KR20140010483A - Forward osmosis membrane made of carbon nanotube and its manufacturing method - Google Patents

Forward osmosis membrane made of carbon nanotube and its manufacturing method Download PDF

Info

Publication number
KR20140010483A
KR20140010483A KR1020120075889A KR20120075889A KR20140010483A KR 20140010483 A KR20140010483 A KR 20140010483A KR 1020120075889 A KR1020120075889 A KR 1020120075889A KR 20120075889 A KR20120075889 A KR 20120075889A KR 20140010483 A KR20140010483 A KR 20140010483A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
membrane
osmosis membrane
polymer
carbon nanotube
Prior art date
Application number
KR1020120075889A
Other languages
Korean (ko)
Other versions
KR101399749B1 (en
Inventor
최홍규
배상식
박재범
윤제용
김승현
김수한
김상욱
이상호
이창하
안창훈
Original Assignee
한국수자원공사
서울대학교산학협력단
경남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사, 서울대학교산학협력단, 경남대학교 산학협력단 filed Critical 한국수자원공사
Priority to KR1020120075889A priority Critical patent/KR101399749B1/en
Publication of KR20140010483A publication Critical patent/KR20140010483A/en
Application granted granted Critical
Publication of KR101399749B1 publication Critical patent/KR101399749B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/21Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/14Membrane materials having negatively charged functional groups
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a separation membrane made of carbon nanotubes for improving the efficiency of a forward osmosis process, and a manufacturing method thereof. The carbon nanotube forward osmosis separation membrane by the present invention uses the carbon nanotubes with a single wall or multiple walls with the inner diameter of 1-7 nm as a pore, functionalizes the entrance of the pore to have a negative charge, minimizes the inner concentration polarization which is a problem of a forward osmosis process by having a thin thickness and a symmetric structure without a supporting layer, and is capable of improving flux.

Description

탄소나노튜브 재질의 정삼투 분리막 및 이의 제조방법{Forward Osmosis Membrane Made of Carbon Nanotube and Its Manufacturing Method}TECHNICAL FIELD [0001] The present invention relates to a carbon nanotube-based positive osmosis membrane and a method of manufacturing the same,

본 발명은 정삼투 공정의 효율을 향상시키기 위한 탄소나노튜브 재질의 분리막과 이의 제조방법에 관한 것으로, 정삼투 분리막을 형성함에 있어 지지층을 가지지 않는 대칭적 구조이면서 일단 또는 양단이 기능화 되고 1~7nm의 내경을 가지는 단일벽 또는 다중벽의 탄소나노튜브를 이용하는 것을 특징으로 한다. The present invention relates to a separation membrane of a carbon nanotube material for improving the efficiency of a positive osmosis process and a method for producing the separation membrane. In forming a positive osmosis separation membrane, a symmetrical structure having no support layer, Walled or multi-walled carbon nanotubes having an inner diameter of 100 mu m or less.

지구상의 물의 분포를 살펴보면 지구 전체 표면적의 약 70%에 해당하는 면적이 바다로 바닷물이 약 97.2%로 대부분 차지하며, 나머지 2.8% 정도가 육지의 물에 불과하여 지구 인구의 1/3 이상이 물부족 상황하에서 살아가고 있다. 이러한 물부족의 원인은 바닷물의 비중이 높은 것 외에도 지구 온난화, 물사용량의 증가, 물 자원의 지역적 편중과 같은 여러 가지를 들 수 있다. 따라서, 세계적으로 이러한 물부족 현상, 불균형 현상을 해결하기 위하여 물자원 확보기술, 재이용기술, 물관리기술 등에 관한 연구가 진행되고 있다. As for the distribution of water on the earth, about 70% of the total surface area of the earth is sea, and most of the sea water accounts for 97.2% of the total surface area. Only 2.8% I live under tribal circumstances. This water shortage is caused by a high proportion of seawater, as well as global warming, an increase in water usage, and a regional bias in water resources. Therefore, in order to solve this water shortage phenomenon and imbalance phenomenon worldwide, researches on water resource acquisition technology, reuse technology, and water management technology are being carried out.

그 중, "해수의 담수화 기술"은 지구의 70% 이상을 차지하는 바닷물을 이용해 담수를 얻는 방법으로 담수화 기술은 물부족 문제를 해결할 수 있는 가장 근본적인 해결책 중의 하나라고 볼 수 있다. Among them, "seawater desalination technology" is one of the most fundamental solutions to solve the water shortage problem by using seawater, which accounts for more than 70% of the earth, to obtain desalination.

이러한 담수화 기술에는 기본원리에 따라 크게 열원을 이용하여 해수를 가열시키고 발생한 증기를 응축시켜 염도가 없는 물을 얻는 증발법과, 음극과 양극에 전위차를 걸어주고 그 사이로 물을 흘려보내면서 물을 정화시키는 전기투석법 및 해수를 반투막에 투과시켜 담수를 생산하는 역삼투 방법이 있다. 현재 세계시장은 에너지 소모량이 적고 비용면에서도 효율적인 반투막분리 방식으로 기술이 집중되어 있는데 막 분리 기술, 특히 역삼투막 활용분야는 전체 시장의 60%를 차지하고 있다. These desalination techniques include evaporation methods that heat seawater using a heat source largely in accordance with the basic principle, condensation of the generated steam to obtain water without salinity, and evaporation methods in which a potential difference is applied between the cathode and the anode, There is an electrodialysis method and a reverse osmosis method in which seawater is permeated through a semipermeable membrane to produce fresh water. Currently, the global market is concentrated on semi-permeable membranes with low energy consumption and cost efficiency. Membrane separation technology, especially reverse osmosis membranes, accounts for 60% of the total market.

그런데, 역삼투막을 이용하는 역삼투법은 물의 흐름이 삼투압에 반하는 방향이기 때문에 높은 압력을 필요로 하고 이는 곧 고 에너지 소모와 직결되어 에너지를 낮출 수 있는 연구가 진행되어 정삼투법이 관심을 모으고 있다. However, the reverse osmosis method using reverse osmosis membrane requires a high pressure because the water flow is opposite to the osmotic pressure. Therefore, researches that can directly reduce the energy by directly consuming high energy have been conducted, and the positive osmosis method is attracting attention.

대한민국특허 등록 제10-1068239호에서는 다공성 재질의 삼투막 틀과, 삼투막 틀의 상부와 하부에 활성층을 구비하고, 삼투막 내부에 구비된 지지층을 포함하여 구성되며, 이들 상,하부 활성층 및 지지층이 비셀룰로오즈계 폴리머로 구성되는 이중활성층 정삼투막을 이용한 해양방류 장치 및 방법을 제공하고 있다. Korean Patent Registration No. 10-1068239 discloses an osmotic membrane frame made of a porous material, an active layer provided on upper and lower portions of the osmotic membrane frame, and a support layer provided inside the osmotic membrane, And a marine discharging apparatus and method using the double active layer positive osmosis membrane composed of the non-cellulosic polymer.

대한민국특허 공개 제10-2112-0007276호에는 부직포 및 고분자층으로 이루어진 지지층에 다관능성 아민 또는 알킬화된 지방족 아민 함유 수용액에 폴리아민염 화합물 0.01~2중량%가 더 함유된 수용액층과 다관능성 산할로겐화합물 함유 유기용액층이 계면중합되어 형성된 폴리이미드층으로 이루어진 고유량 정삼투 분리막이 기재되어 있다. Korean Patent Laid-Open Publication No. 10-2112-0007276 discloses an aqueous solution containing 0.01 to 2% by weight of a polyamine salt compound in an aqueous solution containing a polyfunctional amine or an alkylated aliphatic amine in a support layer composed of a nonwoven fabric and a polymer layer, Containing organic solution layer is interfacially polymerized to form a polyimide layer.

그런데, 상기 발명들은 모두 부직포나 기타 지지층을 형성하여 두께가 두껍고, 비대칭구조를 가짐으로써 내부농도분극 문제가 발생하여 투과도(플럭스)가 낮게 나타나는 문제점이 있다. However, all of the above-mentioned inventions have non-woven fabrics or other supporting layers formed thereon, which are thick and have an asymmetric structure, so that the internal concentration polarization problem occurs and the flux (flux) is low.

본 발명은 종래의 문제점을 해결하기 위한 것으로, 해수를 담수화함에 있어 정삼투 분리막을 이용하되 정삼투 공정에서 문제가 되는 내부 농도분극으로 인한 낮은 투과율의 문제를 최소화 할 수 있는 대칭 구조의 탄소나노튜브 재질의 정삼투 분리막을 제공하는데 그 목적이 있다. Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above problems occurring in the prior art, and it is an object of the present invention to provide a method for desalinating seawater by using a positive osmosis membrane, The present invention is directed to provide a positive osmosis membrane of a material.

본 발명의 목적은 SUMMARY OF THE INVENTION

내부 직경 1~7nm이고, 일단 또는 양단이 기능화 된 단일벽 또는 다중벽의 탄소나노튜브를 공극으로 갖는, 탄소나노튜브 재질의 정삼투 분리막을 제공하는 것이다.The present invention is to provide a positive osmosis membrane of carbon nanotubes having an inside diameter of 1 to 7 nm and having single or multi-walled carbon nanotubes having voids functionalized at one or both ends.

본 발명의 또 다른 목적은 Another object of the present invention is to provide

촉매 금속막을 부착한 실리콘 기판 위에 단일벽 또는 다중벽의 탄소나노튜브를 수직정렬로 성장시키는 단계; Growing single-walled or multi-walled carbon nanotubes in a vertical alignment on a silicon substrate with a catalytic metal film attached thereto;

상기 탄소나노튜브 사이에 고분자 용액을 채워 막을 형성하는 단계; Forming a film by filling a polymer solution between the carbon nanotubes;

상기 막의 윗면 고분자 층과 아랫면 촉매 층에 공극을 형성하는 단계; Forming a gap in the upper surface polymer layer and the lower surface catalyst layer of the membrane;

상기 공극에 카르복실기를 형성하고 고분자 전해질을 고정시키는 단계를 포함하여 구성되는, 탄소나노튜브 재질의 정삼투 분리막의 제조방법을 제공하는 것이다. And forming a carboxyl group on the void and fixing the polymer electrolyte. The present invention also provides a method of manufacturing a positive osmosis membrane of a carbon nanotube material.

본 발명에 따른 탄소나노튜브 재질의 정삼투 분리막은 탄소나노튜브를 공극으로 사용함으로써 내부에서 발생하는 물의 빠른 이동 현상을 이용하여 정삼투 분리막의 문제점인 낮은 플럭스 문제를 해결할 수 있고, 고분자 전해질을 이용함으로써 막의 이온배제율을 증가시킬 수 있으며 비대칭 구조로 막을 만들 수 있으므로 내부 농도 분극에 의한 효율 저하와 막오염 문제 등을 해결할 수 있는 효과가 있다. By using the carbon nanotubes as the pores, the positive osmosis membrane of the carbon nanotube material according to the present invention can solve the problem of low flux, which is a problem of the osmosis membrane, by utilizing the rapid movement of water generated therein, The ion rejection rate of the membrane can be increased and the membrane can be formed with an asymmetric structure, so that the efficiency deterioration due to the internal concentration polarization and the problem of membrane contamination can be solved.

도 1은 본 발명에 따른 탄소나노튜브 재질의 정삼투 분리막의 구조를 나타낸 도이다.
도 2a,2b 및 2c는 실리콘 기판 위에 탄소나노튜브를 형성시키는 방법을 나타낸 공정도이다.
1 is a view illustrating the structure of a normal osmosis membrane of a carbon nanotube material according to the present invention.
2A, 2B and 2C are process drawings showing a method of forming carbon nanotubes on a silicon substrate.

본 발명은 해수를 담수화하는 정삼투 분리막법을 이용함에 있어 내부 직경이 1~7nm이고, 일단 또는 양단이 기능화 된 단일벽 또는 다중벽의 탄소나노튜브를 공극으로 갖는, 탄소나노튜브 재질의 정삼투 분리막을 제공하는 것이다.The present invention relates to a method for desalination of seawater by using a septic osmosis membrane separation method, which comprises the steps of forming a honeycomb structure of carbon nanotubes having an inner diameter of 1 to 7 nm and having single- or multi- Thereby providing a separation membrane.

본 발명에 따른 일단 또는 양단이 기능화 된 단일벽 또는 다중벽 탄소나노튜브는 카르복실산, 술폰산, 포스포린산으로부터 선택되어 음전하를 가지는 것을 특징으로 하며 이로 인해 해수내의 이온배제율을 높이고, 반투막의 선택투과성을 높이며 막 오염을 줄일 수 있게 된다. According to the present invention, single-walled or multi-walled carbon nanotubes having one or both ends functionalized are selected from carboxylic acid, sulfonic acid, and phosphoric acid and have a negative charge, thereby increasing the ion removal rate in seawater, The selective permeability can be increased and the membrane contamination can be reduced.

본 발명에 따른 탄소나노튜브는 고분자 전해질로 기능화 될 수 있다. The carbon nanotube according to the present invention can be functionalized with a polymer electrolyte.

본 발명에서 사용되는 고분자 전해질은 특별히 본 발명을 위해 한정되는 것이 아니라 하기 화학식1로 표시되는 분자들이 사용될 수 있다. The polymer electrolyte used in the present invention is not particularly limited to the present invention, but molecules represented by the following formula (1) may be used.

Figure pat00001
Figure pat00001

(A): C9, (B):염료, (C):C22, (D):ACA, (E) : C40(폴리펩타이드)
(A): C9, (B): dye, (C): C22, (D): ACA,

도 1에 나타낸 바와 같이 본 발명에 따른 정삼투 분리막은 10~500㎛의 두께와 대칭적인 형태를 가지고 있어 막의 두께 방향으로 공극 크기의 변화가 없는 것을 특징으로 함으로써 내부 농도분극으로 인한 플럭스 감소를 방지할 수 있게 된다.  As shown in FIG. 1, the positive osmosis membrane according to the present invention has a symmetrical shape with a thickness of 10 to 500 μm, and thus it has no change in the pore size in the thickness direction of the membrane, thereby preventing flux reduction due to internal concentration polarization .

또한, 본 발명은 탄소나노튜브 재질의 정삼투 분리막의 제조방법을 제공하는 것을 목적으로 한다. It is another object of the present invention to provide a method for manufacturing a positive osmosis membrane of carbon nanotube material.

본 발명에 따른 제조방법은,In the manufacturing method according to the present invention,

촉매 금속막을 부착한 실리콘 기판 위에 단일벽 또는 다중벽의 탄소나노튜브를 수직정렬로 성장시키는 단계; 상기 탄소나노튜브 사이에 고분자를 채워 막을 형성하는 단계; 상기 막의 윗면 고분자 층과 아랫면 촉매 층에 공극을 형성하는 단계; 상기 공극에 카르복실기를 형성하고 고분자 전해질을 고정시키는 단계를 포함하여 구성된다. Growing single-walled or multi-walled carbon nanotubes in a vertical alignment on a silicon substrate with a catalytic metal film attached thereto; Filling the carbon nanotubes with a polymer to form a film; Forming a gap in the upper surface polymer layer and the lower surface catalyst layer of the membrane; And forming a carboxyl group on the void and fixing the polymer electrolyte.

먼저, 도 2a 내지 2c에 나타난 바와 같이 본 발명에 따른 탄소나노튜브 재질의 정삼투 분리막을 형성하는 방법은 코발트, 니켈, 철 또는 이들의 합금으로부터 선택되는 1 종 이상의 금속막을 촉매로 부착한 실리콘 기판(300) 위에 탄소나노튜브(100)를 수직 정렬로 증착시킨다. As shown in FIGS. 2A to 2C, a method of forming a positive osmosis membrane of a carbon nanotube material according to the present invention includes the steps of: preparing a silicon substrate having a catalyst layer on one or more metal films selected from cobalt, nickel, The carbon nanotubes 100 are deposited on the substrate 300 in a vertical alignment.

탄소나노튜브(100)를 증착시키는 방법은 종래 전기방전법(arc-discharge), 레이저 증착법, 플라즈마화학기상증착법, 열화학기상증착법, 기상합성법이 채용될 수 있으며, 바람직하게는 열 화학기상증착법이나, 본 발명을 위하여 특별히 제한되는 것은 아니다. The carbon nanotubes 100 may be deposited by arc-discharge, laser deposition, plasma chemical vapor deposition, thermochemical vapor deposition, vapor phase synthesis, or the like, preferably by thermal chemical vapor deposition, But the present invention is not particularly limited thereto.

본 발명에서 사용된 열화학기상증착법을 설명하면, 도 2a에 나타난 바와 같이 단일 또는 다중벽의 탄소나노튜브(100)를 실리콘 기판(300) 위에 수직 정렬의 형태로 증착시킨 후 양면테입(400)을 이용하여 실리콘 기판(100)을 떼어낸다. 이어서, 도 2b 및 2c에 나타난 바와 같이 모세관력(capillary force)을 이용하여 고분자 용액(200)을 탄소나노튜브(100) 사이에 충진시킨 후 경화시킨다. 이때 사용되는 고분자 용액(200)은 에폭시 또는 PDMA(polyeimethylacrylamide)가 바람직한데 탄소나노튜브(100) 간격 사이에 잘 침투하여 또 다른 공극을 형성하지 않는 장점이 있다. 2A, a single or multi-wall carbon nanotube 100 is deposited on a silicon substrate 300 in a vertical alignment, and then a double-sided tape 400 is formed The silicon substrate 100 is removed. Next, as shown in FIGS. 2B and 2C, the polymer solution 200 is filled between the carbon nanotubes 100 using a capillary force, and is then cured. The polymer solution 200 to be used at this time is preferably epoxy or polyeimethylacrylamide (PDMA), which is advantageous in that it penetrates well between the carbon nanotubes 100 and does not form another void.

실리콘 기판(300) 위에 수직정렬 형성된 탄소나노튜브(100) 사이에 고분자 용액(200)을 채워 막을 형성한 후 탄소나노튜브의 캡(fullerene cap)을 제거하기 위해 윗면의 고분자 층과 아랫면의 촉매 층을 산처리, O2플라즈마처리 또는 물리적처리(microtome 기기를 사용한 절단)를 이용하여 공극을 형성시킨다. The polymer solution 200 is filled between the carbon nanotubes 100 vertically aligned on the silicon substrate 300 to form a film and then the polymer layer on the upper surface and the catalyst layer on the lower surface of the carbon nanotube 100 are removed to remove the fullerene cap. Is subjected to acid treatment, O 2 plasma treatment or physical treatment (cutting with a microtome instrument) to form voids.

공극을 형성시킨 후 공극 입구를 기능화 시키는데, 카르복실산, 술폰산, 포스포린산으로부터 선택될 수 있는 음전하를 가지는 기능기로부터 선택될 수 있다. 공극입구를 -COOH기로 기능화 시킨 후 하기 화학식 1로 표시되는 고분자 전해질을 고정시켜 정삼투 분리막을 제조한다. A functional group having a negative charge which can be selected from a carboxylic acid, a sulfonic acid, and a phosphoric acid to functionalize the pore opening after forming the pore. The porosity inlet is functionalized with -COOH group, and the polymer electrolyte represented by the following formula (1) is fixed to prepare a positive osmosis membrane.

상기의 방법으로 제조된 도 1의 정삼투 분리막은 1~7nm의 내부 직경을 가지는 탄소나노튜브의 원통형 공극을 가지며, 이러한 탄소나노튜브 안에서는 유체가 빠른 속도로 이동하기 때문에 기존의 분리막에 비해 높은 플럭스를 얻을 수 있다. 또한, 내부농도분극은 지지체의 두께가 얇을수록 최소화시킬 수 있는데 본 발명에 따른 정삼투 분리막은 고분자 지지층이 없는 대칭구조로 되어 있으므로 두께를 최소화 할 수 있어 내부농도분극이 최소화된다. 1 produced by the above method has a cylindrical pore of carbon nanotubes having an inner diameter of 1 to 7 nm. Since the fluid moves at a high velocity within the carbon nanotube, the purified osmosis membrane of the present invention has a higher flux Can be obtained. In addition, the internal concentration polarization can be minimized as the thickness of the support becomes thinner. Since the positive osmosis membrane according to the present invention has a symmetrical structure without the polymer supporting layer, the thickness can be minimized and the internal concentration polarization can be minimized.

한편 막의 공극 입구에 존재하는 고분자 전해질은 음이온 밀도가 높기 때문에 물속에 존재하는 이온은 도난배제 현상에 의하여 막 공극 내부로 유입되기 어려워져서 전체적으로는 막의 이온 배제율이 상승하게 되고, 막의 오염을 방지할 수 있게 된다.
On the other hand, since the polymer electrolyte existing in the pore entrance of the membrane has a high anion density, ions present in the water are hardly introduced into the pores of the membrane due to the exclusion of the stench, thereby increasing the ion rejection rate of the membrane as a whole, .

이하 본 발명을 실시예를 들어 더욱 상세히 설명하고자 하나 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예 Example

철 촉매 금속막이 약 5~100nm의 두께로 증착된 실리콘 기판상에 종래 화학기상증착법을 이용하여 내부 직경 2nm인 탄소 나노튜브를 수직정렬 증착시킨 후 에폭시 고분자 용액을 이용하여 탄소나노튜브 사이의 공간을 채웠다. 이후 윗면의 고분자 층과 아랫면의 촉매 층에 플라즈마를 이용하여 공극을 형성하고 공극의 입구에 카르복실 작용기를 형성시키고 고분자 전해질을 고정시켜 200㎛ 두께의 정삼투 분리막을 제조하였다.Carbon nanotubes with an internal diameter of 2 nm were vertically aligned on a silicon substrate deposited with a thickness of about 5 to 100 nm by using a conventional chemical vapor deposition method. Then, a space between the carbon nanotubes was formed using an epoxy polymer solution I filled it. Thereafter, the polymer layer on the upper surface and the catalyst layer on the lower surface were formed with pores using plasma, a carboxyl functional group was formed at the entrance of the pores, and a polymer electrolyte was fixed to prepare a 200 μm thick positive osmosis membrane.

이를 이용하여 NaCl 0.5M의 유도용액을 사용하여 정삼투막의 플럭스를 측정하였더니 19L/m2-hr의 플럭스를 얻을 수 있었다.
The flux of the osmosis membrane was measured using an induction solution of NaCl 0.5M to obtain a flux of 19 L / m 2 - hr.

비교예 Comparative Example

HTI사의 정삼투막을 사용하였고 NaCl 0.5M의 유도용액을 사용하여 정삼투막의 플럭스를 측정하였더니 약 7L/m2-hr의 플럭스를 얻을 수 있었다.
A flux of about 7 L / m 2 - hr was obtained when the flux of the quasi-osmosis membrane was measured using a HTI hygroscopic membrane and an induction solution of NaCl 0.5M.

이상에서 측정한 바와 같이 본 발명에 따른 지지체가 없는 탄소나노튜브 재질의 정삼투 분리막의 경우 내부농도분극의 발생이 낮아 플럭스가 우수한 효과가 있음을 알 수 있다. As described above, in the case of the positive osmosis membrane of the carbon nanotube material having no support according to the present invention, the occurrence of the internal concentration polarization is low and the effect of the flux is excellent.

100: 탄소나노튜브
200: 고분자용액
300: 실리콘 기판
400: 양면테입
100: Carbon nanotubes
200: polymer solution
300: silicon substrate
400: Double-sided tape

Claims (9)

내부 직경이 1~7nm이고, 일단 또는 양단이 기능화 된 단일벽 또는 다중벽의 탄소나노튜브를 공극으로 갖는, 탄소나노튜브 재질의 정삼투 분리막. An internal osmosis membrane of carbon nanotubes, having an internal diameter of 1 to 7 nm and having a single-walled or multi-walled carbon nanotube having one or both ends functionalized therein. 제 1항에 있어서, 상기 탄소나노튜브의 기능화는 카르복실산, 술폰산, 포스포린산, 고분자 전해질로부터 선택되는 것을 특징으로 하는, 탄소나노튜브 재질의 정삼투 분리막.The positive osmosis membrane of claim 1, wherein the functionalization of the carbon nanotubes is selected from the group consisting of carboxylic acid, sulfonic acid, phosphoric acid, and polymer electrolyte. 제1항에 있어서, 상기 정삼투 분리막은 두께가 10~500㎛이고 대칭적인 형태를 가지고 있어 막의 두께 방향으로 공극 크기의 변화가 없는 것을 특징으로 하는, 탄소나노튜브 재질의 정삼투 분리막. The forward osmosis membrane of claim 1, wherein the forward osmosis membrane has a thickness of 10 to 500 μm and has a symmetrical shape so that the pore size does not change in the thickness direction of the membrane. 촉매 금속막을 부착한 실리콘 기판 위에 단일벽 또는 다중벽의 탄소나노튜브를 수직정렬로 성장시키는 단계;
상기 탄소나노튜브 사이에 고분자를 채워 막을 형성하는 단계;
상기 막의 윗면 고분자 층과 아랫면 촉매 층에 공극을 형성하는 단계;
상기 공극에 카르복실기를 형성하고 고분자 전해질을 고정시키는 단계;
를 포함하여 구성되는, 탄소나노튜브 재질의 정삼투 분리막의 제조방법.
Growing single-walled or multi-walled carbon nanotubes in a vertical alignment on a silicon substrate with a catalytic metal film attached thereto;
Filling the carbon nanotubes with a polymer to form a film;
Forming a gap in the upper surface polymer layer and the lower surface catalyst layer of the membrane;
Forming a carboxyl group in the pores and fixing the polymer electrolyte;
The method of manufacturing a positive osmosis separation membrane of a carbon nanotube material according to claim 1,
제4항에 있어서, 상기 촉매 금속막은 코발트, 니켈, 철 또는 이들의 합금으로부터 선택되는 1종 이상인 것을 특징으로 하는, 탄소나노튜브 재질의 정삼투 분리막의 제조방법. The method of claim 4, wherein the catalyst metal film is at least one selected from cobalt, nickel, iron, and alloys thereof. 제4항에 있어서, 상기 탄소나노튜브 사이에 채워지는 고분자는 에폭시 또는 PDMA(polydimethylacrylamide)인 것을 특징으로 하는, 탄소나노튜브 재질의 정삼투 분리막의 제조방법. [6] The method of claim 4, wherein the polymer filled between the carbon nanotubes is epoxy or polydimethylacrylamide (PDMA). 제4항에 있어서, 상기 탄소나노튜브의 기능화는 카르복실산, 술폰산, 포스포린산, 고분자전해질로부터 선택되는 것을 특징으로, 탄소나노튜브 재질의 정삼투 분리막의 제조방법. The method of claim 4, wherein the functionalization of the carbon nanotubes is selected from carboxylic acid, sulfonic acid, phosphoric acid, and polymer electrolyte. 제4항에 있어서, 상기 탄소나노튜브의 내부 직경이 1~7nm인 것을 특징으로 하는, 탄소나노튜브 재질의 정삼투 분리막의 제조방법. 5. The method of claim 4, wherein the carbon nanotubes have an inner diameter of 1 to 7 nm. 제4항에 있어서, 상기 정삼투 분리막은 두께가 10~500㎛이고 대칭적인 형태를 가지고 있어 막의 두께 방향으로 공극 크기의 변화가 없는 것을 특징으로 하는, 탄소나노튜브 재질의 정삼투 분리막의 제조방법.

[5] The method according to claim 4, wherein the positive osmosis membrane has a thickness of 10-500 [mu] m and a symmetrical shape so that there is no change in the pore size in the thickness direction of the membrane. .

KR1020120075889A 2012-07-12 2012-07-12 Forward Osmosis Membrane Made of Carbon Nanotube and Its Manufacturing Method KR101399749B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120075889A KR101399749B1 (en) 2012-07-12 2012-07-12 Forward Osmosis Membrane Made of Carbon Nanotube and Its Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120075889A KR101399749B1 (en) 2012-07-12 2012-07-12 Forward Osmosis Membrane Made of Carbon Nanotube and Its Manufacturing Method

Publications (2)

Publication Number Publication Date
KR20140010483A true KR20140010483A (en) 2014-01-27
KR101399749B1 KR101399749B1 (en) 2014-05-27

Family

ID=50143063

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120075889A KR101399749B1 (en) 2012-07-12 2012-07-12 Forward Osmosis Membrane Made of Carbon Nanotube and Its Manufacturing Method

Country Status (1)

Country Link
KR (1) KR101399749B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150012955A (en) * 2013-07-26 2015-02-04 제일모직주식회사 Carbon nanotube membrane and method for preparing the same
WO2016151142A1 (en) * 2015-03-26 2016-09-29 Commissariat à l'énergie atomique et aux énergies alternatives Porous electrolyte membrane, manufacturing process thereof and electrochemical devices comprising same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060091521A (en) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 Method for growing carbon nanotubes and manufacturing method of field emission device therewith
CN100591613C (en) 2006-08-11 2010-02-24 清华大学 Carbon nano-tube composite material and preparation method thereof
KR101123859B1 (en) * 2010-02-26 2012-03-20 고려대학교 산학협력단 Reverse Osmosis Membrane Containing Carbon Nanotube and Method for Preparing Thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150012955A (en) * 2013-07-26 2015-02-04 제일모직주식회사 Carbon nanotube membrane and method for preparing the same
WO2016151142A1 (en) * 2015-03-26 2016-09-29 Commissariat à l'énergie atomique et aux énergies alternatives Porous electrolyte membrane, manufacturing process thereof and electrochemical devices comprising same
FR3034258A1 (en) * 2015-03-26 2016-09-30 Commissariat Energie Atomique POROUS MEMBRANE, IN PARTICULAR ELECTROLYTE MEMBRANE OR FILTRATION MEMBRANE, PROCESS FOR PREPARING THE SAME, AND ELECTROCHEMICAL DEVICES COMPRISING THE SAME.
US10615453B2 (en) 2015-03-26 2020-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Porous electrolyte membrane, manufacturing process thereof and electrochemical devices comprising same

Also Published As

Publication number Publication date
KR101399749B1 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
Wu et al. Scalable ti3c2t x mxene interlayered forward osmosis membranes for enhanced water purification and organic solvent recovery
Su et al. Facile fabrication of COF-LZU1/PES composite membrane via interfacial polymerization on microfiltration substrate for dye/salt separation
Zhang et al. Ultra-permeable polyamide membranes harvested by covalent organic framework nanofiber scaffolds: a two-in-one strategy
Zhou et al. High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer
Jafari et al. Graphene quantum dots modified polyvinylidenefluride (PVDF) nanofibrous membranes with enhanced performance for air Gap membrane distillation
Zhan et al. Superior nanofiltration membranes with gradient cross-linked selective layer fabricated via controlled hydrolysis
Pakulski et al. Atom‐thick membranes for water purification and blue energy harvesting
JP6320537B2 (en) Forward osmosis membrane and forward osmosis treatment system
Teng et al. High-performance polyamide nanofiltration membrane with arch-bridge structure on a highly hydrated cellulose nanofiber support
Long et al. Synthesis and application of organic phosphonate salts as draw solutes in forward osmosis for oil–water separation
Yasukawa et al. Thin-film composite forward osmosis membrane with high water flux and high pressure resistance using a thicker void-free polyketone porous support
CN107158980A (en) Utilized thin film composite membranes reacted based on air liquid interface and its preparation method and application
Cheng et al. Two‐dimensional membranes: new paradigms for high‐performance separation membranes
WO2015089130A1 (en) Ultrathin, graphene-based membranes for water treatment and methods of their formation and use
JP2015231624A (en) Reverse osmosis separation membrane excellent in salt removal rate and permeation flow characteristics and production method of the same
CN105169970A (en) Preparation method for polydopamine-modified polyamide composite forward osmosis membrane
US9731985B2 (en) Chemical additives for enhancement of water flux of a membrane
Guo et al. Ultra‐Permeable Dual‐Mechanism‐Driven Graphene Oxide Framework Membranes for Precision Ion Separations
US20160243503A1 (en) Composite semipermeable membrane and method for manufacturing same
US20130037482A1 (en) Composite separation membrane and separation membrane element using the same
CN107530642A (en) The graphene-based film composite material of functionalized monolayers and its manufacture method
US20130292325A1 (en) Method for preparing reverse osmosis membrane, and reverse osmosis membrane prepared thereby
Huang et al. MXene‐based membranes for drinking water production
Lan et al. Fabrication of high performance nanofiltration membrane by construction of Noria based nanoparticles interlayer
Meng et al. Janus membranes at the water-energy nexus: a critical review

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170427

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180504

Year of fee payment: 5