetical acyl-ACP reductase
(JN581687 / 340 amino acids) e
가설적 단백질 Ava_2534 [Anabaena variabilis ATCC29413]
(YP 323044 / 91%)
The hypothetical protein Ava_2534 [ Anabaena variabilis ATCC29413]
(YP 323044 / 91%)

표 6에 나타난 바와 같이, Nostoc sp. KNUA003 (JN391509) 및 PCC6720 (JN581686)에서 알데히드 디카르보닐라제의 번역된 아미노산 서열들은 서로 동일하였으며, 이들의 가장 가까운 매치들은 가설적 단백질 Ava_2533 (YP 323043) [Anabaena variabilis ATCC29413] 및 가설적 단백질 alr5283 [Nostoc sp. PCC7120] (NP 489323)로, 상동성(identity)은 86%이었다. 아실-ACP 환원효소의 경우, Nostoc sp. KNUA003 (JN391510) 및 PCC6720 (JN581687)에서 번역된 아미노산 서열들은 서로 99.7%의 상동성(아미노산 1개 상이)을 보였으며,, 이들의 가장 가까운 매치는 가설적 단백질 Ava_2534 [Anabaena variabilis ATCC29413] (YP 323044)로 나타났고, 동일성은 91%이었다. 이 연구를 통해, KNUA003균주 내에 알칸 생합성 관련 유전자 알데히드 디카르보닐라아제 및 아실-ACP 환원효소 유전자들의 존재를 입증할 수 있었으며, 이 유전자들을 이용하여 알칸을 생합성 함으로써, 바이오연료 생산에 있어 보다 매력적이고 비용 효과적인 공정이 이루어질 수 있을 것으로 생각된다. As shown in Table 6, Nostoc sp. The translated amino acid sequences of aldehyde dicarbonylase in KNUA003 (JN391509) and PCC6720 (JN581686) were identical to each other, and their closest matches were the hypothetical protein Ava_2533 (YP 323043) [ Anabaena variabilis ATCC29413] and the hypothetical protein alr5283 [ Nostoc sp. PCC7120] (NP 489323), the identity was 86%. For acyl-ACP reductase, Nostoc sp. The amino acid sequences translated from KNUA003 (JN391510) and PCC6720 (JN581687) showed 99.7% homology to each other (one amino acid difference), and their closest match was the hypothetical protein Ava_2534 [ Anabaena variabilis ATCC29413] (YP 323044 ), and the identity was 91%. Through this study, it was possible to prove the existence of aldehyde dicarbonylase and acyl-ACP reductase genes related to alkane biosynthesis in strain KNUA003. By using these genes to biosynthesize alkanes, it is more attractive in biofuel production. It is believed that a cost effective process can be achieved.

한국생명공학연구원Korea Research Institute of Bioscience and Biotechnology KCTC12063BPKCTC12063BP 2011110920111109

<110> Kyungpook National University Industry-Academic Cooperation Foundation <120> Novel Microalgae Nostoc sp. KNUA003 and method for producing alkane, fatty alcohol, and fatty acid from the same <130> p106 <160> 14 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of partial aldehyde decarbonylase(alr5283F-3) <400> 1 ggggaacaag aagcatacga 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of partial aldehyde decarbonylase(alr5283R-3) <400> 2 ttaagctgct gtaagtccgt 20 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of partial acyl-ACP reductase(alr5284F-5) <400> 3 cttgcttttt accggagatg ctagc 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of partial acyl-ACP reductase(alr5284R-5) <400> 4 agagcataga ttccgcaaaa caagc 25 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Upstream primer of partial aldehyde decarbonylase GSP1(5283_GSP1R) <400> 5 gtattcatct ttgactacac cctcagt 27 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Upstream primer of partial partial aldehyde decarbonylase GSP2(5283_GSP2R) <400> 6 gaatcagtaa gcaagtgaca acgttac 27 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Downstream primer of partial acyl-ACP reductase GSP1(5284_GSP1F) <400> 7 atacacacac tgcctacatt atctgtc 27 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Downstream primer of Partial acyl-ACP reductase GSP2(5284_GSP2F) <400> 8 gaaagcaaca gtagctatat gtggag 26 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Upstream primer of partial acyl-ACP reductase GSP1(5284_GSP1R) <400> 9 tatagctact gttgctttcg acagttc 27 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Upstream primer of partial acyl-ACP reductase GSP2(5284_GSP2R) <400> 10 gacagataat gtaggcagtg tgtgtat 27 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of full aldehyde decarbonylase(KNUA003_5283F) <400> 11 cggtctgtac tgttcttaat tctgg 25 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of full aldehyde decarbonylase(KNUA003_5283R) <400> 12 ttaagctgct gtaagtccgt agg 23 <210> 13 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of full acyl-ACP reductase(KNUA003_5284F) <400> 13 atccctgttg ctgatgattt tg 22 <210> 14 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of full acyl-ACP reductase(KNUA003_5284R) <400> 14 gactttgcta aagcagcaga gg 22 <110> Kyungpook National University Industry-Academic Cooperation Foundation <120> Novel Microalgae Nostoc sp. KNUA003 and method for producing alkane, fatty alcohol, and fatty acid from the same <130> p106 <160> 14 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of partial aldehyde decarbonylase (alr5283F-3) <400> 1 ggggaacaag aagcatacga 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of partial aldehyde decarbonylase (alr5283R-3) <400> 2 ttaagctgct gtaagtccgt 20 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of partial acyl-ACP reductase (alr5284F-5) <400> 3 cttgcttttt accggagatg ctagc 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of partial acyl-ACP reductase (alr5284R-5) <400> 4 agagcataga ttccgcaaaa caagc 25 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Upstream primer of partial aldehyde decarbonylase GSP1(5283_GSP1R) <400> 5 gtattcatct ttgactacac cctcagt 27 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Upstream primer of partial partial aldehyde decarbonylase GSP2(5283_GSP2R) <400> 6 gaatcagtaa gcaagtgaca acgttac 27 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Downstream primer of partial acyl-ACP reductase GSP1(5284_GSP1F) <400> 7 atacacacac tgcctacatt atctgtc 27 <210> 8 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Downstream primer of Partial acyl-ACP reductase GSP2(5284_GSP2F) <400> 8 gaaagcaaca gtagctatat gtggag 26 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Upstream primer of partial acyl-ACP reductase GSP1(5284_GSP1R) <400> 9 tatagctact gttgctttcg acagttc 27 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Upstream primer of partial acyl-ACP reductase GSP2(5284_GSP2R) <400> 10 gacagataat gtaggcagtg tgtgtat 27 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of full aldehyde decarbonylase (KNUA003_5283F) <400> 11 cggtctgtac tgttcttaat tctgg 25 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of full aldehyde decarbonylase (KNUA003_5283R) <400> 12 ttaagctgct gtaagtccgt agg 23 <210> 13 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Forward primer of full acyl-ACP reductase (KNUA003_5284F) <400> 13 atccctgttg ctgatgattt tg 22 <210> 14 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of full acyl-ACP reductase (KNUA003_5284R) <400> 14 gactttgcta aagcagcaga gg 22

Claims (2)

헵타데칸, 헥사데세놀 및 C16 내지C18의 지방산을 생산하는 미세조류인 노스톡 KNUA003(Nostoc sp. KNUA003) 균주 (KCTC 12063BP).Hepta-decane, hexadecane and senol having C 16 to microalgae of the furnace stock KNUA003 (Nostoc sp to produce fatty acids of C 18. KNUA003) strain (KCTC 12063BP). 제 1항에 있어서, 상기 C16 내지C18의 지방산은 팔미트산(C16:0), 팔미톨레산(C16:1), 리놀레산(C18:2) 및 리놀렌산(C18:3)으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 노스톡 KNUA003(Nostoc sp. KNUA003) 균주 (KCTC 12063BP).According to claim 1, wherein the C 16 to C 18 fatty acid is from the group consisting of palmitic acid (C16: 0), palmitoleic acid (C16: 1), linoleic acid (C18: 2) and linolenic acid (C18: 3) Nostok KNUA003 ( Nostoc sp. KNUA003) strain (KCTC 12063BP).
KR1020140000457A 2014-01-02 2014-01-02 Novel microalgae nostoc sp. knua003 and method for producing alkane, fatty alcohol, and fatty acid from the same KR20140013106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140000457A KR20140013106A (en) 2014-01-02 2014-01-02 Novel microalgae nostoc sp. knua003 and method for producing alkane, fatty alcohol, and fatty acid from the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140000457A KR20140013106A (en) 2014-01-02 2014-01-02 Novel microalgae nostoc sp. knua003 and method for producing alkane, fatty alcohol, and fatty acid from the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120016998A Division KR101406039B1 (en) 2012-02-20 2012-02-20 Novel Microalgae Nostoc sp. KNUA003 and method for producing alkane, fatty alcohol, and fatty acid from the same

Publications (1)

Publication Number Publication Date
KR20140013106A true KR20140013106A (en) 2014-02-04

Family

ID=50263603

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140000457A KR20140013106A (en) 2014-01-02 2014-01-02 Novel microalgae nostoc sp. knua003 and method for producing alkane, fatty alcohol, and fatty acid from the same

Country Status (1)

Country Link
KR (1) KR20140013106A (en)

Similar Documents

Publication Publication Date Title
Farrokh et al. Cyanobacteria as an eco‐friendly resource for biofuel production: a critical review
KR101351281B1 (en) Microalgae Chlamydomonas strain high-producing lipid isolated from arctic ocean and uses thereof
JP5608640B2 (en) Microalgae belonging to the genus Navikura, a method for producing oil by culturing the microalgae, a dry alga body of the microalgae, and a carbon dioxide fixing method comprising a step of culturing the microalgae
KR101575208B1 (en) Microalgae Chlorella strain high-producing starch and lipid isolated from arctic ocean and uses thereof
KR102020144B1 (en) Auxenochlorella protothecoides MM0011 and use thereof
EP2718453B1 (en) Engine worthy fatty acid methyl ester (biodiesel) from naturally occurring marine microalgal mats and marine microalgae cultured in open salt pans together with value addition of co-products
KR101525319B1 (en) Novel Micractinium inermum NLP-F014 and use thereof
Selvan et al. Modeling and dynamic design of an artificial culture medium for heterotrophic cultivation of Tetradesmus obliquus RDS01 for CO2 sequestration and green biofuels production: an eco-technological approach
Pandian et al. Lipid extraction and CO2 mitigation by microalgae and its conversion into biodiesel
KR101496783B1 (en) Novel Microalgae Chlamydomonas reinhardtii KNUA021 and method for producing fatty alcohol and fatty acid from the same
Chang et al. Natural production of alkane by an easily harvested freshwater cyanobacterium, Phormidium autumnale KNUA026
KR101499912B1 (en) A Novel Tetraselmis sp. MBEyh04Gc strain (KCTC 12432BP) and a method for producing biodiesel using the same
KR101406039B1 (en) Novel Microalgae Nostoc sp. KNUA003 and method for producing alkane, fatty alcohol, and fatty acid from the same
Hong et al. Characterization of alkane-producing Nostoc sp. isolated from a summer bloom for biofuel potential
Bajwa et al. Optimization of environmental growth parameters for biodiesel producing bacteria Rhodococcus opacus using response surface methodology
KR101406064B1 (en) Novel Microalgae Chlamydomonas reinhardtii KNUA021 and method for producing fatty alcohol and fatty acid from the same
KR101313173B1 (en) Novel Microalgae Limnothrix sp. KNUA012 and method for producing alkane, fatty alcohol, and fatty acid from the same
Hong et al. Characterization of a Korean domestic cyanobacterium Limnothrix sp. KNUA012 for biofuel feedstock
Hariram et al. Scenedesmus obliquus and Chlorella vulgaris–A Prospective Algal Fuel Source
KR20140013106A (en) Novel microalgae nostoc sp. knua003 and method for producing alkane, fatty alcohol, and fatty acid from the same
KR20140006120A (en) Novel microalgae chlamydomonas moewusii knua013 and method for producing alkane, fatty alcohol, and fatty acid from the same
Ramkrishnan et al. Sequestration of CO 2 by halotolerant algae
KR101406060B1 (en) Novel Microalgae Chlamydomonas moewusii KNUA013 and method for producing alkane, fatty alcohol, and fatty acid from the same
Shanab et al. Microalgae as a promising feedstock for biofuel production
Abou-Shanab Green renewable Energy for Sustainable socio-economic development

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
N231 Notification of change of applicant
J301 Trial decision

Free format text: TRIAL NUMBER: 2014101007573; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20141205

Effective date: 20160726

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20141205

Effective date: 20160726