KR20130136617A - Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use - Google Patents

Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use Download PDF

Info

Publication number
KR20130136617A
KR20130136617A KR1020120060126A KR20120060126A KR20130136617A KR 20130136617 A KR20130136617 A KR 20130136617A KR 1020120060126 A KR1020120060126 A KR 1020120060126A KR 20120060126 A KR20120060126 A KR 20120060126A KR 20130136617 A KR20130136617 A KR 20130136617A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
ionic liquid
acid
absorbent
based ionic
Prior art date
Application number
KR1020120060126A
Other languages
Korean (ko)
Other versions
KR101384538B1 (en
Inventor
백일현
박기태
유정균
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020120060126A priority Critical patent/KR101384538B1/en
Priority to PCT/KR2012/005916 priority patent/WO2013183808A1/en
Publication of KR20130136617A publication Critical patent/KR20130136617A/en
Application granted granted Critical
Publication of KR101384538B1 publication Critical patent/KR101384538B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/06Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D233/08Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms
    • C07D233/12Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D233/14Radicals substituted by oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/06Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D233/08Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms
    • C07D233/10Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • B01D2252/20473Cyclic amines containing an imidazole-ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/502Combinations of absorbents having two or more functionalities in the same molecule other than alkanolamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

Disclosed are immidazolium based ionic liquid functionalized with acid, and a method for the separation of carbon dioxide using the same. The immidazolium based ionic liquid functionalized with acid of the present invention has excellent carbon dioxide absorption ability, and the absorbed carbon dioxide is easily separated by heating. The immidazolium based ionic liquid is convenient to use, and can be used for collecting CO2 by having selectivity, thermal stability, repetitive usage capacity, and long usage lifetime.

Description

이산화탄소 분리용 산관능화된 이미다졸륨 이온성 액체 및 그 용도 {Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use}Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use}

본원은 양이온 기반의 이미다졸륨 이온성 액체 및 그 용도에 관한 것이다.
The present application relates to cation based imidazolium ionic liquids and uses thereof.

최근 몇 년간 배가스로부터 CO2를 분리하는 기술은 학술적, 산업적 측면에서 뿐 아니라 환경적으로 유익한 지속 가능 발전을 위해 중요성이 날로 증가하고 있다. 석탄, 석유, 천연가스 등이 주된 연료로 사용되는 상황에서 CO2의 생성은 피할 수 없다. 따라서 경제적인 CO2 분리 및 회수 기술의 개발은 CO2 저감을 위한 핵심 단계라 할 수 있다.In recent years, the technology of separating CO 2 from flue-gases is of increasing importance not only for academic and industrial reasons, but also for environmentally beneficial sustainable development. In the situation where coal, petroleum and natural gas are used as the main fuels, the production of CO 2 is inevitable. Therefore, the development of economical CO 2 separation and recovery technology is a key step for CO 2 reduction.

이산화탄소 분리 및 회수기술로는 화학적 흡수법, 물리적 흡수법 또는 분리막 분리법 등이 알려져 있으며, CO2 분리를 목적으로 천연가스나 석유, 각종 화학 산업에 널리 적용되고 있으며, 화학적 흡수법이 주로 사용된다. Chemical absorption, physical absorption, or membrane separation are known as carbon dioxide separation and recovery techniques, and are widely applied to natural gas, petroleum, and various chemical industries for the purpose of CO 2 separation, and chemical absorption is mainly used.

물리적 흡수 방법은 주로 가스 흐름 내 산성 가스(H2S, CO2, SO2)들의 농도가 높을 때 주로 선호된다. 물리 흡수제들은 산성 가스들과 높은 친화력을 가진 주로 비반응성의 극성 유기 화합물이 쓰인다. 대표적으로 메탄올, 프로필렌, 카보네이트, 설포네이트, N-포닐필롤리돈 (NMP)등이 물리 흡수에 주로 사용된다. 화학적 흡수의 경우는 일반적으로 잔존 산성 물질들을 제거하는데 사용된다. 일차, 이차, 삼차, 장애 아민, 가공된 아민 등의 액상 용액 등이 가장 널리 사용되고 있다. 장애 아민류는 종종 CO2와 H2S를 포함하는 가스에서 선택적 H2S 제거를 위해 사용되기도 한다. Physical absorption methods are mainly preferred when the concentration of acidic gases (H 2 S, CO 2 , SO 2 ) in the gas stream is high. Physical absorbers are mainly used as non-reactive polar organic compounds with high affinity with acid gases. Typically methanol, propylene, carbonate, sulfonate, N-ponylpyrrolidone (NMP), etc. are mainly used for physical absorption. In the case of chemical absorption, it is generally used to remove residual acidic substances. Liquid solutions such as primary, secondary, tertiary, hindered amines and processed amines are most widely used. Hindered amines are often used for selective H 2 S removal in gases containing CO 2 and H 2 S.

현재 CO2 흡수를 위한 가장 대표적인 방법은 알카놀아민류 특히 모노에탄올아민 (monoethanolamine, MEA), 디에탄올아민 (diethanolamine, DEA) 및 메틸디에탄올아민( methyldiethanolamine, MDEA) 등의 혼합 액상용액을 이용하는 화학적 흡수방법이다. MEA 기반 기술을 통해 약 75-90% 가량의 CO2 회수가 가능하며, 99% 이상의 고농도 CO2 가스 생산이 가능하다. Currently, the most representative method for CO 2 absorption is chemical absorption using mixed liquid solutions such as alkanolamines, especially monoethanolamine (MEA), diethanolamine (DEA) and methyldiethanolamine (MDEA). It is a way. MEA-based technology can recover approximately 75-90% of CO 2 and produce more than 99% of high concentrations of CO 2 gas.

하지만 아민 기반 기술의 이러한 높은 CO2 분리 효율에도 불구하고, 이 기술에는 장치의 부식 등의 문제로 인한 용액 내 아민 농도의 제약, 회수 가스로부터의 수분 제거, 휘발성으로 인한 흡수제 손실, 배가스 내 황 함유 물질이나 높은 열로 재생할 때 발생할 수 있는 흡수제 열화, 그리고 산소와 결합에 의한 흡수제 산화 등의 문제점을 가지고 있다. 따라서 휘발성 및 부식성이 없고 공정상 경제적일 뿐 아니라 환경적으로 유익한 흡수제의 개발을 필요로 한다. However, despite these high CO 2 separation efficiencies of amine-based technologies, these techniques include constraints on the concentration of amines in solution due to problems such as device corrosion, removal of moisture from recovered gases, loss of absorbents due to volatility, and sulfur content in flue gases. It has problems such as deterioration of absorbent which can occur when regenerating with material or high heat, and oxidation of absorbent by combining with oxygen. There is therefore a need for the development of absorbents that are not volatile and non-corrosive, process economical and environmentally beneficial.

이의 대안으로 제시된 것이 이온성액체이다. 이온성액체는 4차 암모늄(quaternary ammonium), 이미다졸륨(imidazolium), 피리디늄(pyridinium), 포스포늄 (phosphonium) 이온 등과 같은 의 커다란 유기 대칭 구조의 양이온과, 상대적으로 비대칭 구조의 작은 크기의 [Cl]-, [Br]-, [I]-, [BF4]-, [PF6]-, [Tf2N]- 등과 같은 무기물질 혹은 [RCO2]- 등의 유기 물질 등으로 구성되는 음이온으로 구성된다. 양이온과 음이온, 그리고 기능성 작용기 등의 무한한 조합을 통해 다양한 특성으로의 전환이 가능한 이온성액체의 특징으로 인하여 "디자이너 용매 (designer solvent)"라고도 불리운다. An alternative is the ionic liquid. Ionic liquids have large organic symmetric cations, such as quaternary ammonium, imidazolium, pyridinium, and phosphonium ions, and relatively small asymmetric structures Inorganic substances such as [Cl] - , [Br] - , [I] - , [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , or [RCO 2 ] - It consists of an anion comprised with organic substances, such as these. It is also called a "designer solvent" because of the ionic liquid's ability to convert into various properties through infinite combinations of cations, anions, and functional groups.

한국 등록특허 제0975897호는 트리알콕시히드록시포스포늄 카복실레이트계 이온성 액체를포함하는 이산화탄소 흡수제를 개시한다. 한국 공개특허공보2011-0080004는 함불소올레핀을 포함한 이마졸륨계 이온성액체를 이용한 이산화탄소 흡수제에 관하여 개시한다. 하지만 불소가 포함된 이온성액체의 경우 높은 CO2 흡수능을 기대할 수 있지만 생분해가 어려워 환경적으로 유해하다. 또한 이미다졸륨 양이온을 기반으로 이온성 액체와 [Cl]-, [BF4]-, [PF6]-, [CH3SO3]-, [CF3BF3]-, [C2F5BF3]- 음이온을 이용한 합성에 관한 연구가 수행되었으나, 이산화탄소 분리에 최적의 특성을 지닌 친수성의 열적으로도 안정하며, 낮은 용융점, 낮은 점도는 물론 반복적 사용이 가능한 새로운 이온성액체의 개발이 필요하다.
Korean Patent No. 0975897 discloses a carbon dioxide absorbent comprising a trialkoxyhydroxyphosphonium carboxylate-based ionic liquid. Korean Laid-Open Patent Publication No. 2011-0080004 discloses a carbon dioxide absorbent using an imazolium-based ionic liquid containing a fluorine-containing olefin. However, fluorine-containing ionic liquids can be expected to have high CO 2 absorption, but they are difficult to biodegrade and are environmentally harmful. Based on the imidazolium cation, ionic liquid and [Cl] - , [BF 4 ] - , [PF 6 ] - , [CH 3 SO 3 ] - , [CF 3 BF 3 ] - , [C 2 F 5 BF 3] - but performed synthesis using anionic, stable also thermally hydrophilic properties with optimum properties in the carbon dioxide separation, and low melting point, low viscosity, as well as the need for a new ionic development of a liquid capable of repeated use Do.

본원은 상술한 문제점을 해결하기 위해 안출된 것으로, 열적으로 안정하면서도, 수명이 길고, 고온 및 감압 조건에서 반복사용이 가능한 산관능화된 이미다졸륨기반 이온성액체를 제공하고자 한다.
The present invention has been made to solve the above problems, to provide an acid functionalized imidazolium-based ionic liquid that is thermally stable, long life, and can be repeatedly used at high temperature and reduced pressure conditions.

본원은 하기 화학식 1 로 표시되는 이산화탄소 흡수능을 갖는 산관능화된 이미다졸륨계 이온성 액체 화합물 [Cmmim][X]을 제공하며, The present application provides an acid functionalized imidazolium-based ionic liquid compound [Cmmim] [X] having a carbon dioxide absorption ability represented by the following Chemical Formula 1,

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [(CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, [CH3C6H4SO3]-, 또는 [C4F9SO3]- 이다.
Wherein X - is [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , [TfO] - , [DCA] - , [Cl] - , [Br] - , [I] - , [ NO 3] -, [SO 4 ] 2 -, [CF 3 COO] -, [CF 3 SO 2] -, [(CF 3 SO 2) 2 N] -, [SF 6] -, [(C 2 F 5 ) 3 PF 3 ] - , [N (SO 2 CF 3 ) 2 ] - , [CF 3 SO 3 ] - , [B (CN) 4 ] - , [N (CN) 2 ] - , [C (CN ) 3 ] - , [SCN] - , [HSO 4 ] - , [CH 3 SO 4 ] - , [C 2 H 5 SO 4 ] - , [C 4 H 9 SO 4 ] - , [C 6 H 13 SO 4 ] - , [B (C 2 O 4 ) 2 ] - , [CH 3 SO 3 ] - , [CH 3 C 6 H 4 SO 3 ] - , or [C 4 F 9 SO 3 ] - .

본원은 또한 본원에 따른 산관능화된 이미다졸륨계 이온성 액체 화합물을 포함하는 이산화탄소 흡수제를 제공한다. The application also provides a carbon dioxide absorbent comprising an acid functionalized imidazolium-based ionic liquid compound according to the invention.

본원은 또한 기체 혼합물에서 본원에 따른 이온성 액체 또는 이산화탄소 흡수제를 사용하여 이산화탄소를 흡수시키는 단계; 및 상기 이산화탄소 흡수제에 흡수된 이산화탄소를 탈기시키는 단계를 포함하는 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다. The present application also includes absorbing carbon dioxide in a gas mixture using the ionic liquid or carbon dioxide absorbent according to the present disclosure; And degassing the carbon dioxide absorbed by the carbon dioxide absorbent.

본원은 또한 탈기 후, 이산화탄소 흡수제를 재사용하는 단계를 추가로 포함하는 것인, 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다. The present disclosure also provides a method for separating carbon dioxide from a gas mixture, after degassing, further comprising reusing the carbon dioxide absorbent.

본원은 또한 상기 탈기 단계에서 이산화탄소 : 이온성액체가 이산화탄소 흡수단계에서 1:1의 몰비로 반응하는 것인, 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다.       The present application also provides a method of separating carbon dioxide from a gas mixture, in which the carbon dioxide: ionic liquid reacts in a molar ratio of 1: 1 in the carbon dioxide absorption step in the degassing step.

본원은 또한 상기 이산화탄소를 흡수시킬 때의 온도는 약 0 ℃ 내지 80 ℃인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다. The present application also provides a method for separating carbon dioxide from a gas mixture, wherein the temperature when absorbing the carbon dioxide is about 0 ° C to 80 ° C.

본원은 또한 상기 이산화탄소를 흡수시킬 때의 압력은 약 상압 내지 60 기압인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다. The present application also provides a method for separating carbon dioxide from a gas mixture, wherein the pressure when absorbing the carbon dioxide is about atmospheric pressure to about 60 atmospheres.

본원은 또한 상기 이산화탄소를 탈기시킬 때의 온도는 60 ℃ 내지 150 ℃인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다.
The present application also provides a method for separating carbon dioxide from a gas mixture, wherein the temperature when degassing the carbon dioxide is 60 ℃ to 150 ℃.

본원의 산으로 관능화된 이미다졸륨계 이온성 액체는 우수한 이산화탄소 흡수능을 가지며, 흡수된 이산화탄소는 가열 등을 통해 손쉽게 탈착이 가능하여, 사용의 편리성은 물론, 선택성, 열적 안정성 및 반복적 사용 및 오랜 사용수명으로 인해 CO2 포집에 유용하게 사용될 수 있다.
The imidazolium-based ionic liquid functionalized with the acid of the present invention has excellent carbon dioxide absorption ability, and the absorbed carbon dioxide can be easily desorbed through heating and the like, so that the ease of use, selectivity, thermal stability and repeated use and long use Its useful life makes it useful for CO 2 capture.

도 1은 30 ℃에서 상이한 이온성 액체의 압력에 따른 이산화탄소의 몰분획(χ)을 나타내는 그래프이다.
도 2는 50 ℃에서 상이한 이온성 액체에서 압력에 따른 이산화탄소의 몰분획(χ)을 나타내는 그래프이다.
도 3은 이산화탄소를 흡수한 [Cmmim][BF4], [Cmmim][PF6], [Cmmim][Tf2N], [Cmmim][TfO] 및 [Cmmim][DCA] 이온성 액체의 FTIR 스펙트럼을 나타낸다.
도 4는 이산화탄소를 흡수한 상이한 이온성 액체의 13C 스펙트럼이다: (a)[Cmmim][BF4], (b)[Cmmim][PF6], (c)[Cmmim][Tf2N], (d)[Cmmim][TfO] 및 (e)[Cmmim][DCA]임.
도 5는 산관능화된 이온성 액체의 이산화탄소 흡수 기전을 나타낸다.
도 6은 30 ℃에서 재생된 상이한 이온성 액체를 사용하여 측정된 압력에 따른 이산화탄소의 몰분획(χ)을 나타내는 그래프이다.
1 is a graph showing the mole fraction (χ) of carbon dioxide at different temperatures of 30 ° C. according to the pressure of different ionic liquids.
FIG. 2 is a graph showing the molar fraction χ of carbon dioxide with pressure in different ionic liquids at 50 ° C.
3 shows FTIR of [Cmmim] [BF 4 ], [Cmmim] [PF 6 ], [Cmmim] [Tf 2 N], [Cmmim] [TfO] and [Cmmim] [DCA] ionic liquids It shows the spectrum.
FIG. 4 is 13 C spectra of different ionic liquids absorbing carbon dioxide: (a) [Cmmim] [BF 4 ], (b) [Cmmim] [PF 6 ], (c) [Cmmim] [Tf 2 N] , (d) [Cmmim] [TfO] and (e) [Cmmim] [DCA].
5 shows the carbon dioxide absorption mechanism of acid functionalized ionic liquids.
FIG. 6 is a graph showing the molar fraction (χ) of carbon dioxide with pressure measured using different ionic liquids regenerated at 30 ° C.

본원은 하기 화학식 1로 표시되는 산으로 관능화된 이미다졸륨기반의 이온성액체에 관한 것이다. The present application relates to an imidazolium-based ionic liquid functionalized with an acid represented by the following formula (1).

[화학식 1] [Formula 1]

Figure pat00002
Figure pat00002

상기 식에서 X-는 상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [(CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, [CH3C6H4SO3]-, 또는 [C4F9SO3]- 이다. Wherein X - is wherein X - is [BF 4] -, [PF 6] -, [Tf 2 N] -, [TfO] -, [DCA] -, [Cl] -, [Br] -, [ I] -, [NO 3] -, [SO 4] 2 -, [CF 3 COO] -, [CF 3 SO 2] -, [(CF 3 SO 2) 2 N] -, [SF 6] -, [(C 2 F 5 ) 3 PF 3 ] - , [N (SO 2 CF 3 ) 2 ] - , [CF 3 SO 3 ] - , [B (CN) 4 ] - , [N (CN) 2 ] - , [C (CN) 3 ] - , [SCN] - , [HSO 4 ] - , [CH 3 SO 4 ] - , [C 2 H 5 SO 4 ] - , [C 4 H 9 SO 4 ] - , [ C 6 H 13 SO 4 ] - , [B (C 2 O 4 ) 2 ] - , [CH 3 SO 3 ] - , [CH 3 C 6 H 4 SO 3 ] - , or [C 4 F 9 SO 3 ] - a.

한 구현예에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]- 이다. In one embodiment X - is [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , [TfO] - , [DCA] - .

본원의 산관능화된 이미다졸륨기반의 이온성액체는 본원에서 사용된 음이온과 조합시 상온에서 액체상을 유지하면서 낮은 점도를 지닌다. The acid functionalized imidazolium-based ionic liquids of the present disclosure have a low viscosity while maintaining a liquid phase at room temperature in combination with the anions used herein.

나아가 본원은 상기 화학식 1의 산관능화된 이미다졸륨기반의 이온성액체화합물을 이용한 이산화탄소 흡수제에 관한 것이다. 본원의 이산화탄소 흡수제는 본원에 따른 산관능화된 이미다졸륨기반의 이온성액체 화합물을 1종 이상 포함할 수 있다.     Furthermore, the present application relates to a carbon dioxide absorbent using the acid functionalized imidazolium-based ionic liquid compound of Formula 1. The carbon dioxide absorbent of the present disclosure may include one or more acid functionalized imidazolium based ionic liquid compounds according to the present disclosure.

본 발명에 따른 산관능화된 이미다졸륨계 이온성액체 화합물을 이용한 이산화탄소 흡수제는 이산화탄소와 화학적 결합을 통해 이를 흡수한다. 이산화탄소를 흡수하기 위한 흡수제는 화학적 흡수제와 물리적 흡수제로 구분된다. 화학적 흡수제는 이산화탄소와 흡수제 간의 화학적 결합에 의하여 흡수되므로 이산화탄소의 압력이 낮은 범위에서 흡수가 가능하다. 그러나 물리적 흡수는 압력에 의하여 흡수와 재생이 되므로 분리하고자 하는 가스에 압력이 수반되어야 한다. 따라서 화학적 흡수는 일반적으로 화석연료를 연소할 때 발생되는 이산화탄소를 분리하는데 유리하다.The carbon dioxide absorbent using the acid functionalized imidazolium-based ionic liquid compound according to the present invention absorbs it through a chemical bond with carbon dioxide. Absorbents for absorbing carbon dioxide are classified into chemical and physical absorbents. Since the chemical absorbent is absorbed by the chemical bond between the carbon dioxide and the absorbent, it is possible to absorb the carbon dioxide in a low range. However, since physical absorption is absorbed and regenerated by pressure, the gas to be separated must be accompanied by pressure. Therefore, chemical absorption is generally advantageous for separating the carbon dioxide produced when burning fossil fuels.

또한 산소 원자의 고립 전자쌍이 친핵적(nucleophilic)으로 CO2의 탄소 원자를 공격하여 무수물을 형성하는 것을 확인하였다. 이는 1몰의 CO2가 1몰의 이온성액체와 반응하는 1:1 메카니즘을 가지고 있다. 일반적으로 아민(RNH2)과 이산화탄소가 반응하면 카바메이트(2RNH2+CO2 = RNHCOO-.RNH3 +)를 형성하고, 아민과 이산화탄소와 물이 반응하면 바이카보네이트(2RNH2+CO2+H2O = RNH3 +.HCO3 -+RNH2) 한다. 이때 아민과 이산화탄소의 반응은 아민과 이산화탄소와 2:1 몰 반응으로 카바메이트가 형성되어 반응속도를 매우 증가시키는 장점을 가지고 있다. 그리나 2몰의 아민에 1몰의 이산화탄소가 흡수되므로 단위 아민 당 이산화탄소 흡수량은 낮다. 그러나 산(-COOH) 관능기를 이용한 이산화탄소 분리시 이온성액체와 이산화탄소가 1:1 몰 반응을 하므로 단위 이온성액체 당 이산화탄소의 흡수능은 아민 형태보다 매우 높다는 장점을 가지고 있다.It was also confirmed that lone pairs of oxygen atoms nucleophilic attack carbon atoms of CO 2 to form anhydrides. It has a 1: 1 mechanism by which one mole of CO 2 reacts with one mole of ionic liquid. Generally, the reaction of amine (RNH 2 ) with carbon dioxide forms carbamate (2RNH 2 + CO 2 = RNHCOO - .RNH 3 + ), and the reaction of amine with carbon dioxide and water produces bicarbonate (2RNH 2 + CO 2 + H The + RNH 2) - 2 O = RNH 3 + .HCO 3. At this time, the reaction of the amine and carbon dioxide has the advantage that the carbamate is formed by the 2: 1 molar reaction with the amine and carbon dioxide to increase the reaction rate very much. However, since 1 mole of carbon dioxide is absorbed by 2 moles of amine, the amount of carbon dioxide absorbed per unit amine is low. However, since the ionic liquid and carbon dioxide have a 1: 1 molar reaction when the carbon dioxide is separated using an acid (-COOH) functional group, the absorption capacity of carbon dioxide per unit ionic liquid is much higher than that of the amine type.

또한, 본 발명에 따른 산관능화된 이미다졸륨계 이온성액체 화합물은 유기용매 흡수제보다 훨씬 높은 이산화탄소 흡수능을 보여주며, 본원에 따른 일 실시예에서 이산화탄소 흡수 실험에서 0.9 몰분율 이상의 이산화탄소 흡수량을 나타냈다. 본 발명에서는 양이온 이미다졸의 측쇄를 카르복실기로 치환하여 이산화탄소와 반응을 직접 할 수 있도록 하였다. 따라서 기존의 이온성액체는 양이온과 음이온의 상호작용에 의한 물리적인 힘에 의하여 이산화탄소를 분리할 수 있으나, 본 발명에서는 화학적 결합에 의하여 이산화탄소를 분리할 수 있는 기능을 추가하여 기존보다 이산화탄소 흡수능을 증가시켰다. 따라서 본 발명에 따른 이미다졸륨계 이온성액체 화합물을 흡수제로 사용하는 경우, 흡수제의 순환속도를 낮출 수 있어 장치의 크기를 획기적으로 줄일 수 있다.
In addition, the acid-functionalized imidazolium-based ionic liquid compound according to the present invention shows a much higher carbon dioxide absorption capacity than the organic solvent absorbent, and in one embodiment according to the present invention showed a carbon dioxide absorption amount of more than 0.9 mole fraction. In the present invention, the side chain of the cationic imidazole is substituted with a carboxyl group to directly react with carbon dioxide. Therefore, the conventional ionic liquid can separate the carbon dioxide by the physical force by the interaction of the cation and the anion, but in the present invention by adding a function that can separate the carbon dioxide by chemical bonding increases the carbon dioxide absorption capacity than conventional. I was. Therefore, when the imidazolium-based ionic liquid compound according to the present invention is used as an absorbent, the circulation rate of the absorbent can be lowered and the size of the device can be drastically reduced.

또한, 본 발명에 따른 이미다졸륨계 이온성액체 화합물을 이산화탄소 흡수제로 사용하는 경우, 흡수제의 손실이 거의 없다. 본 발명에 따른 이미다졸륨계 이온성액체 화합물은 화학적으로 안정하기 때문에 분해에 의한 이산화탄소 흡수제의 손실 아주 낮다. 또한, 재사용 실험시 본 발명에 따른 이미다졸륨계 이온성액체 화합물은 10회 흡수-탈기 실험을 반복할 때에도 이산화탄소 흡수능의 저하가 관찰되지 않아 재사용이 가능하다. 따라서, 본 발명에 따른 이온성액체 화합물은 우수한 이산화탄소 흡수능을 보유하고 있을 뿐만 아니라, 흡수된 이산화탄소의 탈기도 비교적 낮은 온도에서 수행할 수 있으며, 반복 사용시에도 흡수능의 감소가 거의 없어 이산화탄소 흡수제로서 효과적으로 사용될 수 있다.
In addition, when the imidazolium-based ionic liquid compound according to the present invention is used as a carbon dioxide absorbent, there is almost no loss of the absorbent. Since the imidazolium-based ionic liquid compound according to the present invention is chemically stable, the loss of carbon dioxide absorbent by decomposition is very low. In addition, the imidazolium-based ionic liquid compound according to the present invention in the re-use experiment can be reused because the deterioration of carbon dioxide absorption is not observed even when repeated 10 times the absorption-degassing experiment. Therefore, the ionic liquid compound according to the present invention not only possesses excellent carbon dioxide absorption ability, but can also perform degassing of absorbed carbon dioxide at a relatively low temperature, and there is almost no decrease in absorption capacity even after repeated use, so that it can be effectively used as a carbon dioxide absorbent. Can be.

또한, 다른 양태에서 본원은 기체 혼합물에서 상기 화학식 1의 산관능화된 이미다졸륨계 이온성액체 화합물을 포함하는 이산화탄소 흡수제를 사용한 이산화탄소 분리방법에 관한 것이다. 상기 방법은 본원의 산관능화된 이미다졸륨계 이온성액체 화합물을 포함하는 이산화탄소 흡수제를 이용하여 이산화탄소를 흡수시키는 단계 및 상기 이산화탄소 흡수제에 흡수된 이산화탄소를 탈기시키는 단계를 포함하다. In another aspect, the present invention relates to a method for separating carbon dioxide using a carbon dioxide absorbent comprising an acid functionalized imidazolium-based ionic liquid compound of Formula 1 in a gas mixture. The method includes absorbing carbon dioxide using a carbon dioxide absorbent comprising an acid functionalized imidazolium-based ionic liquid compound of the present application and degassing carbon dioxide absorbed in the carbon dioxide absorbent.

본원에 따른 이산화탄소 흡수제를 사용하는 방법에 있어서, 이산화탄소 분리에 관한 공지의 공정이 적용될 수 있으며, 예를 들면 "Energy saving in a CO2 capture plant by MEA scrubbing", chemical engineering research and design, 89, p1676-1683 (2011), "Stripper configurations for CO2 capture by aqueous monoethanolamine", chemical engineering research and design 89, p1639-1646 (2011)에 기재된 것을 참조할 수 있다. In the method using the carbon dioxide absorbent according to the present application, a known process for separating carbon dioxide may be applied, for example "Energy saving in a CO2 capture plant by MEA scrubbing", chemical engineering research and design, 89, p1676-1683 (2011), "Stripper configurations for CO2 capture by aqueous monoethanolamine", chemical engineering research and design 89, p1639-1646 ( See 2011).

예를 들면 기체 혼합물에서 본원에 따른 이산화탄소 흡수제를 사용하여 흡수탑에서 이산화탄소를 흡수시키는 단계; 상기 이산화탄소를 흡수한 흡수제를 탈기탑으로 이동하는 단계; 및 상기 이산화탄소 흡수제에 흡수된 이산화탄소를 탈기탑에서 탈기시키는 단계를 포함한다.       Absorbing carbon dioxide in the absorption tower using, for example, a carbon dioxide absorbent according to the present invention in a gas mixture; Moving the absorbent absorbing the carbon dioxide to a degassing column; And degassing the carbon dioxide absorbed by the carbon dioxide absorbent in a degassing column.

또한 본원에 따른 방법은 상기 탈기된 이산화탄소 흡수제를 재사용하기 위해 흡수탑으로 이동하는 단계를 추가로 포함할 수 있다. The method according to the present application may further comprise the step of moving to an absorption tower to reuse the degassed carbon dioxide absorbent.

본 발명에 따른 기체 혼합물로부터 이산화탄소를 분리하는 방법에 있어서, 이산화탄소를 흡수시킬 때의 바람직한 온도는 약 0 ℃ 내지 약 80 ℃ 범위 , 특히 약 20 ℃ 내지 약 60 ℃ 범위이고 , 바람직한 압력은 상압 내지 약 80 기압, 특히 상압 내지 60기압이다. 이산화탄소를 흡수시킬 때 온도는 낮을수록, 압력은 높을수록 이산화탄소 흡수량이 증가한다. In the process for separating carbon dioxide from a gas mixture according to the invention, the preferred temperature when absorbing carbon dioxide is in the range of about 0 ° C. to about 80 ° C., in particular in the range of about 20 ° C. to about 60 ° C., and the preferred pressure is from atmospheric to about 80 atm, especially atmospheric to 60 atm. When absorbing carbon dioxide, the lower the temperature and the higher the pressure, the higher the amount of carbon dioxide absorption.

본 발명에 따른 기체 혼합물로부터 이산화탄소를 분리하는 방법에 있어서, 흡수된 이산화탄소를 탈기시킬 때의 바람직한 온도는 약 60 내지 약 150 ℃ 범위, 보다 바람직하게는 약 70 내지 약 130 ℃ 범위이고, 바람직한 압력은 상압 내지 약 20 파스칼(Pa)이다. 본 발명에 따른 기체 혼합물로부터 이산화탄소를 분리하는 방법에 있어서, 상기 기체 혼합물로는 화석연료를 연소할 때 발생되는 이산화탄소를 포함하는 기체, 예를 들면 화학공장, 발전소, 대형 보일러 등에서 배출되는 배기가스, 천연가스 등이 사용될 수 있으나, 이로 제한하는 것은 아니다.
In the process for separating carbon dioxide from a gas mixture according to the invention, the preferred temperature when degassing the absorbed carbon dioxide is in the range of about 60 to about 150 ° C, more preferably in the range of about 70 to about 130 ° C, and the preferred pressure is Atmospheric pressure to about 20 Pascals (Pa). In the method for separating carbon dioxide from the gas mixture according to the present invention, the gas mixture includes a gas containing carbon dioxide generated when burning fossil fuel, for example, an exhaust gas discharged from a chemical plant, a power plant, a large boiler, Natural gas and the like may be used, but is not limited thereto.

이하, 본 발명을 하기의 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시할 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by the following examples. However, the following examples merely illustrate the present invention, and the contents of the present invention are not limited by the following examples.

실시예Example

실시예Example 1 이온성 액체의 합성  Synthesis of 1 ionic liquid

본원 실시예에 사용된 모노클로로아세트산 (Monochloroaceticacid, ClCH2COOH), 1-메틸이미다졸 (1-methylimidazole), 아세토니트릴, 메탄올, 소디움 테트라플루오로보레이트(sodium tetrafluoroborate (NaBF4)), 마그네슘 설페이트 (magnesium sulfate (MgSO4)), 포타슘 헥사플루오로포스페이트 (potassium hexafluorophosphate (KPF6)), 리티움 비스[(트리플루오로메틸)설포닐]아마이드 (Lithium bis[(trifluoromethyl)sulfonyl] amide Li(Tf2N)), 소디움 트리플루오로메틸설포네이트 (sodium trifluoromethylsulfonate Na(TfO)), 소디움 디시아나미드 (sodium dicyanamide (Na(DCA)) 들은 Sigma-Aldrich 사에서 구입하였으며 추가적인 정제는 하지 않았다.
Monochloroacetic acid (ClCH 2 COOH), 1-methylimidazole, acetonitrile, methanol, sodium tetrafluoroborate (NaBF 4 ), magnesium sulfate used in the examples herein (magnesium sulfate (MgSO 4 )), potassium hexafluorophosphate (KPF 6 )) , lithium bis [(trifluoromethyl) sulfonyl] amide Li (Tf) 2 N)), sodium trifluoromethylsulfonate Na (TfO) and sodium dicyanamide (Na (DCA)) were purchased from Sigma-Aldrich and did not undergo further purification.

이하 본원의 이온성액체의 합성은 기존 문헌에 보고된 방법을 이용하였다( Z. Fei, D. Zhao, T.J. Geldbach, R. Scopelliti, P.J. Dyson, Bracidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination, Chemistry, A European Journal 10 (2004) 4886-4893).Hereinafter, the synthesis of the ionic liquids of the present application was performed using methods reported in the existing literature (Z. Fei, D. Zhao, TJ Geldbach, R. Scopelliti, PJ Dyson, Bracidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination , Chemistry, A European Journal 10 (2004) 4886-4893).

단, 1-메틸이미다졸의 알킬화반응은 잔존 할로겐 양을 줄이기 위해 약간 과량(당량비 1.1)의 NaBF4, KPF6, Li(Tf2N), Na(TfO), Na(DCA)과의 할로겐(Cl, Br) 치환을 통해 알킬할라이드를 이용하여 진행되었다.
However, the alkylation of 1-methylimidazole was carried out with a slight excess (equivalent ratio 1.1) of NaBF 4 , KPF 6 , Li (Tf 2 N), Na (TfO) and Na ( DCA) to reduce the amount of halogen remaining. (Cl, Br) substitution was performed using an alkyl halide.

실시예Example 1-1 [ 1-1 [ CmmimCmmim ][] [ ClCl ]의 합성 ] Synthesis of

환류 증류기가 장착된 원형 바닥 플라스크에 50ml의 아세토니트릴을 주입한 후 추가로 모노클로로아세트산 (6.73 g, 0.10 mol)과 1- 메틸이미다졸(12.3g, 0.15mol)을 주입한 후, 약 80℃에서 24시간 동안 교반해 주었다. 이어 원형 플라스크에 300∼500mmHg의 진공을 걸어주면서 50℃ 내지 100℃에서 가열하면서 용매를 제거하였다. 이때 약간 노란색 물질인 [Cmmim][Cl]이 합성되었으며, 수율은 82%이며 수분의 함량은 3.66μg(H2O)ml-1 (RTIL, romm temperature ionic liquid, 상온에서 액상을 유지하는 이온성액체)이었다. 50 ml of acetonitrile were injected into a round bottom flask equipped with a reflux distillation, followed by additional injection of monochloroacetic acid (6.73 g, 0.10 mol) and 1-methylimidazole (12.3 g, 0.15 mol). Stir at 24 ° C. for 24 hours. The solvent was then removed while heating at 50 ° C. to 100 ° C. while applying a vacuum of 300 to 500 mmHg to the round flask. At this time, a slightly yellow substance [Cmmim] [Cl] was synthesized, the yield was 82%, and the water content was 3.66μg (H 2 O) ml -1 (RTIL, romm temperature ionic liquid, ionic liquid to keep the liquid at room temperature Liquid).

Figure pat00003

Figure pat00003

실시예 1-2 [Cmmim][BFExample 1-2 [Cmmim] [BF 44 ]의 합성] Synthesis of

[Cmmim][Cl] (27.00 g, 0.15 mol)와 NaBF4 (19.00 g, 0.17 mol)를 250ml 용량의 엘렌마이어 플라스크에 넣고, 여기에 150ml의 메탄올을 추가하여 혼합하였다. 이 혼합물을 상온에서 24시간 교반해주었다. 이어 생성된 불순물이 포함된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 여과한 후 여과된 이온성액체를 100ml의 메탄올을 이용하여 2번 세척하였다. 세척된 이온성액체를 MgSO4를 이용해 건조하였다. 이어 건조된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 재여과 하였다. 최종적으로 진공 조건에서 용매를 제거한 후 약한 갈색의 액상 이온성액체(37.00g, 수율 91%)을 수득하였으며, 수분 함량은 2.37 μg (H2O)ml-1 (RTIL)이었다. [Cmmim] [Cl] (27.00 g, 0.15 mol) and NaBF 4 (19.00 g, 0.17 mol) were placed in a 250 ml Elenmeyer flask, and 150 ml of methanol was added thereto and mixed. The mixture was stirred at room temperature for 24 hours. Subsequently, the generated ionic liquid containing impurities was filtered using a filter equipped with an aspirator, and then the filtered ionic liquid was washed twice with 100 ml of methanol. The washed ionic liquid was dried using MgSO 4. The dried ionic liquid was then filtered again using a filtration device equipped with an aspirator. Finally, the solvent was removed under vacuum, and a weak brown liquid ionic liquid (37.00 g, 91% yield) was obtained. The water content was 2.37 μg (H 2 O) ml −1 (RTIL).

Figure pat00004

Figure pat00004

실시예 1-3 [Cmmim][PFExample 1-3 [Cmmim] [PF 66 ]의 합성 ] Synthesis of

[Cmmim][Cl] (27.00 g, 0.15 mol)와 KPF6(31.00 g, 0.17 mol)를 250ml 용량의 엘렌마이어 플라스크에 넣고, 여기에 150ml의 메탄올을 추가하여 혼합하였다. 이 혼합물을 상온에서 24시간 교반해주었다. 이어 생성된 불순물이 포함된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 여과한 후 여과된 이온성액체를 100ml의 메탄올을 이용하여 2번 세척하였다. 세척된 이온성액체를 MgSO4를 이용해 건조하였다. 이어 건조된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 재여과 하였다. 최종적으로 진공 조건에서 용매를 제거한 후 짙은 갈색의 액상 이온성액체(37.00g, 수율 91%)을 수득하였으며, 수분 함량은 1.92μg (H2O)ml-1 (RTIL)이었다. [Cmmim] [Cl] (27.00 g, 0.15 mol) and KPF 6 (31.00 g, 0.17 mol) were placed in a 250 ml Elenmeyer flask, and 150 ml of methanol was added thereto and mixed. The mixture was stirred at room temperature for 24 hours. Subsequently, the generated ionic liquid containing impurities was filtered using a filter equipped with an aspirator, and then the filtered ionic liquid was washed twice with 100 ml of methanol. The washed ionic liquid was dried using MgSO 4. The dried ionic liquid was then filtered again using a filtration device equipped with an aspirator. Finally, after removing the solvent in a vacuum condition, a dark brown liquid ionic liquid (37.00g, 91% yield) was obtained, the water content was 1.92μg (H 2 O) ml -1 (RTIL).

Figure pat00005

Figure pat00005

실시예 1-4 [Cmmim][NTfExample 1-4 [Cmmim] [NTf 22 ]의 합성] Synthesis of

[Cmmim][Cl] (27.00 g, 0.15 mol)와 Li(Tf2N)(48.80 g, 0.17 mol)를 250ml 용량의 엘렌마이어 플라스크에 넣고, 여기에 150ml의 메탄올을 추가하여 혼합하였다. 이 혼합물을 상온에서 24시간 교반해주었다. 이어 생성된 불순물이 포함된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 여과한 후 여과된 이온성액체를 100ml의 메탄올을 이용하여 2번 세척하였다. 세척된 이온성액체를 MgSO4를 이용해 건조하였다. 이어 건조된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 재여과 하였다. 최종적으로 진공 조건에서 용매를 제거한 후 약한 갈색의 액상 결과물(37.00g, 수율 91%)을 수득하였으며, 수분 함량은 1.88μg (H2O)ml-1 (RTIL)이었다.

Figure pat00006

[Cmmim] [Cl] (27.00 g, 0.15 mol) and Li (Tf2N) (48.80 g, 0.17 mol) were placed in a 250 ml Elenmeyer flask, and 150 ml of methanol was added thereto and mixed. The mixture was stirred at room temperature for 24 hours. Subsequently, the generated ionic liquid containing impurities was filtered using a filter equipped with an aspirator, and then the filtered ionic liquid was washed twice with 100 ml of methanol. The washed ionic liquid was dried using MgSO 4. The dried ionic liquid was then filtered again using a filtration device equipped with an aspirator. Finally, the solvent was removed in vacuo and a light brown liquid product (37.00 g, 91% yield) was obtained and the water content was 1.88 μg (H 2 O) ml −1 (RTIL).
Figure pat00006

실시예Example 1-5 [ 1-5 [ CmmimCmmim ][] [ TfOTfO ]의 합성] Synthesis of

[Cmmim][Cl] (27.00 g, 0.15 mol)와 Na(Tf0)(29.24 g, 0.17 mol)를 250ml 용량의 엘렌마이어 플라스크에 넣고, 여기에 150ml의 메탄올을 추가하여 혼합하였다. 이 혼합물을 상온에서 24시간 교반해주었다. 이어 생성된 불순물이 포함된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 여과한 후 여과된 이온성액체를 100ml의 메탄올을 이용하여 2번 세척하였다. 세척된 이온성액체를 MgSO4를 이용해 건조하였다. 이어 건조된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 재여과 하였다. 최종적으로 진공 조건에서 용매를 제거한 후 약한 갈색의 액상 결과물(37.00g, 수율 91%)을 수득하였으며, 수분 함량은 1.78μg (H2O)ml-1 (RTIL)이었다.[Cmmim] [Cl] (27.00 g, 0.15 mol) and Na (Tf0) (29.24 g, 0.17 mol) were placed in a 250 ml Elenmeyer flask, and 150 ml of methanol was added thereto and mixed. The mixture was stirred at room temperature for 24 hours. Subsequently, the generated ionic liquid containing impurities was filtered using a filter equipped with an aspirator, and then the filtered ionic liquid was washed twice with 100 ml of methanol. The washed ionic liquid was dried using MgSO 4. The dried ionic liquid was then filtered again using a filtration device equipped with an aspirator. Finally, the solvent was removed in vacuo to yield a light brown liquid product (37.00 g, 91% yield) with a water content of 1.78 μg (H 2 O) ml −1 (RTIL).

Figure pat00007

Figure pat00007

실시예 1-6 [Cmmim][DCA]의 합성Example 1-6 Synthesis of [Cmmim] [DCA]

[Cmmim][Cl] (27.00 g, 0.15 mol)와 Na(DCA)(15.13 g, 0.17 mol)를 250ml 용량의 엘렌마이어 플라스크에 넣고, 여기에 150ml의 메탄올을 추가하여 혼합하였다. 이 혼합물을 상온에서 24시간 교반해주었다. 이어 생성된 불순물이 포함된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 여과한 후 여과된 이온성액체를 100ml의 메탄올을 이용하여 2번 세척하였다. 세척된 이온성액체를 MgSO4를 이용해 건조하였다. 이어 건조된 이온성액체를 아스피레이터가 장착된 여과장치를 이용하여 재여과 하였다. 최종적으로 진공 조건에서 용매를 제거한 후 약한 갈색의 액상 결과물(37.00g, 수율 91%)을 수득하였으며, 수분 함량은 1.86μg (H2O)ml-1 (RTIL)이었다.[Cmmim] [Cl] (27.00 g, 0.15 mol) and Na (DCA) (15.13 g, 0.17 mol) were placed in a 250 ml Elenmeyer flask, and 150 ml of methanol was added thereto and mixed. The mixture was stirred at room temperature for 24 hours. Subsequently, the generated ionic liquid containing impurities was filtered using a filter equipped with an aspirator, and then the filtered ionic liquid was washed twice with 100 ml of methanol. The washed ionic liquid was dried using MgSO 4. The dried ionic liquid was then filtered again using a filtration device equipped with an aspirator. Finally, the solvent was removed in vacuo to yield a light brown liquid product (37.00 g, 91% yield) with a water content of 1.86 μg (H 2 O) ml −1 (RTIL).

Figure pat00008

Figure pat00008

실시예Example 2 합성된  2 synthesized 이온성액체의Ionic liquid 특성 규명 Characterization

Bruker Avance-700 FT NMR 스펙트로포토미터를 이용해 1H 및 13C NMR 스펙트럼을 측정하였으며 용매로는 [D6]아세톤을 사용하였다. 화학이동(Chemical Shift) 값은 TMS internal 규격에 기반하여 ppm 단위로 나타내었다. 샘플의 질량은 Hewlett Packard 1100 Series, 매스 스펙트로포토미터, Agilent 1200 Series로 측정되었다. FT-IR spectra는 Thermo, Model: Nicolet 6700로 측정되었다. 성분 원소 분석 (C, H, N)은 Thermo Finnigan Flash EA-2000 Elemental Analyzer (EA)를 이용하였다. 이온성액체내 수분 함유량은 Karl-Fischer titration (Mitsubishi Chem., model CA-07)을 이용하였다. 실시예에 사용된 모든 염은 진공조건에서 약 70-100℃ 온도에서 가열하여, 24시간 건조 후 사용하였다. TGA 실험은 thermal analysis system (Mettler Toledo, Model: TGA/SDTA 85 1e)을 사용하여 수행되었다. 평균 시료의 중량은 약 5mg으로 이를 플라티늄 팬에 놓고 N2 분위기에서 30℃에서 100℃까지 약 10℃/min의 승온 속도로 가열하였다. 각 액상 염의 밀도는 25℃에서 1.0mL의 각 샘플을 3번씩 측정하였다. 점도 측정은 점도계 (Brookfield, model DV-III+)을 이용해 측정하였으며 각 0.6ml의 샘플을 10, 20, 30℃에서 각각 측정하였다. 결과는 표 1에 있다. 1 H and 13 C NMR spectra were measured using a Bruker Avance-700 FT NMR spectrophotometer, and [D 6 ] acetone was used as the solvent. Chemical shift values are expressed in ppm based on the TMS internal specification. The mass of the sample was measured with a Hewlett Packard 1100 Series, Mass Spectrophotometer, Agilent 1200 Series. FT-IR spectra were measured with Thermo, Model: Nicolet 6700. Component elemental analysis (C, H, N) was performed using the Thermo Finnigan Flash EA-2000 Elemental Analyzer (EA). The water content of the ionic liquid was Karl-Fischer titration (Mitsubishi Chem., Model CA-07). All the salts used in the examples were heated at a temperature of about 70-100 ° C. under vacuum and used after drying for 24 hours. TGA experiments were performed using a thermal analysis system (Mettler Toledo, Model: TGA / SDTA 85 1e). The average sample weighed about 5 mg and was placed in a platinum pan and heated at an elevated temperature rate of about 10 ° C./min from 30 ° C. to 100 ° C. in an N 2 atmosphere. The density of each liquid salt was measured three times for 1.0 mL of each sample at 25 ° C. Viscosity measurements were performed using a viscometer (Brookfield, model DV-III +) and 0.6 ml of each sample was measured at 10, 20 and 30 ° C, respectively. The results are in Table 1.

[표 1] [Table 1]

Figure pat00009
Figure pat00009

일반적으로 음이온이 동일할 때 이온성액체의 밀도는 양이온의 1-알킬(알킬에테르) 고리의 길이가 감소할수록 증가한다. [CmOnmim]+ 기반 이온성액체의 밀도는 이와 유사한 [Cmmim]+ 기반 이온성액체들보다 약간 더 높으며 예로, (C2O>C3), (C3O>C4)이다. 반면 양이온이 동일할 때, 밀도는 음이온의 크기에 비례하여 증가한다. 서로 다른 음이온들에 따른 측정된 [C2Omim][X]의 밀도 경향은 다음과 같다.In general, when the anions are the same, the density of the ionic liquid increases as the length of the cation's 1-alkyl (alkylether) ring decreases. The density of [C m O n mim] + based ionic liquids is slightly higher than similar [C m mim] + based ionic liquids, for example (C 2 O> C 3 ), (C 3 O> C 4 )to be. On the other hand, when the cations are the same, the density increases in proportion to the size of the anion. The density trend of [C 2 Omim] [X] measured by different anions is as follows.

Tf2N- > PF6 - > TfO- > BF4 - > Cl- > DCA- Tf 2 N - > PF 6 -> TfO -> BF 4 -> Cl -> DCA -

[Tf2N]- 음이온을 갖는 이온성액체는 [DCA]- 음이온을 갖는 이온성액체와 비교해 더 높은 밀도를 갖는다. 그러나 [C2F5BF3]를 포함하는 이온성액체의 경우 [Tf2]- 이온성액체와 거의 동일한 밀도를 갖는다. 이 결과를 바탕으로 이들 이온성액체들은 양이온과 음이온의 약간의 변경을 통해 원하는 특성으로의 변형이 가능함을 확인할 수 있었다.[Tf 2 N] - ionic liquids having an anion [DCA] - has a higher density compared to the ionic liquid having an anion. However, the ionic liquid containing [C 2 F 5 BF 3] [Tf 2] - has substantially the same density and the ionic liquid. Based on these results, these ionic liquids could be transformed into the desired properties through slight changes of cations and anions.

이온성액체의 점도는 음이온의 종류에 강하게 의존적이며, 수소 결합을 형성하려는 경향과 Van der Waals interaction (분산, 반발 작용)에 의해 기본적으로 결정된다. 이미다졸륨 이온성액체의 경우 양이온의 알킬고리가 길수록 Van der Waals 인력이 증가하여 높은 점도를 갖는 반면, 음이온의 전하 비편재화는 양이온의 수소 결합을 약화시킴에 따라 점도를 낮추는 경향을 보인다. 또한, 고른 전하 분포를 보이고 평평한 모양을 갖는 음이온의 경우(e.g., [F(HF)2.3]-, [N(CN)2]-, [C(CN)3]-)나 비균일한 모양의 음이온을 갖는 경우(e.g., [Al2Cl7], [(CF3SO2)(CF3CO)N]-, [(CF3SO2)2N]-) 이온성액체의 밀도가 낮은 경향을 보이는 반면, 높은 대칭 구조(e.g., BF4 -, PF6 -, AsF6 -, SbF6 -, TaF6 -)를 갖는 경우 약한 조직화 능력에도 불구하고 높은 점도 혹은 높은 용융점을 갖는다. 이들 점도 데이터는 표 1에 나타내었다.The viscosity of an ionic liquid is strongly dependent on the type of anion and is basically determined by the tendency to form hydrogen bonds and the van der Waals interaction. In the case of imidazolium ionic liquids, the van der Waals attraction increases as the alkyl ring of the cation increases, whereas charge delocalization of the anion tends to decrease the viscosity as it weakens the hydrogen bond of the cation. Also, for anions with even charge distribution and flat shapes (eg, [F (HF) 2.3 ] - , [N (CN) 2 ] - , [C (CN) 3 ] - ), Having an anion (eg, [Al 2 Cl 7 ], [(CF 3 SO 2 ) (CF 3 CO) N] - , [(CF 3 SO 2) 2 N] -) , while the density of ionic liquids exhibit a low tendency, high symmetry (eg, BF 4 -, PF 6 -, AsF 6 -, SbF 6 -, TaF 6 -) It has a high viscosity or high melting point despite its weak organizing ability. These viscosity data are shown in Table 1.

음이온이 동일할 경우 서로 다른 양이온에 대한 이온성액체의 측정된 점도 경향은 다음과 같다:When the anions are identical, the measured viscosity trends of ionic liquids for different cations are:

Cl- > PF6 - > BF4 - > TfO- > CF3BF3 > C2F5BF3 > Tf2N- > DCA- Cl -> PF 6 -> BF 4 -> TfO -> CF 3 BF 3> C 2 F 5 BF 3> Tf 2 N -> DCA -

이러한 결과는 이온성액체의 점도는 음이온에 의해 주로 결정되는 것을 증명한다. [DCA]- 음이온을 가진 이온성액체는 가장 낮은 점도를 보였고, [PF6]- 음이온을 포함한 이온성액체는 가장 높은 점도를 갖는 것을 확인하였다.
These results demonstrate that the viscosity of the ionic liquid is mainly determined by the anion. [DCA] - ionic liquids with the anion showed the lowest viscosity, [PF6] - ionic liquid containing the anion was confirmed that with the highest viscosity.

실시예Example 3 이산화탄소 등온 흡수 곡선 측정 및 기전 규명 3 Measurement and mechanism of isothermal absorption curve of carbon dioxide

등체적(isochoric) 포화 기술을 이용하여 이산화탄소의 등온 흡착 곡선을 각 30, 50℃에서 측정하였다. 측정 장치의 주요 부분으로는 가스 저장소, 온도 조절장치, 압력 게이지, 등체 셀, 진공 펌프, 자석 교반기 등이 있다. 실험 온도는 각 셀의 히팅자켓안에 있는 보정된 플라티늄 저항성 온도계로 측정되었으며 오차 범위는 ±0.1 ℃이었다. 실험 측정 압력의 오차는 ±0.001 bar이었다. 실험시 약 2ml 가량의 이온성액체를 등체적 셀(isochoric cell)에 주입 후 진공 펌프를 이용해 내부 공기를 제거한 후 가스 저장소에 있던 CO2를 주입 후 이온성액체를 교반해주었다. 이 시스템은 이후 약 2시간 가량 압력 변동이 없을 시 평형 상태에 도달한다고 가정하였다. 셀의 무게는 전자저울(Sartorius BS224S)로 측정하였으며 ±0.0001 g의 오차 범위를 갖는다. 이온성액체의 이산화탄소 흡수능은 이 등체적 셀의 shifted quality에 의해 결정되었다. The isothermal adsorption curves of carbon dioxide were measured at 30 and 50 ° C. using an isochoric saturation technique. The main part of the measuring device is a gas reservoir, a thermostat, a pressure gauge, an isothermal cell, a vacuum pump, a magnetic stirrer. The experimental temperature was measured with a calibrated platinum resistance thermometer in the heating jacket of each cell, with an error range of ± 0.1 ° C. The error of the experimental measured pressure was ± 0.001 bar. In the experiment, about 2ml of ionic liquid was injected into the isochoric cell, and then the internal air was removed using a vacuum pump.2After the injection, the ionic liquid was stirred. The system then assumed that equilibrium was reached after about two hours of no pressure fluctuations. The weight of the cell was measured with an electronic balance (Sartorius BS224S) and had an error range of ± 0.0001 g. The carbon dioxide absorption capacity of the ionic liquid was determined by the shifted quality of this isotropic cell.

CO2 흡수 메커니즘은 CO2의 FTIR 및 13C NMR 측정을 통해 조사되었다. 각 물질들의 특성화 분석 또한 같은 장치들이 사용되었다.
The CO 2 uptake mechanism was investigated via FTIR and 13 C NMR measurements of CO 2 . The same apparatus was also used to characterize each material.

결과는 도 1 및 2에 있다. 본원에서 합성된 이온성액체에 대한 CO2 흡착 등온 곡선(isotherm)을 상압, 30, 50℃ 조건에서 측정하였다. 본원에 따른 산기능성 이온성액체가 상당히 높은 CO2 흡수능을 보였다. 이온성액체의 CO2 흡수 용량은 압력이 증가할수록, 온도가 감소할수록 증가한다. 실험 결과 이온성액체의 CO2 흡수 능력은 30에서 이온성액체 1몰당 약 0.9 mol CO2 까지 도달하였다. 서로 다른 음이온의 흡수능 실험에서는 BF4< DCA ~ PF6~TfO< Tf2N의 경향을 보였다. 플루오로알킬기를 갖는 음이온의 경우 가장 높은 CO2 흡수능을 보이는 것은 이미 보고된 결과와 일치하며, 플루오로 알킬기가 양적으로 증가할 경우 CO2의 흡수능 또한 증가한다.
The results are in FIGS. 1 and 2. CO 2 adsorption isotherms for the ionic liquids synthesized herein were measured at atmospheric pressure, 30 and 50 ° C. The acid functional ionic liquids according to the present application showed a considerably high CO 2 absorption capacity. The CO 2 absorption capacity of the ionic liquid increases with increasing pressure and with decreasing temperature. As a result, the CO 2 absorption capacity of the ionic liquid reached 30 to about 0.9 mol CO 2 per mol of the ionic liquid. Absorption capacity of different anions showed that BF 4 <DCA ~ PF 6 ~ TfO <Tf 2 N. In the case of anions with fluoroalkyl groups, the highest CO 2 absorption capacity is consistent with previously reported results, and if the fluoroalkyl group is increased in quantity, the CO 2 absorption capacity also increases.

또한 본원에서 합성된 이온성액체와 CO2 간의 상호 작용을 FT-IR을 이용해 조사하였으며 그 결과 산기능성 이온성액체의 CO2 흡수는 화학적 반응임을 확인하였다. 이온성액체에 흡수된 CO2의 FT-IR 스펙트럼(도 3)은 카르복실산의 (=C=Ostr)와 (-O-H in plane bend)에 해당하는 1825 cm-1 및 1758 cm-1 두개의 지점에서 새로운 피크를 보였다. 산기능성 이온성액체에 흡수된 CO213C NMR 스펙트럼은 도 4에 나타내었다. 모든 이온성액체의 NMR 스펙트럼은 δ=182,172 ppm 부근에서 새로운 피크를 나타냈다. 이들 피크는 CO2 흡수 이후 형성된 카르복실 그룹의 카르보닐 카본원자에 의해서 생성된 것이다. In addition, the interaction between the ionic liquid synthesized herein and CO 2 was investigated using FT-IR. As a result, it was confirmed that the CO 2 absorption of the acid functional ionic liquid was a chemical reaction. The FT-IR spectra of CO 2 absorbed by the ionic liquid (Figure 3) are two 1825 cm -1 and 1758 cm -1 corresponding to (= C = O str ) and (-OH in plane bend ) of the carboxylic acid. At the point of showed a new peak. 13 C NMR spectrum of CO 2 absorbed by the acid functional ionic liquid is shown in FIG. 4. NMR spectra of all ionic liquids showed new peaks around δ = 182,172 ppm. These peaks are generated by carbonyl carbon atoms of the carboxyl groups formed after CO 2 uptake.

상기 결과는 산기능성 이온성액체의 이산화탄소 흡수 반응은 화학적 반응이라는 것을 나타낸다. 산성기 산소 원자의 고립 전자쌍이 친핵적(nucleophilic)으로 CO2의 탄소 원자를 공격하여 무수물(anhydride)을 형성하는 것을 확인하였다. 자세한 메커니즘을 도 5에 나타내었다. 이를 통해 1몰의 CO2가 1몰의 이온성액체와 반응하는 것을 확인하였다. The results indicate that the carbon dioxide absorption reaction of the acid functional ionic liquid is a chemical reaction. It was confirmed that isolated electron pairs of acidic oxygen atoms nucleophilicly attacked carbon atoms of CO 2 to form anhydrides. The detailed mechanism is shown in FIG. This confirmed that 1 mole of CO 2 reacted with 1 mole of ionic liquid.

이는 1몰의 CO2가 1몰의 이온성액체와 반응하는 1:1 메카니즘을 가지고 있다. 일반적으로 아민(RNH2)과 이산화탄소가 반응하면 카바메이트(2RNH2+CO2 = RNHCOO-.RNH3 +)를 형성하고, 아민과 이산화탄소와 물이 반응하면 바이카보네이트(2RNH2+CO2+H2O = RNH3 +.HCO3 -+RNH2) 한다. 이때 아민과 이산화탄소의 반응은 아민과 이산화탄소와 2:1 몰 반응으로 카바메이트가 형성되어 반응속도를 매우 증가시키는 장점을 가지고 있다. 그리나 2몰의 아민에 1몰의 이산화탄소가 흡수되므로 단위 아민 당 이산화탄소 흡수량은 낮다. 그러나 산(-COOH) 관능기를 이용한 이산화탄소 분리시 이온성액체와 이산화탄소가 1:1 몰 반응을 하므로 단위 이온성액체 당 이산화탄소의 흡수능은 아민 형태보다 매우 높다는 장점을 가지고 있다.
It has a 1: 1 mechanism by which one mole of CO 2 reacts with one mole of ionic liquid. Generally, the reaction of amine (RNH 2 ) with carbon dioxide forms carbamate (2RNH 2 + CO 2 = RNHCOO - .RNH 3 + ), and the reaction of amine with carbon dioxide and water produces bicarbonate (2RNH 2 + CO 2 + H The + RNH 2) - 2 O = RNH 3 + .HCO 3. At this time, the reaction of the amine and carbon dioxide has the advantage that the carbamate is formed by the 2: 1 molar reaction with the amine and carbon dioxide to increase the reaction rate very much. However, since 1 mole of carbon dioxide is absorbed by 2 moles of amine, the amount of carbon dioxide absorbed per unit amine is low. However, since the ionic liquid and carbon dioxide have a 1: 1 molar reaction when the carbon dioxide is separated using an acid (-COOH) functional group, the absorption capacity of carbon dioxide per unit ionic liquid is much higher than that of the amine type.

실시예Example 4  4 이온성액체의Ionic liquid 열적 안정성 및 재사용 Thermal stability and reuse

산기능성 이온성액체의 열적 안정성을 연구하기 위해 TGA를 이용해 질소 분위기(유량 20ml/min), 승온률 10℃/min 조건에서 테스트하였다. 약 100℃ 까지 승온 실험 결과 눈에 띄는 질량 손실은 없었으며, 이를 통해 약 30, 50℃의 실험 조건에서도 모든 이온성액체가 안정하다는 것을 확인하였다. 또한 CO2가 포화된 이온성액체를 재생시키기 위해 70℃로 가열하거나 20 Pa 이하로 압력 강하시켰으며 각각 10 사이클을 연속적으로 수행하였다. 그 결과를 도 6에 나타내었으며 이후에도 이온성액체의 CO2 흡수능에 특별한 변화가 없음을 확인하였다.
In order to study the thermal stability of the acid functional ionic liquid, it was tested under nitrogen atmosphere (flow rate 20ml / min) and temperature increase rate 10 ℃ / min using TGA. There was no noticeable mass loss as a result of the temperature increase experiment to about 100 ℃, it was confirmed that all the ionic liquid is stable even under the experimental conditions of about 30, 50 ℃. In addition, in order to regenerate the ionic liquid saturated with CO 2 , it was heated to 70 ° C. or the pressure was lowered to 20 Pa or less, and 10 cycles of each were carried out continuously. The results are shown in FIG. 6 and thereafter, there was no particular change in the CO 2 absorption capacity of the ionic liquid.

본원에서는 친수성이고 화학적/열적으로 안정한 [Cmmim][X] 시리즈를 합성하고 특성을 분석하였고, 이들의 CO2 흡수능을 측정하였다. CO2 흡수능은 상압 조건에서 1몰의 이온성액체당 0.9 mol CO2 에 달하였다. 가장 큰 CO2 흡수능을 보인 이온성액체는 [Tf2N] 음이온을 가진 것으로 다른 음이온들과 비교했을 때 Tf2N의 음이온의 플루오로알킬화의 크기가 가장 큰 것이 이유였다. Here we synthesized and characterized hydrophilic and chemically / thermally stable [Cmmim] [X] series and measured their CO 2 absorption capacity. The CO 2 absorption capacity reached 0.9 mol CO 2 per mole of ionic liquid at atmospheric pressure. The ionic liquid exhibiting the greatest CO 2 absorption capacity has a [Tf 2 N] anion because the fluoroalkylation of the Tf 2 N anion is the largest in comparison with other anions.

흡수 메커니즘은 FT-IR과 13C NMR을 이용해 확인하였으며 그 결과 화학적 반응임을 증명하였다. 이온성액체에 흡수된 CO2는 가열 또는 압력스윙(pressure swing) 방법을 통해 손쉽게 탈착이 가능했으며 반복적인 이용이 가능하였다. 본원의 산관능화된 이온성액체는 높은 이산화탄소 포집 능은 물론, 선택성, 열적 안정적, 오랜 사용 수명으로 인해 CO2 포집에 유용하게 사용될 수 있다. The absorption mechanism was confirmed using FT-IR and 13 C NMR, which proved a chemical reaction. The CO 2 absorbed by the ionic liquid could be easily desorbed by heating or pressure swinging and used repeatedly. The acid functionalized ionic liquid of the present application can be usefully used for CO 2 capture due to its high carbon dioxide capture ability, as well as selectivity, thermal stability and long service life.

Claims (10)

하기 화학식 I 로 표시되는 이산화탄소 흡수능을 갖는 산관능화된 이미다졸륨계 이온성 액체 화합물:
[화학식 1]
Figure pat00010

상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [(CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, [CH3C6H4SO3]-, 또는 [C4F9SO3]- 임.
An acid functionalized imidazolium-based ionic liquid compound having a carbon dioxide absorption capacity represented by the following formula (I):
[Chemical Formula 1]
Figure pat00010

Wherein X - is [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , [TfO] - , [DCA] - , [Cl] - , [Br] - , [I] - , [ NO 3] -, [SO 4 ] 2 -, [CF 3 COO] -, [CF 3 SO 2] -, [(CF 3 SO 2) 2N] -, [SF 6] -, [(C 2 F 5 ) 3 PF 3 ] - , [N (SO 2 CF 3 ) 2 ] - , [CF 3 SO 3 ] - , [B (CN) 4 ] - , [N (CN) 2 ] - , [C (CN) 3 ] - , [SCN] - , [HSO 4 ] - , [CH 3 SO 4 ] - , [C 2 H 5 SO 4 ] - , [C 4 H 9 SO 4 ] - , [C 6 H 13 SO 4 ] - , [B (C 2 O 4 ) 2 ] - , [CH 3 SO 3 ] - , [CH 3 C 6 H 4 SO 3 ] - , or [C 4 F 9 SO 3 ] - .
제 1 항에 있어서, X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, 또는 [DCA]- 인, 산관능화된 이미다졸륨계 이온성 액체 화합물.The acid functionalized imidazolium-based ionic liquid compound according to claim 1, wherein X - is [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , [TfO] - , or [DCA] - . . 제 1 항에 따른 이미다졸륨계 이온성 액체 화합물을 포함하는 이산화탄소 흡수제.A carbon dioxide absorbent comprising the imidazolium-based ionic liquid compound according to claim 1. 기체 혼합물로부터 제 1 항에 따른 이온성 액체 또는 제 3 항에 따른 이산화탄소 흡수제를 사용하여 이산화탄소를 흡수시키는 단계; 및
상기 이산화탄소 흡수제에 흡수된 이산화탄소를 탈기시키는 단계를 포함하는 기체 혼합물로부터 이산화탄소를 분리하는 방법.
Absorbing carbon dioxide from the gas mixture using an ionic liquid according to claim 1 or a carbon dioxide absorbent according to claim 3; And
Degassing carbon dioxide absorbed by the carbon dioxide absorbent.
제 4 항에 있어서, 상기 방법은 상기 탈기된 이산화탄소 흡수제를 재사용하는 단계를 추가로 포함하는 것인, 기체 혼합물로부터 이산화탄소를 분리하는 방법.5. The method of claim 4, wherein the method further comprises reusing the degassed carbon dioxide absorbent. 제 4 항에 있어서, 상기 이산화탄소 흡수단계에서 상기 이산화탄소 : 이온성액체가 1:1의 몰비로 반응하는 것이, 기체 혼합물로부터 이산화탄소를 분리하는 방법. The method of claim 4, wherein the carbon dioxide: ionic liquid reacts in a molar ratio of 1: 1 in the carbon dioxide absorption step. 제 4 항에 있어서, 상기 이산화탄소를 흡수시킬 때의 온도는 0 ℃ 내지 80 ℃인 것을 특징으로 하는, 기체 혼합물로부터 이산화탄소를 분리하는 방법.
The method of separating carbon dioxide from a gas mixture according to claim 4, wherein the temperature when absorbing carbon dioxide is 0 ° C to 80 ° C.
제 4 항에 있어서, 상기 이산화탄소를 흡수시킬 때의 압력은 상압 내지 60 기압인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법.5. The method of claim 4 wherein the pressure when absorbing carbon dioxide is from atmospheric pressure to 60 atmospheres. 제 4 항에 있어서, 상기 이산화탄소를 탈기시킬 때의 온도는 상온 내지 150 ℃인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법.The method for separating carbon dioxide from a gas mixture according to claim 4, wherein the temperature at which the carbon dioxide is degassed is from room temperature to 150 ° C. 제 4 항에 있어서, 상기 기체 혼합물은 화석연료를 연소할 때 발생되는 기체혼합물인 것을 특징으로 하는, 기체 혼합물로부터 이산화탄소를 분리하는 방법.
5. The method of claim 4, wherein the gas mixture is a gas mixture generated when burning fossil fuels.
KR1020120060126A 2012-06-05 2012-06-05 Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use KR101384538B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120060126A KR101384538B1 (en) 2012-06-05 2012-06-05 Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use
PCT/KR2012/005916 WO2013183808A1 (en) 2012-06-05 2012-07-25 Acid-functionalized imidazolium ionic liquid for separating carbon dioxide and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120060126A KR101384538B1 (en) 2012-06-05 2012-06-05 Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use

Publications (2)

Publication Number Publication Date
KR20130136617A true KR20130136617A (en) 2013-12-13
KR101384538B1 KR101384538B1 (en) 2014-04-11

Family

ID=49712186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120060126A KR101384538B1 (en) 2012-06-05 2012-06-05 Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use

Country Status (2)

Country Link
KR (1) KR101384538B1 (en)
WO (1) WO2013183808A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140553A1 (en) * 2022-01-24 2023-07-27 에스케이이노베이션 주식회사 Carbon dioxide absorbent comprising phenolate-based ionic liquid and aliphatic alcohol and carbon dioxide separation method using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752134B (en) * 2014-01-08 2015-10-28 浙江大学 The method of the energy-efficient carbon trapping of a kind of ionic liquid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223085A1 (en) * 2010-03-12 2011-09-15 E. I. Du Pont De Nemours And Company Carbon dioxide capture with ionic liquid electrospray
KR20120055393A (en) * 2010-11-23 2012-05-31 한국에너지기술연구원 Method for producing phenolate ionic liquid and thereof product and method of separating carbon dioxide using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023140553A1 (en) * 2022-01-24 2023-07-27 에스케이이노베이션 주식회사 Carbon dioxide absorbent comprising phenolate-based ionic liquid and aliphatic alcohol and carbon dioxide separation method using same

Also Published As

Publication number Publication date
KR101384538B1 (en) 2014-04-11
WO2013183808A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
US8506914B2 (en) N-functionalized imidazole-containing systems and methods of use
US7749475B2 (en) Method for separation and recycle of pure sulfur dioxide from a gaseous mixture in is cycle with ionic liquids
JP4865530B2 (en) Mixed absorbent for carbon dioxide separation
Li et al. Effect of SO2 on CO2 absorption in flue gas by ionic liquid 1-ethyl-3-methylimidazolium acetate
AU2014260379B2 (en) Mixtures of physical absorption solvents and ionic liquids for gas separation
KR101107203B1 (en) Sulfur dioxide absorbent containing ionic liquid
CA2861345A1 (en) Process for absorbing co2 from a gas mixture
Li et al. PEG-linked functionalized dicationic ionic liquids for highly efficient SO2 capture through physical absorption
KR101071774B1 (en) amidium-based ionic liquids for carbon dioxide absorption
JP6530167B2 (en) Carbon dioxide chemical absorption liquid and carbon dioxide separation and recovery method
Deng et al. Investigation of furoate-based ionic liquid as efficient SO 2 absorbent
Zhang et al. Highly efficient and reversible absorption of SO2 from flue gas using diamino polycarboxylate protic ionic liquid aqueous solutions
KR101415865B1 (en) A novel absorbent for sulphur dioxide and sulfurous acid supported by polymer
KR101384538B1 (en) Immidazolium cation based ionic liquid functionalized with acid for separation of carbon dioxide and its use
CN112839729A (en) Removal of acid gases from gas mixtures containing acid gases
KR101380758B1 (en) Immidazolium cation based ionic liquid for selective separation of carbon dioxide and its use
KR20140014740A (en) Immidazolium cation based ionic liquid functionalized with amine for separation of carbon dioxide and its use
EP2720780A1 (en) Process for separating co2 from a gaseous stream
KR101122714B1 (en) Carbon dioxide absorbents using the imidazolium-based ionic liquid compound comprising fluorinated olefin
KR102020293B1 (en) Acid gas separation method using acid gas sorbent based on ionic liquid
KR20130126359A (en) Immidazolium cation based ionic liquid functionalized with ether for separation of carbon dioxide and its use
WO2016126957A1 (en) Gas treating solutions containing imidazole-amine compounds
KR102035926B1 (en) Absorbents For Acidic Gas Separation
US20220143547A1 (en) Removal of mercury in a gas dehydration process using thermally stable chemical additives
EP4268935A1 (en) Carbon dioxide absorbent comprising ionic liquid and alcohol solvent, and method for separating carbon dioxide using same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 7