KR20130124601A - Method for photocatalyst coating on plastic - Google Patents

Method for photocatalyst coating on plastic Download PDF

Info

Publication number
KR20130124601A
KR20130124601A KR1020120047805A KR20120047805A KR20130124601A KR 20130124601 A KR20130124601 A KR 20130124601A KR 1020120047805 A KR1020120047805 A KR 1020120047805A KR 20120047805 A KR20120047805 A KR 20120047805A KR 20130124601 A KR20130124601 A KR 20130124601A
Authority
KR
South Korea
Prior art keywords
titanium
oxide
minutes
coated
photocatalyst
Prior art date
Application number
KR1020120047805A
Other languages
Korean (ko)
Inventor
이성주
Original Assignee
양현섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양현섭 filed Critical 양현섭
Priority to KR1020120047805A priority Critical patent/KR20130124601A/en
Publication of KR20130124601A publication Critical patent/KR20130124601A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Abstract

The present invention relates to a manufacturing method which simply manufactures plastic coated with a photocatalyst within a short time at low temperatures by using microwave irradiation in a processing method for coating the photocatalyst of a titanium oxide precursor including titanium oxide nanoparticles and nickel oxide primers used for coating plastic with a photocatalyst. In the photocatalyst coated on the plastic, electrons and holes excited by ultraviolet ray and visible ray are separated and used in a chemical reaction without recombination, thereby increasing process efficiency more than two times in comparison with the conventional method. Additionally, plastic degradation due to the photocatalyst can be prevented. [Reference numerals] (AA) Titanium dioxide layer;(BB) Particle titanium dioxide layer;(CC) Nickel oxide layer

Description

광촉매 코팅한 플라스틱 제조 방법{Method for photocatalyst coating on plastic}Photocatalyst coated plastics {Method for photocatalyst coating on plastic}

본 발명은 플라스틱 위에 광촉매를 코팅하는 제조방법에 관한 것이다. 더욱 상세하게는 플라스틱 위에 산화니켈 프라이머를 코팅하는 것과 산화티탄 광촉매를 코팅하는 방법에 관한 것으로, 더욱 상세하게는 플라스틱 위에 광촉매를 코팅하기 위하여 사용하는 산화니켈 프라이머와 나노 입자 산화티탄을 포함하는 산화티탄 전구체의 광촉매를 코팅하는 처리방법으로 마이크로웨이브 조사를 이용하여 비교적 짧은 시간 내에 낮은 온도에서 간단하게 제조하는 방법에 관한 것이다.
The present invention relates to a manufacturing method for coating a photocatalyst on a plastic. More particularly, the present invention relates to a coating of nickel oxide primer on plastics and a method of coating a titanium oxide photocatalyst, and more particularly to titanium oxide containing nickel oxide primer and nanoparticle titanium oxide used to coat photocatalysts on plastics. The present invention relates to a method for coating a photocatalyst of a precursor, which is simply prepared at a low temperature within a relatively short time using microwave irradiation.

일반적으로 광촉매란 빛을 받았을 때, 표면의 화학적 상태가 변화됨으로써 화학 In general, when a photocatalyst receives light, the chemical state of the surface is changed to

반응을 촉진시키는 촉매 기능을 나타내는 소재를 일컫는 용어이다It is a term that refers to a material that exhibits a catalytic function of promoting a reaction.

반도체 물질인 이산화티탄의 광촉매 성질은 자외선(UV)의 영향을 받아 가전자대   The photocatalytic properties of titanium dioxide, a semiconductor material, are affected by UV light

(valence band)에서 전도대(conduction band)로 전자가 이동하는 것에서 유래한다. It is derived from the movement of electrons from the valence band to the conduction band.

현재까지 광촉매로서의 활성을 갖는 것으로 연구되고 있는 물질들로는 TiO, ZnO, NbO, WO, SnO, ZrO와 같은 금속 산화물, 이들과의 복수의 금속을 포함한 SrTiO, KTaO , NiKNO17 등의 복합 금속 산화물, CdS, ZnS과 같은 금속 황화물, CdSe, GaP, CdTe, MoSe, WSe와 같은 금속 칼코겐나이트 등이 있는데, 그 중에서 광효율 및 내광부식성이 탁월하며, 무해하고 가격이 저렴한 측면에서 산화티탄을 사용하는 것이 바람직하다.Materials currently studied to have activity as photocatalysts include metal oxides such as TiO, ZnO, NbO, WO, SnO, ZrO, composite metal oxides including SrTiO, KTaO, NiKNO17 including a plurality of metals thereof, CdS, Metal sulfides such as ZnS, metal chalcogenites such as CdSe, GaP, CdTe, MoSe, WSe, and the like. Among them, titanium oxide is preferably used in terms of excellent light efficiency and light corrosion resistance, and is harmless and inexpensive. .

이러한 광촉매의 원리를 도 1을 참조하여 설명하면 다음과 같다. 광촉매로 사용되는 산화티탄의 아나타제는 반도체성 금속 산화물로서 3.2 eV 이상 또는 400 nm이하의 밴드갭 에너지를 가지고 있다. 그래서 이에 해당하는 빛 에너지(photon energy)가 입사되면 이 에너지를 흡수하여 전자 정공 쌍이 형성되고, 여기된 정공은 강력한 산화력에 의하여 수분과 반응하여 OH 라디칼을 생성하고, 이 OH 라디칼은 유기물질을 분해하게 된다. 이러한 광촉매의 반응 과정은 다음과 같다.The principle of such a photocatalyst is described with reference to FIG. 1 as follows. Anatase of titanium oxide used as a photocatalyst is a semiconducting metal oxide and has a bandgap energy of 3.2 eV or more or 400 nm or less. Thus, when the corresponding photon energy is incident, the energy is absorbed to form an electron hole pair, and the excited holes react with water by a strong oxidative force to generate OH radicals, which decompose the organic material. Done. The reaction process of the photocatalyst is as follows.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003

Figure pat00003

상기 OH 라디칼의 생성에너지는 120 Kcal/mol에 상당하는 것으로 유기화합물의    The generated energy of the OH radical is equivalent to 120 Kcal / mol of the organic compound

C-C 결합, C-H 결합, C-N 결합, C-O 결합, O-H 결합 및 N-H 결합의 여러 가지  Several kinds of C-C bonds, C-H bonds, C-N bonds, C-O bonds, O-H bonds and N-H bonds

결합에너지보다도 크다. 따라서 광촉매는 이러한 결합을 분해한다. 즉 유기물을 용이하게 분해할 수 있기 때문에, 오염물, 유해물질 또는 병균 등의 제거 및 살균에 폭 넓게 사용된다.It is larger than the binding energy. The photocatalyst thus breaks down this bond. That is, since organic matters can be easily decomposed, they are widely used for the removal and sterilization of contaminants, harmful substances or germs.

그러나 광촉매의 특징인 유기물을 분해하는 성능이 광촉매를 코팅한 제품을     However, the ability to decompose organic matter, which is a characteristic of photocatalysts,

생산하는 데에서는 커다란 한계로 나타난다. 즉 광촉매의 장점인 유기물을 산화해서 In production it appears to be a big limitation. In other words, by oxidizing organic matter,

분해하는 성질이 제품을 생산하는 데에는 단점으로 부각이 되는 것이다. 즉, Degradation is a disadvantage for producing products. In other words,

이산화티탄에서 발생하는 광촉매의 OH 라디칼의 생성에너지가 유기화합물의 C-C 결합, C-H 결합, C-N 결합, C-O 결합, O-H 결합 및 N-H 결합 등의 여러 가지The energy generated by the photocatalyst's OH radicals can be found in various ways, including C-C bonds, C-H bonds, C-N bonds, C-O bonds, O-H bonds and N-H bonds.

결합에너지보다도 크기 때문에, 광촉매를 플라스틱 위에 직접 코팅할 경우에는 Since it is larger than the binding energy, when the photocatalyst is coated directly on the plastic

광촉매가 바인더에 접촉하면, 바로 플라스틱과 바인더를 산화시켜 분해하는 반응이When the photocatalyst comes into contact with the binder, the reaction of oxidizing and decomposing the plastic and the binder

일어나게 되고, 변색이 일어나게 되며, 플라스틱과 광촉매가 분리되고 광촉매 효율이 떨어진다. It occurs, discoloration occurs, the plastic and the photocatalyst is separated and the photocatalytic efficiency is inferior.

대한민국 특허 10-2010-0075850에서는 스틸렌 아크릴 공중합 바인더 (styrene In Korea Patent 10-2010-0075850 styrene acrylic copolymer binder (styrene

acrylic copolymer binder)를 포함하는 방법으로 사용하는 등 다양한 고분자물질을 various polymer materials such as acrylic copolymer binder)

사용하여 플라스틱에 고정하였다. 그러나 이러한 고분자 물질을 바인더로 사용하여 And fixed to the plastic. However, using these polymeric materials as binders

제조된 광촉매 플라스틱은 1~3년 정도가 지난 후에 코팅된 광촉매에 의하여 바인더가 산화 되고 분해된다. 이로 인해서 광촉매가 코팅된 플라스틱과 바인더는 변색이 되어 투명성이 저하된다. 또한 광촉매가 바인더를 산화시켜서 공간이 발생하고, 이로 인해서 광촉매가 바인더와 분리되고, 광촉매가 플라스틱에서 이탈이 되고, 코팅한 광촉매의 광촉매 특성 등이 저하되는 문제가 생긴다.In the prepared photocatalyst plastic, the binder is oxidized and decomposed by the coated photocatalyst after 1 to 3 years. As a result, the photocatalyst-coated plastic and the binder are discolored, thereby decreasing transparency. In addition, the photocatalyst oxidizes the binder to generate space, which causes the photocatalyst to be separated from the binder, the photocatalyst is separated from the plastic, and the photocatalyst properties of the coated photocatalyst are deteriorated.

대한민국 특허 10-2009-0124425에서는 광촉매의 바인더로써 무기물로서         In Korean Patent 10-2009-0124425, as a binder of the photocatalyst,

메틸트리메톡시실란(methyltrimethoxysilane) 또는 메틸트리에톡시실란(methyltriethoxysilane) 으로 광촉매를 제조하는 방법이 제시하고 있다. 이러한 실리콘계의 실란을 광촉매의 바인더로 사용하는 것은 실란이 광촉매를 감싸고 있기 때문에 광촉매의 성능이 제대로 발휘가 되지 않고 또한 이러한 실란이 플라스틱과의 밀착성이 양호하게 나오지 않는다.A method for preparing a photocatalyst with methyltrimethoxysilane or methyltriethoxysilane has been proposed. The use of such silicone-based silanes as a binder for photocatalysts does not provide good performance of the photocatalyst because the silanes surround the photocatalysts, and the silanes do not have good adhesion with plastics.

대한민국 특허 10-0330955에서는 비닐 에스테르 및/또는 비닐 에테르와     Korean Patent 10-0330955 describes vinyl esters and / or vinyl ethers.

플루오로올레핀의 공중합체를 함유하는 플루오르화 중합체, 또는 규소 기재 중합체를 바인더로 사용하고 있다. 이러한 경우에는 플루오로올레핀이 접촉하는 부위는 Fluorinated polymers or silicon-based polymers containing copolymers of fluoroolefins are used as binders. In this case, the site of fluoroolefin contact

광촉매에 의해서 분해되지 않는다. 그러나 광촉매가 비닐 에스테르 및/또는 비닐 It is not decomposed by the photocatalyst. However, photocatalysts are vinyl esters and / or vinyl

에테르와 접촉이 되는 부위는 분해가 된다. 즉, 이러한 바인더는 단독의 고분자 Sites in contact with the ether are degraded. That is, such a binder is a single polymer

바인더를 사용하는 것보다는 좋은 광촉매 분해 방지성을 갖지만 바인더의 광촉매 Although it has better photocatalytic degradation resistance than using a binder, the photocatalyst of the binder

분해를 완전히 해결되는 것이 아니다. 또한 비닐 에스테르 및/또는 비닐 에테르와 Decomposition is not completely solved. Also with vinyl esters and / or vinyl ethers

플루오로올레핀의 공중합체를 함유하는 플루오르화 중합체, 또는 규소 기재 중합체를 바인더가 광촉매를 감싸고 있어 외부로 돌출되는 부분이 적어서 광촉매의 효율이 떨어지는 문제점이 있다.Since the binder surrounds the photocatalyst in the fluorinated polymer or the silicon-based polymer containing the copolymer of fluoroolefin, there is a problem in that the efficiency of the photocatalyst is lowered because there is less protruding portion to the outside.

대한민국 특허 2003-0038744에서는 CVD 증착으로 80nm SiOC을 프라이머로 코팅한 후에 광촉매를 코팅하는 것을 언급하였다. 이러한 SiOC의 프라이머는 플라스틱의 표면을 광촉매로부터 보호할 수 있고 광촉매의 효율을 올릴 수가 있다.     Korean Patent 2003-0038744 mentions coating a photocatalyst after coating 80 nm SiOC with a primer by CVD deposition. Such a primer of SiOC can protect the surface of the plastic from the photocatalyst and increase the efficiency of the photocatalyst.

그러나 광촉매를 코팅하기 전에 SiOC를 프라이머로 코팅하기 위해서 CVD로 처리를 하였다. 이러한 처리는 고가의 장비를 필요로 한다. 그래서 생산비용이 높다. 또한 CVD로 프라이머를 처리하는 경우에는 프라이머가 비정질형태로 생산되고 후에 결정질화하는 후작업이 필요로 한다. 또한 플라스틱과 밀착성이 좋지 않아서 광촉매를 처리한 플라스틱을 구부릴 때 플라스틱과 프라어머가 떨어진다. However, before coating the photocatalyst, the CVD was performed to coat SiOC with a primer. This treatment requires expensive equipment. So the production cost is high. In addition, the treatment of the primer by CVD requires post-production of the primer in an amorphous form and later crystallization. In addition, the plastic and the primer fall off when bending the photocatalyst-treated plastic due to poor adhesion with the plastic.

일본특허 공개공보 제9-190514에서는 티타늄 전구체를 플라스틱 위에 도포한     In Japanese Patent Laid-Open No. 9-190514, a titanium precursor is coated on a plastic.

후에 마이크로파 조사하는 방법을 통하여 플라스틱에 광촉매를 소성하였다. 이러한 After that, the photocatalyst was fired on the plastic by microwave irradiation. Such

마이크로파 조사를 통한 소성은 낮은 온도에서 플라스틱 위에 광촉매를 소성할 Firing through microwave irradiation can cause the photocatalyst to fire on the plastic at low temperatures.

수 있는 장점을 가지고 있다. 그러나 이러한 광촉매를 직접적으로 플라스틱 위에 It has advantages. However, these photocatalysts can be directly

코팅한 것은 위에서 언급한 것과 같은 이유로 광촉매가 플라스틱의 표면도 산화시켜, 광촉매와 플라스틱이 분리되는 문제가 발생 돼서 시간이 지남에 따라 광촉매의 효율이 지속적으로 떨어져서 사용하는데 문제점을 가지고 있다.
The coating has a problem in that the photocatalyst also oxidizes the surface of the plastic for the same reason as mentioned above, so that the photocatalyst and the plastic are separated, and thus the efficiency of the photocatalyst continues to drop over time.

위에서 언급한 바와 같이 플라스틱과 같은 낮은 온도에 사용해야하는 제품들     As mentioned above products that need to be used at low temperatures, such as plastic

위에 광촉매의 장점이자 단점인 고분자 물질을 산화하는 특성의 한계 때문에, Due to the limitation of the characteristics of oxidizing the polymer material, which is an advantage and disadvantage of the photocatalyst above,

플라스틱 위에 코팅한 광촉매가 내구성의 문제로 인하여 상용화된 제품이 없는 Photocatalyst coated on plastic has no commercialized product due to durability

실정이다.
It is true.

플라스틱에 광촉매를 담지 시키는 데는 몇 가지 해결해야할 문제가 있다. There are several problems to be solved in loading photocatalysts in plastics.

a) 광촉매가 플라스틱과 잘 접착되어야한다.a) Photocatalyst should adhere well with plastic

b) 광촉매가 바인더 상에 함몰되지 않아 광촉매 활성이 감소되지 않아야 한다. b) the photocatalyst should not be recessed on the binder so that the photocatalytic activity is not reduced.

c) 광촉매 활성으로 말미암아 플라스틱이 분해반응으로 열화 되지 않아야 한다. c) The photocatalytic activity should not deteriorate plastics by decomposition.

d) 광촉매의 소성 온도는 플라스틱의 열 변형 온도 이하이어야 한다.d) The firing temperature of the photocatalyst should be below the heat distortion temperature of the plastic.

e) 광촉매는 UV와 가시광선에서도 광촉매의 성능을 나타낼 수 있어야 한다.
e) Photocatalysts should be able to exhibit the performance of photocatalysts in the UV and visible light.

본 발명에 따른 플라스틱 위에 코팅한 광촉매의 제조방법에 관한 것이다. 더욱 상세하게는 플라스틱 위에 산화니켈의 프라이머 코팅층과 산화티타늄의 나노 입자를 첨가한 산화티탄의 코팅층을 마이크로파로 소성하는 2층 구조를 갖는데 있다.
It relates to a method for producing a photocatalyst coated on a plastic according to the present invention. More specifically, it has a two-layered structure in which a primer coating layer of nickel oxide and a coating layer of titanium oxide to which nanoparticles of titanium oxide are added onto a plastic are microwave-fired.

발명에 따른 플라스틱에 프라이머로 산화니켈을 코팅한 광촉매 제조방법에 있어서는 다음과 같은 효과가 있다.The photocatalyst manufacturing method of coating nickel oxide with a primer on a plastic according to the invention has the following effects.

본 발명에 따른 2층 구조의 산화니켈이 코팅된 플라스틱 위에 코팅한 광촉매는    The photocatalyst coated on the nickel oxide coated plastic of the two-layer structure according to the present invention is

자외선과 가시광선에 의해 여기된 전자와 정공이 서로 재결합되지 않고, 분리되어  Electrons and holes excited by ultraviolet rays and visible light do not recombine with each other,

화학작용에 기여하게 됨으로써 처리 효율이 종래에 비해 약 2배 이상 향상된다. By contributing to the chemical action, the treatment efficiency is improved by about 2 times or more compared to the conventional.

그리고 광촉매로 인한 플라스틱을 열화 되는 것을 방지할 수 있다. 산화티탄 졸(sol)로 광촉매의 바인더를 사용하였기 때문에 나노 입자의 산화티탄과 산화티탄 바인더가 둘 다 광촉매의 효과를 나타내기 때문에 광촉매의 효율이 높다. 그리고 바인더를 산화티탄으로 사용하였기 때문에 나노 산화티탄을 감싸서 효율이 떨어지는 것을 방지 할 수가 있다. 또한 나노 산화티탄의 바인더는 아나타제와 루타일 타입이 혼합되어 구성되어 있기 때문에 자외선뿐만 아니라 일부의 가시광선에서도 효과를 나타낸다. 그리고 산화물 전구체를 마이크로파로 소성하므로 써 플라스틱의 변형 없이 광촉매를 코팅할 수 있다.
And it can prevent the plastic from deteriorating due to the photocatalyst. Since the photocatalyst binder is used as the titanium oxide sol, the efficiency of the photocatalyst is high because both the titanium oxide and the titanium oxide binder of the nanoparticles exhibit the effect of the photocatalyst. And since the binder is used as titanium oxide, the efficiency can be prevented by wrapping nano titanium oxide. In addition, since the binder of the nano titanium oxide is composed of anatase and rutile type, the binder is effective not only in ultraviolet light but also in some visible light. By firing the oxide precursor with microwaves, the photocatalyst can be coated without deformation of the plastic.

도 1은 일반적인 광촉매의 동작 원리를 보여주는 도면
도 2는 본 발명에 따른 플라스틱 위에 코팅한 광촉매의 구조를 보여주는 도면
도 3은 본 발명에 따른 플라스틱 위에 코팅한 광촉매의 제조 공정을 보여주는 순서도
도 4는 본 발명에 따른 플라스틱 위에 코팅한 광촉매의 분해 반응 측정 결과를
보여주는 도면
1 is a view showing the principle of operation of a general photocatalyst
2 is a view showing the structure of a photocatalyst coated on a plastic according to the present invention
Figure 3 is a flow chart showing the manufacturing process of the photocatalyst coated on the plastic according to the present invention
4 is a decomposition reaction measurement result of the photocatalyst coated on the plastic according to the present invention
Showing drawings

본 발명에 따른 플라스틱 위에 코팅한 광촉매 제조방법과 특징은 다음과 같다.The photocatalyst manufacturing method and features coated on the plastic according to the present invention are as follows.

제 1단계는 플라스틱을 마련하고 플라스틱의 표면을 세척하는 단계,The first step is to prepare a plastic and to clean the surface of the plastic,

제 2단계 플라스틱 위에 산화니켈 프라이머를 코팅하는 단계,Coating a nickel oxide primer on the second step plastic,

제 3단계는 플라스틱 위에 코팅된 산화니켈을 마이크로파로 소성하는 단계,The third step is the step of firing the nickel oxide coated on the plastic by microwave,

제 4단계는 소성된 산화니켈 위에 산화티탄의 나노 입자를 포함하는 산화티탄 The fourth step is titanium oxide containing nanoparticles of titanium oxide on the calcined nickel oxide

전구체를 코팅하는 단계Coating the precursor

제 5단계는 코팅된 산화티탄 나노 입자를 포함하는 산화티탄 전구체층을 마이크로파로 소성하는 단계로 이루어지는 데 있다.
The fifth step consists in firing the titanium oxide precursor layer containing the coated titanium oxide nanoparticles with microwaves.

상기와 같은 특징을 갖는 본 발명에 따른 플라스틱 위에 코팅한 광촉매 구조를     The photocatalyst structure coated on the plastic according to the present invention having the characteristics as described above

첨부된 도면 2를 참조하여 설명하면 다음과 같다. 먼저, 본 발명의 개념은 플라스틱 위에 코팅한 광촉매의 구조는 산화티탄늄의 나노 입자를 포함한 산화티탄(TiO)Referring to the accompanying drawings 2 as follows. First, the concept of the present invention is the structure of the photocatalyst coated on the plastic is titanium oxide (TiO) containing nanoparticles of titanium oxide

코팅층과 플라스틱 사이에 산화니켈(NiO) 코팅층을 형성한 2층 구조로 가지고  It has a two-layer structure in which a nickel oxide (NiO) coating layer is formed between the coating layer and the plastic.

있어 광촉매의 효율을 향상시키고, 광촉매가 플라스틱을 산화하는 것을 방지하고, Improve the efficiency of the photocatalyst, prevent the photocatalyst from oxidizing the plastic,

가시광선에서 광촉매의 성능을 갖는데 있다.It has a performance of photocatalyst in visible light.

도 3을 참조하여 본 발명에 따른 2층 구조인 플라스틱위에 코팅한 광촉매     3 is a photocatalyst coated on a plastic having a two-layer structure according to the present invention.

제조방법을 설명하면 다음과 같다.The manufacturing method will be described as follows.

제 1 단계로, 광촉매를 코팅하고자 하는 플라스틱의 기판을 알코올과 아세톤,     In the first step, the plastic substrate to be coated with the photocatalyst is prepared using alcohol, acetone,

탈이온수(deionized water) 등으로 깨끗이 세척한다. 이때 플라스틱을 세척하여야 하는 이유는 플라스틱의 표면에 이물질이 있는 경우에는 산화물 코팅의 밀착력이 나빠지기 때문이고 또한 이물질이 있는 경우에 투명도가 저하되는 문제가 있기 때문이다. 또한 연속적인 작업을 위해서는 세척작업이 생략될 수도 있다. 상기 플라스틱은 PE(폴리에틸렌), PP(폴리프로필렌), EVA(폴리 에칠렌 비닐아세테이트), PET(폴리에칠렌 테레프탈레이트), PVC(폴리비닐클로라이드), PC(폴리카본네이트), PMMA(폴리메타메칠아크릴레이트), PI(폴리이미드), PBT(Polybutylene Terephthalate), Polyamide, 폴리우레탄 등 고분자 형태로 이루어진 것을 사용한다. 또한 연속적인 롤 형태로 공급이 될 수 있는 고분자 필름과 섬유를 포함하며 종이, 나무, 금속 등으로 이루어진 재질로 사용할 수도 있다.Wash clean with deionized water. In this case, the reason why the plastic should be cleaned is that the adhesion of the oxide coating is deteriorated when there is a foreign matter on the surface of the plastic, and the transparency decreases when there is a foreign matter. In addition, the cleaning operation may be omitted for the continuous operation. The plastics are PE (polyethylene), PP (polypropylene), EVA (polyethylene vinyl acetate), PET (polyethylene terephthalate), PVC (polyvinylchloride), PC (polycarbonate), PMMA (polymethacrylate) ), PI (Polyimide), PBT (Polybutylene Terephthalate), Polyamide, Polyurethane, etc. made of a polymer form is used. In addition, it includes a polymer film and fibers that can be supplied in a continuous roll form, it can be used as a material made of paper, wood, metal and the like.

제 2단계에서는 산화니켈 졸(sol)을 만들어서 플라스틱 위에 코팅을 한다. 산화니켈(NiO)의 프라이머는 염화니켈을 사용한다. 또한 Nickel acetate, Nickel carbonate, Nickel hydroxide, Nickel nitrate, Nickel sulfamate, Nickel sulfate, Nickel citrate 등으로 이루어진 것을 사용할 수도 있다. 여기에서 산화니켈 코팅을 하는 것은 아나타제 타입의 산화티탄의 밴드갭이 3.2eV이지만 산화니켈의 밴드갭은 4.0eV이기 때문에 플라스틱 위에 코팅된 광촉매는 입사된 빛에 의해 여기된 전자-정공 쌍이 산화니켈과 산화티탄의 에너지 준위 차이에 의해 분리됨으로써 정공이 화학 반응에 참여할 확률을 높여주고 그에 따라 광촉매 효율을 약 2배 이상 향상시킬 수 있다. 제 2 단계와 4단계에 사용하는 용매로는 물, 메탄올, 에탄올, 이소프로판올, 1-메톡시프로판올, 부탄올, 에틸헥실 알코올, 테르피네올, 에틸렌글리콜, 글리세린, 에틸아세테이트, 부틸아세테이트, 메톡시프로필아세테이트, 카비톨아세테이트, 에틸카비톨아세테이트, 메틸셀로솔브, 부틸셀로솔브, 디에틸에테르, 테트라히드로퓨란, 디옥산, 메틸에틸케톤, 아세톤, 디메틸포름아미드, 1-메틸-2-피롤리돈, 디메틸술폭사이드, 헥산, 헵탄, 파라핀 오일, 미네랄 스피릿, 톨루엔, 자일렌, 클로로포름, 아세토니트릴에서 선택되는 어느 하나 이상인 것을 사용할 수도 있다. 또한 제 2 단계와 4단계에서 플라스틱에 산화니켈과 산화티탄 전구체를 코팅하는 방법은 삼단롤 코팅을 사용한다. 또한 스프레이, 3단 롤 코팅, 콤마 롤, 그라비아 코팅, 삼단 롤 코팅, 잉크젯 코팅, 나이프 코팅, 메이어바 코팅, 등 상기 코팅은 공지의 코팅 수단을 사용할 수도 있고 특별하게 코팅을 하는 방법으로 사용할 수 있는 것은 한정하지 않는다.    In the second step, a nickel oxide sol is made and coated on the plastic. Nickel chloride (NiO) primer is used as nickel chloride. Nickel acetate, Nickel carbonate, Nickel hydroxide, Nickel nitrate, Nickel sulfamate, Nickel sulfate, Nickel citrate and the like can also be used. The nickel oxide coating here shows that the anatase type titanium oxide has a bandgap of 3.2 eV but the nickel oxide has a bandgap of 4.0 eV, so that the photocatalyst coated on the plastic has an electron-hole pair excited by incident light Separation by the difference in energy levels of titanium oxide increases the probability that holes will participate in chemical reactions, thereby improving photocatalytic efficiency by more than two times. Solvents used in steps 2 and 4 include water, methanol, ethanol, isopropanol, 1-methoxypropanol, butanol, ethylhexyl alcohol, terpineol, ethylene glycol, glycerin, ethyl acetate, butyl acetate, and methoxypropyl Acetate, carbitol acetate, ethyl carbitol acetate, methyl cellosolve, butyl cellosolve, diethyl ether, tetrahydrofuran, dioxane, methyl ethyl ketone, acetone, dimethylformamide, 1-methyl-2-pyrroli It is also possible to use any one or more selected from pig, dimethyl sulfoxide, hexane, heptane, paraffin oil, mineral spirit, toluene, xylene, chloroform and acetonitrile. In addition, the method of coating the nickel oxide and titanium oxide precursor on the plastic in the second and fourth steps uses a three-stage roll coating. In addition, the coating, such as spray, three-stage roll coating, comma roll, gravure coating, three-stage roll coating, inkjet coating, knife coating, Meyer bar coating, etc. may use a known coating means or may be used as a special coating method It is not limited.

제 3단계로 플라스틱 위에 코팅된 산화니켈 졸(sol)을 코팅한 직후에는 액체     The liquid is applied immediately after coating the nickel oxide sol coated on the plastic in the third step

상태의 막이 얻어진다. 이 코팅된 산화니켈 졸을 마이크로파로 소성을 한다. 이러한 마이크로파 조사는 마이크로파가 산화니켈의 내부와 외부를 균일하게 조사하므로 써, 산화니켈이 균일한 온도 상승이 되고 산화니켈을 소성시켜 고체 상태의 산화물 형태 결정질 코팅막을 얻을 수 있다. 상기 마이크로파로 조사되 무기물의 구조를 갖는 프라이머는 도막 형성시, 경시적으로 가수 분해성기 사이에서 가수 분해 축합 반응이 진행하므로, 얻어지는 도막의 무기물 구조의 가교 밀도가 높아지고, 내용제성 등이 뛰어난 도막을 형성할 수 있다. 해당 반응은 마이크로파를 산화물 전구체에 조사할 때 기재에 영향을 주지 않고 가교 밀도가 더 증가하여 장기 내후성이 뛰어난 프라이머층이 얻어진다. 그러나 이러한 마이크로파의 조사는 플라스틱의 표면의 온도를 상승시키지 않기 때문에 플라스틱 재질이 변하지 않게 산화니켈을 소성할 수 있다. 또한 산화니켈에 대하여 마이크로파 조사는 플라스틱과 좋은 밀착력을 갖게 한다. 마이크로파의 조사장치는 300MHz ~ 300GHz의 대역폭을 갖는 마이크로파를 사용한다. 더욱 바람직하게는 2.45 GHz의 대역폭을 갖는 마이크로파를 사용한다. 산화니켈(NiO)의 프라이머와 산화티탄(TiO) 전구체를 마이크로파로 소성하는 것을 특징으로 하는 광촉매가 코팅된 플라스틱 제조방법이다.A film of state is obtained. The coated nickel oxide sol is fired in microwave. In this microwave irradiation, since microwaves irradiate the inside and outside of the nickel oxide uniformly, the nickel oxide becomes a uniform temperature rise and the nickel oxide is fired to obtain a solid oxide crystalline coating film. The primer having an inorganic structure irradiated with the microwaves undergoes a hydrolytic condensation reaction between hydrolyzable groups over time during the formation of the coating film, thereby increasing the crosslinking density of the inorganic structure of the resulting coating film and providing a coating film having excellent solvent resistance and the like. Can be formed. This reaction does not affect the substrate when irradiating microwaves to the oxide precursor, and the crosslinking density is further increased to obtain a primer layer excellent in long-term weather resistance. However, since the microwave irradiation does not raise the temperature of the surface of the plastic, the nickel oxide can be fired so that the plastic material does not change. In addition, microwave irradiation provides good adhesion to plastics for nickel oxide. The microwave irradiation apparatus uses microwaves having a bandwidth of 300 MHz to 300 GHz. More preferably, microwaves with a bandwidth of 2.45 GHz are used. A photocatalyst-coated plastic manufacturing method characterized by firing a primer of titanium oxide (NiO) and titanium oxide (TiO) precursor by microwave.

제 4단계로는 산화티탄의 졸(sol)을 먼저 만들고 그 속에 나노 입자 산화티탄을 첨가한다. 이러한 나노 입자 산화티탄을 첨가하는 것은 외부로 돌출되는 산화티탄의 표면적이 넓게 하기 위해서이다. 광촉매의 외부로 돌출되는 표면적이 넓으면 넓을수록 광촉매의 효율이 향상이 된다. 또한 산화티탄의 나노 입자는 아나타제와 루타일 타입의 혼합으로 구성이 되어 있다. 그래서 나노 입자가 포함된 루타일 타입의 산화티탄은 일부의 가시광선에서도 광촉매 효과를 나타낸다. 여기에서 나노 산화티탄 입자는 아나타제 타입과 루타일 타입이 혼합된 것을 사용할 수도 있고, 아나타제나 루타일 타입을 단독으로 사용할 수도 있다.    In the fourth step, a sol of titanium oxide is first made, and nanoparticle titanium oxide is added thereto. The addition of such nanoparticle titanium oxide is for widening the surface area of titanium oxide protruding outward. The larger the surface area protruding to the outside of the photocatalyst, the higher the efficiency of the photocatalyst. In addition, the nanoparticles of titanium oxide are composed of anatase and rutile type mixture. Thus, the rutile titanium oxide containing nanoparticles exhibits a photocatalytic effect even in part of visible light. Here, the nano titanium oxide particles may be a mixture of anatase type and rutile type, or may be used alone or anatase or rutile type.

제 5단계로 플라스틱에 코팅된 산화니켈 위에 나노 입자가 포함된 산화티탄 졸    Titanium oxide sol containing nanoparticles on nickel oxide coated on plastic in the fifth step

(sol)을 코팅한 직후에는 액체 상태의 막이 얻어진다. 이 코팅된 산화티탄 졸을 Immediately after coating (sol), a liquid film is obtained. This coated titanium oxide sol

마이크로파로 소성을 한다. 이러한 마이크로파의 조사는 마이크로파가 산화티탄의 Firing with microwaves. This microwave irradiation shows that the microwave

내부와 외부를 균일하게 조사하므로써 산화티탄이 균일한 온도 상승이 되어서 산화티탄을 소성시킴으로써 고체 상태의 산화물 형태 결정질 코팅막을 얻을 수 있다. 그러나 이러한 마이크로파의 조사는 플라스틱의 표면의 온도를 상승시키지 않기 때문에 플라스틱 재질이 변하지 않게 산화티탄을 소성할 수 있다.
By uniformly irradiating the inside and the outside, the titanium oxide becomes a uniform temperature rise, and the titanium oxide is calcined to obtain a solid oxide crystalline coating film. However, since the microwave irradiation does not raise the temperature of the surface of the plastic, it is possible to fire the titanium oxide so that the plastic material does not change.

도 4는 이와 같이 제조된 본 발명에 따른 2층 구조 광촉매의 분해 반응 측정     4 is a decomposition reaction measurement of a two-layered photocatalyst according to the present invention prepared as described above

결과를 보여주는 그래프로서, 염색 폐수의 일종인 메틸오렌지(methylorange) 분해 A graph showing the results: methylorange decomposition, a kind of dyeing wastewater

반응으로 평가한 결과이다. 산화티탄 1층만 코팅된 광촉매와 산화니켈을 프리어머로 코팅하고 산화티탄을 코팅한 것에 비해 2층 구조인 산화니켈-산화티탄 나노 입자를 포함한 산화티탄 코팅막의 분해 반응 속도가 현저히 향상되는 것을 알 수 있다.
It is the result evaluated by reaction. It can be seen that the decomposition reaction rate of the titanium oxide coating film containing nickel oxide-titanium oxide nanoparticles, which is a two-layer structure, is significantly improved compared to the photocatalyst coated with only one layer of titanium oxide, nickel oxide coated with a pre-polymer, and titanium oxide coated. have.

없음none

Claims (5)

플라스틱 위에 형성되는 산화니켈(NiO) 프라이머 코팅층과, 이 산화니켈의 프라이머를 마이크로파로 소성하는 방법과, 상기 산화니켈 코팅층 위에 산화티탄(TiO) 나노 입자가 포함한 산화티탄(TiO) 코팅층과 산화티탄 나노 입자가 포함된 산화티탄 코팅층을 마이크로파로 소성하는 제조방법에 있어서
다음과 같은 작업 단계를 갖는다.
플라스틱을 마련하고 세척하는 제 1 단계;
상기 플라스틱 위에 산화니켈(NiO)의 프라이머를 코팅하는 제 2 단계;
상기 코팅된 산화니켈(NiO)의 프라이머를 마이크로파로 소성하는 제 3단계
상기 코팅된 산화니켈 위에 산화티탄의 나노 입자를 포함하는 산화티탄(TiO)의
전구체를 코팅하는 제 4단계;
상기 코팅된 산화티탄의 나노 입자를 포함하는 산화티탄(TiO)의 전구체를
마이크로파로 소성하는 제 5단계로 이루어지는 것을 단계로 하는 광촉매가
코팅된 플라스틱의 제조방법
A nickel oxide (NiO) primer coating layer formed on a plastic, a method of firing the nickel oxide primer by microwave, a titanium oxide (TiO) coating layer containing titanium oxide (TiO) nanoparticles on the nickel oxide coating layer and titanium oxide nano In the manufacturing method for firing the titanium oxide coating layer containing the particles with a microwave
It has the following work steps.
A first step of preparing and washing the plastic;
Coating a primer of nickel oxide (NiO) on the plastic;
A third step of firing the coated nickel oxide (NiO) primer by microwave
Of titanium oxide (TiO) comprising nanoparticles of titanium oxide on the coated nickel oxide
A fourth step of coating the precursor;
A precursor of titanium oxide (TiO) comprising the nanoparticles of the coated titanium oxide
Photocatalyst comprising the fifth step of firing with microwave
Manufacturing method of coated plastic
제 1 항에 있어서,
제 2단계에 사용하는 산화니켈(NiO)을 프라이머로 사용하는 제조방법 으로 산화니켈(NiO)의 프라이머 층은, 바람직하게는 산화니오브(NbO:3.4eV), 산화주석(SnO:3.5eV), 산화알루미늄(AlO:>5eV), 산화아연(ZnO:3.3eV) 및 산화지르코늄(ZrO:5.0eV)으로 이루어진 그룹으로부터 선택된 금속 산화물을 하나 이상 포함하는 산화물 반도체 필름으로 구성하는 제조방법
The method of claim 1,
In the manufacturing method using nickel oxide (NiO) used in the second step as a primer, the primer layer of nickel oxide (NiO) is preferably niobium oxide (NbO: 3.4 eV), tin oxide (SnO: 3.5 eV), A manufacturing method comprising an oxide semiconductor film containing at least one metal oxide selected from the group consisting of aluminum oxide (AlO:> 5eV), zinc oxide (ZnO: 3.3eV) and zirconium oxide (ZrO: 5.0eV)
제 1항에 있어서
제 3단계와 5단계에서 산화니켈(NiO)의 프라이머와 산화티탄(TiO) 전구체를 마이크로파로 소성하는 것을 특징으로 하는 제조방법
The method of claim 1, wherein
Method of manufacturing a method characterized in that the firing of the nickel oxide (NiO) primer and titanium oxide (TiO) precursor by microwave in the third and fifth steps
제 1 항에 있어서,
제 5단계에서 산화티탄(TiO)의 전구체는 티타늄 프록폭사이드(Titanium() propoxide), 티타늄 이소프로폭사이드(Titanium() isopropoxide), 티타늄 디이소프로폭사이드(Titanium() diisopropoxide), 티타늄 부톡사이드(Titanium() butoxide), 티타늄 에톡사이드(Titanium() ethooxide), 및 티타늄 메톡사이드 (Titanium(IV) methoopoxide), Titanium tetrachloride, Titanium nitride, Titanium boride, Titanium(IV) oxysulfate, Titanium(IV) sulfide 로 이루어진 군에서 선택된 하나 이상을 사용할 수도 있다.
The method of claim 1,
In the fifth step, the precursor of titanium oxide (TiO) is titanium propoxide (titanium () propoxide), titanium isopropoxide (titanium () isopropoxide), titanium diisopropoxide (titanium () diisopropoxide), titanium butoxide Titanium () butoxide, Titanium () ethooxide, and Titanium (IV) methoopoxide, Titanium tetrachloride, Titanium nitride, Titanium boride, Titanium (IV) oxysulfate, Titanium (IV) sulfide One or more selected from the group consisting of may be used.
제 1 항에 있어서,
상기 제 4단계에서는 아나타제 타입 산화티탄 80%와 루타일 타입의 산화티탄 20%
혼합으로 구성되어 있는 산화티탄 나노 입자를 사용한다. 또한 여기에서 아나타제나 루타일 타입의 산화티탄을 단독으로 사용할 수도 있다. 또한 산화티탄의 입자의
크기는 1nm~ 400nm의 사이즈로 사용하는 방법.

실시예1
(a) 니켈 산화물 합성
이소프로필 알콜 50몰에 염화 니켈 0.2몰을 첨가 하고 30분간 90도의 온도에서
믹싱을 한다. 그 후에 증류수 0.4몰을 첨가한 후에 30분간 믹싱을 하여 준다. 이
코팅액을 폴리에스터 필름에 코팅을 한다. 그리고 마이크로웨이브로 2.45Hz,
700Watt에서 10분 동안 조사를 하여준다.
(b) 나노 입자 함유 산화티타늄 합성
이소프로필 알콜 50몰에 이소프로톡시 티타늄 0.2몰을 첨가하고 30분간 믹싱을
한다. 그 후에 0.01몰의 염산을 첨가하여 30분간 믹싱을 한다. 그 후에 증류수 0.8몰을 첨가한 후에 30분간 믹싱을 하여 준다. 여기에 아나타제 타입 80%와 루타일 타입 20%로 된 나노 입자 산화티탄을 5그램을 첨가한 후에 2시간 동안 믹싱을 하여 준다. 이 코팅액을 산화니켈이 코팅된 폴리에스터 필름 위에 코팅을 한 후 마이크로파로 2.45 GHz, 700Watt,에서 10분 동안 조사를 하여준다.

비교예1
이소프로필 알콜 50몰에 이소프로톡시 티타늄 0.2몰을 첨가하고 30분간 믹싱을
한다. 그 후에 0.01몰의 염산을 첨가하여 30분간 믹싱을 한다. 그 후에 증류수 0.8몰을 천천히 첨가한 후에 30분간 믹싱을 하여 준다. 이 코팅액을 산화니켈이 코팅된 폴리에스터 필름 위에 롤 코팅을 한 후 마이크로파로 2.45Hz, 700Watt에서 10분동안 조사를 하여준다.

비교예2
이소프로필 알콜 50몰에 염화니켈 0.2몰을 첨가 하고 30분간 90도의 온도에서
믹싱을 한다. 그 후에 0.01몰의 염산을 첨가하여 30분간 믹싱을 한다. 그 후에 증류수 0.8몰을 첨가한 후에 30분간 믹싱을 하여 준다. 이 코팅액을 폴리에스터 필름에롤 코팅을 한다. 그리고 마이크로파로 2.45 GHz, 700Watt에서 10분 동안 조사를
하여준다.
이소프로필 알콜 50몰에 이소프로톡시 티타늄 0.2몰을 첨가하고 30분간 믹싱을
한다. 그 후에 0.01몰의 염산을 첨가하여 30분간 믹싱을 한다. 그 후에 증류수
0.8몰을 첨가한 후에 30분간 믹싱을 하여 준다. 이 코팅액을 산화니켈이 코팅된
폴리에스터 필름 위에 롤 코팅을 한후 마이크로파로 2.45Hz, 700Watt에서 10분
동안 조사를 하여준다.

The method of claim 1,
In the fourth step, anatase type titanium oxide 80% and rutile type titanium oxide 20%
Titanium oxide nanoparticles consisting of a mixture are used. In addition, anatase or rutile type titanium oxide can also be used here. Also of titanium oxide particles
How to use the size from 1nm to 400nm size.

Example 1
(a) Nickel Oxide Synthesis
To 50 moles of isopropyl alcohol, 0.2 moles of nickel chloride were added and the mixture was heated at 90 degrees for 30 minutes.
Mix. Thereafter, 0.4 mol of distilled water is added, followed by mixing for 30 minutes. this
The coating solution is coated on the polyester film. And 2.45Hz with microwave,
Irradiate at 700 Watts for 10 minutes.
(b) Nanoparticle-containing Titanium Oxide Synthesis
To 50 moles of isopropyl alcohol, add 0.2 moles of isopropyl titanium and mix for 30 minutes.
do. Thereafter, 0.01 mol of hydrochloric acid is added to mix for 30 minutes. Thereafter, 0.8 mol of distilled water is added, followed by mixing for 30 minutes. After adding 5 grams of nanoparticle titanium oxide of 80% anatase type and 20% rutile type, the mixture was mixed for 2 hours. The coating solution is coated on a nickel oxide coated polyester film and irradiated with microwave at 2.45 GHz, 700 Watt, for 10 minutes.

Comparative Example 1
To 50 moles of isopropyl alcohol, add 0.2 moles of isopropyl titanium and mix for 30 minutes.
do. Thereafter, 0.01 mol of hydrochloric acid is added to mix for 30 minutes. Thereafter, 0.8 mol of distilled water is slowly added, followed by mixing for 30 minutes. The coating solution is roll-coated on a nickel oxide coated polyester film and irradiated with microwave at 2.45 Hz at 700 Watts for 10 minutes.

Comparative Example 2
To 50 moles of isopropyl alcohol, 0.2 moles of nickel chloride was added, and at a temperature of 90 degrees for 30 minutes.
Mix. Thereafter, 0.01 mol of hydrochloric acid is added to mix for 30 minutes. Thereafter, 0.8 mol of distilled water is added, followed by mixing for 30 minutes. This coating solution is roll coated on a polyester film. And microwave for 10 minutes at 2.45 GHz, 700 Watts.
Do it.
To 50 moles of isopropyl alcohol, add 0.2 moles of isopropyl titanium and mix for 30 minutes.
do. Thereafter, 0.01 mol of hydrochloric acid is added to mix for 30 minutes. Then distilled water
After adding 0.8 mol, mix for 30 minutes. This coating solution is coated with nickel oxide
10 minutes at 2.45Hz, 700Watt by microwave after roll coating on polyester film
Investigate while

KR1020120047805A 2012-05-07 2012-05-07 Method for photocatalyst coating on plastic KR20130124601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120047805A KR20130124601A (en) 2012-05-07 2012-05-07 Method for photocatalyst coating on plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120047805A KR20130124601A (en) 2012-05-07 2012-05-07 Method for photocatalyst coating on plastic

Publications (1)

Publication Number Publication Date
KR20130124601A true KR20130124601A (en) 2013-11-15

Family

ID=49853304

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120047805A KR20130124601A (en) 2012-05-07 2012-05-07 Method for photocatalyst coating on plastic

Country Status (1)

Country Link
KR (1) KR20130124601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021888A1 (en) * 2014-08-06 2016-02-11 (주)엘지하우시스 Photocatalyst functional film and method for manufacturing same
WO2016021889A1 (en) * 2014-08-06 2016-02-11 (주)엘지하우시스 Photocatalyst functional film and method for manufacturing same
CN110743531A (en) * 2019-11-11 2020-02-04 南京工业大学 Preparation method of biphase V-Ti efficient catalyst for naphthalene degradation
CN114939417A (en) * 2022-05-14 2022-08-26 中海油天津化工研究设计院有限公司 Preparation method of coating catalyst for preparing acrolein by propylene oxidation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021888A1 (en) * 2014-08-06 2016-02-11 (주)엘지하우시스 Photocatalyst functional film and method for manufacturing same
WO2016021889A1 (en) * 2014-08-06 2016-02-11 (주)엘지하우시스 Photocatalyst functional film and method for manufacturing same
CN106573444A (en) * 2014-08-06 2017-04-19 乐金华奥斯有限公司 Photocatalyst functional film and method for manufacturing same
JP2017523913A (en) * 2014-08-06 2017-08-24 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Photocatalytic functional film and method for producing the same
JP2017526523A (en) * 2014-08-06 2017-09-14 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Photocatalytic functional film and method for producing the same
US10220372B2 (en) 2014-08-06 2019-03-05 Lg Hausys, Ltd. Photocatalyst functional film and method for producing the same
US10232350B2 (en) 2014-08-06 2019-03-19 Lg Hausys, Ltd. Photocatalyst functional film and method for producing the same
CN110743531A (en) * 2019-11-11 2020-02-04 南京工业大学 Preparation method of biphase V-Ti efficient catalyst for naphthalene degradation
CN110743531B (en) * 2019-11-11 2022-08-30 南京工业大学 Preparation method of biphase V-Ti efficient catalyst for naphthalene degradation
CN114939417A (en) * 2022-05-14 2022-08-26 中海油天津化工研究设计院有限公司 Preparation method of coating catalyst for preparing acrolein by propylene oxidation
CN114939417B (en) * 2022-05-14 2023-11-07 中海油天津化工研究设计院有限公司 Preparation method of coating catalyst for preparing acrolein by propylene oxidation

Similar Documents

Publication Publication Date Title
Sun et al. Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance
Patrocinio et al. Layer-by-layer TiO2/WO3 thin films as efficient photocatalytic self-cleaning surfaces
Miyauchi et al. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films
Malekshoar et al. Enhanced solar photocatalytic degradation of phenol with coupled graphene-based titanium dioxide and zinc oxide
Ai et al. Explaining the enhanced photoelectrochemical behavior of highly ordered TiO2 nanotube arrays: anatase/rutile phase junction
Wang et al. A review on the application of photocatalytic materials on textiles
Xu et al. UV-protective TiO2 thin films with high transparency in visible light region fabricated via atmospheric-pressure plasma-enhanced chemical vapor deposition
Covei et al. CZTS-TiO2 thin film heterostructures for advanced photocatalytic wastewater treatment
Katsumata et al. Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets
WO2019195916A1 (en) Self-cleaning and anti-fouling graphene oxide/tio2 photoactive coating and large scale bonding-to- surface process thereof
EP1743763A1 (en) Base protection method
US20100051443A1 (en) Heterodimeric system for visible-light harvesting photocatalysts
KR20130124601A (en) Method for photocatalyst coating on plastic
Song et al. Preparation and visible light-induced photo-catalytic activity of H-PVA/TiO2 composite loaded on glass via sol–gel method
EP2145678A1 (en) TiO2-ZnO Nanocomposite film
WO2015133316A1 (en) Photocatalyst coating liquid and photocatalyst film using same
CN101346191A (en) Method for protecting base
Seifi et al. Enhanced photocatalytic activity of highly transparent superhydrophilic doped TiO2 thin films for improving the self-cleaning property of solar panel covers
Mori Photo-Functionalized Materials Using Nanoparticles: Photocatalysis [Translated]
KR20130124606A (en) Method for photocatalyst tape
Covei et al. Photocatalytic composite thin films with controlled optical properties based on TiO2, WO3 and rGO
KR101272318B1 (en) The method for preparing core/shell nano-structures of shell with Titanium dioxide or Gold-Titanium dioxide and the nano-structures prepared thereby
Zainal et al. Properties and photoelectrocatalytic behaviour of sol-gel derived TiO 2 thin films
KR101608715B1 (en) Paint for forming a porous metal oxide semiconduct membrane using photoelectric cell
Liu et al. Photocatalytic activity enhancement of TiO2 nanocrystalline thin film with surface modification of poly-3-hexylthiophene by in situ polymerization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application