KR20130136537A - Oxide-type semiconductor material and sputtering target - Google Patents

Oxide-type semiconductor material and sputtering target Download PDF

Info

Publication number
KR20130136537A
KR20130136537A KR1020137027136A KR20137027136A KR20130136537A KR 20130136537 A KR20130136537 A KR 20130136537A KR 1020137027136 A KR1020137027136 A KR 1020137027136A KR 20137027136 A KR20137027136 A KR 20137027136A KR 20130136537 A KR20130136537 A KR 20130136537A
Authority
KR
South Korea
Prior art keywords
oxide
semiconductor material
tft
dopant
film
Prior art date
Application number
KR1020137027136A
Other languages
Korean (ko)
Other versions
KR101523333B1 (en
Inventor
시게키 도쿠치
린타로 이시이
료마 츠쿠다
다카시 구보타
히로키 다카하시
Original Assignee
미쓰이금속광업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰이금속광업주식회사 filed Critical 미쓰이금속광업주식회사
Publication of KR20130136537A publication Critical patent/KR20130136537A/en
Application granted granted Critical
Publication of KR101523333B1 publication Critical patent/KR101523333B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

본 발명은 IGZO의 대체 재료로서, IGZO와 동등 이상이 되고, 10㎠/Vs 정도의 고(高)캐리어 이동도이며 또한, 고온 열처리를 요하지 않는, Zn 산화물과 Sn 산화물로 이루어지는 산화물형 반도체 재료(ZTO: Zn-Sn-O계 산화물)를 제공하는 것을 목적으로 한다. 본 발명은 Zn 산화물과 Sn 산화물을 함유하는 산화물형 반도체 재료로서, 도펀트로서, Zr을 함유하고, Zr 함유량은, 금속 원소로서의 Zn, Sn, Zr의 각 원자수 합계에 대한 도펀트의 원자비가 0.005 이하인 것을 특징으로 한다.The present invention provides an oxide semiconductor material composed of Zn oxide and Sn oxide, which is equivalent to IGZO or higher, has a high carrier mobility of about 10 cm 2 / Vs, and does not require high temperature heat treatment. ZTO: Zn-Sn-O-based oxide). The present invention relates to an oxide semiconductor material containing Zn oxide and Sn oxide, wherein Zr is contained as a dopant, and the Zr content is an atomic ratio of the dopant to the sum of the number of atoms of Zn, Sn, and Zr as metal elements is 0.005 or less. It is characterized by.

Description

산화물형 반도체 재료 및 스퍼터링 타깃{OXIDE-TYPE SEMICONDUCTOR MATERIAL AND SPUTTERING TARGET}Oxide-type Semiconductor Materials and Sputtering Targets {OXIDE-TYPE SEMICONDUCTOR MATERIAL AND SPUTTERING TARGET}

본 발명은 액정 디스플레이 등의 표시 장치를 구성하는 반도체 소자를 형성하기 위한 반도체 재료에 관한 것이며, 특히, Zn 산화물과 Sn 산화물을 함유하고, 도펀트로서 Zr을 함유하는 산화물형 반도체 재료에 관한 것이다.TECHNICAL FIELD The present invention relates to a semiconductor material for forming a semiconductor element constituting a display device such as a liquid crystal display, and more particularly relates to an oxide semiconductor material containing Zn oxide and Sn oxide and containing Zr as a dopant.

최근, 액정 디스플레이로 대표되는 박형(薄型) 텔레비전 등의 표시 디바이스는, 생산량의 증가, 대화면화의 경향이 현저하다. 그리고, 그 표시 디바이스로서는, 박막 트랜지스터(Thin Film Transistor, 이하, TFT라고 약칭함)를 스위칭 소자로서 사용하는 액티브 매트릭스 타입의 액정 디스플레이가 널리 보급되고 있다.Background Art In recent years, display devices such as thin televisions represented by liquid crystal displays have a remarkable tendency of increased production and large screens. As the display device, an active matrix liquid crystal display using a thin film transistor (hereinafter, referred to as TFT) as a switching element is widely used.

이와 같은 TFT를 스위칭 소자로 한 표시 디바이스에서는, 그 구성 재료로서 산화물형 반도체 재료가 사용되도록 되어 있다. 이 산화물형 반도체 재료로서는, 투명 산화물 반도체 재료의 일종인 IGZO(In-Ga-Zn-O계 산화물)가 주목받고 있다(특허문헌 1 참조). 이 IGZO는, 종래부터 사용되고 있는 다결정 Si(실리콘)에 이어서 캐리어 이동도가 높고, a-Si(아모퍼스 실리콘)와 같이 TFT 특성의 특성 편차가 작기 때문에, 금후의 반도체 재료로서 유망한 것으로서 널리 이용되기 시작하고 있다.In a display device using such a TFT as a switching element, an oxide semiconductor material is used as the constituent material. As this oxide type semiconductor material, IGZO (In-Ga-Zn-O type oxide) which is a kind of transparent oxide semiconductor material attracts attention (refer patent document 1). This IGZO is widely used as a promising semiconductor material since it has a high carrier mobility following polycrystalline Si (silicon) conventionally used and a small characteristic variation in TFT characteristics like a-Si (amorphous silicon). Getting started.

그런데, 박형 텔레비전 등의 액정 디스플레이에서는, 표시 방식의 변화가 생기고 있다. 구체적으로는, 평면 표시(2D)에 더하여, 입체 표시(3D)가 가능한 액정 디스플레이가 제공되고 있다. 이 입체 표시(3D)형 액정 디스플레이에서는, 스위치 액정을 이용한 제어에 의해 표시 화면의 좌우가 다른 화상을 보이도록 함으로써 실현되고 있다. 그 때문에, 이와 같은 입체 표시형 액정 디스플레이를 위해서는, 보다 고속의 응답 속도를 실현할 수 있는 스위칭 소자가 요구되고 있다.By the way, in the liquid crystal displays, such as a thin television, the change of a display system has arisen. Specifically, in addition to flat display 2D, a liquid crystal display capable of stereoscopic display 3D is provided. In this three-dimensional display (3D) type liquid crystal display, it is realized by making an image different from right and left of a display screen by control using a switch liquid crystal. Therefore, for such a three-dimensional display type liquid crystal display, the switching element which can implement | achieve a faster response speed is calculated | required.

이와 같은 액정 디스플레이의 표시 방식의 변화에 대응하기 위해, IGZO와 같은 산화물형 반도체 재료의 개발이 각종 행해지고 있다. 이 고속의 응답 속도가 되는 TFT는, 캐리어 이동도가 높은 것이 중요해진다. 예를 들면, IGZO에서는, a-Si에 비해 1∼2자리나 크고, 그 캐리어 이동도는 5∼10㎠/Vs 정도이다. 그 때문에, 이 IGZO이면, 입체 표시형 액정 디스플레이의 스위칭 소자인 TFT의 구성 재료로서 사용 가능하지만, 보다 하이스펙의 액정 디스플레이를 실현하기 위해, 더 고속의 응답 속도를 실현할 수 있는 TFT의 구성 재료가 요망되고 있다.In order to cope with such a change in the display method of a liquid crystal display, development of oxide type semiconductor material like IGZO is performed variously. As for TFT which becomes this high response speed, it is important that carrier mobility is high. For example, in IGZO, it is 1 to 2 digits larger than a-Si, and the carrier mobility is about 5-10 cm <2> / Vs. Therefore, with this IGZO, although it can be used as a constituent material of TFT which is a switching element of a stereoscopic display type liquid crystal display, in order to implement | achieve a high spec liquid crystal display, the constituent material of TFT which can implement | achieve a faster response speed is It is requested.

또한, 이 IGZO는, TFT를 형성할 때에 350℃ 이상의 아닐 처리를 필요로 하기 때문에, 플렉서블 기판 등을 이용하는 유기 EL 패널이나 전자 페이퍼와 같은 고온 열처리를 할 수 없는 표시 디바이스에는 이용하는 것이 곤란한 점이 지적되고 있다.In addition, since IGZO requires annealing at 350 ° C. or higher when forming a TFT, it is pointed out that it is difficult to use it for a display device that cannot be subjected to high temperature heat treatment such as an organic EL panel or an electronic paper using a flexible substrate or the like. have.

또한, 자원적인 문제나, 인체나 환경에의 영향으로부터, In이나 Ga를 사용하지 않는 산화물형 반도체 재료가 요망되고 있으며, 이 점에서의 IGZO의 대체 재료의 개발도 필요로 되고 있다.In addition, an oxide semiconductor material that does not use In or Ga is desired because of a resource problem and the influence on the human body and the environment, and development of an alternative material for IGZO is also required in this regard.

이 IGZO의 대체 재료로서는, 예를 들면, Zn 산화물과 Sn 산화물로 이루어지는 산화물형 반도체 재료(ZTO: Zn-Sn-O계 산화물)가 제안되어 있다(특허문헌 2, 특허문헌 3, 특허문헌 4, 특허문헌 5). 이들 선행 기술의 ZTO는, 고(高)캐리어 이동도를 실현하기 위해 개발되어 있다. 이들 선행 기술에서는, 고캐리어 이동도를 실현할 수 있음이 판명되고 있지만, TFT 형성시의 열처리 온도에 대해서는 충분한 검토가 되지 않아, 유기 EL 패널이나 전자 페이퍼 등에의 적용 가능성이 판명되고 있지 않다.As an alternative material of this IGZO, the oxide type semiconductor material (ZTO: Zn-Sn-O type oxide) which consists of Zn oxide and Sn oxide, for example is proposed (patent document 2, patent document 3, patent document 4, Patent document 5). These prior art ZTOs have been developed to realize high carrier mobility. In these prior arts, it has been found that high carrier mobility can be realized, but the heat treatment temperature at the time of TFT formation has not been sufficiently examined, and the applicability to organic EL panels, electronic papers and the like has not been found.

특히, 특허문헌 5에 있어서는, Zn 및 Sn을 함유하는 산화물형 반도체 재료에, Zr을 포함하는 다수의 원소를 도펀트로서 함유시킴으로써, 전자 캐리어 밀도가 1×1015/㎤보다 크고 1×1018/㎤ 미만이 되는 산화물형 반도체 재료가 제안되어 있지만, 이 특허문헌 5에 대해서도, 시트 저항에 대해서는 검토되고 있지만, TFT 형성시의 열처리 온도나 그때의 도펀트의 함유량 등의 검토는 충분히 되고 있지 않다. 이 특허문헌 5에 있어서의 시트 저항과 캐리어 밀도는 다음 식의 관계가 있다.In particular, Patent Document 5, In, Zn, and large and 1 × 10 in the oxide semiconductor material containing Sn, than by incorporating a number of elements including the Zr as the dopant, the electron carrier density of 1 × 10 15 / ㎤ to 18 / Although oxide type semiconductor material which becomes less than cm <3> is proposed, this patent document 5 is also examined about sheet resistance, but examination of the heat treatment temperature at the time of TFT formation, content of the dopant at that time, etc. is not fully performed. The sheet resistance and carrier density in this patent document 5 have a relationship of the following formula.

Rs=ρ/tRs = ρ / t

ρ= 1/(e·N·μ)ρ = 1 / (eNμ)

(Rs: 시트 저항치, ρ: 비저항치(比抵抗値)(체적 저항률), N: 캐리어 밀도, μ: 캐리어 이동도, t: 막두께)(Rs: sheet resistance, ρ: specific resistance (volume resistivity), N: carrier density, μ: carrier mobility, t: film thickness)

즉, 특허문헌 5와 같이, 시트 저항치밖에 모를 경우, 막두께나 캐리어 이동도를 특정할 수 없으면, 캐리어 밀도를 특정할 수 없다. 이와 같은 점에서, IGZO의 대체 재료로서의 ZTO에 관해서도, 개선이 더 요구되고 있는 것이 현상황이다.That is, as in Patent Document 5, when only the sheet resistance value is unknown, the carrier density cannot be specified unless the film thickness or the carrier mobility can be specified. In this regard, the present situation is that further improvement is required regarding ZTO as an alternative material for IGZO.

일본국 특허 제4164562호 명세서Japanese Patent No. 4164562 일본국 특개2009-123957호 공보Japanese Patent Application Laid-Open No. 2009-123957 일본국 특개2010-37161호 공보Japanese Patent Application Laid-Open No. 2010-37161 일본국 특개2010-248547호 공보Japanese Patent Application Laid-Open No. 2010-248547 일본국 특개2009-123957호 공보Japanese Patent Application Laid-Open No. 2009-123957

본 발명은 이상과 같은 사정을 배경으로 이루어진 것이며, IGZO의 대체 재료로서, 캐리어 이동도가 IGZO와 동등 이상의 것이 되고, 10㎠/Vs 정도의 고캐리어 이동도이며 또한, 300℃ 이상의 고온 열처리를 요하지 않고, Zn 산화물과 Sn 산화물과, 도펀트로서 Zr을 함유하는 산화물형 반도체 재료(ZTO: Zn-Sn-O계 산화물)를 제공하는 것을 목적으로 한다.The present invention has been made on the basis of the above circumstances, and as a substitute material for IGZO, the carrier mobility is equivalent to that of IGZO or more, high carrier mobility of about 10 cm 2 / Vs, and does not require high temperature heat treatment of 300 ° C. or higher. Instead, an object of the present invention is to provide an oxide semiconductor material (ZTO: Zn-Sn-O-based oxide) containing Zn oxide, Sn oxide, and Zr as a dopant.

상기 과제를 해결하기 위해, 본 발명자들은, Zn 산화물과 Sn 산화물로 이루어지는 산화물형 반도체 재료에, 도펀트로서 Zr을 함유시켰을 경우에 대해서 예의 검토한 바, 소정 범위의 도펀트 함유량에 있어서, 고캐리어 이동도를 가진 채, 고온 열처리를 필요로 하지 않고 구동 가능한 TFT를 실현할 수 있는 ZTO막이 됨을 알아냈다.MEANS TO SOLVE THE PROBLEM In order to solve the said subject, the present inventors earnestly examined about the case where Zr is contained as a dopant in the oxide type semiconductor material which consists of Zn oxide and Sn oxide, and has high carrier mobility in the dopant content of a predetermined range. It was found that ZTO film can realize a TFT that can be driven without requiring a high temperature heat treatment.

본 발명은 Zn 산화물과 Sn 산화물을 함유하는 산화물형 반도체 재료로서, 도펀트로서, Zr을 함유하고, Zr 함유량은, 금속 원소로서의 Zn, Sn, Zr의 각 원자수 합계에 대한 도펀트의 원자비가 0.005 이하인 것을 특징으로 한다.The present invention relates to an oxide semiconductor material containing Zn oxide and Sn oxide, wherein Zr is contained as a dopant, and the Zr content is an atomic ratio of the dopant to the sum of the number of atoms of Zn, Sn, and Zr as metal elements is 0.005 or less. It is characterized by.

본 발명에 따른 산화물형 반도체 재료이면, 캐리어 이동도가 IGZO와 동등 이상의 것이 되고, 10㎠/Vs 정도의 캐리어 이동도를 실현할 수 있고, 250℃ 이하의 열처리에 의해, TFT 등의 스위칭 소자를 형성하는 것이 가능해진다. 또한, In, Ga를 함유하지 않기 때문에, 자원적인 문제도 없고, 인체나 환경에의 영향도 적어진다.In the oxide semiconductor material according to the present invention, the carrier mobility is equal to or greater than IGZO, and carrier mobility of about 10 cm 2 / Vs can be realized, and a switching element such as TFT is formed by heat treatment at 250 ° C. or lower. It becomes possible. Moreover, since it does not contain In and Ga, there is no resource problem and the influence on a human body and an environment is also small.

본 발명의 산화물형 반도체 재료에 있어서의 도펀트의 Zr은, 금속 원소로서의 Zn, Sn, Zr의 각 원자수 합계에 대한 도펀트의 원자비를 0.005 이하로 한다. 구체적으로는, 금속 원소로서의 Zn의 원자수를 x, Sn의 원자수를 y, Zr의 원자수를 z로 했을 경우, z/(x+y+z)≤0.005가 되도록 도펀트를 함유시킨다. 이 원자비가 0.005를 초과하면, 300℃의 열처리를 했을 때에 캐리어 밀도가 1×1015-3 미만이 되어, 양호한 반도체 특성을 유지할 수 없게 된다. 원자비가 0.005 이하이면, 캐리어 밀도가 1×1018-3 미만이 되기 때문에, 350℃ 열처리 후의 IGZO막과 동등 이하의 캐리어 밀도를 실현할 수 있다. 도펀트 함유량의 하한치는, IGZO와 동등 이하의 캐리어 밀도를 실현할 수 있고, 250℃ 이하의 열처리에 의해 TFT 등의 스위칭 소자를 형성할 수 있으면, 그 수치에 제한은 없다. 본 발명자들의 검토에서는, 도펀트의 Zr 함유량이 원자비로 0.000085(8.5×10-5)여도, 본 발명의 산화물형 반도체 재료로서 채용할 수 있음을 확인하고 있다.Zr of the dopant in the oxide semiconductor material of the present invention sets the atomic ratio of the dopant to the sum of the number of atoms of Zn, Sn, and Zr as metal elements to be 0.005 or less. Specifically, when the number of atoms of Zn as the metal element is x, the number of Sn is y and the number of atoms of Zr is z, the dopant is contained so that z / (x + y + z) ≦ 0.005. When this atomic ratio exceeds 0.005, when 300 degreeC heat processing is performed, a carrier density will become less than 1 * 10 <15> cm <-3> , and it becomes impossible to maintain favorable semiconductor characteristics. If the atomic ratio is 0.005 or less, the carrier density becomes less than 1 × 10 18 cm -3 , and therefore, a carrier density equal to or less than that of the IGZO film after 350 ° C. heat treatment can be realized. As long as the lower limit of the dopant content can realize a carrier density equal to or less than IGZO, and a switching element such as TFT can be formed by heat treatment at 250 ° C. or lower, the numerical value is not limited. The present inventors have confirmed that even if the Zr content of the dopant is 0.000085 (8.5 × 10 −5 ) in atomic ratio, it can be employed as the oxide semiconductor material of the present invention.

본 발명의 산화물형 반도체 재료는, Zn과 Sn이, Zn의 금속 원소의 원자수를 A, Sn의 금속 원소의 원자수를 B로 했을 경우, A/(A+B)=0.4∼0.8이 되는 비율로 함유하고 있는 것이 바람직하고, 0.6∼0.7의 비율이 보다 바람직하다. 이 A/(A+B)가 0.4 미만이 되면 Sn의 비율이 높아지기 때문에, 소자 형성시에 성막한 박막을 에칭에 의해 패터닝할 때에, 옥살산계 에칭액에서의 에칭 레이트가 극단적으로 느려져, 생산 공정에 적합하지 않게 된다. 또한, 0.8을 초과하면, Zn의 비율이 높아지기 때문에, 산화물형 반도체 재료의 물에 대한 내성이 낮아져, TFT 소자의 형성시에 일반적으로 사용되는 배선이나 반도체층의 패터닝 공정에서, 레지스트의 박리액이나 순수(純水) 세정의 영향에 의해 ZTO막 그 자체가 데미지를 받아, 본래의 TFT 소자 특성을 실현할 수 없게 되고, 경우에 따라서는, ZTO막이 기판으로부터 용해·탈락하여, TFT 소자를 형성할 수 없게 된다.In the oxide semiconductor material of the present invention, A / (A + B) = 0.4 to 0.8 when Zn and Sn assume the atomic number of the metal element of Zn to A and the atomic number of the metal element of Sn to B; It is preferable to contain in ratio, and the ratio of 0.6-0.7 is more preferable. When this A / (A + B) is less than 0.4, the ratio of Sn becomes high. Therefore, when patterning the thin film formed at the time of element formation by etching, the etching rate in the oxalic acid-based etching solution is extremely slow, and the production process It is not suitable. In addition, when the ratio exceeds 0.8, the ratio of Zn becomes high, so that the resistance to water of the oxide semiconductor material is lowered, and the stripping solution of the resist in the patterning step of the wiring or semiconductor layer which is generally used at the time of TFT element formation. Under the influence of pure water cleaning, the ZTO film itself is damaged and the original TFT device characteristics cannot be realized, and in some cases, the ZTO film can be dissolved and dropped from the substrate to form a TFT device. There will be no.

본 발명의 산화물형 반도체 재료는, 보텀 게이트형 혹은 톱 게이트형의 박막 트랜지스터에 매우 유효하다. 상기한 바와 같이, 본 발명의 산화물형 반도체 재료이면, IGZO와 동등 이상의 캐리어 이동도를 실현할 수 있고, 250℃ 이하의 저온 열처리로 사용할 수 있으므로, 높은 응답 속도가 요구되는 입체 표시형 액정 디스플레이에 호적(好適)하며, 플렉서블 기판 등을 이용하는 유기 EL 패널이나 전자 페이퍼 등의 스위칭 소자를 형성할 때에도 적용할 수 있다.The oxide semiconductor material of the present invention is very effective for a bottom gate type or top gate type thin film transistor. As described above, the oxide semiconductor material of the present invention can realize carrier mobility equal to or greater than IGZO and can be used by low temperature heat treatment at 250 ° C. or lower, so it is suitable for a stereoscopic display type liquid crystal display requiring high response speed. It is applicable also when forming switching elements, such as an organic EL panel and an electronic paper, which use a flexible board | substrate.

본 발명의 산화물형 반도체 재료에 의해 스위칭 소자를 형성할 경우에는, 당해 산화물형 반도체 재료에 의해 형성된 박막을 이용하는 것이 유효하며, 그 박막을 성막하기 위해서는 스퍼터법을 이용하는 것이 바람직하다.When the switching element is formed of the oxide semiconductor material of the present invention, it is effective to use a thin film formed of the oxide semiconductor material, and in order to form the thin film, it is preferable to use a sputtering method.

그리고, 이 스퍼터법에 의해 본원 발명의 산화물형 반도체 재료의 박막을 성막할 때에는, Zn 산화물과 Sn 산화물로 이루어지고, Zr를 함유하고, Zr 함유량은, 금속 원소로서의 Zn, Sn, Zr의 각 원자수 합계에 대한 도펀트의 원자비가 0.005 이하인 스퍼터링 타깃을 사용하는 것이 바람직하다. 그리고, Zn과 Sn은, Zn의 금속 원소의 원자수를 A, Sn의 금속 원소의 원자수를 B로 했을 경우, A/(A+B)=0.4∼0.8이 되는 비율로 함유한 타깃인 것이 바람직하다. 이 경우, 스퍼터링의 성막시에, 직류 전원이나 고주파 전원, 펄스 DC 전원을 사용할 수 있다. 특히 타깃을 사용할 경우에는, 펄스 DC 전원을 사용함으로써, 타깃 표면에 발생하는 노듈(nodule)이나 표면 고저항층의 형성을 억제하고, 안정한 성막을 하는 것이 가능해지므로, 양산 공정에 적합한 것이 된다.And when forming the thin film of the oxide type semiconductor material of this invention by this sputtering method, it consists of Zn oxide and Sn oxide, contains Zr, and Zr content is each atom of Zn, Sn, Zr as a metal element It is preferable to use the sputtering target whose atomic ratio of the dopant with respect to the number sum is 0.005 or less. And Zn and Sn are targets containing A / (A + B) = 0.4-0.8 when the atomic number of the metallic element of Zn is A, and the atomic number of the metallic element of Sn is B desirable. In this case, a DC power supply, a high frequency power supply, or a pulsed DC power supply can be used at the time of sputtering film formation. In particular, when a target is used, the use of a pulsed DC power supply suppresses the formation of nodules and surface high resistance layers generated on the target surface and enables stable film formation, which is suitable for mass production processes.

본 발명의 산화물형 반도체 재료를 사용하여 소자 형성을 행할 경우에는, 상기 스퍼터법에 의해 성막할 수 있지만, 그 외에도 펄스 레이저 증착법 등 스퍼터 이외의 성막법을 적응할 수도 있다. 또한, 반도체 재료의 나노 입자가 용매에 분산된 분산액을 도포하는 방법이나, 잉크젯법으로 회로 형성하는 것으로도, 본 발명의 산화물형 반도체 재료를 사용한 소자 형성이 가능하다.When forming an element using the oxide semiconductor material of the present invention, the film can be formed by the above sputtering method. In addition, a film forming method other than sputtering such as a pulse laser deposition method can be adapted. Moreover, the element formation using the oxide type semiconductor material of this invention can also be formed by the circuit formation by the method of apply | coating the dispersion liquid in which the nanoparticle of the semiconductor material disperse | distributed to the solvent, or the inkjet method.

본 발명의 산화물형 반도체 재료에 의하면, IGZO와 동등 이상의 캐리어 이동도를 실현할 수 있고, 250℃ 이하의 저온 열처리로, TFT 등의 스위칭 소자를 형성하는 것이 가능해진다. 또한, In, Ga를 함유하지 않기 때문에, 자원적인 문제도 없고, 인체나 환경에의 영향도 저감하는 것이 가능해진다.According to the oxide semiconductor material of the present invention, carrier mobility equal to or higher than that of IGZO can be realized, and switching elements such as TFTs can be formed by low temperature heat treatment at 250 ° C or lower. Moreover, since it does not contain In and Ga, there is no resource problem and it becomes possible to reduce the influence on a human body and an environment.

도 1은 TFT의 소자 개략도.
도 2는 TFT 특성의 측정 그래프(실시예 1, 200℃).
도 3은 TFT 특성의 측정 그래프(실시예 1, 220℃).
도 4는 TFT 특성의 측정 그래프(실시예 1, 250℃).
도 5는 TFT 특성의 측정 그래프(실시예 1, 300℃).
도 6은 TFT 특성의 측정 그래프(비교예 1, 200℃).
도 7은 TFT 특성의 측정 그래프(비교예 2, 200℃).
1 is a device schematic diagram of a TFT.
2 is a graph of measurement of TFT characteristics (Example 1, 200 ° C).
3 is a graph of measurement of TFT characteristics (Example 1, 220 ° C).
4 is a measurement graph of TFT characteristics (Example 1, 250 ° C.).
5 is a measurement graph of TFT characteristics (Example 1, 300 ° C).
6 is a measurement graph (comparative example 1, 200 degreeC) of TFT characteristic.
7 is a measurement graph of TFT characteristics (Comparative Example 2, 200 ° C).

이하, 본 발명의 실시형태에 대해서 설명한다. 우선, 본 실시형태의 산화물형 반도체 재료에 대한 스퍼터링 타깃의 제작에 대해서 설명한다.Hereinafter, an embodiment of the present invention will be described. First, preparation of the sputtering target with respect to the oxide type semiconductor material of this embodiment is demonstrated.

타깃 제작: 대기 분위기 중, 500℃에서 가소성(假燒成)을 실시한 ZnO분(粉)과, 대기 분위기 중, 1050℃에서 가소성을 실시한 SnO2분과, 가소하고 있지 않은 ZrO2분을 각각 소정량 칭량하고, 수지제 포트(용량 4L)에 투입하여 볼 밀로 혼합했다. 이 볼 밀에서는, 회전수 130rpm, 혼합 시간 12시간의 혼합을 행했다. 그리고, 혼합분을 오프닝 500㎛, 선경 315㎛의 체로, 체가름을 행했다. 조립(粗粒)분이 제거된 체 아래의 혼합분을, φ100㎜ 카본제 프레스형에 충전하여, 핫프레스에 의해 소결체를 제작했다. 핫프레스 조건은, Ar 가스 유량(流量)을 3L/min으로 하고, 9.4㎫ 가압 하에서 1050℃까지 승온한 후, 25㎫ 가압 하에서 90분간 유지하고, 자연 냉각시켜 소결체를 취출했다. 이상과 같은 절차에 의해, 표 1에 나타내는 각 원자비가 되는 박막을 형성하기 위한 소결체 타깃 형성을 했다.Target production: A predetermined amount of ZnO powder plasticized at 500 ° C. in the air atmosphere, SnO 2 powder plasticized at 1050 ° C. and ZrO 2 powder not calcined in the air atmosphere, respectively. It weighed, it injected into the resin pot (capacity 4L), and mixed in the ball mill. In this ball mill, mixing of rotation speed 130 rpm and mixing time 12 hours was performed. Then, the mixture was sieved with an opening of 500 µm and a line diameter of 315 µm. The mixed powder below the sieve from which the granulated powder was removed was filled into the 100 mm carbon press type, and the sintered compact was produced by hot press. The hot press conditions made Ar gas flow volume 3 L / min, heated up to 1050 degreeC under 9.4 Mpa pressurization, hold | maintained for 90 minutes under 25 Mpa pressurization, naturally cooled, and took out the sintered compact. By the above procedure, the sintered compact target for forming the thin film used as each atomic ratio shown in Table 1 was formed.

다음으로, 제작한 소결체의 스퍼터링 타깃을 사용한 성막 방법, 및 그 막 평가에 대해서 설명한다. 시판하는 매엽식 스퍼터링 장치(톳키(주)제: SML-464)를 사용하여 성막했다. 스퍼터링 조건은, 도달 진공도 1×10-5Pa로 하고, 스퍼터 가스로서 Ar/O2 혼합 가스를 사용하고, 스퍼터 가스압 0.4Pa로 설정하고, 산소 분압 0.01Pa로 하여, 실온(25℃)의 유리 기판(니혼덴키가라스(주)제: OA-10) 위에, 150W의 DC 스퍼터링에 의해, 약 100㎚ 두께의 성막을 행했다.Next, the film-forming method using the sputtering target of the produced sintered compact, and its film | membrane evaluation are demonstrated. It formed into a film using the commercially available single | leaf type | mold sputtering apparatus (SML-464 made from SK Corporation | KK). Sputtering condition was a degree of vacuum reached 1 × 10 -5 Pa, and a, as a sputter gas using the Ar / O 2 mixed gas, and the sputtering gas pressure is set to 0.4Pa, and, on the oxygen partial pressure 0.01Pa, a glass at room temperature (25 ℃) On the substrate (Nihon Denki Glass Co., Ltd. product: OA-10), film formation of about 100 nm thickness was performed by DC sputtering of 150W.

이 성막한 막조성은, ICP(유도 결합 플라스마) 발광 분광 분석 장치(에스아이아이나노테크놀로지(주)제: Vista Pro)를 사용하여 행했다. 표 1에는, Zn, Sn, Zr의 측정치로부터, Zn/(Zn+Sn) 및, Zr/(Zn+Sn+Zr)의 원자비의 값을 산출하여 기재하고 있다. 또, 박막 트랜지스터(TFT) 등의 소자에 사용했을 경우, 그 산화물형 반도체 재료의 조성은, 소자를 절단하고, 그 소자 단면을 투과형 전자 현미경(TEM) 등으로 관찰하면서, 산화물형 반도체 재료층을 특정하고, 그 부분을 EDX 분석함으로써 특정할 수 있다.This film formation was carried out using an ICP (inductively coupled plasma) emission spectroscopy apparatus (SIA INano Technology Co., Ltd. product: Vista Pro). Table 1 calculates and describes the value of the atomic ratio of Zn / (Zn + Sn) and Zr / (Zn + Sn + Zr) from the measured value of Zn, Sn, Zr. Moreover, when used for elements, such as a thin film transistor (TFT), the composition of the oxide type semiconductor material cut | disconnects an element and observes the element cross section with a transmission electron microscope (TEM), etc. It can be specified by specifying the part and EDX analysis.

그리고, 성막한 각 시료를, 대기 분위기 중, 200℃, 220℃, 250℃, 300℃에서 1시간 아닐 처리를 하여, 각각 홀 효과 측정을 행하고, 각 시료의 비저항치, 캐리어 이동도, 캐리어 밀도를 구했다. 이 홀 효과 측정은, 시판하는 홀 효과 측정 장치(나노메트릭스·쟈판(주)제: HL5500PC)에 의해, 10㎜×10㎜ 네모로 잘라낸 각 시료를 사용하여 행했다. 각 시료의 비저항치, 캐리어 이동도, 캐리어 밀도의 결과를 표 1에 나타낸다. 또, 이 성막 후의 열처리는, 성막시(스퍼터링시)의 기판 온도와는 달리, 성막되어 일단(一端) 고정되어 안정한 막에 열에너지를 가하는 것이다. 예를 들면, 특허문헌 5에 있어서의 기판 온도는 성막시에 부여되는 열이며, 스퍼터링에 의해 뿔뿔이 흩어진 원자가 기판에 부착될 때에, 이 기판 온도가 상승함에 수반하여, 기판에 부착된 원자가 보다 안정한 장소로 이동하는 현상이 생긴다. 즉, 성막시의 기판 온도의 제어는, 스퍼터시의 에너지와 기판 온도의 열에너지의 토탈로, 원자의 재배치가 진행되어, 막의 결정 상태나 배향성 등을 결정하는 것이며, 본원에 있어서의 성막 후의 열처리와는 다르다.Each sample formed into a film was treated with annealing at 200 ° C., 220 ° C., 250 ° C., and 300 ° C. for 1 hour in an air atmosphere, and the Hall effect measurement was performed. The specific resistance, carrier mobility, and carrier density of each sample were measured. Saved. This Hall effect measurement was performed using each sample cut out in 10 mm x 10 mm squares by the commercially available Hall effect measuring apparatus (manufactured by Nanometrics Japan Co., Ltd .: HL5500PC). Table 1 shows the results of the specific resistance, carrier mobility, and carrier density of each sample. In addition, unlike the substrate temperature at the time of film formation (at the time of sputtering), the heat treatment after film formation is to form a film and apply thermal energy to a stable film once fixed. For example, the substrate temperature in patent document 5 is heat | fever provided at the time of film-forming, and when the atom | scattered by sputtering adheres to a board | substrate, this board | substrate temperature rises, and the place which the atom adhered to a board | substrate is more stable place The phenomenon occurs. That is, the control of the substrate temperature at the time of film formation is the total of the energy at the time of sputtering and the thermal energy of the substrate temperature, and the rearrangement of atoms proceeds to determine the crystal state, orientation, and the like of the film. Is different.

TFT 평가: 상기의 막을 채널층으로 하고, 메탈 마스크를 사용하여 박막 트랜지스터(TFT)를 제작했다. 도 1에는, 형성한 TFT 소자의 단면 개략도(A) 및 평면 치수 개략도(B)를 나타내고 있다. 도 1(A)에 나타내는 바와 같이, TFT의 형성은, 우선은 유리 기판(10) 위에 게이트 전극(20)으로서 Al 합금(두께 2000Å)을 성막했다. 여기에서의 스퍼터 가스압은 0.4Pa이고, 투입 전력 1000W의 DC 스퍼터를 행했다. 다음으로 게이트 절연막(30)으로서 SiNx(두께 3000Å)를 성막했다. 여기에서는 플라스마 CVD 장치(samco사제: PD-2202L)에 의해 성막을 행하고, 기판 온도 350℃에서 투입 전력 250W의 플라스마 CVD를 행했다. 원료 가스의 유량은, SiH4:NH3:N2=100cc:10cc:200cc로 했다. 계속해서 채널층(40)으로서 상기 ZTO-ZrO2막(두께 300Å)을 성막했다. 여기에서의 스퍼터 가스압은 0.4Pa, 투입 전력 150W의 DC 스퍼터를 행했다. 채널의 W/L=22로 했다. 마지막으로 소스 전극(50)(두께 2000Å)과 드레인 전극(51)(두께 2000Å)을, ITO에 의해 성막했다. 여기에서의 스퍼터 가스압은 0.4Pa이고, 투입 전력 600W의 DC 스퍼터를 행했다. 이와 같이 하여 제작한 TFT의 소자 치수에 대해서, 도 1(B)에 나타내고 있다. 이 도 1(B)의 각 폭의 수치 단위는 ㎜이다.TFT evaluation: The said film | membrane was made into the channel layer, and the thin film transistor (TFT) was produced using the metal mask. 1, the cross-sectional schematic A and the planar dimension schematic B of the formed TFT element are shown. As shown in FIG. 1 (A), in the formation of the TFT, an Al alloy (thickness of 2000 kPa) was first formed on the glass substrate 10 as the gate electrode 20. Sputter gas pressure here was 0.4 Pa, and DC sputter | spatter of 1000W of input electric power was performed. Next, SiNx (thickness: 3000 kPa) was formed as a gate insulating film 30. Here, film formation was performed by a plasma CVD apparatus (PD-2202L manufactured by samco), and plasma CVD with a power of 250 W was performed at a substrate temperature of 350 ° C. The flow rate of the source gas was SiH 4 : NH 3 : N 2 = 100cc: 10cc: 200cc. Subsequently, the ZTO-ZrO 2 film (thickness 300 GPa) was formed as a channel layer 40. The sputter gas pressure here performed DC sputter | spatter of 0.4 Pa and input power 150W. W / L of the channel was set to 22. Finally, the source electrode 50 (thickness 2000 kPa) and the drain electrode 51 (thickness 2000 kPa) were formed by ITO. The sputter gas pressure here was 0.4 Pa, and DC sputter | spatter of 600W of input electric power was performed. The element dimensions of the TFT thus produced are shown in Fig. 1B. The numerical unit of each width | variety of this FIG. 1 (B) is mm.

제작한 TFT에 대해서는, 그 전달 특성을 반도체 분석 장치(Agilent Technologies사제 Semiconductor Device Analyzer B1500A)에 의해 측정했다. 측정시에 인가한 드레인 전압(Vds)은 1∼5V이고, 게이트 전압(Vgs)의 측정 폭은 -10∼20V로 했다. 도 2∼도 7에 TFT의 전달 특성을 측정한 결과를 나타낸다. 도 2∼도 5가 실시예 1(각 열처리 온도)일 경우, 도 6이 비교예 1(열처리 200℃), 도 7이 비교예 2(열처리)일 경우의 TFT 특성을 나타내고 있다. 또, 도 2∼도 6에서는, 종축 좌측은 드레인 전류: Ids(A)치의 대수축이며, 종축 우측은 √Ids치의 소수점 표시축이다.About the produced TFT, the transmission characteristic was measured by the semiconductor analyzer (Semiconductor Device Analyzer B1500A by Agilent Technologies). The drain voltage Vds applied at the time of the measurement was 1-5V, and the measurement width of the gate voltage Vgs was -10-20V. 2-7, the result of having measured the transfer characteristic of TFT is shown. When FIGS. 2-5 is Example 1 (each heat processing temperature), FIG. 6 has shown TFT characteristics in the comparative example 1 (heat processing 200 degreeC), and FIG. 7 in the comparative example 2 (heat processing). 2 to 6, the left side of the vertical axis represents the large axis of the drain current: Ids (A) value, and the right side of the vertical axis represents the decimal point display axis of the? Ids value.

[표 1][Table 1]

Figure pct00001
Figure pct00001

표 1에 나타내는 바와 같이, Zr 함유량은, 원자비 0.000085(8.5×10-5)∼0.00312(3.12×10-3)이면, 200℃ 열처리 후에 있어서의 막의 캐리어 밀도는, 1×1015-3 이상 1×1018-3 미만의 범위에 들어감이 판명되었다. 또한, 비교예 2에 대해서는, 열처리 온도 300℃이고, 막의 캐리어 밀도가 1×1015-3 미만이 되었다.As shown in Table 1, when the Zr content is an atomic ratio of 0.000085 (8.5 × 10 −5 ) to 0.00312 (3.12 × 10 −3 ), the carrier density of the film after 200 ° C. heat treatment is 1 × 10 15 cm −3. It became clear that it entered the range below 1 * 10 <18> cm <-3> or more. Moreover, about the comparative example 2, it was 300 degreeC of heat processing, and the carrier density of the film | membrane became less than 1 * 10 <15> cm <-3> .

또한, 실시예 1의 경우, 각 열처리 온도에 있어서의 TFT 특성은, 도 2∼도 5에 나타내는 결과가 되었다. 또한, 도 2∼도 5에서의 각 TFT 특성치의 결과를 표 2에 나타낸다. 또, 전해 효과 이동도 μ는, TFT 소자를 형성하여 TFT 특성을 측정한 결과로부터 얻어지는 값이며, 표 1의 캐리어 이동도는, 성막한 막의 홀 효과 측정으로부터 얻어진 값이다. 또한, S치란, 트랜지스터의 특성을 나타내는 서브쓰레숄드 스윙치(subthreshold swing value)이다.In addition, in the case of Example 1, TFT characteristics in each heat processing temperature were the results shown in FIGS. In addition, the result of each TFT characteristic value in FIGS. Moreover, electrolytic effect mobility (micro) is a value obtained from the result of forming a TFT element and measuring TFT characteristic, and carrier mobility of Table 1 is a value obtained from the Hall effect measurement of the film formed into a film. In addition, S value is a subthreshold swing value which shows the characteristic of a transistor.

[표 2][Table 2]

Figure pct00002
Figure pct00002

도 2∼도 5 및 표 2에 나타내는 바와 같이, 실시예 1의 경우, 모든 열처리 온도에 있어서, on/off비가 5자리가 되고, 양호한 TFT 특성을 나타내고 있음이 판명되었다. 단, 실시예 1의 열처리 온도 200℃에서는, 도 2와 같이, on/off에 있어서의 직선의 기울기가 약간 완만하게 되었다. 또한, 실시예 2∼5에 대해서도 같은 TFT 특성임이 판명되었다. 이에 대하여, 논도프의 비교예 1(200℃)의 경우에서는, 도 6에 나타내는 바와 같이, on/off하지 않고 off하지 않는 소자가 되어 버려, 스위칭 소자의, 채널층으로서의 기능을 할 수 없음이 확인되었다. 그리고, 도 7에 나타내는 바와 같이, 비교예 2(200℃)의 경우에서는, on/off의 작용이 매우 약하여, 채널층으로서의 기능을 할 수 없음이 판명되었다.As shown in FIGS. 2-5 and Table 2, in Example 1, it turned out that the on / off ratio becomes 5 digits at all the heat processing temperatures, and shows favorable TFT characteristic. However, at the heat processing temperature of 200 degreeC of Example 1, the inclination of the straight line in on / off became slightly smooth like FIG. Moreover, it turned out that it is the same TFT characteristic also about Examples 2-5. On the other hand, in the case of the non-doped comparative example 1 (200 degreeC), as shown in FIG. 6, it turns into an element which does not turn on / off and does not turn off, and cannot function as a channel layer of a switching element. Confirmed. And as shown in FIG. 7, in the case of the comparative example 2 (200 degreeC), the effect | action of on / off is very weak, and it turned out that it cannot function as a channel layer.

본 발명의 산화물형 반도체 재료는, 입체 표시형 액정 디스플레이의 스위칭 소자와 같은, 보다 고속의 응답 속도가 요구되는 TFT의 구성 재료로서 극히 유효하다. 또한, 본 발명의 산화물형 반도체 재료는, 저온 열처리로 사용 가능하기 때문에, 플렉서블 기판 등을 이용하는 유기 EL 패널이나 전자 페이퍼에 호적하며, 자원적인 문제나 인체나 환경에의 영향의 관점에서도 산업상 이용 가치가 높다.The oxide semiconductor material of the present invention is extremely effective as a constituent material of a TFT requiring a higher response speed, such as a switching element of a stereoscopic display liquid crystal display. Moreover, since the oxide type semiconductor material of this invention can be used by low temperature heat processing, it is suitable for the organic electroluminescent panel and electronic paper which use a flexible board | substrate, etc., and is used industrially also from a viewpoint of a resource problem, an influence on a human body, or an environment. High value

Claims (3)

Zn 산화물과 Sn 산화물을 함유하는 산화물형 반도체 재료로서,
도펀트로서, Zr을 함유하고, Zr 함유량은, 금속 원소로서의 Zn, Sn, Zr의 각 원자수 합계에 대한 도펀트의 원자비가 0.005 이하인 것을 특징으로 하는 산화물형 반도체 재료.
An oxide semiconductor material containing Zn oxide and Sn oxide,
Zr is contained as a dopant, and Zr content is the oxide type semiconductor material characterized by the atomic ratio of the dopant with respect to the sum total of each atomic number of Zn, Sn, Zr as a metal element being 0.005 or less.
제1항에 기재된 산화물형 반도체 재료를 사용하여 형성된 보텀 게이트형 혹은 톱 게이트형의 박막 트랜지스터.The bottom gate type or top gate type thin film transistor formed using the oxide type semiconductor material of Claim 1. 제1항에 기재된 산화물형 반도체 재료에 의해 형성된 박막을 성막하기 위한 스퍼터링 타깃으로서,
Zn 산화물과 Sn 산화물로 이루어지고,
Zr을 함유하고, Zr 함유량은, 금속 원소로서의 Zn, Sn, Zr의 각 원자수 합계에 대한 도펀트의 원자비가 0.005 이하인 것을 특징으로 하는 스퍼터링 타깃.
As a sputtering target for film-forming the thin film formed of the oxide type semiconductor material of Claim 1,
Zn oxide and Sn oxide,
Zr is contained, and Zr content is the sputtering target characterized by the atomic ratio of the dopant with respect to the sum total of each atomic number of Zn, Sn, and Zr as a metal element.
KR1020137027136A 2011-05-27 2012-04-06 Oxide-type semiconductor material and sputtering target KR101523333B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011118804 2011-05-27
JPJP-P-2011-118804 2011-05-27
PCT/JP2012/059486 WO2012165047A1 (en) 2011-05-27 2012-04-06 Oxide-type semiconductor material and sputtering target

Publications (2)

Publication Number Publication Date
KR20130136537A true KR20130136537A (en) 2013-12-12
KR101523333B1 KR101523333B1 (en) 2015-05-27

Family

ID=47258912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137027136A KR101523333B1 (en) 2011-05-27 2012-04-06 Oxide-type semiconductor material and sputtering target

Country Status (5)

Country Link
JP (1) JP5813763B2 (en)
KR (1) KR101523333B1 (en)
CN (1) CN103608924B (en)
TW (1) TWI579393B (en)
WO (1) WO2012165047A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6144858B1 (en) * 2016-04-13 2017-06-07 株式会社コベルコ科研 Oxide sintered body, sputtering target, and production method thereof
JP6557750B1 (en) * 2018-03-16 2019-08-07 株式会社コベルコ科研 Sputtering target material and sputtering target

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2039798B1 (en) * 2006-06-08 2012-01-25 Asahi Glass Company, Limited Transparent conductive film, process for production of the film, and sputtering target for use in the production of the film
JP5372776B2 (en) * 2007-12-25 2013-12-18 出光興産株式会社 Oxide semiconductor field effect transistor and manufacturing method thereof
JP2010050165A (en) * 2008-08-19 2010-03-04 Sumitomo Chemical Co Ltd Semiconductor device, method of manufacturing the same, transistor substrate, light emitting device, and display device
KR101623958B1 (en) * 2008-10-01 2016-05-25 삼성전자주식회사 Inverter, method of operating the same and logic circuit comprising inverter
KR101549295B1 (en) * 2008-12-12 2015-09-01 이데미쓰 고산 가부시키가이샤 Composite oxide sintered body and sputtering target comprising same

Also Published As

Publication number Publication date
WO2012165047A1 (en) 2012-12-06
JP5813763B2 (en) 2015-11-17
CN103608924A (en) 2014-02-26
KR101523333B1 (en) 2015-05-27
TW201303049A (en) 2013-01-16
JPWO2012165047A1 (en) 2015-02-23
CN103608924B (en) 2016-08-10
TWI579393B (en) 2017-04-21

Similar Documents

Publication Publication Date Title
TWI429775B (en) Sputtering target, oxide semiconductor film and semiconductor device
KR101312774B1 (en) Semiconductor thin film and method for manufacturing same, and thin film transistor
JP5510767B2 (en) Thin film transistor and manufacturing method thereof
CN101309864B (en) Semiconductor thin film, method for manufacturing the same, and thin film transistor
US20120168748A1 (en) Semiconductor device, polycrystalline semiconductor thin film, process for producing polycrystalline semiconductor thin film, field effect transistor, and process for producing field effect transistor
JP2010199307A (en) Top gate type field-effect transistor, manufacturing method therefor, and display including the same
Lee et al. Relationships between the crystalline phase of an IGZO target and electrical properties of a-IGZO channel film
KR102478014B1 (en) Oxide semiconductor thin film, thin film transistor and manufacturing method thereof, and sputtering target
JP2010165999A (en) Method for manufacturing thin film transistor and method for manufacturing electro-optical device
KR20130136537A (en) Oxide-type semiconductor material and sputtering target
KR20150127053A (en) Oxynitride semiconductor thin film
KR101501629B1 (en) Oxide semiconductor material and sputtering target
US11049976B2 (en) Thin-film transistor, oxide semiconductor film, and sputtering target
Lim et al. Electrical characteristics of SnO2 thin-film transistors fabricated on bendable substrates using reactive magnetron sputtering
JP5702447B2 (en) Semiconductor thin film, manufacturing method thereof, and thin film transistor
Avis et al. Solution Processed Oxide Thin Film Transistors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180320

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190320

Year of fee payment: 5