KR20130122197A - Bio-gas desulfurization system - Google Patents

Bio-gas desulfurization system Download PDF

Info

Publication number
KR20130122197A
KR20130122197A KR1020120045331A KR20120045331A KR20130122197A KR 20130122197 A KR20130122197 A KR 20130122197A KR 1020120045331 A KR1020120045331 A KR 1020120045331A KR 20120045331 A KR20120045331 A KR 20120045331A KR 20130122197 A KR20130122197 A KR 20130122197A
Authority
KR
South Korea
Prior art keywords
biogas
desulfurization
oxygen
gas
hydrogen sulfide
Prior art date
Application number
KR1020120045331A
Other languages
Korean (ko)
Other versions
KR101426480B1 (en
Inventor
김창현
윤영만
황문석
Original Assignee
한경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한경대학교 산학협력단 filed Critical 한경대학교 산학협력단
Priority to KR1020120045331A priority Critical patent/KR101426480B1/en
Publication of KR20130122197A publication Critical patent/KR20130122197A/en
Application granted granted Critical
Publication of KR101426480B1 publication Critical patent/KR101426480B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Abstract

The present invention relates to a biogas desulfurization system by anoxibiontic fermentation, by continuously conducting a first bio-desulfurization, a second moisture-removing-desulfurization, and a third dry desulfurization, improves desulfurization efficiency, and increases the lifetime of a filtering material such as the active charcoal or ferric oxide. The present invention prevents oxidation and corrosion of the mechanical apparatus used in a dry desulfurization process through a continuous desulfurization process. The present invention monitors the gas state per each step and controls each of the components. [Reference numerals] (100) Biogas plant;(210) Oxygen meter;(220) Third desulfurization device;(230) Supply O_2;(240) Second desulfurization device;(250) Oxygen generator;(260) Gas analyzer;(AA) Supply biagas;(BB) First desulfurization device

Description

혐기발효에 의해 생산된 바이오가스의 탈황 시스템{Bio-gas Desulfurization System}Bio-gas desulfurization system produced by anaerobic fermentation [

본 발명은 탈황시스템에 관한 것으로, 혐기발효에 의해 생산된 바이오가스의 탈황 시스템에 관한 것이다.The present invention relates to a desulfurization system, and more particularly, to a desulfurization system for biogas produced by anaerobic fermentation.

산업이 고도화되고 인간생활이 윤택해지면서 가축분뇨와 음식물 폐기물과 같은 고농도 유기성 폐기물의 처리문제가 심각하게 대두되고 있다. As the industry becomes more sophisticated and the human life becomes better, the problem of disposal of high concentration organic wastes such as livestock manure and food wastes is becoming serious.

이러한 고농도 유기성 폐기물의 처리 문제는 정도의 차이는 있으나 주요 선진국들도 직면하고 있는 문제로서, 일찍이 EU, 일본에서는 고농도 유기성 폐기물을 바이오매스 자원으로 활용하는 방안이 연구 및 개발되어 왔다. 특히 근래 기후온난화 및 온실가스의 저감, 화석연료의 대체라는 환경 에너지 정책에 발맞추어 고농도 유기성 폐기물을 혐기 발효시켜 메탄(CH4)가스를 생산하는 시설이 널리 보급되고 있다.Although there are differences in the treatment of such high concentration organic wastes, there have been researches and developments on the use of high concentration organic wastes as biomass resources in EU and Japan. In particular, facilities for producing methane (CH4) gas by anaerobically fermenting high concentration organic wastes in accordance with the environmental energy policy of recent climate warming, reduction of greenhouse gas, and replacement of fossil fuels are widely spread.

상기 혐기발효에 의한 메탄가스 생산기술은 이미 유럽, 일본 등지에서는 정착 보급된 기술로서, 고농도 유기성 폐기물(가축분뇨, 음식물 쓰레기, 농업부산물 등)의 처리라는 환경적 기능뿐만 아니라 바이오가스 등의 대체 에너지 생산 기능 및 발효된 유기성 폐기물의 농지환원을 통한 자연 순환적 기능을 동시에 달성할 수 있는 기술이다.The above methane gas production technology by the anaerobic fermentation has already been established and popularized in Europe and Japan. It is a technology that not only has an environmental function of treating highly concentrated organic wastes (livestock manure, food waste, agricultural byproducts) It is a technology that can simultaneously achieve the production function and the natural cyclic function of fermented organic wastes through farmland reduction.

또한 상기 바이오가스는 메탄 함유량이 높아 훌륭한 에너지원이 될 수 있다. 따라서 적정한 수준의 개질 과정만 거치면 바이오가스는 천연가스를 사용하고 있는 모든 수요처에서 사용이 가능하다. 예를 들어 바이오가스는 가온 및 난방, 발전의 연료로 사용하거나 정제를 통해 도시가스, 차량용 연료로 사용이 가능하다. In addition, the biogas has a high methane content can be an excellent energy source. Therefore, with an appropriate level of reforming, biogas can be used in all demanding sources using natural gas. For example, biogas can be used as fuel for heating, heating and power generation, or as a city gas or vehicle fuel through refining.

그러나 상기 바이오가스 내에 황화수소(H2S)는 발전기나 자동차 엔진 및 설비로 유입될 경우 산화와 부식의 원인이 되어 제품의 수명을 단축하는 원인이 된다.However, hydrogen sulfide (H 2 S) in the biogas is a cause of oxidation and corrosion when it is introduced into a generator or an automobile engine and facilities, thereby shortening the life of the product.

따라서 상기 바이오가스는 황화수소(H2S)의 함유량을 수요처에 따라 적합하게 조절할 필요성이 있다. Therefore, the biogas needs to suitably control the content of hydrogen sulfide (H 2 S) in accordance with the customer.

한편 상기 바이오가스를 가온 및 난방에 사용하는 경우에 있어서, 바이오가스 플랜트에 대부분 혐기성 소화조 가온을 위하여 바이오가스를 이용하는 보일러를 설치하고 있다. 또한 가스의 저장이나 이송비용이 그다지 크지 않는 경우라면 바이오가스는 주변에 위치하고 있는 일반가정이나 농장 등에 난방에도 사용될 수 있다. On the other hand, when the biogas is used for heating and heating, a boiler using biogas is installed in the biogas plant for heating the anaerobic digester. In addition, if the cost of storing and transporting the gas is not very large, the biogas can be used for heating in a nearby home or farm.

이때 상기 보일러에 사용하기 위한 황화수소(H2S) 농도는 500ppm 이하가 요구된다. 또한 바이오가스는 수증기로 포화되어 있는데, 수분은 가스 노즐부에서 문제를 야기할 수 있으므로 응축시켜 제거하는 것이 좋다. 응축을 통한 수분제거는 부식 원인물질인 황화수소(H2S)도 상당량 제거할 수 있다. At this time, the concentration of hydrogen sulfide (H 2 S) for use in the boiler is required to be 500 ppm or less. In addition, biogas is saturated with water vapor, and moisture may cause problems in the gas nozzle part, so it is better to remove it by condensation. Removal of moisture through condensation can also remove a significant amount of hydrogen sulphide (H 2 S), which is a corrosive substance.

또한 바이오가스를 원료로 하여 전기를 생산하는 방법은 크게 단순 발전과 열병합 발전(Combined heat and power, CHP)으로 대별할 수 있다. 이 중, 연료를 연소시켜 터빈을 통해 전기를 생산함과 동시에 그 폐열을 난방용으로 이용하는 열병합 발전은 단순 발전 방식보다 에너지 효율을 월등히 향상시킬 수 있어 점차 시용이 확대되고 있다. 바이오가스의 열병합 발전에 사용되는 내연기관으로는 가스엔진(소, 중규모)이하나 가스터빈(대규모) 등이 있으나, 열효율 측면에서 보았을 때 가스엔진은 38~42% 정도인데 반해 가스터빈은 25~25~28%에 불과할 뿐만 아니라 가스터빈의 발전용량이 수 MW 이상을 요구하므로 현재는 가스엔진을 많이 사용하고 있는 실정이다. 가스엔진에 요구되는 바이오가스의 품질은 보일러에서 요구하는 수준과 거의 비슷하며, 황화수소(H2S)의 경우에는 충분한 운전시간을 확보할 수 있는 농도만 유지하여 주면 된다. 또한 마찰에 의한 손상 등의 우려가 있을 경우에는 미리 유기성 실리카 화합물의 농도를 충분히 낮추어야 한다. In addition, the method of producing electricity using biogas as raw material can roughly divided into simple power generation and combined heat and power (CHP). Among them, cogeneration power generation, which burns fuel to generate electricity through a turbine and uses the waste heat for heating, can be significantly improved in energy efficiency as compared with a simple power generation system. In terms of thermal efficiency, the gas engine is 38 ~ 42%, while the gas turbine is 25 ~ 25%. However, the internal combustion engine used for cogeneration of biogas is gas engine (small, medium scale) or gas turbine (large scale) 25 ~ 28%, and gas turbine generation capacity is more than several MW. Therefore, gas engine is widely used nowadays. The quality of the biogas required for the gas engine is almost the same as that required by the boiler. In the case of hydrogen sulfide (H 2 S), only the concentration required to ensure a sufficient operating time can be maintained. In addition, when there is a risk of damage due to friction, the concentration of the organic silica compound should be sufficiently lowered in advance.

표 1은 바이오가스를 가스엔진에 사용할 때 요구되는 가스 특성을 나타낸 것으로, 바이오가스의 가스엔진 주입을 위한 조건을 나타낸 표이다.Table 1 shows the gas characteristics required when the biogas is used for the gas engine, and is a table showing conditions for injecting the gas engine of the biogas.

항목Item 단위unit 범위range 에너지 함량Energy content MJ/㎥MJ / m3 13~2113 ~ 21 최고 주입 온도Maximum injection temperature 40~6040 to 60 주입 최소 압력Injection minimum pressure mbarmbar 25~8025 to 80 습도Humidity %% 70~80 이하70 to 80 or less 황화수소(H2S)Hydrogen sulfide (H 2 S) mg/㎥mg / m3 1,000~2,000 이하1,000 ~ 2,000 or less CHloride and Fluor(total)Chloride and Fluor (total) mg/㎥mg / m3 60~80 이하60 ~ 80 or less

바이오가스는 개질을 거치면 구성성분의 대부분이 천연가스와 같은 메탄이므로 도시가스 배급망에 주입하여 일반 수요처에서 천연가스처럼 사용할 수 있다. 실제 유럽에서는 바이오가스를 도시가스 배급망에 주입하여 사용하는 예가 많으며, 우리나라의 경우도 도시가스사업법의 개정(‘09.3)을 통하여 바이오가스를 정제하여 도시가스 혼입 사용이 가능한 상태이다.Biogas can be used as a natural gas in general consumers by injecting it into a city gas distribution network since most of the components are methane, such as natural gas. In fact, there are many cases where biogas is injected into city gas distribution network in Europe. In Korea, it is also possible to refine biogas through city gas business law amendment ('09 .3) and to use city gas mixture.

또한 2012년 1월 17일 개정된 도시가스사업법 시행령(일부개정 2012.1.17 대통령 제 23518호) 제1조의 2(도시가스의 종류) 제2조 제1호에 따른 도시가스 "다. 바이오가스: 유기성 폐기물 등 바이오매스로부터 생성된 기체를 정제한 가스로서 메탄이 주성분인 가스 및 이를 다른 도시가스와 혼합하여 제조한 가스"에 의해 바이오가스를 도시가스와 연계하여 사용할 수 있게 되었다. In addition, the city gas under Article 2 (1) of Article 1-2 (type of city gas) Enforcement Decree of Municipal Gas Business Act revised on January 17, 2012 (some amended Presidential Decree No. 23518 on January 17, 2012) Organic wastes and the like, which are produced by mixing gas produced from biomass with methane as a main component and gas produced by mixing it with other city gas ", it becomes possible to use biogas in conjunction with city gas.

표 2는 환경부의 연구보고서 [유기성폐기물을 이용한 에너지제품의 품질기준 연구(환경부, 2008)] 상의 바이오가스 도시가스 연계를 위한 기준항목 및 규격(안)을 나타낸 것이다.(2012년 1월 17일 개정된 도시가스사업법 시행령(일부개정 2012.1.17 대통령 제 23518호) 2012년 2월 8일 지식경제부 고시 제2012-19호 "도시가스 품질기준 등에 관한 고시" [별표 1]에 도시가스 품질검사 기준에서는 황화수소 농도를 1.0 mg/㎥(0℃, 101.3kPa) 이하로 규정.)Table 2 shows the standard items and specifications for biogas city gas linkage in the Ministry of the Environment's research report [Quality standards for energy products using organic wastes (Ministry of Environment, 2008)]. (January 17, 2012 Enforcement Decree of the Urban Gas Business Act (Revised Jan. 17, 2012, President No. 23518) On February 8, 2012, the Ministry of Knowledge Economy Notice No. 2012-19, "Notification on Urban Gas Quality Standards" The hydrogen sulfide concentration is defined as 1.0 mg / m 3 (0 ° C, 101.3 kPa) or less).

평가 항목Evaluation items 단위unit 범위range 비고Remarks 메탄 함량Methane content 부피%volume% 95 이상95 or higher 도시가스로서의 성능 발휘 및 국내 도입되어 있는 바이오가스 정제기술로 적용 가능한 수준Performance as a city gas and applicable level of biogas refining technology introduced in Korea 수분 함량Moisture content mg/N㎥mg / Nm3 32 이하32 or less 도시가스 연료로서 성능을 발휘할 수 있는 수준The ability to demonstrate performance as city gas fuel 황전량Sulfur content ppmppm 0.5 이하0.5 or less 도시가스사업법의 품질기준 적용Applying quality standard of city gas business law 황화수소Hydrogen sulfide ppmppm 0.02 이하0.02 or less 도시가스사업법의 품질기준 적용Applying quality standard of city gas business law 아모니아Amonia ppmppm 0.2 이하0.2 or less 도시가스사업법의 품질기준 적용Applying quality standard of city gas business law 질소, 산소 등
기타 미량 물질
Nitrogen, oxygen, etc.
Other trace materials
부피%volume% 4.5 이하4.5 or less 도시가스 연료로서 성능을 발휘할 수 있는 수준The ability to demonstrate performance as city gas fuel

또한 정제된 바이오가스는 천연가스를 연료로 하는 차량(natural gas vehicies, NGV)에 사용할 수 있다. 천연가스 자동차는 연료 공급방식에 따라 CNG(압축천연가스, compressed natural gas) 차량과 LNG(액화천연가스, liquified natural gas) 차량으로 구분할 수 있으며, CNG 차량은 고압용기에 약 200 기압으로 압축된 가스를 저장하여 사용하며 LNG 차량은 -130℃ 내외의 초저온 연료를 자동차 연료로 공급한다. 보통 CNG 차량들은 짐칸에 가스탱크를 싣고 기존 연료 공급 시스템과 별도로 가스 공급 시스템을 장착하는 등 가스를 연료로 하는데 적합하도록 개조된 엔진이나 연료저장탱크를 사용하고 있다. 또 가스연료의 차량 주입을 위한 충전소 공급이 충분하지 않을 때에는 가스 외에 휘발유나 디젤도 연료로 사용할 수 있는 bi-fuel 모델들을 사용하는 것이 일반적인데, 가스가 떨어지면 자동적으로 휘발유나 디젤이 연료로서 엔진에 공급된다. 연료 가스는 강철이나 알루미늄합금으로 제작된 가압 탱크 안에서 200~250bar의 압력으로 저장된다. 2008년 기준으로 전 세계적으로 약 6백 4십만대 이상의 차량이 천연가스 또는 정제된 바이오가스를 연료로 하여 운행하고 있다. 가스를 연료로 사용하는 차량은 휘발유 차량이나 디젤 차량보다 이산화탄소 배출량은 20% 이상, 입자상 물질, 매연, 질소산화물 등의 배출량은 2/3 정도 절감할 수 있어 도시의 대기오염 감소에 크게 기여할 수 있을 뿐만 아니라 주행 중의 소음도 현격히 감소된다. 바이오가스를 차량용 연료로 사용하기 위해서는 도시가스 배급망에 주입할 때와 마찬가지로 비교적 엄격한 정제과정을 거쳐야 한다. 우리나라의 경우 대기환경보전법 시행규칙이 개정(09년 2월)되어 바이오가스연료(석유 및 대체연료 사업법 시행령 제 5조 8항)를 천연가스 제조기준에 맞게 제조하면 자동차 연료로 사용이 가능하게 되었다. In addition, refined biogas can be used for natural gas vehicles (NGV). Natural gas vehicles can be divided into CNG (compressed natural gas) vehicles and LNG (liquefied natural gas) vehicles according to the fuel supply method. CNG vehicles are classified into gas And LNG vehicles supply cryogenic fuel at around -130 ℃ as vehicle fuel. Generally, CNG vehicles use an engine or fuel storage tank that is adapted to fuel gas, such as loading a gas tank in the cargo compartment and installing a gas supply system separately from the existing fuel supply system. It is common to use bi-fuel models that can be used for gasoline or diesel as well as gas when the filling station is not sufficient for injecting gas fuel into the vehicle. When the gas is released, the gasoline or diesel is automatically supplied to the engine . The fuel gas is stored at a pressure of 200 to 250 bar in a pressurized tank made of steel or aluminum alloy. As of 2008, more than 6.4 million vehicles worldwide are fueled by natural gas or refined biogas. Vehicles using gas as a fuel can reduce CO2 emissions by 20% or more, particulate matter, soot, and nitrogen oxides by 2/3 compared to gasoline or diesel vehicles, which can contribute significantly to reducing urban air pollution In addition, noise during driving is significantly reduced. In order to use biogas as fuel for vehicles, it is required to undergo comparatively strict refining process just as it is injected into city gas distribution network. In Korea, the Enforcement Regulation of Air Quality Conservation Act was revised (Feb. 09), and it became possible to use biogas fuel (petroleum and alternative fuel business Act Enforcement Decree Article 5, Section 8) .

표 3은 바이오가스 차량용 연료로 사용하기 위한 기준항목 규격을 나타낸 것으로, 차량 연료용 바이오가스 품질기준을 나타낸 표이다.Table 3 shows the standard items for use as fuel for biogas vehicles, and is a table showing the biogas quality standards for vehicle fuel.

평가 항목Evaluation items 단위unit 범위range 비고Remarks 메탄 함량Methane content 부피%volume% 95 이상95 or higher 현재 상용화된 기술로서 정제가 가능한 수준이며, 바이오가스 자동차 연료가 상용화 되고 있는 해외 사례적용
※ 천연가스 자동차 연료의 경우 88% 수준을 제시하고 있으나 이는 바이오가스에 포함되어 있지 않은 에탄(7%)을 고려한 것임
This is a commercialized technology that can be refined and is applied to overseas cases where biogas fuel is commercialized
※ Natural gas vehicle fuels are at 88% level, but considering ethane (7%) not included in biogas.
수분 함량Moisture content mg/N㎥mg / Nm3 32 이하32 or less 바이오가스 자동차 연료가 상용 되고 있는 해외 사례 적용Applied overseas case where biogas vehicle fuel is commercially available 황함량Sulfur content ppmppm 40 이하40 or less 입법 예고된 천연가스 자동차 연료의 기준 적용Applied standard of natural gas vehicle fuel predicted by legislation 질소, 산소 등
기타 미량 물질
Nitrogen, oxygen, etc.
Other trace materials
부피%volume% 4.5 이하4.5 or less 입법 예고된 천연가스 자동차 연료의 기준 적용Applied standard of natural gas vehicle fuel predicted by legislation

상기와 같이 각 수요별로 황화수소(H2S) 함량의 기준이 다르다. 또한 바이오가스를 생산하는 바이오가스 플랜트의 원료에 따라서 바이오가스 내의 황화수소(H2S) 농도도 크게 차이가 난다.As mentioned above, the standard of hydrogen sulfide (H 2 S) content differs for each demand. Also, the concentration of hydrogen sulfide (H 2 S) in the biogas differs greatly depending on the raw material of the biogas plant that produces the biogas.

따라서 바이오가스를 생산하는 시설에서 여러 수요처에 공급하게 될 경우, 각 수요처별 기준에 맞는 탈황설비를 각각 설치하여 공급을 하여야 하므로 초기 투자비용이 커지게 된다. 따라서 바이오가스를 하나의 공정으로 각 수요처별 기준에 맞게 탈황하는 시스템이 요구되고 있다. Therefore, if the biogas production facility is to be supplied to various customers, the initial investment cost will be increased because the desulfurization facilities corresponding to each demand site must be installed and supplied. Therefore, a system for desulfurizing biogas in accordance with the requirements of each customer by a single process is required.

이에 본 발명자는 "과제고유번호-2010T100100770, 부처명-지식경제부, 연구관전문기관-한국에너지기술평가원, 연구사업명-신재생에너지 융합원천기술개발사업, 연구과제명-300m3급 고성능 바이오가스 저장조 국산화 기술 개발 및 실증화, 주관기관-한화폴리드리머(주), 연구기간-2010.06.01~2013.5.31(3년)" 인 국가 연구 개발 사업을 통해 상기 과제를 해결하기 위한 연구를 했다.Accordingly, the inventor of the present invention has developed a high-performance biogas storage tank technology of -300 m3 class and developed a technology for the development of source technology for new and renewable energy convergence, the name of the project "Unique number -2010T100100770, Ministry of Knowledge Economy, And conducted the research to solve the above problems through the national R & D project, "Hanwha Polydreamer Co., Ltd., research period -2010.06.01 ~ 2013.5.31 (3 years)".

본 발명은 상기와 같은 과제를 해결하기 위한 것으로, 하나의 공정으로 바이오가스를 사용하고 여러 수요처 별로 그 기준에 맞는 바이오가스를 공급할 수 있으며, 생물탈황·물리적 탈황·생화학적 탈황의 공정을 연계함으로써, 탈황 효율을 높이고 여재의 수명을 연장할 수 있는 혐기발효에 의해 생산된 바이오가스의 탈황 시스템를 제공하는 것을 해결하고자 하는 과제로 한다. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide a biogas production method, a biogas production method, a biogas production method, And to provide a desulfurization system of biogas produced by anaerobic fermentation which can increase the desulfurization efficiency and prolong the lifetime of the filter media.

상기와 같은 과제를 해결하기 위한 본 발명은, According to an aspect of the present invention,

바이오가스를 생산하는 바이오가스 플랜트와; 산소를 이용하여 바이오가스 플랜트로부터의 바이오가스를 1차 탈황하는 1차 탈황장치와, 1차 탈황을 거친 바이오가스를 제습과정을 통해 탈황하는 2차 탈황장치와, 2차 탈황을 거친 바이오가스를 산화철을 이용하여 건식 탈황하는 3차 탈황장치를 갖춘 탈황장치; 를 포함하는 것을 특징으로 한다.A biogas plant for producing biogas; The primary desulfurization unit which desulfurizes biogas from the biogas plant using oxygen, the secondary desulfurization unit which desulfurizes the biogas which has undergone primary desulfurization through dehumidification process, and the biogas which has undergone secondary desulfurization Desulfurization apparatus having a tertiary desulfurization apparatus for dry desulfurization using iron oxide; And a control unit.

또한 상기 탈황장치를 거쳐 탈황 된 바이오가스를 각각의 수요처로 공급하는 바이오가스 공급장치를 더 포함하는 것을 특징으로 한다.In addition, it characterized in that it further comprises a biogas supply device for supplying the desulfurized biogas through each desulfurization device to each demand destination.

또한 상기 탈황장치는, 1차 탈황이 된 바이오가스 내의 산소 농도를 측정하는 산소측정기와, 바이오가스 내의 산소 농도에 따라 1차 탈황장치로 산소를 공급하는 산소발생기를 더 갖추는 것을 특징으로 한다.In addition, the desulfurization apparatus is characterized by further comprising an oxygen measuring device for measuring the oxygen concentration in the biogas desulfurized primary, and an oxygen generator for supplying oxygen to the primary desulfurization apparatus in accordance with the oxygen concentration in the biogas.

또한 상기 탈황장치는, 3차 탈황이 된 바이오가스 내의 황화수소 농도를 분석하는 가스분석기를 더 갖추는 한편, 바이오가스 공급장치는, 탈황장치를 거쳐 탈황 된 바이오가스 내의 황화수소 농도가 수요처(500)에 따른 기준 값 이상이면 바이오가스를 재차 탈황장치로 이송하고, 바이오가스 내의 황화수소 농도가 수요처에 따른 기준 값 이하이면 바이오가스를 각각의 수요처에 맞게 공급하는 것을 특징으로 한다.In addition, the desulfurization apparatus further comprises a gas analyzer for analyzing the hydrogen sulfide concentration in the tertiary desulfurization biogas, while the biogas supply apparatus, the hydrogen sulfide concentration in the desulfurized biogas through the desulfurization apparatus according to the demand 500 If the reference value is more than the biogas is transferred to the desulfurization apparatus again, if the hydrogen sulfide concentration in the biogas is characterized in that the supply of the biogas to the respective demand destination or less.

또한 상기 산소측정기와, 산소발생기와, 가스분석기 및, 바이오가스 공급장치를 작동제어하는 제어장치; 제어장치와 연결되어 탈황 단계를 모니터링 할 수 있는 모니터링장치; 를 더 포함하여, 각각의 수요처로의 바이오가스 공급을 자동제어할 수 있는 것을 특징으로 한다.In addition, a control device for controlling the operation of the oxygen measuring device, oxygen generator, gas analyzer and biogas supply device; A monitoring device connected to the control device to monitor the desulfurization step; Further comprising, characterized in that it can automatically control the supply of biogas to each demand destination.

또한 상기 1차 탈황장치에 의해 탈황 된 바이오가스 내의 산소 농도가 0.2~0.6%를 이루도록 1차 탈황장치로 공기를 주입하는 것을 특징으로 한다.In addition, it characterized in that the air is injected into the primary desulfurization apparatus to achieve an oxygen concentration of 0.2 ~ 0.6% in the biogas desulfurized by the primary desulfurization apparatus.

상기와 같은 본 발명에 따르면, 1차 생물탈황, 2차 제습탈황, 3차 건식 탈황을 연계 사용함으로써, 기존의 방식 보다 탈황 효율을 높이고, 바이오가스 플랜트의 원료 성분에 따라 변화하는 황화수소에 대응하기 쉬우며, 연속적인 탈황 처리공정을 통하여 건식 탈황공정에서 사용되는 활성탄과 산화철 등의 여재의 수명을 연장 시킬 수 있는 효과가 있다. As described above, according to the present invention, it is possible to increase the desulfurization efficiency by using the first biological desulfurization, the second dehumidification desulfurization, and the third dry desulfurization in conjunction with each other and to cope with the hydrogen sulfide which changes according to the raw material component of the biogas plant And it is possible to extend the lifetime of the filter media such as activated carbon and iron oxide used in the dry desulfurization process through the continuous desulfurization process.

또한 본 발명은 황화수소를 제거하여 사용함에 따라 바이오가스를 사용하는 기계설비나 장비의 산화와 부식을 줄여 설비의 수명을 연장시킬 수 있는 효과가 있다.Also, since the present invention uses hydrogen sulfide to remove hydrogen sulfide, oxidation and corrosion of machinery and equipment using biogas can be reduced, and the service life of the equipment can be prolonged.

또한 본 발명은 각 단계별 가스 상태를 모니터링할 수 있고, 각각의 구성요소를 제어함으로써, 황화수소 기준이 다른 여러 곳으로 가스를 원활하게 공급해 줄 수 있는 효과가 있다. Further, the present invention is capable of monitoring the state of the gas at each step, and by controlling each component, the gas can be smoothly supplied to various places with different hydrogen sulfide standards.

도 1은 본 발명에 따른 탈황시스템의 개략적인 계통도이고,
도 2는 본 발명에 따른 탈황시스템의 전기적 구성요소 간의 연결을 나타낸 구성도이고,
도 3은 1차 탈황 과정에서의 공기주입량에 따른 바이오가스 내의 산소량을 나타낸 그래프이고,
도 4는 본 발명에 따른 탈황시스템의 다른 실시예를 나타낸 개략적인 계통이고,
또한 도 5는 본 발명에 따른 탈황시스템의 또 다른 실시예를 나타낸 전기적 구성도이다.
1 is a schematic diagram of a desulfurization system according to the present invention,
FIG. 2 is a view showing a connection between electrical components of the desulfurization system according to the present invention,
3 is a graph showing the amount of oxygen in the biogas according to the amount of air injected during the first desulfurization process,
4 is a schematic diagram illustrating another embodiment of the desulfurization system according to the present invention,
5 is an electrical schematic diagram showing still another embodiment of the desulfurization system according to the present invention.

이하 첨부도면을 참조하여 본 발명을 상세히 설명하기로 한다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 탈황시스템의 개략적인 계통도이고, 도 2는 본 발명에 따른 탈황시스템의 전기적 구성요소 간의 연결을 나타낸 구성도이고, 도 3은 1차 탈황 과정에서의 공기주입량에 따른 바이오가스 내의 산소량을 나타낸 그래프로서, 도 1 내지 도 3을 참조하여 본 발명에 따른 탈황시스템를 설명하면 다음과 같다.FIG. 1 is a schematic diagram of a desulfurization system according to the present invention. FIG. 2 is a schematic view showing the connection between electrical components of the desulfurization system according to the present invention. The desulfurization system according to the present invention will be described with reference to FIGS. 1 to 3 as a graph showing the amount of oxygen in the gas.

본 발명은 바이오가스를 생산하는 바이오가스 플랜트(100)와, 바이오가스 플랜트(100)로부터 공급된 바이오가스 내의 황화수소(H2S)를 제거하는 탈황장치(200)와, 탈황공정을 거친 바이오가스를 각각의 수요처로 공급하는 바이오가스 공급장치(300)와, 탈황장치(200) 및 바이오가스 공급장치(300)를 작동제어하는 제어장치(400)를 갖춘다.The present invention relates to a biogas plant (100) for producing biogas, a desulfurization device (200) for removing hydrogen sulfide (H 2 S) in the biogas supplied from the biogas plant (100) And a control device 400 for controlling the operation of the desulfurizer 200 and the biogas supply device 300. The control device 400 controls the operation of the desulfurizer 200 and the biogas supply device 300,

상기 바이오가스 플랜트(100)는 남은 음식물·가축분뇨·하수 슬러지와 같은 유기성 폐기물, 식품 가공 공장·어육류 가공 공장·도축장 부산물 등의 발효 과정을 통해 바이오가스를 생산한다. 본 실시예에서 바이오가스 플랜트(100)는 바이오가스를 생산하는 통상의 것으로, 이에 대한 구조적 설명은 생략하기로 한다.The biogas plant 100 produces biogas through the fermentation process of organic waste such as remaining food, livestock manure, sewage sludge, food processing plant, fish processing plant, and slaughterhouse by-product. In this embodiment, the biogas plant 100 is a conventional one for producing biogas, and a structural explanation thereof will be omitted.

상기 탈황장치(200)는 생물 탈황 장치인 1차 탈황장치(210)와, 제습 탈황 장치인 2차 탈황장치(220)와, 건식 탈황 장치인 3차 탈황장치(230)와, 산소 농도를 측정하는 산소측정기(240)와, 산소를 공급하는 산소발생기(250)와, 가스를 분석하는 가스분석기(260)를 갖춘다.The desulfurization apparatus 200 includes a primary desulfurization apparatus 210 as a biological desulfurization apparatus, a secondary desulfurization apparatus 220 as a dehumidification desulfurization apparatus, a tertiary desulfurization apparatus 230 as a desulfurization apparatus, , An oxygen generator (250) for supplying oxygen, and a gas analyzer (260) for analyzing the gas.

상기 1차 탈황장치(210)는 혐기소화조를 갖춘 생물 탈황 장치로서, 산소를 이용하여 바이오가스 플랜트(100)로부터 공급된 바이오가스를 1차 탈황한다. The primary desulfurization unit 210 is a biological desulfurization unit equipped with an anaerobic digestion tank, and primarily desulfurizes the biogas supplied from the biogas plant 100 using oxygen.

상기 바이오가스에 산소가 공급되어 1차 탈황공정이 이루어질 시, 다음과 같은 화학식 1에 의해 황화수소가 제거된다.When oxygen is supplied to the biogas to perform the first desulfurization process, hydrogen sulfide is removed by the following formula (1).

Figure pat00001
Figure pat00001

상기 2차 탈황장치(220)는 제습 탈황 장치로서, 1차 탈황을 거친 바이오가스는 2차 탈황장치(240)를 통과하면서 제습과정에서의 탈황공정을 거치게 된다. The secondary desulfurization apparatus 220 is a dehumidification desulfurization apparatus. The biogas, which has undergone the primary desulfurization, passes through the secondary desulfurization apparatus 240 and undergoes a desulfurization process in the dehumidification process.

상기 제습과정은 냉각기를 통하여 약 4~5℃로 냉각을 하여 응축수를 드레인 시키는 방법을 통해 이루어진다. The dehumidification process is carried out by cooling to about 4 ~ 5 ℃ through a cooler to drain the condensate.

표 4는 2차 탈황의 전과 후 황화수소 농도와 탈황효율을 나타낸 표이다.표 4를 살펴보면 2차 탈황 전의 황화수소 농도가 3707ppm 일 경우 2차 탈황 후 황화수소 농도가 2631ppm 으로 1076ppm 감소하였으며, 2차 탈황 전 황화수소 농도가 약 700ppm 이하일 경우에는 100%에 가까운 탈황 효율을 나타내고 있다.As shown in Table 4, when the concentration of hydrogen sulfide before the second desulfurization is 3707 ppm, the concentration of hydrogen sulfide after the second desulfurization is reduced by 2,631 ppm to 1076 ppm, and the desulfurization efficiency after the second desulfurization When the concentration of hydrogen sulfide is about 700 ppm or less, the desulfurization efficiency is close to 100%.

탈황 전(ppm)Before desulfurization (ppm) 탈황 후(ppm)After desulfurization (ppm) 탈황효율(%)Desulfurization efficiency (%) 37073707 26312631 29.0329.03 26852685 18671867 30.4730.47 25612561 20022002 21.8321.83 21012101 11711171 44.2644.26 14291429 724724 49.3449.34 12581258 667667 46.9846.98 11281128 659659 41.5841.58 10451045 691691 33.8833.88 10171017 519519 48.9748.97 904904 650650 28.1028.10 876876 624624 28.7728.77 867867 544544 37.2537.25 795795 520520 34.5934.59 770770 520520 32.4732.47 770770 574574 25.4525.45 750750 520520 30.6730.67 735735 620620 15.6515.65 710710 157157 77.8977.89 700700 22 99.7199.71 660660 44 99.3999.39 652652 1One 99.8599.85 623623 00 100100 612612 00 100100 605605 2828 95.3795.37 586586 00 100100 483483 4545 90.6890.68 436436 1111 97.4897.48 357357 1111 96.9296.92 214214 00 100100 210210 00 100100 170170 00 100100 152152 00 100100 123123 00 100100 9292 00 100100 6060 00 100100 5050 00 100100 4545 00 100100 4040 00 100100 3939 00 100100 3535 00 100100 3030 00 100100 2525 00 100100 2121 00 100100 1818 00 100100 1616 00 100100 1414 00 100100 1010 00 100100 00 00 100100

상기 3차 탈황장치는(230)는 건식 탈황 장치로서, 2차 탈황을 거친 바이오가스를 산화철을 이용하여 건식 탈황한다.The third desulfurization apparatus 230 is a dry desulfurization apparatus. The desulfurization apparatus 220 desulfurizes the biogas after the second desulfurization using iron oxide.

상기 3차 탈황 공정에서 주요 활성성분은 알파와 감마 결정구조를 가지고 있는 수화산화철(Fe2O3)이며, 소량의 Fe3O4(Fe2O3·FeO)가 활성에 기여한다. 산화철스폰지의 등급은 100, 140, 190, 240, 320 kg Fe2O3/㎥ 으로 나누어지며, 일반적으로 190 kg Fe2O3/㎥가 가장 많이 사용되고 있다. In the third desulfurization process, the main active component is hydrated iron oxide (Fe 2 O 3 ) having alpha and gamma crystal structures, and a small amount of Fe 3 O 4 (Fe 2 O 3 .FeO) contributes to the activity. The grade of iron oxide sponge is divided into 100, 140, 190, 240, and 320 kg Fe 2 O 3 / ㎥. In general, 190 kg Fe 2 O 3 / ㎥ is the most used.

이때 산화철에 의한 황화수소의 흡착 화학반응식은 아래의 화학식 2와 같으며, 이러한 반응을 통해 황화수소가 제거된다. At this time, the adsorption chemical reaction formula of hydrogen sulfide by iron oxide is as shown in the following chemical formula 2, and hydrogen sulfide is removed through this reaction.

Figure pat00002
Figure pat00002

화학식 2에서 보는 바와 같이 1kg의 Fe2O3는 양론적으로 0.64kg의 황화수소를 제거한다. 공기 중 산소를 공급하게 되면 산소와 반응하게 되어 높은 발열이 발생하면서 단체황이 형성되면서 산화철(Fe2O3)이 화학식 3에 의해 재생된다.As shown in Formula 2, 1 kg of Fe 2 O 3 theoretically removes 0.64 kg of hydrogen sulfide. When oxygen is supplied in the air, it reacts with oxygen, and a high heat is generated, and iron oxide (Fe 2 O 3 ) is regenerated by the formula (3) as a single sulfur is formed.

Figure pat00003
Figure pat00003

표 5는 3차 탈황의 전과 후 황화수소 농도와 탈황효율을 나타낸 표이다. 표 5를 살펴보면 탈황 전단의 황화수소 농도가 3049ppm 인 경우에도 100%의 효율을 보이며 대체적으로 효율이 높다.Table 5 shows the hydrogen sulfide concentration and desulfurization efficiency before and after the third desulfurization. As shown in Table 5, even when the hydrogen sulfide concentration in the desulfurization shear stage is 3049 ppm, the efficiency is 100% and the efficiency is generally high.

탈황 전(ppm)Before desulfurization (ppm) 탈황 후(ppm)After desulfurization (ppm) 제거량(ppm)Removal amount (ppm) 탈황효율(%)Desulfurization efficiency (%) 30493049 00 30493049 100100 30033003 00 30033003 100100 29812981 00 29812981 100100 27312731 00 27312731 100100 27182718 00 27182718 100100 27062706 00 27062706 100100 26822682 00 26822682 100100 26622662 00 26622662 100100 26072607 00 26072607 100100 25872587 00 25872587 100100 24512451 00 24512451 100100 22752275 1313 22622262 99.4399.43 22612261 00 22612261 100100 22402240 00 22402240 100100 21732173 00 21732173 100100 19311931 00 19311931 100100 13371337 3737 13001300 97.2397.23 11741174 1111 11631163 99.0699.06 642642 00 642642 100100

상기 산소측정기(240)는 1차 탈황이 된 바이오가스 내의 산소(O2) 농도를 측정한다. The oxygen measuring device 240 measures the concentration of oxygen (O 2 ) in the biogas subjected to the first desulfurization.

상기 산소발생기(250)는, 1차 탈황되어 1차 탈황장치(210)로부터 배출된 바이오가스 내의 산소 농도에 따라 1차 탈황장치(210)로 산소를 공급한다. The oxygen generator 250 performs primary desulfurization and supplies oxygen to the primary desulfurization unit 210 according to the concentration of oxygen in the biogas discharged from the primary desulfurization unit 210.

이때 상기 산소측정기(240) 및 산소발생기(250)는 제어장치(400)에 의해 작동제어되며, 제어장치(400)는 산소측정기(240) 및 산소발생기(250)의 제어를 통해 1차 탈황장치(210) 내의 산소농도가 조절되게 함으로써, 1차 탈황공정이 원활히 이루어지도록 한다.At this time, the oxygen measuring device 240 and the oxygen generator 250 are operated and controlled by the control device 400, and the control device 400 controls the first desulfurization device 250 and the second desulfurization device 250 through the oxygen meter 240 and the oxygen generator 250, The oxygen concentration in the first desulfurization zone 210 is adjusted so that the first desulfurization process can be performed smoothly.

한편 도 3을 참고하면, 1차 탈황 효율은 1차 탈황을 거친 바이오가스 내의 산소 농도가 0.2~0.6%, 가장 바람직하기로는 0.5%를 이룰 경우, 가장 높은 탈황 효율을 보이며, 이를 위해 1차 탈황장치(210)로의 공기주입량을 6L/min 로 하는 것이 가장 바람직하다.On the other hand, referring to FIG. 3, the first desulfurization efficiency shows the highest desulfurization efficiency when the oxygen concentration in the first desulfurized biogas is 0.2 to 0.6%, most preferably 0.5% It is most preferable that the amount of air injected into the device 210 is 6 L / min.

즉 도 3을 참고하면, 각 처리구당 평균 황화수소 생성량은 1431, 658, 242 및 171ppm으로서 공기를 주입하지 않을 때보다 53.1, 83.1, 88.1%가 감소, 6L/min 일 경우(바이오가스백 내 산소농도 0.5%) 탈황효율이 가장 우수하다. That is, referring to FIG. 3, the average amount of hydrogen sulfide produced per each treatment was 1431, 658, 242 and 171 ppm, 53.1, 83.1 and 88.1% lower than when no air was injected, and 6 L / min (oxygen concentration in the biogas bag 0.5%) The desulfurization efficiency is the most excellent.

따라서 상기 제어장치(400)는, 고효율의 1차 탈황을 하기 위해 산소측정기(240)로부터 측정된 바이오가스 내의 산소 농도가 0.2~0.6%를 유지하도록 1차 탈황장치(210)로 공기를 주입하는 것이 바람직하다.Therefore, the control device 400 injects air into the primary desulfurization device 210 so as to maintain the oxygen concentration in the biogas measured from the oxygen measuring device 240 to 0.2 to 0.6% in order to perform high-efficiency primary desulfurization .

상기 가스분석기(260)는 제어장치(400)에 의해 작동제어되며, 3차 탈황이 된 바이오가스를 성상 분석하여, 바이오가스 내의 황화수소 농도를 분석한다. The gas analyzer 260 is operated and controlled by the controller 400, and analyzes the concentration of hydrogen sulfide in the biogas by analyzing the characteristic of the biogas after the third desulfurization.

이때 상기 가스분석기(260)는 제어장치(400)에 의해 작동제어되며, 제어장치(400)는 가스분석기(260)의 분석 데이터를 바탕으로 각각의 수요에 따른 품질 기준(표 1,2,3 참조)에 따라 바이오가스를 각각의 수요처로 공급할지, 2차 탈황장치(220)로 되돌려 보낼지를 결정한다. At this time, the gas analyzer 260 is operated and controlled by the control device 400, and the control device 400 calculates the quality standards (Tables 1, 2 and 3) based on the analysis data of the gas analyzer 260 ) To determine whether to feed the biogas to each customer or to return to the secondary desulfurization unit 220. [

상기 바이오가스 공급장치(300)는 바이오가스 내의 황화수소 농도에 따라 개폐되는 제1,2밸브(310,320)를 갖춘다. 이때 제1밸브(310)는 바이오가스 공급장치(300)와 2차 탈황장치(220)의 전단 간의 연결라인에 설치되는 것이 바람직하며, 제2밸브(320)는 바이오가스 공급장치(300)와 각각의 수요처 간의 연결라인에 설치되는 것이 바람직하다. 또한 본 실시예에서 바이오가스 공급장치(300)는 바이오가스 공급장치(300)와 각각의 수요처 간의 연결라인에 송풍기가 설치될 수도 있다.The biogas supply device 300 includes first and second valves 310 and 320 that are opened and closed according to the concentration of hydrogen sulfide in the biogas. The first valve 310 may be installed in a connection line between the biogas supply device 300 and the second desulfurization device 220 and the second valve 320 may be connected to the biogas supply device 300, It is preferable to be installed in a connection line between each customer. Also, in the present embodiment, the biogas supply device 300 may be provided with a blower in the connection line between the biogas supply device 300 and each customer.

또한 상기 바이오가스 공급장치(300)는, 3차 탈황을 거친 바이오가스 내의 황화수소 농도가 기준 농도 보다 높을 경우 제1밸브(310)는 개방되고, 제2밸브(320)는 폐쇄되어, 바이오가스가 1차 탈황장치(210)와 2차 탈황장치(220)의 연결라인으로 이송되어, 2차 탈황장치(220)로 공급된다.When the concentration of hydrogen sulfide in the biogas after the third desulfurization is higher than the reference concentration, the first valve 310 is opened, the second valve 320 is closed, and the biogas Is transferred to the connection line between the primary desulfurization unit 210 and the secondary desulfurization unit 220 and is supplied to the secondary desulfurization unit 220.

그리고 상기 바이오가스 공급장치(300)는, 바이오가스 내의 황화수소 농도가 기준 농도 보다 낮을 경우 제1밸브(310)는 폐쇄되고, 제2밸브(320)는 개방되어, 바이오가스가 각각의 수요처로 공급된다. 이때 제2밸브(320)는 다수 개가 구비되어, 각각의 수요처에 연결되는 라인에 각각 설치될 수 있다. When the hydrogen sulfide concentration in the biogas is lower than the reference concentration, the first valve 310 is closed and the second valve 320 is opened so that the biogas is supplied to each customer do. At this time, a plurality of second valves 320 may be installed in the respective lines connected to the respective customers.

상기 제어장치(400)는 1차 탈황장치(210), 2차탈황장치(220), 3차탈황장치, 산소측정기(240), 산소발생기(250), 가스분석기(260) 및, 바이오가스 공급장치(300)의 제1밸브(310)·제2밸브(320)를 작동제어한다. The controller 400 includes a primary desulfurization unit 210, a secondary desulfurization unit 220, a tertiary desulfurization unit, an oxygen measuring unit 240, an oxygen generator 250, a gas analyzer 260, And controls the first valve 310 and the second valve 320 of the apparatus 300.

또한 상기 제어장치(400)는 산소측정기(240)를 통해 바이오가스 내의 산소 농도를 확인하여, 산소발생기(250)를 통해 1차 탈황장치(210)로 주입되는 산소량을 제어한다.The controller 400 also checks the oxygen concentration in the biogas through the oxygen meter 240 and controls the amount of oxygen injected into the primary desulfurizer 210 through the oxygen generator 250.

또한 상기 제어장치(400)는 가스분석기(260)로부터의 바이오가스 내의 황화수소 농도 데이터에 따라 바이오가스 공급장치(300)의 제1,2밸브(310,320)의 개폐를 제어한다.
The control device 400 controls the opening and closing of the first and second valves 310 and 320 of the biogas supply device 300 according to the hydrogen sulfide concentration data in the biogas from the gas analyzer 260.

도 4는 본 발명에 따른 탈황시스템의 다른 실시예를 나타낸 개략적인 계통도로서, 본 발명은 다수의 수요처(500)가 바이오가스 공급장치(300)와 연결될 수 있다.FIG. 4 is a schematic diagram showing another embodiment of the desulfurization system according to the present invention. In the present invention, a plurality of consumers 500 can be connected to the biogas supply device 300.

예를 들어 상기 바이오가스 공급장치(300)는 자돈사 및 기숙사 보일러, 발전기, 보일러, 가스연소기, 정제압축 등과 같은 다양한 수요처(500)와 연결되어, 수요에 따라 각각의 수요처(500)로 공급될 수 있다.For example, the biogas supply device 300 may be connected to various demanders 500 such as a sow pit and a dormitory boiler, a generator, a boiler, a gas combustor, and a tablet compression, and may be supplied to each customer 500 according to demand .

이때 상기 바이오가스 공급장치(300)와 각각의 수요처(500) 간의 연결라인에는 별도의 밸브가 설치될 수 있으며, 제어장치(400)가 이러한 밸브를 제어함으로써, 각각의 수요처(500)로 바이오가스가 원활하게 공급되도록 할 수 있다.
At this time, a separate valve may be installed in the connection line between the biogas supply device 300 and each customer 500, and the control device 400 controls the valves so that biogas Can be smoothly supplied.

또한 도 5는 본 발명에 따른 탈황시스템의 또 다른 실시예를 나타낸 전기적 구성도로서, 본 발명은 각각의 구성요소를 모니터링하기 위한 모니터링장치(600)가 더 구비될 수 있다.5 is an electrical schematic diagram showing another embodiment of the desulfurization system according to the present invention. The present invention may further include a monitoring device 600 for monitoring each component.

이때 상기 모니터링장치(600)는 제어장치(400)의 작동상태를 나타내는 디스플레이장치 및 제어장치(400)에 제어신호를 입력하는 입력장치를 갖추는 것이 바람직하다.The monitoring device 600 preferably includes a display device for indicating the operating state of the control device 400 and an input device for inputting a control signal to the control device 400.

따라서 상기 모니터링장치(600)는 본 발명에 따른 탈황장치의 전체적인 작동상태를 작업자가 확인 및 제어할 수 있도록 한다.
Therefore, the monitoring apparatus 600 enables the operator to check and control the overall operating state of the desulfurization apparatus according to the present invention.

이하 본 발명에 따른 탈황시스템의 전체적인 작동상태를 설명하면 다음과 같다.The overall operation of the desulfurization system according to the present invention will now be described.

우선 상기 바이오가스가 바이오가스 플랜트(100)로부터 1차 탈황장치(210)로 공급되면, 1차 탈황장치(210)에서는 1차로 탈황작업이 이루어진다. 이때 산소측정기(240)는 1차 탈황이 이루어진 바이오가스 내의 산소 농도를 측정하고, 측정된 산소 농도에 따라 산소 발생기(250)는 1차 탈황장치(200)로의 공기 주입량을 조절한다.First, when the biogas is supplied from the biogas plant 100 to the first desulfurization unit 210, the first desulfurization unit 210 performs a desulfurization operation. At this time, the oxygen measuring device 240 measures the oxygen concentration in the first desulfurized biogas, and the oxygen generator 250 regulates the amount of air injected into the first desulfurization device 200 according to the measured oxygen concentration.

이후 상기 1차 탈황을 거친 바이오가스는 2차 탈황장치(200)를 통과하면서 제습과정에서의 탈황공정을 거치게 된다. After the first desulfurization, the biogas passes through the second desulfurization unit 200 and undergoes a desulfurization process in the dehumidification process.

계속해서 상기 2차 탈황을 거친 바이오가스는 산화철을 이용한 건식 탈황장치인 3차 탈황장치(250)에 의해 다시 한 번 탈황을 하게 된다. Subsequently, the biogas after the second desulfurization is desulfurized again by the third desulfurization apparatus 250 which is a dry desulfurization apparatus using iron oxide.

상기와 같이 3차 탈황이 된 바이오가스는 가스분석기(260)에 의해 가스의 성상이 분석되며, 만약 이 가스가 바이오가스 수용처(500)인 보일러, 발전기, 정제 압축 장치를 통한 도시가스연계사용이 가능한 저장성 가스나 자동차나 선박의 연료로 사용할 수 있는 수송용 연료의 황화수소 기준 농도 보다 낮을 경우 바이오가스 공급장치(300)의 제1밸브(310)는 폐쇄되고, 제2밸브(320)는 개방되어 각각의 수요처에 공급된다. As described above, the biogas after the third desulfurization is analyzed by the gas analyzer 260 for the property of the gas. If the gas is supplied to the biogas receiving unit 500 through a boiler, a generator, The first valve 310 of the biogas supply device 300 is closed and the second valve 320 is opened when the storage gas is lower than the hydrogen sulfide standard concentration of the storage fuel, And is supplied to each customer.

또한 상기 바이오가스 내의 황화수소 농도가 기준 값 보다 높을 경우 바이오가스 공급장치(300)의 제1밸브(310)는 개방되고, 제2밸브(320)는 폐쇄되어, 바이오가스는 다시 2차 탈황 장치 전단으로 보내져, 2차 및 3차 탈황 장치(220,230)를 통한 탈황을 반복하게 된다. 계속적으로 반복하여 기준치 보다 낮은 황화수소 농도가 나오면 자동으로 제1밸브(310)는 폐쇄되고, 제2밸브(320) 개방된다. When the hydrogen sulfide concentration in the biogas is higher than the reference value, the first valve 310 of the biogas supply device 300 is opened and the second valve 320 is closed, So that the desulfurization through the second and third desulfurization units 220 and 230 is repeated. When the hydrogen sulfide concentration is lower than the reference value continuously, the first valve 310 is automatically closed and the second valve 320 is opened.

이때 상기 다수의 수요처(500) 중에 현재 수요처(500)의 기준에 맞게 황화수소 농도를 세팅하면, 제어장치(400)는 가스분석기(260)에 의한 황화수소 분석을 통해 제1밸브(310) 및 제2밸브(320)를 자동으로 제어할 수 있다. If the concentration of hydrogen sulfide is set in accordance with the standard of the current customer 500 among the plurality of customers 500, the controller 400 controls the first valve 310 and the second valve 310 through the analysis of the hydrogen sulfide by the gas analyzer 260, The valve 320 can be automatically controlled.

이를 통해 상기 탈황장치(200)와 연계되어 있는 각각의 수요처(500) 별로 각 기준에 맞게 황화수소를 제거하고 각 단계별 가스 상태를 모니터링 하여 탈황장치를 자동 제어함으로써, 하나의 공정 시스템에서 황화수소 기준이 다른 여러 곳으로 가스를 공급해 줄 수 있다. 또한, 1차 생물탈황, 2차 제습탈황, 3차 건식 탈황을 연계 사용함으로써 기존의 방식 보다 탈황 효율을 높이고, 바이오가스 플랜트의 원료 성분에 따라 변화하는 황화수소에 대응하기 쉬우며, 여재의 수명을 연장시킬 수 있는 장점이 있다.
Accordingly, hydrogen sulfide is removed according to each standard for each customer 500 associated with the desulfurization device 200, and the gas condition is monitored for each step to automatically control the desulfurization device, whereby the hydrogen sulfide standard is different in one process system You can supply gas to several places. In addition, by using the first biological desulfurization, the second dehumidification desulfurization, and the third dry desulfurization in conjunction, it is possible to increase the desulfurization efficiency and to cope with the hydrogen sulfide which changes according to the raw material composition of the biogas plant. There is an advantage that it can be extended.

100; 바이오가스 플랜트 200; 탈황장치
210; 1차 탈황장치 220; 2차 탈황장치
230; 3차 탈황장치 240; 산소측정기
250; 산소발생기 260; 가스분석기
300; 바이오가스 공급장치 310; 제1밸브
320; 제2밸브 400; 제어장치
500; 수요처 600; 모니터링장치
100; A biogas plant 200; Desulfurization device
210; A primary desulfurizer 220; Secondary desulfurization unit
230; A tertiary desulfurizer 240; Oxygen meter
250; Oxygen generator 260; Gas analyzer
300; A biogas supply device 310; 1st valve
320; A second valve 400; Control device
500; Customer demand 600; Monitoring device

Claims (6)

바이오가스를 생산하는 바이오가스 플랜트(100)와;
산소를 이용하여 바이오가스 플랜트(100)로부터의 바이오가스를 1차 탈황하는 1차 탈황장치(210)와, 1차 탈황을 거친 바이오가스를 제습과정을 통해 탈황하는 2차 탈황장치(220)와, 2차 탈황을 거친 바이오가스를 산화철을 이용하여 건식 탈황하는 3차 탈황장치(230)를 갖춘 탈황장치(200);
를 포함하는 것을 특징으로 하는 혐기발효에 의해 생산된 바이오가스의 탈황 시스템.
A biogas plant (100) for producing biogas;
A primary desulfurization apparatus 210 for primary desulfurization of the biogas from the biogas plant 100 using oxygen, and a secondary desulfurization apparatus 220 for desulfurizing the biogas that has undergone the primary desulfurization through a dehumidification process; A desulfurization apparatus 200 having a tertiary desulfurization apparatus 230 for dry desulfurization of the biogas that has undergone secondary desulfurization using iron oxide;
Wherein the biogas desulfurization system is a biogas desulfurization system produced by anaerobic fermentation.
제1항에 있어서,
상기 탈황장치(200)를 거쳐 탈황 된 바이오가스를 각각의 수요처(500)로 공급하는 바이오가스 공급장치(300)를 더 포함하는 것을 특징으로 하는 혐기발효에 의해 생산된 바이오가스의 탈황 시스템.
The method of claim 1,
Desulfurization system of biogas produced by anaerobic fermentation, characterized in that it further comprises a biogas supply device 300 for supplying the desulfurized biogas via each desulfurization device 200 to each demand destination (500).
제2항에 있어서,
상기 탈황장치(200)는, 1차 탈황이 된 바이오가스 내의 산소 농도를 측정하는 산소측정기(240)와, 바이오가스 내의 산소 농도에 따라 1차 탈황장치(210)로 산소를 공급하는 산소발생기(250)를 더 갖추는 것을 특징으로 하는 혐기발효에 의해 생산된 바이오가스의 탈황 시스템.
3. The method of claim 2,
The desulfurization apparatus 200 includes an oxygen measuring instrument 240 for measuring oxygen concentration in the biogas which has been desulfurized first, and an oxygen generator for supplying oxygen to the primary desulfurization apparatus 210 according to the oxygen concentration in the biogas. Desulfurization system of biogas produced by anaerobic fermentation, characterized in that further comprising (250).
제3항에 있어서,
상기 탈황장치(200)는, 3차 탈황이 된 바이오가스 내의 황화수소 농도를 분석하는 가스분석기(260)를 더 갖추는 한편,
바이오가스 공급장치(300)는, 탈황장치(200)를 거쳐 탈황 된 바이오가스 내의 황화수소 농도가 수요처(500)에 따른 기준 값 이상이면 바이오가스를 재차 탈황장치(200)로 이송하고, 바이오가스 내의 황화수소 농도가 수요처(500)에 따른 기준 값 이하이면 바이오가스를 각각의 수요처(500)에 맞게 공급하는 것을 특징으로 하는 혐기발효에 의해 생산된 바이오가스의 탈황 시스템.
The method of claim 3,
The desulfurization apparatus 200 further includes a gas analyzer 260 for analyzing the hydrogen sulfide concentration in the biogas subjected to tertiary desulfurization,
The biogas supply apparatus 300 transfers the biogas to the desulfurization apparatus 200 again when the hydrogen sulfide concentration in the desulfurized biogas through the desulfurization apparatus 200 is greater than or equal to a reference value according to the demand destination 500, and the Desulfurization system of biogas produced by anaerobic fermentation, characterized in that if the hydrogen sulfide concentration is less than the reference value according to the demand source 500, supplying the biogas to each demand source (500).
제4항에 있어서,
상기 산소측정기(240)와, 산소발생기(250)와, 가스분석기(260) 및, 바이오가스 공급장치(300)를 작동제어하는 제어장치(400);
제어장치(400)와 연결되어 탈황 단계를 모니터링 할 수 있는 모니터링장치(600);
를 더 포함하여, 각각의 수요처(500)로의 바이오가스 공급을 자동제어할 수 있는 것을 특징으로 하는 혐기발효에 의해 생산된 바이오가스의 탈황 시스템.
5. The method of claim 4,
A control device 400 for operating and controlling the oxygen measuring device 240, the oxygen generator 250, the gas analyzer 260, and the biogas supplying device 300;
A monitoring device 600 connected to the control device 400 to monitor the desulfurization step;
Further comprising, the desulfurization system of biogas produced by anaerobic fermentation, characterized in that it can automatically control the supply of biogas to each demand destination (500).
제3항 내지 제6항 중 어느 한 항에 있어서,
상기 1차 탈황장치(210)에 의해 탈황 된 바이오가스 내의 산소 농도가 0.2~0.6%를 이루도록 1차 탈황장치(210)로 공기를 주입하는 것을 특징으로 하는 혐기발효에 의해 생산된 바이오가스의 탈황 시스템.
7. The method according to any one of claims 3 to 6,
Wherein the first desulfurization unit (210) is configured to inject air into the first desulfurization unit (210) so that the oxygen concentration in the desulfurized biogas becomes 0.2 to 0.6%. The desulfurization of the biogas produced by the anaerobic fermentation system.
KR1020120045331A 2012-04-30 2012-04-30 Bio-gas Desulfurization System KR101426480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120045331A KR101426480B1 (en) 2012-04-30 2012-04-30 Bio-gas Desulfurization System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120045331A KR101426480B1 (en) 2012-04-30 2012-04-30 Bio-gas Desulfurization System

Publications (2)

Publication Number Publication Date
KR20130122197A true KR20130122197A (en) 2013-11-07
KR101426480B1 KR101426480B1 (en) 2014-08-06

Family

ID=49852033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120045331A KR101426480B1 (en) 2012-04-30 2012-04-30 Bio-gas Desulfurization System

Country Status (1)

Country Link
KR (1) KR101426480B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830392A (en) * 2015-05-19 2015-08-12 农业部沼气科学研究所 Biogas desulfurization device
KR20160056146A (en) * 2014-11-11 2016-05-19 한국가스안전공사 Test and supply system for substituted gas
CN107899384A (en) * 2017-11-21 2018-04-13 成都德通环境工程有限公司 A kind of Multistage desulfuration system and method
CN108325367A (en) * 2016-01-28 2018-07-27 烟台民望机电技术有限公司 A kind of methane purification two-stage filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705337B1 (en) 2015-12-23 2017-02-10 (주)제이에스엔 De-sulphurization Tank of Biogas power plant
KR102367558B1 (en) * 2020-01-09 2022-02-25 (주)이앤켐솔루션 Ultra-low concentration hydrogen sulphide containing clean biogas production system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030039097A (en) * 2001-11-12 2003-05-17 주식회사 솔루앤비 Methane gas refinery system
KR20040026552A (en) * 2002-09-25 2004-03-31 주식회사 풍전 Biogas treatment method
KR20110115202A (en) * 2010-04-15 2011-10-21 벽산건설 주식회사 Purification system of biogas for fuel cell and purification method thereof
KR101017555B1 (en) * 2010-09-30 2011-02-28 주식회사 세트이엔지 Biogas desulfurization system using acidithiobacillus thiooxidans

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160056146A (en) * 2014-11-11 2016-05-19 한국가스안전공사 Test and supply system for substituted gas
CN104830392A (en) * 2015-05-19 2015-08-12 农业部沼气科学研究所 Biogas desulfurization device
CN108325367A (en) * 2016-01-28 2018-07-27 烟台民望机电技术有限公司 A kind of methane purification two-stage filter
CN107899384A (en) * 2017-11-21 2018-04-13 成都德通环境工程有限公司 A kind of Multistage desulfuration system and method

Also Published As

Publication number Publication date
KR101426480B1 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
KR101426480B1 (en) Bio-gas Desulfurization System
Hren et al. Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment
Rafiee et al. Biogas as an energy vector
Antonini et al. Hydrogen from wood gasification with CCS–a techno-environmental analysis of production and use as transport fuel
CN103722002B (en) Based on the consumer waste comprehensively processing method of anaerobic digestion and hydrothermal carbonization
Surata et al. Simple conversion method from gasoline to biogas fueled small engine to powered electric generator
Atelge et al. A critical overview of the state-of-the-art methods for biogas purification and utilization processes
CA3214940A1 (en) Process and system for producing low carbon intensity renewable hydrogen
Hauser Cost evaluation and life cycle assessment of biogas upgrading technologies for an anaerobic digestion case study in the United States
KR101442730B1 (en) Apparatus for preprocessing of bio-gas
DE102008046879A1 (en) Process for biogas upgrading and biogas plant
CA3214954A1 (en) Process and system for producing fuel
Backman et al. Biomethane use in Sweden
Svensson Biomethane for transport applications
Bidart et al. Biogas catalytic methanation for biomethane production as fuel in freight transport-A carbon footprint assessment
Kusmiyati et al. Harnessing the power of cow dung: Exploring the environmental, energy, and economic potential of biogas production in Indonesia
Rogulska et al. Biomethane as transport fuel
CN103525490A (en) Process for preparing compressed natural gas for vehicle by using biogas
Wulf et al. Environmental impacts of hydrogen use in vehicles
Billig et al. The standardisation, production and utilisation of biomethane in Europe and China-a comprehensive analysis
Putra et al. The Effect of Types of Biogas and Methanol Purification and Loading as Fuel for Four-Stroke Generators on Exhaust Emissions
Vasan et al. Biogas Production and its Utilization in Internal Combustion Engines-A Review
Czekała et al. Biomethane–Production and Management
Bhatt et al. Biogas: An Effective and Common Energy Tool–Part III
Sangeetha et al. Production of purified methane and bio-fertilizers by anaerobic digestion of food waste

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180625

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190715

Year of fee payment: 6