KR20140001587A - Production of alcohol method using bio-ethanol production capacity of recombinant ralstonia eutropha - Google Patents

Production of alcohol method using bio-ethanol production capacity of recombinant ralstonia eutropha Download PDF

Info

Publication number
KR20140001587A
KR20140001587A KR1020120069539A KR20120069539A KR20140001587A KR 20140001587 A KR20140001587 A KR 20140001587A KR 1020120069539 A KR1020120069539 A KR 1020120069539A KR 20120069539 A KR20120069539 A KR 20120069539A KR 20140001587 A KR20140001587 A KR 20140001587A
Authority
KR
South Korea
Prior art keywords
gene
strain
production method
alcohol
alcohol production
Prior art date
Application number
KR1020120069539A
Other languages
Korean (ko)
Other versions
KR101397483B1 (en
Inventor
정일래
김인규
전보영
박두현
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020120069539A priority Critical patent/KR101397483B1/en
Publication of KR20140001587A publication Critical patent/KR20140001587A/en
Application granted granted Critical
Publication of KR101397483B1 publication Critical patent/KR101397483B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01001Pyruvate decarboxylase (4.1.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

The present invention relates to a method for producing ethanol using an ethanol producible recombinant strain and, more specifically, to a recombinant strain having improved bio-ethanol producibility by redesign of metabolism and a method for producing ethanol using the recombinant strain. In the method for producing ethanol according to the present invention, using a recombinant photosynthetic bacterium, an electrochemical reducing power is an energy source and carbon dioxide is the only carbon source and pyruvate is converted into acetaldehyde using sugar provided as a substrate, and the acetaldehyde can be converted into ethanol, thereby effectively producing the bio-ethanol.

Description

에탄올 생산용 재조합 균주를 이용한 알코올 생산방법{Production of alcohol method using bio-ethanol production capacity of recombinant Ralstonia eutropha}[0001] The present invention relates to a method for producing an alcohol using a recombinant strain for producing ethanol,

본 발명은 에탄올 생산용 재조합 균주를 이용한 알코올 생산방법에 관한 것으로 보다 상세하게는 대사 재설계를 이용하여 바이오 에탄올 생산능이 향상된 재조합 균주 및 상기 재조합 균주를 이용한 바이오 에탄올의 생산방법에 관한 것이다.The present invention relates to a method for producing an alcohol using a recombinant strain for ethanol production, and more particularly, to a recombinant strain having improved bio-ethanol production ability using metabolic engineering and a method for producing bio-ethanol using the recombinant strain.

최근 원유가격의 급등과 에너지 고갈에 대한 우려가 심각해지면서 대체 에너지 생산에 관한 관심이 증폭되고 있다. 대체 에너지 중 수송용 연료의 경우 가장 활발하게 대두되고 있는 소재가 바로 바이오 에탄올이다. 이는 자동차의 최종 기술 목표인 전기자동차 또는 수소자동차의 개발단계까지 현재의 아직도 개발초기 단계여서 이의 완료까지 이를 대체할 수 있는 절충형의 대체에너지가 필요하다.Concerns over skyrocketing oil prices and energy depletion have heightened interest in alternative energy production. Bioethanol is the most active source of alternative fuels for transportation. This is the initial stage of the development of the electric vehicle or the hydrogen vehicle, which is the final technical objective of the automobile, and it is still necessary to have an alternative energy to replace it.

현재 바이오 에탄올은 휘발유와 혼합하여 사용할 수 있어 바이오 디젤과 더불어 대표적인 재생자원 에너지이며 바이오 에탄올 연소 시 발생하는 이산화탄소는 교토의정서에서 규정한 온실가스 계산에서 예외 적용을 받아 온실가스 감축효과가 있다. 또한 보급에 별도의 인프라(주유소 등) 구축이 필요한 다른 청정연료와는 달리 기존 인프라에서 보급이 가능해 조기 상용화가 용이하다.At present, bioethanol can be mixed with gasoline, so it is a representative renewable resource energy in addition to biodiesel. Carbon dioxide that is generated when bioethanol is burned is an exception in the calculation of greenhouse gas defined by the Kyoto Protocol. In addition, unlike other cleaner fuels that require separate infrastructures (such as gas stations) to be deployed, it can be easily deployed in existing infrastructure, making early commercialization easy.

한편, 바이오매스의 생화학적 변환을 통한 바이오 에탄올 생산은 매우 환경 친화적이며, 그 효율을 극대화할 수 있는 연구기반이 필수적으로 요구된다. 지금까지 미생물의 대사공학적 재설계를 통한 에탄올 생산은 자이모모나스 모빌리스(Zymomonas mobilis)의 파이루베이트 디카르복실레이즈(pyruvate decarboxylase)와 알코올 디하이드로지네이즈(alcohol dehydrogenase II)를 에스케리치아 콜라이 (Escherichia coli)의 염색체에 도입하여 에탄올을 생산하는 E. coli KO11 균주제작이 성공적으로 이루어진바 있다.On the other hand, bioethanol production through biochemical transformation of biomass is very environmentally friendly, and a research base for maximizing its efficiency is essential. Ethanol production through the metabolic engineering re-design of microorganisms has led to the production of pyruvate decarboxylase and alcohol dehydrogenase II of Zymomonas mobilis in Escherichia coli ( Escherichia coli ) to produce E. coli strain KO11, which has been successfully produced.

이와 유사하게, 바실러스 서브틸리스(Bacillus subtilis)에 파이루베이트 디카르복실레이즈(pyruvate decarboxylase)와 알코올 디하이드로지네이즈(alcohol dehydrogenase II)를 도입한 연구도 있었으나 산화과정에 비해 상대적으로 적은 산소가 공급되는 발효조건에서는 락테이트(lactate), 아세테이트(acetate), 2,3- 부탄다이올(2,3-butanediol)이 생성되고, 미량의 에탄올만이 생산되어 낮은 에탄올 생산효율을 보이는 문제점이 있었다. Similarly, pyruvate decarboxylase and alcohol dehydrogenase II were introduced into Bacillus subtilis , but relatively little oxygen was used compared to the oxidation process Lactate, acetate, and 2,3-butanediol are produced under the fed fermentation conditions, and only a trace amount of ethanol is produced, resulting in low ethanol production efficiency .

KR 10-1073145 B1, 2011.10.06KR 10-1073145 B1, Oct. 10, 2011 KR 10-0955945 B1, 2010.04.26KR 10-0955945 B1, April 26, 2010

본 발명의 목적은 광합성-화학합성 균주가 기질로 제공되는 당을 에탄올로 생합성할 수 있도록 하는 재조합 벡터를 포함하는 형질 전환체를 제조하고, 상기 형질 전환체를 이용하여 에탄올을 생산하는 방법을 제공하는 것이다.An object of the present invention is to provide a method for producing a transformant comprising a recombinant vector capable of biosynthesizing a sugar provided as a substrate of a photosynthetic-chemically synthesized strain with ethanol and producing ethanol using the transformant .

또한, 본 발명의 목적은 상기 형질 전환체를 포함하는 알코올 생성용 조성물을 제공하는 것이다.It is also an object of the present invention to provide a composition for producing alcohol containing the transformant.

상기 목적을 달성하기 위하여, 본 발명은 전기화학적환원력을 에너지원으로 하고, 이산화탄소를 유일한 탄소원으로 하여 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주를 배양하는 과정을 포함하는 것을 특징으로 하는 알코올 생산방법을 제공한다.In order to achieve the above object, the present invention is an electrochemical reduction force as an energy source, the recombinant Ralstonia eutropha ( Ralstonia) using carbon dioxide as the only carbon source The present invention also provides a method for producing an alcohol, which comprises culturing a strain of E. coli.

본 발명은 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주를 포함하는 알코올 생성용 조성물을 제공한다.The present invention relates to a method for the treatment of Ralstonia < RTI ID = 0.0 > The present invention also provides a composition for producing an alcohol comprising the strain eutropha .

본 발명에 따른 알코올 생산방법은 재조합 광합성-화학합성 균주를 이용하여 전기화학적환원력을 에너지원으로 하고 이산화탄소를 유일한 탄소원으로 하고, 기질로 제공되는 당을 이용하여 파이루베이트(pyruvate)를 아세트알데하이드(acetaldehyde)로 전환하여, 이를 에탄올로 전환시킬 수 있음으로써 효율적으로 바이오 에탄올을 생산할 수 있는 장점이 있다.Alcohol production method according to the present invention by using a recombinant photosynthesis-chemical synthesis strain electrochemical reduction power as the energy source, carbon dioxide as the only carbon source, pyruvate (pyruvate) using a sugar provided as a substrate (acetaldehyde ( By converting to acetaldehyde), it can be converted to ethanol has the advantage of producing bio-ethanol efficiently.

도 1은 본 발명에 따른 재조합 벡터의 제조시 사용한 PDC 유전자의 염기서열(서열번호 1)을 보여주는 것이고,
도 2는 본 발명에 따른 재조합 벡터의 제조시 사용한 ADH 유전자의 염기서열(서열번호 2)를 보여주는 것이며,
도 3은 본 발명에 따른 PDC 유전자 및 ADH 유전자의 RT-PCR 결과를 보여주는 것이고,
도 4는 본 발명에 따른 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주를 이용하여 알코올을 생산하기 위한 생물전기화학반응기의 모식도(A) 및 전기화학반응기의 단면도(B)를 보여주는 것이며,
도 5는 본 발명에 따른 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주에 의한 포도당의 소비 및 에탄올 생산 결과를 보여주는 것이다.
(○: 일반적인 반응기에서 배양된 재조합 랄스토니아 유트로파 균주, ●: 전기화학반응기에서 배양된 재조합 랄스토니아 유트로파 균주, △: 일반적인 반응기에서 배양된 KCTC22469 균주, ▲: 전기화학반응기에서 배양된 KCTC22469 균주 )
1 shows the nucleotide sequence (SEQ ID NO: 1) of the PDC gene used in the production of the recombinant vector according to the present invention,
2 shows the nucleotide sequence of the ADH gene (SEQ ID NO: 2) used in the preparation of the recombinant vector according to the present invention,
FIG. 3 shows RT-PCR results of PDC gene and ADH gene according to the present invention,
FIG. 4 is a graph showing the distribution of the < RTI ID = 0.0 > Ralstonia < / RTI > (A) and a cross-sectional view (B) of an electrochemical reactor for the production of alcohol by using an eutropha strain,
FIG. 5 is a graph showing the effect of the Ralstonia < RTI ID = 0.0 > eutropha ) and the ethanol production.
(○: recombinant strain of Staphylococcus aureus strain cultured in a general reactor, ●: strain of recombinant Stoney utropha cultured in an electrochemical reactor, Δ: strain KCTC22469 cultured in a general reactor, ▲: Cultured strain KCTC22469)

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

미생물을 이용한 에탄올 생산은 글루코스(glucose)가 파이루베이트(pyruvate)로 산화된 후, 파이루베이트 디카르복실레이즈(pyruvate decarboxylase, 이하 'PDC'라고 칭한다.)에 의해 아세트알데하이드(acetaldehyde)가 생성되고, 생성된 아세트알데하이드(acetaldehyde)가 알코올 디하이드로지네이즈(alcohol dehydrogenase, 이하 'ADH'라고 칭한다.)에 의해 에탄올로 전환되는 주요 대사경로(pathway)를 가진다. Ethanol production using microorganisms is performed by oxidizing glucose to pyruvate and then producing acetaldehyde by pyruvate decarboxylase (PDC) And the resulting acetaldehyde has a major metabolic pathway that is converted to ethanol by alcohol dehydrogenase (ADH).

본 발명자들은 대사공학적 재설계를 통한 에탄올 생산에 대한 지속적인 연구를 진행하던 중 환경조건에 따라 기회적으로 독립영양과 종속영양 대사를 선택적으로 조절할 수 있는 생리적 기능을 갖는 광합성-화학합성 균주의 대사경로를 이용하여 기질로 제공되는 당으로부터 경제적으로 다량의 에탄올을 효율적으로 생산할 수 있음을 확인하고, 본 발명을 완성하였다.The inventors of the present invention conducted a continuous research on ethanol production through a metabolic engineering redesign, and found that the metabolism pathway of photosynthetic-chemical synthesis strain having a physiological function capable of selectively controlling independent nutrition and heterotrophic metabolism in accordance with environmental conditions It is possible to efficiently produce a large amount of ethanol economically from the sugar provided as a substrate. Thus, the present invention has been completed.

본 발명에 있어서, "광합성-화학합성 균주"는 호흡대사에 의존하여 생장에 필요한 환원력과 에너지를 생산하는 전형적인 종속영양 세균이지만, 수소가 풍부하고 산소가 결핍된 환경에서는 산소 대신 이산화탄소를 전자수용체를 이용하여 펜토즈 포스페이트 경로(pentose phosphate pathway)를 통해 유기탄소를 합성하는 균주를 말한다.In the present invention, "photosynthetic-chemical synthesis strain" is a typical heterotrophic bacterium that produces reductive power and energy required for growth depending on respiratory metabolism. However, in an environment rich in hydrogen and deficient in oxygen, Refers to a strain that synthesizes organic carbon through a pentose phosphate pathway.

본 발명은 전기화학적환원력을 에너지원으로 하고, 이산화탄소를 유일한 탄소원으로 하여 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주를 배양하는 과정을 포함하는 것을 특징으로 하는 알코올 생산방법을 제공한다.In the present invention, an electrochemical reductive power is used as an energy source, carbon dioxide is used as a unique carbon source, and Ralstonia < RTI ID = 0.0 > The present invention also provides a method for producing an alcohol, which comprises culturing a strain of E. coli.

본 발명에 있어서, 상기 배양은 생물전기화학반응기(electrochemical bioreactor)를 이용하여 수행하는 것이 바람직하나 이에 한정되는 것은 아니다.In the present invention, the culture is preferably performed using an electrochemical bioreactor, but is not limited thereto.

보다 상세하게는 상기 생물전기화학반응기 안에서는 전기화학적 산화반응을 통하여 전기적 에너지가 생화학적 환원력으로 전환된다. 본 발명에서 사용된 생물전기화학반응기는 막에 의해 분리된 음극과 양극을 가지도록 설계 되어져 있다. 이러한 전기화학반응기를 이용하여 전기적 에너지로부터 전기화학적 환원반응이 생산될 수 있다.More specifically, in the bio-electrochemical reactor, electrical energy is converted to a biochemical reducing power through an electrochemical oxidation reaction. The bio-electrochemical reactor used in the present invention is designed to have a cathode and an anode separated by a membrane. An electrochemical reduction reaction can be produced from electrical energy using such an electrochemical reactor.

도 4에 도시한 이산화탄소 고정화 세균의 배양을 위한 전기화학반응기는 이산화탄소와 전기화학적인 환원력을 각각 유일 탄소원과 에너지로 이용하여 생장할 수 있는 화학독립영양세균을 농화배양하기 위한 전기화학반응기로 전기화학적 환원력을 배지를 통해 세균에 전달하고 양극에서 발생하는 산소(산화력)는 외부로 배출되며, 세균은 배지에 포함된 전자전달 매개체를 통해 전기화학적 환원력을 공급받을 수 있다. The electrochemical reactor for culturing the carbon dioxide-immobilized bacteria shown in FIG. 4 is an electrochemical reactor for concentrating and cultivating chemical-independent nutrients capable of growing using carbon dioxide and electrochemical reduction power as unique carbon sources and energy, respectively. The reducing power is transferred to the bacteria through the medium, the oxygen (oxidizing power) generated from the anode is discharged to the outside, and the bacteria can receive the electrochemical reduction power through the electron transfer medium included in the medium.

구체적으로 음극선과 양극선에 직류전원을 연결하면 음극 반응조에 구비된 무기물 배지의 화학독립영양세균은 환원력을 공급받고, 양극 반응조에서는 물이 전기분해되면서 수소와 산소가 발생하는데, 양극 반응조에서 발생하는 산소는 외부로 방출되고, 수소는 전자와 수소이온(proton)으로 분리되어 전자는 전원공급장치(power supply)의 전자 구동력(electric driving force)에 의해 음극을 통해 배지에 전달되고 수소이온은 분리막을 통해 배지에 전달된다. 배지에 전달된 전자는 전자전달 매개체를 환원시키고 환원된 전자전달 매개체는 세균의 세포대사에 작용하여 NAD를 NADH로 환원시킨다. 상기 과정에서 수소이온은 세포 내부로 유입되면서 ATP를 생성시키고 NAD와 반응하여 NADH 생성시키므로, NADH 생성에 필요한 수소이온의 공급원이 된다. 이때, 상기 전기화학적 배양기의 음극선과 양극선 간의 직류전원은 1 내지 10 볼트 범위이다.Specifically, when a DC power source is connected to a cathode and a cathode, the chemical-independent bacteria of the inorganic material medium provided in the anode reaction tank are supplied with reducing power, and in the anode reaction vessel, hydrogen and oxygen are generated as the water is electrolyzed. The hydrogen is separated into electrons and proton so that the electrons are transferred to the medium through the cathode by the electric driving force of the power supply, And is delivered to the medium. The electrons transferred to the medium reduce the electron transfer mediator and the reduced electron transfer mediates the bacterial cell metabolism and reduces NAD to NADH. In this process, hydrogen ions are introduced into the cell to generate ATP and react with NAD to generate NADH, which is a source of hydrogen ions necessary for NADH production. At this time, the direct current power between the cathode and anode of the electrochemical incubator is in the range of 1 to 10 volts.

화학독립영양세균은 특정의 화학반응 또는 광 에너지를 이용하여 이산화탄소에서 유기화합물을 합성하는 능력을 가지며 무기화합물만의 배지로 완전히 생활하여 증식하는 세균으로, 염화암모늄, 제2인산칼륨, 탄산수소나트륨, 흑연부직포, 전자전달 매개체 및 Mg, Ca, Mo, Ni, Se, Fe, Mn, Cu, Zn, Al 등의 미량원소를 포함하는 무기질 배지에 전기화학적 환원력이 생화학적 환원력으로 전환되어 세균에 전달되며 이산화탄소를 유일 탄소원으로 생장할 수 있으므로 세균을 농화배양할 수 있다. Chemical independent autotrophic bacteria have the ability to synthesize organic compounds from carbon dioxide using specific chemical reactions or light energy. They are bacteria that grow and survive completely in the medium of inorganic compounds only. They are ammonium chloride, potassium dibasic potassium phosphate, sodium hydrogen carbonate Electrochemical reductive power is converted to biochemical reductive power to an inorganic medium containing trace elements such as graphite nonwoven fabric, electron transfer medium and trace elements such as Mg, Ca, Mo, Ni, Se, Fe, Mn, Cu, Since carbon dioxide can be grown as a unique carbon source, bacteria can be concentrated and cultured.

상기에서 기술한 바와 같이, 분리된 산화반응과 환원반응은 화학독립영양세균의 생장을 위해 절대적으로 요구되는 생장환경이기 때문에 본 발명에 따른 이산화탄소 고정화 세균의 농화배양을 위한 전기화학반응기는 화학독립영양세균의 농화배양을 위해 유용하다.As described above, since the separated oxidation reaction and the reduction reaction are absolutely required growth environments for the growth of the chemically independent nutrient bacteria, the electrochemical reactor for the enrichment culture of the carbon dioxide- It is useful for cultivation of bacteria.

본 발명에 있어서, 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주는 파이루베이트 디카르복실레이즈(pyruvate decarboxylase: PDC)유전자; 및 알코올 디하이드로지네이즈 (alcohol dehydrogenase: ADH)유전자; 가 도입된 재조합 랄스토니아 유트로파 균주인 것을 특징으로 한다.In the present invention, Ralstonia < RTI ID = 0.0 > eutropha ) strain is a pyruvate decarboxylase (PDC) gene; And an alcohol dehydrogenase (ADH) gene; Which is a recombinant strain of Streptomyces utrophilus.

보다 상세하게는 상기 PDC 유전자 및 ADH 유전자는 박테리아 중 대표적으로 에탄올을 생산하는 균주인 자이모모나스 모빌리스(Zymomonasmobilis)로부터 염기서열을 확보할 수 있으나, 이에 한정되는 것은 아니다.More specifically, the PDC gene and the ADH gene can obtain a base sequence from Zymomonas mobilis, which is a typical ethanol-producing strain among bacteria, but the present invention is not limited thereto.

본 발명에 있어서, 상기 PDC 유전자는 서열번호 1에 기재된 염기서열을 가지는 것이 바람직하나, 유전자 코드의 디제너러시(degeneracy)를 고려하여 상기 서열번호 1에 기재된 염기서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%의 상동성을 가지는 유전자도 본 발명의 파이루베이트 디카르복실레이즈 유전자에 포함된다.In the present invention, the PDC gene preferably has the nucleotide sequence as set forth in SEQ ID NO: 1, but preferably has 80% homology with the nucleotide sequence set forth in SEQ ID NO: 1 in consideration of degeneracy of the genetic code, , 85% homology, more preferably 90% homology, and most preferably 95% homology are included in the pyruvate dicarboxylase gene of the present invention.

본 발명에 있어서, 상기 ADH 유전자는 서열번호 2에 기재된 염기서열을 가지는 것이 바람직하나, 유전자 코드의 디제너러시(degeneracy)를 고려하여 상기 서열번호 2에 기재된 염기서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%의 상동성을 가지는 유전자도 본 발명의 알코올 디하이드로지네이즈 유전자에 포함된다. In the present invention, it is preferable that the ADH gene has the nucleotide sequence shown in SEQ ID NO: 2. However, considering the degeneracy of the genetic code, the ADH gene preferably has 80% homology with the nucleotide sequence shown in SEQ ID NO: 2, A gene having 85% homology, more preferably 90% homology, and most preferably 95% homology is included in the alcohol dihydrogenase gene of the present invention.

본 발명에 있어서, 재조합 벡터에는 발현의 억제 또는 증폭, 또는 유도를 위한 각종의 기능을 가진 발현억제용의 단편이나, 형질 전환체의 선택을 위한 마커나 항생물질에 대한 내성유전자, 또는, 균체 밖으로의 분비를 목적으로 한 시그널을 코딩하는 유전자 등을 또 가진 것도 가능하다.In the present invention, the recombinant vector may contain expression-suppressing fragments having various functions for inhibiting, amplifying, or inducing expression, a marker for selecting a transformant, a gene resistant to antibiotics, And a gene encoding a signal for secretion of the gene.

본 발명에 있어서, 상기 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주는 KCTC22469를 형질전환시켜 제조될 수 있으나 이에 한정되는 것은 아니다. In the present invention, the above-mentioned Ralstonia < RTI ID = 0.0 > eutropha ) strain may be prepared by transforming KCTC22469, but is not limited thereto.

본 발명의 재조합 랄스토니아 유트로파 균주는 상기 제조된 재조합 벡터를 예를 들면 일렉트로포레이션법, 폴리에틸렌글라이콜 법 등이 이용하여 도입 가능하다. The recombinant Stoneyutropha strain of the present invention can be introduced by using, for example, an electroporation method, a polyethylene glycol method or the like.

본 발명에 있어서, 재조합 랄스토니아 유트로파(Ralstonia eutropha)의 배양은 시드배양(seed culture)한 다음, 이를 생물전기화학반응기에 접종하여 본 배양할 수 있다. 이 때, 시드배양은 M9 최소(minimal) 배지에 글루코스(glucose) 30 내지 500 mM 및 효모 추출물(yeast extract)을 0.05 내지 10 g/L 추가하고, 초기 적응을 위해 이산화탄소를 주입하여 15 내지 35℃에서 정치배양하는 것이 바람직하며, 50 내지 350 mM의 포도당 및 1 내지 5 g/L의 효모 추출물 추가, 25 내지 30℃의 온도가 더욱 바람직하나 이에 한정되지 않는다. In the present invention, cultivation of Ralstonia eutropha can be carried out by inoculating seed cells into a bioelectrochemical reactor after seed culture. At this time, the seed culture is carried out by adding 30 to 500 mM of glucose and 0.05 to 10 g / L of yeast extract to M9 minimal medium, injecting carbon dioxide for initial adaptation, , Preferably 50 to 350 mM of glucose and 1 to 5 g / L of yeast extract, and a temperature of 25 to 30 [deg.] C is further preferable, but not always limited thereto.

상기 시드배양을 위한 M9 최소배지의 조성은 인산수소이나트륨(Na2HPO4) 6 내지 24 g/L, 인산이수소칼륨(KH2PO4) 3 내지 12 g/L, 염화나트륨(NaCl) 0.05 내지 2 g/L, 염화암모늄(NH4Cl) 1 내지 3 g/L, 0.05 내지 2 mM 황산마그네슘(MgSO4) 및 0.05 내지 2 mM 염화칼슘(CaCl2)을 포함할 수 있다. 그리고 시드배양은 약 한달 간 정치배양하는 것이 바람직하다. The composition of the M9 minimal medium for the seed culture is 6 to 24 g / L of disodium hydrogenphosphate (Na 2 HPO 4 ), 3 to 12 g / L of potassium dihydrogenphosphate (KH 2 PO 4 ), 0.05 to 5 g / 2 g / L, 1 to 3 g / L ammonium chloride (NH 4 Cl), 0.05 to 2 mM magnesium sulfate (MgSO 4 ) and 0.05 to 2 mM calcium chloride (CaCl 2 ). The seed culture is preferably cultured for about one month.

이렇게 배양된 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주의 배양액을 전기화학반응기에 모두 접종함으로써 본 배양하여 반응을 개시할 수 있다. The thus cultured Ralstonia < RTI ID = 0.0 > eutropha ) may be inoculated into an electrochemical reactor to start the reaction.

상기 본 배양의 배지는 M9 최소 배지를 사용하는 것이 바람직하다. 또한 배지에 초기에 글루코스(glucose) 30 내지 500 mM 및 효모 추출물(yeast extract)을 0.05 내지 10 g/L를 첨가하여 배양을 수행하는 것이 바람직하다. 상기 본 배양은 3 L 생물전기화학반응기에 하기 조성의 배지를 2.5 L 넣은 후 배양을 할 수 있으며, 정치배양하는 것이 바람직하나 이에 한정되는 것은 아니다. It is preferable that the medium for the main culture is an M9 minimal medium. It is also preferred that the culture is performed by adding 30 to 500 mM of glucose and 0.05 to 10 g / L of yeast extract to the medium initially. In the present culturing, 2.5 L of a medium having the following composition is put into a 3 L bio-electrochemical reactor, followed by culturing, but it is preferable to conduct stationary culture, but the present invention is not limited thereto.

상기 배양을 위한 위한 M9 최소배지의 조성은 인산수소이나트륨 6 내지 24 g/L, 인산이수소칼륨 3 내지 12 g/L, 염화나트륨 0.05 내지 2 g/L, 염화암모늄 1 내지 3 g/L, 0.05 내지 2 mM 황산마그네슘 및 0.05 내지 2 mM 염화칼슘을 포함하는 배지를 사용하는 것이 바람직하나 이에 한정되지 않는다. 또는 상기 배지 성분에 배지에 글루코스(glucose) 30 내지 500 mM 및 효모 추출물(yeast extract)을 0.05 내지 10 g/L 추가로 포함하는 배지를 사용하는 것이 바람직하나 이에 한정되는 것은 아니다.The composition of the M9 minimal medium for the above cultivation is as follows: disodium hydrogenphosphate 6 to 24 g / L, potassium dihydrogenphosphate 3 to 12 g / L, sodium chloride 0.05 to 2 g / L, ammonium chloride 1 to 3 g / To 2 mM magnesium sulfate and 0.05 to 2 mM calcium chloride is preferably used but not limited thereto. Alternatively, it is preferable to use a medium containing 30 to 500 mM of glucose and 0.05 to 10 g / L of yeast extract in the medium, but is not limited thereto.

본 발명에 있어서, 상기 배양은 이산화탄소를 0.1 내지 1 ml/min의 속도로 공급하여 수행하는 것으로, 0.2 ml/min의 속도로 공급하는 것이 더욱 바람직하다. In the present invention, the culture is performed by supplying carbon dioxide at a rate of 0.1 to 1 ml / min. It is more preferable to supply the culture at a rate of 0.2 ml / min.

또한, 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주의 배양시 생물전기화학반응기의 전압은 1 내지 10 V이고, 배양온도는 15 내지 35℃의 조건에서 수행하는 것이 바람직하며, 전기화학반응기의 전압이 1 내지 3 V, 배양온도가 25 내지 30℃인 조건이 더욱 바람직하나 이에 한정되는 것은 아니다.In addition, Ralstonia < RTI ID = 0.0 > eutropha ) is preferably 1 to 10 V and the incubation temperature is 15 to 35 ° C. When the voltage of the electrochemical reactor is 1 to 3 V and the incubation temperature is 25 To 30 < 0 > C is more preferable, but is not limited thereto.

본 발명에서 생물전기화학반응기의 탄소원으로 사용하는 이산화탄소는 가스백에 충진되어 있는 이산화탄소를 사용할 수 있으며, 연동펌프(peristaltic pump)를 사용하여 지속적으로 가스를 순환시켜 줌으로써 배지 내에 이산화탄소가 골고루 분산되도록 할 수 있다. 본 발명에서는 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주 배양을 위해 3 L 전기화학반응기를 사용하였으며 더 많은 에탄올의 생산을 위해 더 큰 부피에서의 배양이 가능하다. In the present invention, the carbon dioxide used as the carbon source of the bio-electrochemical reactor can be carbon dioxide which is filled in the gas bag, and the gas is continuously circulated by using a peristaltic pump to allow the carbon dioxide to be uniformly dispersed in the medium . In the present invention, a 3 L electrochemical reactor was used for culture of Ralstonia eutropha strain, and it is possible to cultivate in a larger volume for the production of more ethanol.

본 발명은 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주를 포함하는 알코올 생성용 조성물을 제공한다. The present invention relates to a method for the treatment of Ralstonia < RTI ID = 0.0 > The present invention also provides a composition for producing an alcohol comprising the strain eutropha .

본 발명의 에탄올 생성물 조성물은 예를 들어 상기 형질 전환체를 배양하여 당류를 기질로 하여 에탄올을 생성하는데 적합한 폴리펩타이드, 브로쓰, 세포 용해물, 정제 또는 정제되지 않은 효소 추출물 또는 폴리펩타이드 등을 포함한다.The ethanol product compositions of the present invention include, for example, polypeptides, broths, cell lysates, purified or unpurified enzyme extracts or polypeptides suitable for culturing the transformant and producing ethanol using the saccharide as a substrate do.

이하, 실시예에 의거하여 본 발명을 더욱 상세하게 설명하나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 내용을 한정하는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are intended to illustrate the present invention and are not intended to limit the scope of the present invention.

또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.Repeated descriptions of the same technical constitution and operation as those of the conventional art will be omitted.

[[ 실시예Example 1] 재조합 벡터의 제조 1] Production of recombinant vector

(1)(One) pdcpdc Wow adhadh 유전자 염기서열 확보 Gene sequencing secured

자이모모나스 모빌리스(Zymomonas mobilis)에서 유래한 에탄올 생산 유전자 pdc 유전자와 adh 유전자의 염기서열을 미국 국립생물정보센터의 유전자 서치(search) 프로그램을 통하여 확보하였다. Zymomonas The DNA sequence of the pdc gene and the adh gene derived from the mobilis gene was obtained through the gene search program of the US National Bioinformatics Center.

pdc유전자(2.1 kb)의 염기서열과 adh 유전자(1.8 kb)의 염기서열은 각각 도 1 및 도 2에 나타내었다.The nucleotide sequence of the pdc gene (2.1 kb) and the nucleotide sequence of the adh gene (1.8 kb) are shown in FIGS. 1 and 2, respectively.

(2)(2) pdcpdc Wow adhadh 유전자  gene 클로닝Cloning

상기 (1)에서 확보된 pdc유전자(2.1 kb)의 염기서열 및 adh 유전자(1.8 kb)를 클로닝하기 위한 프라이머(primer)를 제작하였고, 하기 표 1에 나타내었다.In the step (1) A primer for cloning the nucleotide sequence of the pdc gene (2.1 kb) and the adh gene (1.8 kb) was prepared and shown in Table 1 below.

Figure pat00001
Figure pat00001

상기 표 1의 프라이머를 이용하여 PCR을 통해 증폭한 후, 증폭된 유전자들을 각각 TA 벡터에 라이게이션(ligation)하였고, 염기서열 분석을 통해 해당 유전자의 염기서열이 일치함을 확인하였다. After amplification by PCR using the primers shown in Table 1, the amplified genes were ligated to TA vectors, respectively, and the nucleotide sequences of the corresponding genes were confirmed by sequencing.

상기 증폭된 유전자들은 pLOI308 벡터에 클로닝(cloning)하여, 최종적으로 pdcadh 유전자가 삽입된 재조합 pLOI308-10 벡터(APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 1988, p.397-404 참조)를 제조하였다.The amplified genes were cloned into the pLOI308 vector and finally a recombinant pLOI308-10 vector (see APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 1988, p.397-404) into which pdc and adh genes were inserted was prepared.

[[ 실시예Example 2] 재조합 벡터가 도입된 재조합  2] Recombinant vector-introduced recombinant vector 랄스토니아Ralstonia 유트로파( Utropa ( RalstoniaRalstonia eutropha eutropha ) 균주의 제조) Preparation of Strains

형질전환을 위한 랄스토니아 유트로파(Ralstonia eutropha) 숙주세포는 한국생명공학연구원 생물자원센터로부터 분양 받은 KCTC22469를 이용하였다.For transformation, Ralstonia eutropha ) host cells were purchased from KCTC22469, a biotechnology center of the Korea Biotechnology Research Institute.

상기 실시예 1에서 제조한 재조합 pLOI308-10 벡터를 KCTC22469에 일렉트로포레이션 방법을 이용하여 형질전환(transformation) 시킨 후, 형질전환 된 숙주세포를 얻었다. The recombinant pLOI308-10 vector prepared in Example 1 was transformed into KCTC22469 using an electroporation method to obtain a transformed host cell.

상기 형질전환 된 숙주세포 내 재조합 벡터의 삽입 여부를 확인하기 위하여, 상기 표 1의 프라이머를 사용하여 94℃에서 30 초간 열변성(denaturation), 55℃에서 30 초간 결합(annealing), 72℃에서 30초간 신장(extention)하는 조건에서 효소적인 방법으로, 상기 유전자(pdc유전자, adh 유전자)의 여부를 확인하고, 이를 도 3에 나타내었다. In order to confirm the insertion of the recombinant vector in the transformed host cell, denaturation at 94 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and incubation at 72 ° C for 30 seconds were carried out using the primers shown in Table 1 The presence of the gene ( pdc gene, adh gene) was confirmed by an enzymatic method under the condition of extracellular extention, and is shown in Fig.

[[ 실시예Example 3] 전기화학적 환원력 조건에서의 형질전환된 재조합  3] Transformed recombination at electrochemical reductive conditions 랄스토니아Ralstonia 유트로파( Utropa ( RalstoniaRalstonia eutrophaeutropha ) 균주를 이용한 에탄올 생산) Ethanol production

상기 실시예 2에서 확인된 형질전환 재조합 랄스토니아 유트로피아 균주를 각각 100 ml M9 최소배지에 포도당 270 mM, 효모추출물(yeast extract)를 3g/L 를 첨가하여 250 ml 용량의 배지 병(medium bottle)에서 시드 배양하였으며, 초기 적응을 위해 이산화탄소를 주입한 후 약 한달 간 28℃에서 정치배양 하였다. The transformed recombinant strains of S. rutostylus tropheia identified in Example 2 were respectively added to 100 ml of M9 minimal medium in an amount of 270 mM glucose and 3 g / L of yeast extract, The cells were incubated at 28 ° C for about one month after carbon dioxide injection for initial adaptation.

상기 정치배양 된 균주 배양액을 생물전기화학반응기에 모두 접종함으로 반응을 개시하였다. The reaction was initiated by inoculating the cultured strain with the culture solution in the bioelectrochemical reactor.

생물전기화학반응기(electrochemical bioreactor)는 3 L용 생물전기화학반응기를 사용하였으며, 배지를 2.5 L 넣은 후 배양을 시작하였다, 탄소원으로는 가스 백(이산화탄소 저장소)에 충진된 이산화탄소를 사용하였으며, 연동 펌프를 사용하여 지속적으로 가스를 순환시켜 줌으로써 배지 내에 이산화탄소가 골고루 분산되도록 하였다. 이때 제공된 전압은 2 V였으며, 배양온도는 28 내지32℃에서 수행하였다. The electrochemical bioreactor used was a 3 L bioelectrochemical reactor, and after the addition of 2.5 L of medium, the culture was started. Carbon dioxide (CO2) charged in a gas bag (carbon dioxide storage) was used as the carbon source, To continuously circulate the gas to uniformly disperse carbon dioxide in the medium. At this time, the supplied voltage was 2 V, and the incubation temperature was 28 to 32 ° C.

상기 배지는 M9 최소 배지를 사용하였으며 초기에 효모추출물을 0.1 g/L 되게 첨가하여 주었다. 사용된 M9 최소배지의 조성은 인산수소이나트륨 12 g/L, 인산이수소칼륨 6 g/L, 염화나트륨 1 g/L, 염화암모늄 2 g/L, 1 mM 황산마그네슘 및 0.1 mM 염화칼슘으로 구성된다. 본 배양은 정치배양하였다. The medium was a M9 minimal medium, and yeast extract was added at an initial concentration of 0.1 g / L. The composition of the M9 minimal medium used consisted of disodium hydrogenphosphate 12 g / L, potassium dihydrogenphosphate 6 g / L, sodium chloride 1 g / L, ammonium chloride 2 g / L, 1 mM magnesium sulfate and 0.1 mM calcium chloride. This culture was subjected to stationary culture.

대조구로 재조합 pLOI308-10 벡터가 삽입되지 않은 KCTC22469 균주를 상기와 동일한 조건에서 배양하였다. KCTC22469 strain in which the recombinant pLOI308-10 vector was not inserted into the control was cultured under the same conditions as above.

2주간 정치배양 한 후에 주가시를 이용하여 적당량의 균주 배양 혼합물(cell culture mixture)을 이용하여 생산된 에탄올의 농도를 측정하였다.After 2 weeks of incubation, the concentration of ethanol produced was measured using an appropriate amount of cell culture mixture.

생산된 에탄올의 농도는 YSI 2786 membrane이 장착된 YSI biochemistry analyzer (Model 2700, Yellow Springs Instrument Co., Inc)를 이용하여 분석하였다. The concentration of ethanol produced was analyzed using a YSI biochemistry analyzer (Model 2700, Yellow Springs Instrument Co., Inc) equipped with a YSI 2786 membrane.

그 결과, 상기 실시예 2에서 확인 된 형질전환 재조합 랄스토니아 유트로피아 균주는 포도당 86 mM이 소비되는 동안 에탄올 39 mM이 생산되는 것을 확인할 수 있었고, 반면 대조구인 재조합 pLOI308-10 벡터가 삽입되지 않은 KCTC22469 균주의 경우 에탄올을 전혀 생산하지 못하는 것을 확인할 수 있었다.As a result, it was confirmed that 39 mM of ethanol was produced while 86 mM of glucose was consumed in the transformant recombinant strain of Streptomyces tropheia identified in Example 2, while the recombinant pLOI308-10 vector, which is a control, was inserted In the case of KCTC22469 strain, it was confirmed that no ethanol was produced at all.

[ [ 비교예Comparative Example 1] 전기화학적 환원력이 없는 조건에서의  1] in the absence of electrochemical reducing power 형질전환 된Transformed 재조합  Recombination 랄스토니아Ralstonia 유트로파Utopia (( RalstoniaRalstonia eutrophaeutropha ) 균주를 이용한 에탄올 생산) Ethanol production

상기 실시예 3의 에탄올 생산방법에 있어서 형질전환 된 재조합 랄스토니아 유트로파 균주를 전기화학적 환원력이 없는 조건(일반적인 반응기)에서 배양한 것 이외에는 동일한 방법으로 배양하였다. In the ethanol production method of Example 3, the transformed recombinant strain Streptomyces utrophilus strain was cultured in the same manner except that the strain was cultured in the absence of electrochemical reductive power (general reactor).

대조구로 재조합 pLOI308-10 벡터가 삽입되지 않은 KCTC22469 균주를 상기와 동일한 조건에서 배양하였다. KCTC22469 strain in which the recombinant pLOI308-10 vector was not inserted into the control was cultured under the same conditions as above.

생산된 에탄올의 농도는 YSI 2786 membrane이 장착된 YSI biochemistry analyzer (Model 2700, Yellow Springs Instrument Co., Inc)를 이용하여 분석하였다. The concentration of ethanol produced was analyzed using a YSI biochemistry analyzer (Model 2700, Yellow Springs Instrument Co., Inc) equipped with a YSI 2786 membrane.

그 결과, 포도당 70 mM이 소비되는 동안 에탄올 18 mM이 생산되는 것을 확인할 수 있었고, 반면 대조구인 재조합 pLOI308-10 벡터가 삽입되지 않은 KCTC22469 균주의 경우 에탄올을 전혀 생산하지 못하는 것을 확인할 수 있었다.
As a result, it was confirmed that ethanol was produced at a concentration of 18 mM during the consumption of 70 mM of glucose, whereas the KCTC22469 strain without the recombinant pLOI308-10 vector, which was a control, was not produced at all.

상기의 실시예 및 비교예의 결과는 포도당이 발효되는 동안 생산된 피루브산의 일부가 PDC에 의해 아세트알데하이드(acetaldehyde)로 탈탄산화 되고, 아세트알데하이드는 ADH에 의해 환원되어 에탄올로 전환되었다는 것을 보여주는 것이다. The results of the above Examples and Comparative Examples show that some of the pyruvic acid produced during the fermentation of glucose was decarboxylated by acetaldehyde by PDC and acetaldehyde was reduced by ADH and converted to ethanol.

또한, 상기 실시예의 알코올 생산방법은 광합성-화학합성 균주에 에탄올의 생산을 유도할 수 있는 유전자를 도입시킴으로써 포도당의 산화대사 과정에서 생산된 피루브산을 생화학적으로 생산된 환원력에 의해 알코올로 전환되도록 유도할 수 있도록 하고, 상기 세균을 전기화학적 환원력을 대사에너지와 환원력으로 전환할 수 있도록 제작된 생물전기화학반응기에서 배양함으로써 에탄올의 생산성이 2배 이상으로 향상시킬 수 있는 것을 확인할 수 있었다.Also, the alcohol production method of the above-described embodiment introduces a gene capable of inducing the production of ethanol into a photosynthetic-chemically synthesized strain to induce pyruvic acid produced in the oxidation process of glucose to be converted into alcohol by the biochemically produced reducing power And that the productivity of ethanol can be improved to more than two times by culturing the bacteria in a bioelectrochemical reactor designed to convert electrochemical reduction power into metabolic energy and reducing power.

100: 음극반응조 110: 배지
120: 배양액 130: 샘플 포트
200: 양극 반응조 210: 물
300: 분리막
400: 음극반응조 커버 410: 외부 연결부
420: 음극연결부 421: 음극선
430: 양극 연결부 431: 산소 배출관
440: 이산화탄소 입출입구 441: 이산화탄소 스파저
442: 이산화탄소 배출관
500: 전기화학반응기
600: 가스 순환장치
700 이산화탄소 저장소
100: Negative electrode reaction tank 110: Medium
120: culture solution 130: sample port
200: anode reaction tank 210: water
300: membrane
400: cathode tank cover 410: external connection
420: cathode connection part 421: cathode line
430: anode connection part 431: oxygen discharge pipe
440: Carbon dioxide entry / exit 441: Carbon dioxide sparger
442: Carbon dioxide discharge pipe
500: electrochemical reactor
600: gas circulation device
700 carbon dioxide storage

<110> KOREA ATOMIC ENERGY RESEARCH INSTITUTE <120> Production of alcohol method using bio-ethanol production capacity of recombinant Ralstonia eutropha <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 2146 <212> DNA <213> Unknown <220> <223> PDC gene <400> 1 tgatcctgcc ctgtcttgtt tggaattgat gaggccgttc atgacaacag ccggaaaaat 60 tttaaaacag gcgtcttcgg ctgctttagg tctcggctac gtttctacat ctggttctga 120 ttcccggttt acctttttca aggtgtcccg ttcctttttc ccctttttgg aggttggtta 180 tgtcctataa tcacttaatc cagaagcggg cgtttagctt tgtccatcat ggttgtttat 240 cgctcatgat cgcggcatgt tctgatattt ttcctctaaa aaagataaaa agtcttttcg 300 cttcggcaga agaggttcat catgaacaaa aattaggcat ttttaaaaat gcctatagct 360 aaatcaggaa cgacacttta gaggtttctg ggtcatcctg attcagacat agtgttttga 420 atatatggag taagcaatga gttatactgt cggtacctat ttagcggagc ggcttgtcca 480 gattggtctc aagcatcact tcgcagtcgc gggcgactac aacctcgtcc ttcttgacaa 540 cctgcttttg aacaaaaaca tggagcaggt ttattgctgt aacgaactga actgcggttt 600 cagtgcagaa ggttatgctc gtgccaaagg cgcagcagca gccgtcgtta cctacagcgt 660 tggtgcgcat tccgcattcg atgctatcgg tggcgcctat gcagaaaacc ttccggttat 720 cctgatctcc ggtgctccga acaacaacga ccacgctgct ggtcatgtgt tgcatcatgc 780 tcttggcaaa accgactatc actatcagtt ggaaatggcc aagaacatca cggccgccgc 840 tgaagcgatt tacaccccgg aagaagctcc ggctaaaatc gatcacgtga ttaaaactgc 900 tctcgcgaag aagaagccgg tttatctcga aatcgcttgc aacattgctt ccatgccctg 960 cgccgctcct ggaccggcaa gtgcattgtt caatgacgaa gccagcgacg aagcatcctt 1020 gaatgcagcg gttgacgaaa ccctgaaatt catcgccaac cgcgacaaag ttgccgtcct 1080 cgtcggcagc aagctgcgcg ctgctggtgc tgaagaagct gctgttaaat tcaccgacgc 1140 tttgggcggt gcagtggcta ctatggctgc tgccaagagc ttcttcccag aagaaaatcc 1200 gcattacatt ggtacctcat ggggcgaagt cagctatccg ggcgttgaaa agacgatgaa 1260 agaagccgat gcggttatcg ctctggctcc tgtcttcaac gactactcca ccactggttg 1320 gacggatatc cctgatccta agaaactggt tctcgctgaa ccgcgttctg tcgttgtcag 1380 acgcattcgc ttccccagcg ttcatctgaa agactatctg acccgtttgg ctcagaaagt 1440 ttccaagaaa accggttctt tggacttctt caaatccctc aatgcaggtg aactgaagaa 1500 agccgctccg gctgatccga gtgctccgtt ggtcaacgca gaaatcgccc gtcaggtcga 1560 agctcttctg accccgaaca cgacggttat tgctgaaacc ggtgactctt ggttcaatgc 1620 tcagcgcatg aagctcccga acggtgctcg cgttgaatat gaaatgcagt ggggtcacat 1680 tggttggtcc gttcctgccg ccttcggtta tgccgtcggt gctccggaac gtcgcaacat 1740 cctcatggtt ggtgatggtt ccttccagct gacggctcag gaagttgctc agatggttcg 1800 cctgaaactg ccggttatca tcttcttgat caataactat ggttacacca tcgaagttat 1860 gatccatgat ggtccgtaca acaacatcaa gaactgggat tatgccggtc tgatggaagt 1920 gttcaacggt aacggtggtt atgacagcgg tgctgctaaa ggcctgaagg ctaaaaccgg 1980 tggcgaactg gcagaagcta tcaaggttgc tctggcaaac accgacggcc caaccctgat 2040 cgaatgcttc atcggtcgtg aagactgcac tgaagaattg gtcaaatggg gtaagcgcgt 2100 tgctgccgcc aacagccgta agcctgttaa caagctcctc tagttt 2146 <210> 2 <211> 1797 <212> DNA <213> Unknown <220> <223> ADH gene <400> 2 aagcttaatt taaaggcaaa atcggttacc acatctcaat tattaaacaa tacttcataa 60 taaaaagaca actttttcat aatttgcata agtcttgatg taaaaaatac atatttagaa 120 agaacaagca gccttgctca tcaccgttgt cgcgagtaga aaaatctcgg ctttcagaaa 180 aagaggccgc ttcgttaagc agactataaa tgtgctggaa taaagcgaac cccttgatct 240 gataaaactg atagacatat tgcttttgcg ctgcccgatt gctgaaaatg cgtaaaattg 300 gtgattttac tcgttttcag gaaaaacttt gagaaaacgt ctcgaaaacg ggatgaaaac 360 gcaaaaacaa tagaaagcga tttcgcgaaa atggttgttt tcgggttgtt gctttaaatt 420 agtatgtagg gtgaggttat agctatggct tcctcaactt tttatattcc tttcgtcaac 480 gaaatggggg aaggttcgct tgaaaaagca atcaaggatc ttaacggcag cggctttaaa 540 aatgcgctga tcgtttctga tgctttcatg aacaaatccg gtgttgtgaa gcaggttgct 600 gacctgttga aagcacaggg tattaattct gctgtttatg atggcgttat gccgaacccg 660 actgttaccg cagttctgga aggccttaag atcctgaagg ataacaattc agatttcgtc 720 atctccctcg gtggtggttc tccccatgac tgcgccaagg ccatcgctct ggtcgcaacc 780 aatggtggtg aagtcaaaga ctacgaaggt atcgacaaat ctaagaaacc tgccctgcct 840 ttgatgtcaa tcaacacgac ggctggtacg gcttctgaaa tgacgcgttt ctgcatcatc 900 actgatgaag tccgtcacgt taagatggcc attgttgacc gtcacgttac cccgatggtt 960 tccgtcaacg atcctctgtt gatggttggt atgccaaaag gcctgaccgc cgccaccggt 1020 atggatgctc tgacccacgc atttgaagcc tattcttcaa cggcagctac tccgatcacc 1080 gatgcttgcg ccttgaaggc tgcgtccatg atcgctaaga atctgaagac cgcttgcgac 1140 aacggtaagg atatgccagc tcgtgaagct atggcttatg cccaattcct cgctggtatg 1200 gccttcaaca acgcttcgct tggttatgtc catgctatgg ctcaccagtt gggcggctac 1260 tacaacctgc cgcatggtgt ctgcaacgct gttctgcttc cgcatgttct ggcttataac 1320 gcctctgtcg ttgctggtcg tctgaaagac gttggtgttg ctatgggtct cgatatcgcc 1380 aatctcggtg ataaagaagg cgcagaagcc accattcagg ctgttcgcga tctagctgct 1440 tccattggta ttccagcaaa tctgaccgag ctgggtgcta agaaagaaga tgtgccgctt 1500 cttgctgacc acgctctgaa agatgcttgt gctctgacca acccgcgtca gggtgatcag 1560 aaagaagttg aagaactctt cctgagcgct ttctaatttc aaaacaggaa aacggttttc 1620 cgtcctgtct tgattttcaa gcaaacaatg ccttcgattt ctaatcggag gcatttgttt 1680 ttgtttattg caaaaacaaa aaatattgtt acaaattttt acaggctatt aagcctaccg 1740 tcataaataa tatgccattt aaagcctatt atcaggattg tcgccccgat tggatcc 1797 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> PDC forward primer <400> 3 ctcacgaaga gcagttttaa tcacg 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> PDC reverse primer <400> 4 tccttcttga caaccggctt ttgaa 25 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ADH forward primer <400> 5 aagcaatcaa ggatcttaac ggca 24 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ADH reverse primer <400> 6 caacttcttt ctgatcaccc tg 22 <110> KOREA ATOMIC ENERGY RESEARCH INSTITUTE <120> Production of alcohol method using bio-ethanol production          capacity of recombinant Ralstonia eutropha <160> 6 <170> Kopatentin 1.71 <210> 1 <211> 2146 <212> DNA <213> Unknown <220> <223> PDC gene <400> 1 tgatcctgcc ctgtcttgtt tggaattgat gaggccgttc atgacaacag ccggaaaaat 60 tttaaaacag gcgtcttcgg ctgctttagg tctcggctac gtttctacat ctggttctga 120 ttcccggttt acctttttca aggtgtcccg ttcctttttc ccctttttgg aggttggtta 180 tgtcctataa tcacttaatc cagaagcggg cgtttagctt tgtccatcat ggttgtttat 240 cgctcatgat cgcggcatgt tctgatattt ttcctctaaa aaagataaaa agtcttttcg 300 cttcggcaga agaggttcat catgaacaaa aattaggcat ttttaaaaat gcctatagct 360 aaatcaggaa cgacacttta gaggtttctg ggtcatcctg attcagacat agtgttttga 420 atatatggag taagcaatga gttatactgt cggtacctat ttagcggagc ggcttgtcca 480 gattggtctc aagcatcact tcgcagtcgc gggcgactac aacctcgtcc ttcttgacaa 540 cctgcttttg aacaaaaaca tggagcaggt ttattgctgt aacgaactga actgcggttt 600 cagtgcagaa ggttatgctc gtgccaaagg cgcagcagca gccgtcgtta cctacagcgt 660 tggtgcgcat tccgcattcg atgctatcgg tggcgcctat gcagaaaacc ttccggttat 720 cctgatctcc ggtgctccga acaacaacga ccacgctgct ggtcatgtgt tgcatcatgc 780 tcttggcaaa accgactatc actatcagtt ggaaatggcc aagaacatca cggccgccgc 840 tgaagcgatt tacaccccgg aagaagctcc ggctaaaatc gatcacgtga ttaaaactgc 900 tctcgcgaag aagaagccgg tttatctcga aatcgcttgc aacattgctt ccatgccctg 960 cgccgctcct ggaccggcaa gtgcattgtt caatgacgaa gccagcgacg aagcatcctt 1020 gaatgcagcg gttgacgaaa ccctgaaatt catcgccaac cgcgacaaag ttgccgtcct 1080 cgtcggcagc aagctgcgcg ctgctggtgc tgaagaagct gctgttaaat tcaccgacgc 1140 tttgggcggt gcagtggcta ctatggctgc tgccaagagc ttcttcccag aagaaaatcc 1200 gcattacatt ggtacctcat ggggcgaagt cagctatccg ggcgttgaaa agacgatgaa 1260 agaagccgat gcggttatcg ctctggctcc tgtcttcaac gactactcca ccactggttg 1320 gacggatatc cctgatccta agaaactggt tctcgctgaa ccgcgttctg tcgttgtcag 1380 acgcattcgc ttccccagcg ttcatctgaa agactatctg acccgtttgg ctcagaaagt 1440 ttccaagaaa accggttctt tggacttctt caaatccctc aatgcaggtg aactgaagaa 1500 agccgctccg gctgatccga gtgctccgtt ggtcaacgca gaaatcgccc gtcaggtcga 1560 agctcttctg accccgaaca cgacggttat tgctgaaacc ggtgactctt ggttcaatgc 1620 tcagcgcatg aagctcccga acggtgctcg cgttgaatat gaaatgcagt ggggtcacat 1680 tggttggtcc gttcctgccg ccttcggtta tgccgtcggt gctccggaac gtcgcaacat 1740 cctcatggtt ggtgatggtt ccttccagct gacggctcag gaagttgctc agatggttcg 1800 cctgaaactg ccggttatca tcttcttgat caataactat ggttacacca tcgaagttat 1860 gatccatgat ggtccgtaca acaacatcaa gaactgggat tatgccggtc tgatggaagt 1920 gttcaacggt aacggtggtt atgacagcgg tgctgctaaa ggcctgaagg ctaaaaccgg 1980 tggcgaactg gcagaagcta tcaaggttgc tctggcaaac accgacggcc caaccctgat 2040 cgaatgcttc atcggtcgtg aagactgcac tgaagaattg gtcaaatggg gtaagcgcgt 2100 tgctgccgcc aacagccgta agcctgttaa caagctcctc tagttt 2146 <210> 2 <211> 1797 <212> DNA <213> Unknown <220> <223> ADH gene <400> 2 aagcttaatt taaaggcaaa atcggttacc acatctcaat tattaaacaa tacttcataa 60 taaaaagaca actttttcat aatttgcata agtcttgatg taaaaaatac atatttagaa 120 agaacaagca gccttgctca tcaccgttgt cgcgagtaga aaaatctcgg ctttcagaaa 180 aagaggccgc ttcgttaagc agactataaa tgtgctggaa taaagcgaac cccttgatct 240 gataaaactg atagacatat tgcttttgcg ctgcccgatt gctgaaaatg cgtaaaattg 300 gtgattttac tcgttttcag gaaaaacttt gagaaaacgt ctcgaaaacg ggatgaaaac 360 gcaaaaacaa tagaaagcga tttcgcgaaa atggttgttt tcgggttgtt gctttaaatt 420 agtatgtagg gtgaggttat agctatggct tcctcaactt tttatattcc tttcgtcaac 480 gaaatggggg aaggttcgct tgaaaaagca atcaaggatc ttaacggcag cggctttaaa 540 aatgcgctga tcgtttctga tgctttcatg aacaaatccg gtgttgtgaa gcaggttgct 600 gacctgttga aagcacaggg tattaattct gctgtttatg atggcgttat gccgaacccg 660 actgttaccg cagttctgga aggccttaag atcctgaagg ataacaattc agatttcgtc 720 atctccctcg gtggtggttc tccccatgac tgcgccaagg ccatcgctct ggtcgcaacc 780 aatggtggtg aagtcaaaga ctacgaaggt atcgacaaat ctaagaaacc tgccctgcct 840 ttgatgtcaa tcaacacgac ggctggtacg gcttctgaaa tgacgcgttt ctgcatcatc 900 actgatgaag tccgtcacgt taagatggcc attgttgacc gtcacgttac cccgatggtt 960 tccgtcaacg atcctctgtt gatggttggt atgccaaaag gcctgaccgc cgccaccggt 1020 atggatgctc tgacccacgc atttgaagcc tattcttcaa cggcagctac tccgatcacc 1080 gatgcttgcg ccttgaaggc tgcgtccatg atcgctaaga atctgaagac cgcttgcgac 1140 aacggtaagg atatgccagc tcgtgaagct atggcttatg cccaattcct cgctggtatg 1200 gccttcaaca acgcttcgct tggttatgtc catgctatgg ctcaccagtt gggcggctac 1260 tacaacctgc cgcatggtgt ctgcaacgct gttctgcttc cgcatgttct ggcttataac 1320 gcctctgtcg ttgctggtcg tctgaaagac gttggtgttg ctatgggtct cgatatcgcc 1380 aatctcggtg ataaagaagg cgcagaagcc accattcagg ctgttcgcga tctagctgct 1440 tccattggta ttccagcaaa tctgaccgag ctgggtgcta agaaagaaga tgtgccgctt 1500 cttgctgacc acgctctgaa agatgcttgt gctctgacca acccgcgtca gggtgatcag 1560 aaagaagttg aagaactctt cctgagcgct ttctaatttc aaaacaggaa aacggttttc 1620 cgtcctgtct tgattttcaa gcaaacaatg ccttcgattt ctaatcggag gcatttgttt 1680 ttgtttattg caaaaacaaa aaatattgtt acaaattttt acaggctatt aagcctaccg 1740 tcataaataa tatgccattt aaagcctatt atcaggattg tcgccccgat tggatcc 1797 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> P223 forward primer <400> 3 ctcacgaaga gcagttttaa tcacg 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> P223 reverse primer <400> 4 tccttcttga caaccggctt ttgaa 25 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> ADH forward primer <400> 5 aagcaatcaa ggatcttaac ggca 24 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> ADH reverse primer <400> 6 caacttcttt ctgatcaccc tg 22

Claims (17)

전기화학적환원력을 에너지원으로 하고, 이산화탄소를 유일한 탄소원으로 하여 재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주를 배양하는 과정을 포함하는 것을 특징으로 하는 알코올 생산방법.Recombinant Ralstonia with electrochemical reduction as energy source and carbon dioxide as the only carbon source eutropha ) Alcohol production method comprising the step of culturing the strain. 제 1항에 있어서,
상기 배양은 생물전기화학반응기(electrochemical bioreactor)를 이용하여 수행하는 것을 특징으로 하는 알코올 생산방법.
The method of claim 1,
The culturing is an alcohol production method, characterized in that carried out using a biochemical bioreactor (electrochemical bioreactor).
제 1항에 있어서,
상기 균주는 파이루베이트 디카르복실레이즈(pyruvate decarboxylase: PDC)유전자; 및 알코올 디하이드로지네이즈 (alcohol dehydrogenase: ADH)유전자; 가 도입된 재조합 랄스토니아 유트로파 균주인 것을 특징으로 하는 알코올 생산방법.
The method of claim 1,
The strains include pyruvate decarboxylase (PDC) genes; And an alcohol dehydrogenase (ADH) gene; Alcohol production method, characterized in that the introduced recombinant Ralstonia utropa strain.
제 3항에 있어서,
상기 PDC 유전자 및 ADH 유전자는 자이모모나스 모빌리스(zymomonas mobilis) 유래의 유전자인 것을 특징으로 하는 알코올 생산방법.
The method of claim 3, wherein
The PDC gene and ADH gene is an alcohol production method, characterized in that the gene derived from zymomonas mobilis .
제 4항에 있어서,
상기 PDC 유전자는 서열번호 1에 기재된 염기서열을 가지며, 상기 ADH 유전자는 서열번호 2에 기재된 염기서열을 가지는 것을 특징으로 하는 알코올 생산방법.
5. The method of claim 4,
The PDC gene has a nucleotide sequence of SEQ ID NO: 1, the ADH gene has an nucleotide sequence of SEQ ID NO: 2, characterized in that the alcohol production method.
제 3항에 있어서,
상기 균주는 KCTC22469를 형질전환시켜 제조된 것을 특징으로 하는 알코올 생산방법.
The method of claim 3, wherein
The strain is an alcohol production method, characterized in that prepared by transforming KCTC22469.
제 1항에 있어서,
상기 배양은 이산화탄소를 0.1 내지 1 ml/min의 속도로 공급하여 수행하는 것을 특징으로 하는 알코올 생산방법
The method of claim 1,
The culturing is performed by supplying carbon dioxide at a rate of 0.1 to 1 ml / min alcohol production method
제 1항에 있어서,
상기 배양은 인산수소이나트륨 6 내지 24 g/L, 인산이수소칼륨 3 내지 12 g/L, 염화나트륨 0.05 내지 2 g/L, 염화암모늄 1 내지 3 g/L, 0.05 내지 2 mM 황산마그네슘 및 0.05 내지 2 mM 염화칼슘을 포함하는 배지를 사용하여 수행하는 것을 특징으로 하는 알코올 생산방법.
The method of claim 1,
The culture was 6 to 24 g / L disodium hydrogen phosphate, 3 to 12 g / L potassium dihydrogen phosphate, 0.05 to 2 g / L sodium chloride, 1 to 3 g / L ammonium chloride, 0.05 to 2 mM magnesium sulfate, and 0.05 to Alcohol production method characterized in that performed using a medium containing 2 mM calcium chloride.
제 8항에 있어서,
상기 배지는 글루코스(glucose) 및 효모 추출물(yeast extract)을 더 포함하는 것을 특징으로 하는 알코올 생산방법.
The method of claim 8,
The medium is alcohol (glucose) and yeast extract (yeast extract) further comprising the alcohol production method.
제 1항에 있어서,
상기 배양은 15 내지 35℃ 온도에서 수행하는 것을 특징으로 하는 알코올 생산방법.
The method of claim 1,
The culturing is an alcohol production method, characterized in that carried out at a temperature of 15 to 35 ℃.
제 10항에 있어서,
상기 배양은 정치배양하는 것을 특징으로 하는 알코올 생산방법.
The method of claim 10,
The culture is alcohol production method characterized in that the stationary culture.
제 1항에 있어서,
상기 생산방법은 배양 이전에 시드배양(seed culture)하는 단계; 및 이를 생물전기화학반응기에 접종하는 단계; 를 더 포함하는 것을 특징으로 하는 알코올 생산방법.
The method of claim 1,
The production method includes a step of seed culture before cultivation; And inoculating it into a biochemical reactor; Alcohol production method characterized in that it further comprises.
제 12항에 있어서,
상기 시드배양은 15 내지 35℃ 온도에서 수행하는 것을 특징으로 하는 알코올 생산방법.
13. The method of claim 12,
The seed culture is alcohol production method, characterized in that carried out at a temperature of 15 to 35 ℃.
재조합 랄스토니아 유트로파(Ralstonia eutropha) 균주를 포함하는 알코올 생성용 조성물.Recombinant Ralstonia eutropha ) Alcohol-containing composition comprising a strain. 제 14항에 있어서,
상기 균주는 자이모모나스 모빌리스(zymomonas mobilis) 유래의 파이루베이트 디카르복실레이즈(pyruvate decarboxylase: PDC)유전자; 및 알코올 디하이드로지네이즈 (alcohol dehydrogenase: ADH)유전자; 가 도입된 재조합 랄스토니아 유트로파 균주인 것을 특징으로 하는 조성물.
The method of claim 14,
The strain is zymomonas mobilis pyruvate decarboxylase (PDC) gene from mobilis ); And an alcohol dehydrogenase (ADH) gene; Is a recombinant Ralstonia utropa strain introduced.
제 15항에 있어서,
상기 PDC 유전자는 서열번호 1에 기재된 염기서열을 가지며, 상기 ADH 유전자는 서열번호 2에 기재된 염기서열을 가지는 것을 특징으로 하는 조성물.
16. The method of claim 15,
Wherein the PDC gene has the nucleotide sequence set forth in SEQ ID NO: 1, and the ADH gene has the nucleotide sequence set forth in SEQ ID NO: 2.
제 14항 내지 제 16항에서 선택되는 어느 한 항에 있어서,
상기 균주는 알코올 생산능이 있는 것을 특징으로 하는 조성물.
The method according to any one of claims 14 to 16,
The strain is characterized in that the alcohol producing ability.
KR1020120069539A 2012-06-28 2012-06-28 Production of alcohol method using bio-ethanol production capacity of recombinant Ralstonia eutropha KR101397483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120069539A KR101397483B1 (en) 2012-06-28 2012-06-28 Production of alcohol method using bio-ethanol production capacity of recombinant Ralstonia eutropha

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120069539A KR101397483B1 (en) 2012-06-28 2012-06-28 Production of alcohol method using bio-ethanol production capacity of recombinant Ralstonia eutropha

Publications (2)

Publication Number Publication Date
KR20140001587A true KR20140001587A (en) 2014-01-07
KR101397483B1 KR101397483B1 (en) 2014-05-20

Family

ID=50139084

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120069539A KR101397483B1 (en) 2012-06-28 2012-06-28 Production of alcohol method using bio-ethanol production capacity of recombinant Ralstonia eutropha

Country Status (1)

Country Link
KR (1) KR101397483B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179852A1 (en) * 2016-04-11 2017-10-19 이재원 Airtight container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955945B1 (en) 2007-12-28 2010-05-03 주식회사 창해에탄올 A highly productive saccaromyces cerevisiae and method of preparing ethanol using by the same
KR101073145B1 (en) 2009-07-22 2011-10-12 수원대학교산학협력단 Yeast Saccharomyces cerevisiae KK1 producing ethanol with high yield and the method of ethanol fermentation using the yeast

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179852A1 (en) * 2016-04-11 2017-10-19 이재원 Airtight container

Also Published As

Publication number Publication date
KR101397483B1 (en) 2014-05-20

Similar Documents

Publication Publication Date Title
Katsyv et al. Overcoming energetic barriers in acetogenic C1 conversion
Eroglu et al. Microalgal hydrogen production research
Nandi et al. Microbial production of hydrogen: an overview
CN107586752A (en) A kind of engineering bacteria and its application
Chistoserdova Applications of methylotrophs: can single carbon be harnessed for biotechnology?
CN112795582B (en) Enzyme gene suitable for efficiently synthesizing NAD derivative in microorganism
Kars et al. Evaluation of hydrogen production by Rhodobacter sphaeroides OU 001 and its hupSL deficient mutant using acetate and malate as carbon sources
Li et al. Synthetic bacterial consortium enhances hydrogen production in microbial electrolysis cells and anaerobic fermentation
Xiu et al. Stoichiometric analysis and experimental investigation of glycerol–glucose co-fermentation in Klebsiella pneumoniae under microaerobic conditions
Miyamoto Hydrogen production by photosynthetic bacteria and microalgae
JP6562374B1 (en) Hydrogenophyllus bacterium transformant producing lactic acid
US20100041121A1 (en) Metabolically engineered organisms for the production of hydrogen and hydrogenase
US10711318B2 (en) Microbial strain for electrosynthesis and electrofermentation
KR101397483B1 (en) Production of alcohol method using bio-ethanol production capacity of recombinant Ralstonia eutropha
KR101060640B1 (en) Photosynthetic bacterial strain production method that can produce hydrogen at the same time day and night, the mutant strain and hydrogen production method using the same
Rai et al. Biological production of clean energy: Hydrogen
Wu et al. Enhanced photo-fermentative hydrogen production from different organic substrate using hupL inactivated Rhodopseudomonas palustris
US20130052689A1 (en) Methods and Systems for Producing Products Using Engineered Ammonia Oxidizing Bacteria
KR101743603B1 (en) Method for Isobutanol production from an engineered Shewanella oneidensis
JP2005211041A (en) Method for producing succinic acid
Lee et al. Electrochemical activation of nitrate reduction to nitrogen by Ochrobactrum sp. G3-1 using a noncompartmented electrochemical bioreactor
CN113764040B (en) Carbon fixation system comprising recombinant hydrogen oxidizing bacteria and method for synthesizing target product
US20230242947A1 (en) Genetically engineered rhodopseudomonas palustris
CN108949654A (en) A kind of engineering bacteria and its application in production α-ketoglutaric acid
WO2013033646A1 (en) In vivo conversion of light energy into hydrogen gas

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee