KR20130107098A - Building material having improved antibacterial effect and absorptivity, and method preparing for the same - Google Patents

Building material having improved antibacterial effect and absorptivity, and method preparing for the same Download PDF

Info

Publication number
KR20130107098A
KR20130107098A KR1020120028923A KR20120028923A KR20130107098A KR 20130107098 A KR20130107098 A KR 20130107098A KR 1020120028923 A KR1020120028923 A KR 1020120028923A KR 20120028923 A KR20120028923 A KR 20120028923A KR 20130107098 A KR20130107098 A KR 20130107098A
Authority
KR
South Korea
Prior art keywords
volatile organic
antibacterial
silver nanoparticles
organic compounds
activated carbon
Prior art date
Application number
KR1020120028923A
Other languages
Korean (ko)
Inventor
권성현
조대철
박득자
Original Assignee
경상대학교산학협력단
박득자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단, 박득자 filed Critical 경상대학교산학협력단
Priority to KR1020120028923A priority Critical patent/KR20130107098A/en
Publication of KR20130107098A publication Critical patent/KR20130107098A/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/14Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements being composed of two or more materials

Abstract

PURPOSE: A construction material with improved antibacterial activity and improved adsorptive power and a manufacturing method thereof are provided to prevent a sick house syndrome by having the adsorptive power on a volatility organic compound and excellent antibacterial activity. CONSTITUTION: A manufacturing method of a construction material with improved antibacterial activity and improved adsorptive power comprises as follows. Nanosilver particles are manufactured through a reduction sedimentation method. The nanosilver particles are coated on a composite for a building including activated carbon. The nanosilver particles use one dispersing agent among PVP, SDS, and Tween 20 and one reducing agent among hydrazine hydrate or NaBH4.

Description

항균력 및 흡착력이 개선된 건축재료 및 이의 제조방법 {Building material having improved antibacterial effect and absorptivity, and method preparing for the same} Building material having improved antibacterial effect and absorptivity, and method preparing for the same}

본 발명은 활성탄을 포함하는 건축용 조성물에 은 나노입자를 코팅한 항균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료 및 이의 제조방법에 관한 것이다.
The present invention relates to a building material and a method of manufacturing the improved antimicrobial power and adsorptive power to volatile organic compounds coated with silver nanoparticles in a building composition comprising activated carbon.

최근 새로 지은 건물의 여러 자재로부터 유발된 유해물질로 인하여 거주자들이 건강상 문제 및 불쾌감을 느끼게 되는 새집증후군(Sick House Syndrome)이 문제되고 있다.Sick House Syndrome, which has caused residents to feel health problems and discomfort due to harmful substances caused by various materials of new buildings, has recently been a problem.

새집증후군은 건물 구조의 기본이 되는 콘크리트 및 시멘트 등의 유해성분과, 벽지나 천정재, 바닥재 등과 같은 실내마감재에 사용된 화학적 성분이 주원인이 되며, 상기 실내마감재를 고착시키는 과정에 사용된 접착제에서도 수백 가지의 유해물질이 배출되는 것으로 알려져 있다. 구체적으로 새집증후군의 원인이 되는 휘발성 유기화합물(Volatile Organic Compounds; VOCs)로는 포름알데하이드, 톨루엔, 자일렌 등을 예시할 수 있다. 포름알데하이드는 포르말린(formalin)의 휘발 물질로 주택의 건축자재와 접착제에 많이 사용되며, 톨루엔, 자일렌 등의 벤젠류 화합물은 도료 등에 포함되어 암을 유발시키는 것으로 의심되는 유해한 화학물질이다. 그 외에도 건축 시 발생하는 라돈, 석면, 일산화탄소, 이산화탄소, 질소산화물, 오존, 미세먼지, 부유세균과 같은 유해물질이 건물 밖으로 배출되지 못하고 실내에 축적됨에 따라 새집증후군의 원인이 되기도 한다. Birdhouse syndrome is mainly caused by harmful components such as concrete and cement, which are the basis of building structures, and chemical components used in interior finishing materials such as wallpaper, ceiling, and flooring, and hundreds of adhesives used in the process of fixing the interior finishing materials. It is known to release harmful substances from eggplant. Specifically, examples of volatile organic compounds (VOCs) that cause sick house syndrome include formaldehyde, toluene, xylene, and the like. Formaldehyde is a volatile substance of formalin, and is widely used for building materials and adhesives in houses. Benzene compounds such as toluene and xylene are harmful chemicals suspected of causing cancer by being included in paints. In addition, harmful substances such as radon, asbestos, carbon monoxide, carbon dioxide, nitrogen oxides, ozone, fine dust, and airborne bacteria, which are generated during construction, are accumulated inside the building and can cause sick house syndrome.

이러한 유해물질에 짧은 기간 노출되면 두통, 눈, 코, 목에 자극을 주고, 헛기침, 가려움증, 현기증, 매스꺼움, 집중력 저하, 피로감, 취기에 대한 민감성 등이 나타날 수 있으며, 장기적으로는 호흡기 질환, 급성폐렴, 고열, 심장병, 암 등을 유발할 수 있는 것으로 보고되고 있다.Short-term exposure to these harmful substances can cause headache, eyes, nose and throat irritation, flatulence, itching, dizziness, nausea, decreased concentration, fatigue, and sensitivity to odors. It has been reported to cause pneumonia, high fever, heart disease and cancer.

따라서 상기와 같은 새집증후군의 피해를 줄이기 위한 다양한 방안들이 제시되고 있는데, 그 방안으로는 원인이 되는 유해물질을 환기나 공기정화용품을 통하여 제거하는 방법과, 건축자재를 유해물질이 포함되지 않은 친환경 소재로 대체하는 방법이 사용되고 있다. 그러나, 환기나 공기정화용품을 이용한 방안은 실질적인 새집증후군의 원인인 화학적 성분의 발생을 방지하는 것이 아니라 이미 발생된 유해성분을 신속하게 제거하기 위한 사후처리의 방안으로서, 이와 같이 환기 등을 통해 유해성분을 제거하기 위해서는 장시간이 소요될 뿐만 아니라, 공기정화를 위한 제품들도 단위면적에 대한 제거효율이 좋지 않아 근본적인 대책이 될 수 없었다.Therefore, various measures have been proposed to reduce the damage of the sick house syndrome as described above. The methods include the removal of the harmful substances through ventilation or air purifying products, and the construction materials not containing harmful substances. The method of replacing with a material is used. However, the method using ventilation or air purifying products is not a method of post-treatment to quickly remove harmful substances that have already occurred, but to prevent the occurrence of chemical components that are the actual cause of sick house syndrome. Not only does it take a long time to remove the components, but the products for air purification also have poor removal efficiency for the unit area, and thus cannot be a fundamental measure.

이에 본 발명자는 새로운 건축재료를 제조하고자 예의 노력한 결과, 활성탄을 포함하는 건축용 조성물에 은 나노입자를 코팅하여 건축재료를 제조할 경우, 매우 우수한 항균력 및 휘발성유기화합물(VOCs)에 대한 흡착력을 가짐을 확인함으로써 본 발명을 완성하였다.
Accordingly, the present inventors have made intensive efforts to manufacture new building materials. As a result, when coating silver nanoparticles on a building composition containing activated carbon to produce building materials, the inventors have very good antibacterial and adsorptive power to volatile organic compounds (VOCs). The present invention was completed by confirming.

국내특허출원번호: 10-2011-0023006Domestic patent application number: 10-2011-0023006

본 발명의 목적은 활성탄에 은 나노입자를 코팅하는 단계를 포함하는 항균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법을 제공하는 데 있다. It is an object of the present invention to provide a method for producing a building material having improved antibacterial and adsorptive power to volatile organic compounds, including coating silver nanoparticles on activated carbon.

본 발명의 또 다른 목적은 상기 제조방법에 의해 제조된 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료를 제공하는 데 있다.
Still another object of the present invention is to provide a building material having improved adsorptive power to antibacterial and volatile organic compounds prepared by the above method.

상기 과제를 해결하기 위해, 본 발명은 활성탄을 포함하는 건축용 조성물에 은 나노입자를 코팅하는 단계를 포함하는 항균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법을 제공한다. In order to solve the above problems, the present invention provides a method for producing a building material with improved antimicrobial and adsorptive power to volatile organic compounds comprising the step of coating the silver nanoparticles in a building composition comprising activated carbon.

또한, 본 발명은 상기 제조방법에 의해 제조된 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료를 제공한다.
In addition, the present invention provides a building material having improved adsorptive power to the antibacterial and volatile organic compounds produced by the manufacturing method.

본 발명에 따른 건축재료는 기존 상용 은 파우더보다 우수한 항균력 및 휘발성유기화합물(VOCs)에 대한 흡착력을 가지고 있어, 이를 건축 마감재로 이용할 경우 새집 증후군 또는 빌딩 증후군에 대한 예방을 할 수 있다.
Building materials according to the present invention has superior antimicrobial activity and adsorption capacity for volatile organic compounds (VOCs) than conventional commercially available silver powder, when used as a building finishing material can prevent the sick house syndrome or building syndrome.

도 1은 분산제로 농도가 다른 PVP를 이용하여 제조한 은 나노입자 용액을 나타낸 도이다.
도 2는 분산제로 농도가 다른 Tween 20을 이용하여 제조한 은 나노입자 용액을 나타낸 도이다.
도 3은 분산제로 농도가 다른 SDS을 이용하여 제조한 은 나노입자 용액을 나타낸 도이다.
도 4는 본 발명의 은 나노입자의 대장균에 대한 항균력을 나타낸 도이다.
도 5는 본 발명의 은 나노입자가 코팅된 대나무 활성탄의 포름알데히드에 대한 흡착력을 나타낸 도이다 (위: 은 나노입자 코팅 전, 아래: 은 나노입자 코팅 후).
도 6은 본 발명의 은 나노입자가 코팅된 대나무 활성탄의 벤젠에 대한 흡착력을 나타낸 도이다 (위: 은 나노입자 코팅 전, 아래: 은 나노입자 코팅 후).
1 is a diagram showing a silver nanoparticle solution prepared using PVP having different concentrations as a dispersant.
FIG. 2 is a diagram showing a silver nanoparticle solution prepared using Tween 20 having a different concentration as a dispersant.
3 is a diagram showing a silver nanoparticle solution prepared using SDS having different concentrations as a dispersant.
Figure 4 is a diagram showing the antimicrobial activity of E. coli of the silver nanoparticles of the present invention.
5 is a diagram showing the adsorptivity of formaldehyde of the bamboo activated carbon coated silver nanoparticles of the present invention (top: before coating silver nanoparticles, bottom: after coating silver nanoparticles).
Figure 6 is a diagram showing the adsorption capacity of the activated carbon nano-coated bamboo activated carbon to benzene (top: before the silver nanoparticles coating, bottom: after the silver nanoparticles coating).

본 발명은 일 양태로서, The present invention in one aspect,

(a) 은 나노입자를 제조하는 단계; 및(a) preparing silver nanoparticles; And

(b) 활성탄을 포함하는 건축용 조성물에 상기 (a) 단계의 은 나노입자를 코팅하는 단계;를 포함하는 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법을 제공한다. (B) coating the silver nanoparticles of the step (a) to a building composition comprising activated carbon; provides a method of manufacturing a building material improved anti-bacterial and adsorptive power to volatile organic compounds.

본 발명은 또 다른 양태로서, 상기 제조방법에 의해 제조된 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료를 제공한다.In still another aspect, the present invention provides a building material having improved antibacterial and adsorptive power to volatile organic compounds prepared by the method.

이하, 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명의 건축재료의 제조방법에서, 상기 (a) 단계는 은 나노입자를 제조하는 단계이다. 상기 은 나노입자는 증발응축법 또는 환원침전법을 통해 제조될 수 있으며, 바람직하게는 환원침전법이다. 환원침전법을 통해 은 나노입자를 제조할 경우, PVP(Polyvinylpyrrolidinone), SDS (Sodium n-Dodecyl Sulfate), Tween 20 (Polyoxyethylene Sorbitan Monooleate)를 포함하는 어느 하나 이상의 분산제를 이용하여 제조될 수 있으며, 하이드라진 하이드레이트(Hydrazine hydrate) 또는 NaBH4 중 어느 하나의 환원제를 이용하여 제조될 수 있으나, 이에 제한되지 않는다. In the method of manufacturing a building material of the present invention, step (a) is a step of preparing silver nanoparticles. The silver nanoparticles may be prepared by evaporation condensation or reduction precipitation, and preferably reduction reduction precipitation. When the silver nanoparticles are prepared by the reduction precipitation method, they may be prepared using any one or more dispersing agents including polyvinylpyrrolidinone (PVP), sodium n-dodecyl sulfate (SDS), and Tween 20 (polyoxyethylene sorbbitan monooleate). It may be prepared using a hydride (Hydrazine hydrate) or a reducing agent of any one of NaBH 4 , but is not limited thereto.

상기 은 나노입자의 크기는 이에 제한되지 않으나, 2 내지 100 nm 이며, 바람직하게는 5 내지 50 nm 이다. The size of the silver nanoparticles is not limited thereto, but is 2 to 100 nm, preferably 5 to 50 nm.

상기 (b) 단계는 은 나노입자가 코팅된 활성탄을 제조하는 단계로, 활성탄을 포함하는 건축용 조성물에 은 나노입자를 코팅한다. 이때, 코팅 방법은 당업계에서 사용되는 통상적인 방법을 이용할 수 있으며, 예를 들어 화학 기상 증착 (chemical vapor deposition), 물리 기상 증착 (physical vapor deposition), 화학 및 전기화학 코팅 (chemical and electrochemical coatings), 스프레이 (spraying), 광학 코팅 (optical coatings), 스핀 코팅 (spin coating), 딥 코팅 (dip coating), 바 코팅 (bar coating), 자외선 코팅 (UV coatings) 등이 포함된다. Step (b) is a step of preparing activated carbon coated with silver nanoparticles, coating the silver nanoparticles on a building composition comprising activated carbon. At this time, the coating method may use a conventional method used in the art, for example, chemical vapor deposition, physical vapor deposition, chemical and electrochemical coatings Spraying, optical coatings, spin coating, dip coating, bar coating, UV coating, etc.

상기 활성탄은 목재, 갈탄, 이탄 등을 활성화제인 염화아연이나 인산과 같은 약품으로 처리하여 건조시키거나 목탄을 수증기로 활성화시켜 만든 것으로, 가루상태나 입자상태로 제조되는 것을 의미한다. The activated carbon is made by treating wood, lignite, peat, etc. with a chemical agent such as zinc chloride or phosphoric acid as an activator, and drying or activating charcoal with water vapor.

상기 활성탄은 이에 제한되지 않으나, 참나무, 굴참나무, 졸참나무, 너도밤나무, 상수리나무, 소나무, 대나무, 벚나무, 박달나무, 자작나무, 뽕나무, 밤나무, 야자나무, 톱밥 등을 이용한 것일 수 있으며, 바람직하게는 대나무 활성탄이다. The activated carbon is not limited thereto, but may be one using oak, oyster oak, prunus oak, beech, oak, pine, bamboo, cherry, birch, birch, mulberry, chestnut, palm, sawdust, etc. It is bamboo activated carbon.

본 발명에서 용어 “휘발성 유기화합물”은 증기압이 높아 대기 중으로 쉽게 증발되는 액체 도는 기체상 유기화합물을 총칭하는 것으로, 아세트알데히드, 아세틸렌, 아세틸렌 디클로라이드, 아크톨레인, 아크릴로니트릴, 벤젠, 1,3-부타디엔, 부탄, 1-부텐, 2-부텐, 사염화탄소, 클로로포름, 사이클로헥산, 1,2-디클로로에탄, 디에틸아민, 디메틸아민, 에틸렌, 포름알데히드, n-헥산, 이소프로필 알코올, 메탄올, 메틸에틸케톤, 메틸렌클로라이드, 엠티비이(MTBE), 프로필렌, 프로필렌옥사이드, 1,1,1-트리클로로에탄, 트리클로로에틸렌, 휘발유, 납사, 원유, 아세트산, 에틸벤젠, 니트로벤젠, 톨루엔, 테트라클로로에틸렌, 자일렌, 스티렌 등이 포함된다. As used herein, the term “volatile organic compound” refers to a liquid or gaseous organic compound which is easily evaporated into the atmosphere due to high vapor pressure, and may include acetaldehyde, acetylene, acetylene dichloride, actolane, acrylonitrile, benzene, 1, 3-butadiene, butane, 1-butene, 2-butene, carbon tetrachloride, chloroform, cyclohexane, 1,2-dichloroethane, diethylamine, dimethylamine, ethylene, formaldehyde, n-hexane, isopropyl alcohol, methanol, Methyl ethyl ketone, methylene chloride, MTBE, propylene, propylene oxide, 1,1,1-trichloroethane, trichloroethylene, gasoline, naphtha, crude oil, acetic acid, ethylbenzene, nitrobenzene, toluene, tetrachloroethylene , Xylene, styrene and the like.

상기 제조방법을 통해 제조된 건축재료는 대장균을 포함하는 균주에 대한 우수한 향균력을 가지고 있으며, 새집증후군, 빌딩증후군, 아토피 피부염 등의 원인 물질이 되는 포름알데히드 및 벤젠을 포함하는 휘발성 유기화합물에 대한 우수한 흡착력을 가지고 있다. 따라서, 본 발명에 따른 건축재료는 건축 마감재로 유용하게 이용할 수 있으며, 이를 통해 새집증후군, 빌딩증후군 등을 예방할 수 있다.
The building material produced by the manufacturing method has excellent antimicrobial activity against strains containing Escherichia coli, and excellent for volatile organic compounds including formaldehyde and benzene, which are the causative agents of sick house syndrome, building syndrome, atopic dermatitis, etc. Has adsorption power Therefore, the building material according to the present invention can be usefully used as a building finishing material, through which can prevent the sick house syndrome, building syndrome and the like.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples. However, the following examples and experimental examples are illustrative of the present invention, and the content of the present invention is not limited by the following examples and experimental examples.

실시예Example 1. 은 나노입자의 제조 1. Preparation of Silver Nanoparticles

1-1. 1-1. 분산제Dispersant 및 환원제의 종류에 따른 은 나노입자의 안정성 검증 Verification of Stability of Silver Nanoparticles According to Different Types of Reducing Agents

은 나노입자를 효율적으로 제조하기 위하여, 분산제 및 환원제의 종류에 따른 안정성을 확인하였다. 본 실험에서 정의하는 안정성이란 분산된 입자가 응결(agglomeration)되어 더 큰 입자로 성장되지 않음을 의미하며, 입자가 응결되어 커져 용액의 색이 탁해지거나 어두워지는 것을 불안정하다고 정의하였다. In order to efficiently prepare the silver nanoparticles, the stability according to the type of dispersant and reducing agent was confirmed. The stability defined in this experiment means that the dispersed particles are agglomerated and do not grow into larger particles. The stability is defined as unstable that the particles become condensed and become large, causing the solution to become cloudy or dark.

보다 구체적으로는, 파이렉스 비커에 증류수 50ml를 넣고, 여기에 분산제[PVP(Polyvinylpyrrolidinone), SDS (Sodium n-Dodecyl Sulfate) 또는 Tween 20 (Polyoxyethylene Sorbitan Monooleate)]를 농도별 (표 1에 기재되어 있는 농도)로 가하고, 50∼60℃에서 20분간 교반하여 녹인 후, 4.4 mM 질산은(AgNO3 ; 99.8%) 0.5ml를 넣고 10분간 교반하였다. 이 후 5mM 농도의 환원제 [80% 하이드라진 하이드레이트(Hydrazine hydrate) 또는 NaBH4를 은 입자가 나노입자로 환원되기까지, 즉 은 고유의 투명한 노란색을 띨 때까지 0.1ml씩 주입하였다. 환원제와 분산제 각 1 종씩을 선택하여 제조한 은 나노입자 용액을, 제조 2시간 후 확인하였다. 분산제로 PVP(Polyvinylpyrrolidinone), SDS (Sodium n-Dodecyl Sulfate) 또는 Tween20 (Polyoxyethylene Sorbitan Monooleate)을 사용했을 때의 결과를 각각 도 1 내지 3에 나타내었다. More specifically, 50 ml of distilled water was added to a Pyrex beaker, and dispersants [PVP (Polyvinylpyrrolidinone), SDS (Sodium n-Dodecyl Sulfate) or Tween 20 (Polyoxyethylene Sorbitan Monooleate) were prepared according to the concentration (Table 1). ), The mixture was stirred at 50 to 60 ° C for 20 minutes to dissolve, and 0.5 ml of 4.4 mM silver nitrate (AgNO 3 ; 99.8%) was added thereto and stirred for 10 minutes. Thereafter, a 5 mM reducing agent [80% hydrazine hydrate or NaBH 4 was injected in 0.1 ml increments until the silver particles were reduced to nanoparticles, ie, inherently transparent yellow. The silver nanoparticle solution prepared by selecting each one of a reducing agent and a dispersing agent was confirmed after 2 hours of manufacture. The results when using polyvinylpyrrolidinone (PVP), sodium n-Dodecyl Sulfate (SDS) or Tween20 (Polyoxyethylene Sorbitan Monooleate) as dispersants are shown in FIGS.

도 1 에 개시한 바와 같이, PVP (Polyvinylpyrrolidinone)를 분산제로 사용하고, 환원제로 80% 하이드라진 하이드레이트를 사용한 경우, PVP 농도가 15 wt% 일 때 은 나노입자가 안정하게 분산되어 고른 빛이 유지되었고, 다른 농도에서는 입자간 응결이 일어나 암색화 되었다. 환원제로 NaBH4 (Sodium borohydride, powder)를 사용한 경우, PVP 농도가 5 wt%일 때도 황색의 불투명한 용액이 얻어졌으며, 높은 농도에서는 모두 암색화 되었다.As shown in FIG. 1, when PVP (Polyvinylpyrrolidinone) was used as the dispersant and 80% hydrazine hydrate was used as the reducing agent, silver nanoparticles were stably dispersed when the PVP concentration was 15 wt%, thereby maintaining even light. At other concentrations, intergranular condensation occurred and darkened. NaBH 4 as reducing agent In case of using (Sodium borohydride, powder), yellow opaque solution was obtained even when PVP concentration was 5 wt%, and all darkened at high concentration.

또한, 도 2에 개시한 바와 같이, Tween 20(Polyoxyethylene Sorbitan Monooleate)을 분산제로 사용하고, 환원제로 80% 하이드라진 하이드레이트를 사용한 경우, 미량의 Tween 20이 첨가되더라도 은 용액의 환원반응이 급격히 일어나 색상의 변화가 심하였으며, Tween 20의 농도가 2 wt%를 초과하면 병 표면에 은이 석출되었다. 환원제로 NaBH4를 사용한 경우, Tween 20의 농도가 1 wt%일 때 색상이 검붉은 빛을 띠었으며, 과량 주입한 경우에는 은 나노입자 용액이 불투명해지며 색이 엷어졌다. In addition, as shown in FIG. 2, when Tween 20 (Polyoxyethylene Sorbitan Monooleate) is used as a dispersant and 80% hydrazine hydrate is used as a reducing agent, even if a small amount of Tween 20 is added, the reduction reaction of the silver solution occurs rapidly, The change was severe and silver precipitated on the bottle surface when the concentration of Tween 20 exceeded 2 wt%. When NaBH 4 was used as a reducing agent, the color became dark red when the concentration of Tween 20 was 1 wt%, and the silver nanoparticle solution became opaque and light in color when excessively injected.

또한, 도 3에 개시한 바와 같이, SDS(Sodium n-Dodecyl Sulfate)를 분산제로 사용하고, 환원제로 80% 하이드라진 하이드레이트를 사용한 경우, SDS의 농도가 1 wt%일 때 혼탁한 황적색 용액이 되었으며, SDS의 농도가 1.5 wt% 이상일 때는 용액이 혼탁해지고, 병 표면에 은이 석출되었다. 환원제로 NaBH4를 사용한 경우, SDS의 농도가 1 wt%일 때 매우 투명한 노란색 용액을 수득하였으며, 상기 결과를 통해 하이드라진 하이드레이트 보다 NaBH4가 더 효과적인 환원제임을 확인하였다.
In addition, as shown in FIG. 3, when SDS (Sodium n-Dodecyl Sulfate) was used as a dispersant and 80% hydrazine hydrate was used as a reducing agent, it became a turbid yellow-red solution when the concentration of SDS was 1 wt%. When the concentration of SDS was 1.5 wt% or more, the solution became turbid and silver precipitated on the bottle surface. When NaBH 4 was used as a reducing agent, a very clear yellow solution was obtained when the concentration of SDS was 1 wt%, and the results confirmed that NaBH 4 was a more effective reducing agent than hydrazine hydrate.

1-2. 1-2. 분산제Dispersant 및 환원제의 종류에 따른 은 나노입자의  And silver nanoparticles according to the type of reducing agent 제원Specifications 분석 analysis

실시예 1-1에서 제조된 은 나노입자의 크기, 성상 및 분포를 입도 측정기 (Nanotrac150, Japan)를 사용하여 분석하였다. 그 결과를 표 1에 나타내었다 (환원제: NaBH4). The size, shape and distribution of the silver nanoparticles prepared in Example 1-1 were analyzed using a particle size analyzer (Nanotrac150, Japan). The results are shown in Table 1 (reducing agent: NaBH 4 ).

분산제Dispersant 농도 (Concentration ( wtwt (%)) (%)) 지름 (Diameter ( meanmean ), ), nmnm 성상 및 분포Appearance and distribution PVPPVP 1515 1900-3900 (2500)1900-3900 (2500) 좋음good 1010 40-120 (55)40-120 (55) 좋음good Tween 20Tween 20 1.01.0 10-36 (13)10-36 (13) 좋음good 1.51.5 10-36 (16)10-36 (16) 좋음good 1.0 (w/하이드라진)1.0 (w / hydrazine) 4-10 (5)4-10 (5) 좋음good SDSSDS 1.01.0 40-200 (56)40-200 (56) 나쁨Poor 1.51.5 100-800 (200)100-800 (200) 나쁨Poor 1.0 (w/하이드라진)1.0 (w / hydrazine) 30-200 (70)30-200 (70) 나쁨Poor

표 1에 나타낸 바와 같이, 분산제로 수용성 고분자인 PVP(Polyvinyl Pyrrolidone; Povidone)를 10% 내외로 사용할 경우, 입경 분포가 대체로 일정한 은 현탁액을 얻을 수 있었으나 입자의 크기가 마이크로 수준이었다. 또한, 분산제로 계면활성제인 Tween20을 사용할 경우, 평균 5~16 nm의 매우 작은 크기의 나노입자를 수득할 수 있었다. 또한, 분산제로 SDS를 사용할 경우에는 은 나노입자의 성상 및 분포가 균일하지 못하였다. As shown in Table 1, when the water-soluble polymer PVP (Polyvinyl Pyrrolidone; Povidone) was used at about 10% as a dispersant, a silver suspension having a uniform particle size distribution was generally obtained, but the particle size was micro level. In addition, when Tween20, a surfactant, was used as a dispersant, very small nanoparticles having an average size of 5 to 16 nm could be obtained. In addition, when SDS was used as a dispersant, the properties and distribution of silver nanoparticles were not uniform.

따라서, 이 후의 실험에서는 은 나노입자를 제조하기 위하여, 분산제로 1 wt%의 Tween20을, 환원제로 5 mM의 NaBH4 를 이용하였다.
Therefore, in the following experiment, in order to prepare silver nanoparticles, 1 wt% of Tween20 as a dispersant and 5 mM NaBH 4 as a reducing agent were used. Was used.

실시예Example 2. 은 나노입자가 코팅된 대나무 활성탄의 제조 2. Preparation of Bamboo Activated Carbon Coated with Silver Nanoparticles

실시예 1에서 제조한 은 나노입자를 대나무 활성탄을 포함하는 조성물에 코팅하여 건축재료를 제조하였다. 보다 구체적으로는, 석고를 50% (무게비율)로 고정시키고 대나무 활성탄을 물과 함께 혼합하여 반죽한 후, 정사각형 모양 (가로x세로x두께(18cm x18cm x1.5cm)의 시험체에 실시예 1에서 제조한 은 나노입자를 도포하였다. 은 나노입자를 제조하기 위하여, 분산제로 1 wt%의 Tween20을, 환원제로 5 mM의 NaBH4 를 이용하였으며, 제조된 은 나노입자의 크기는 약 10 내지 40 nm였으며, 표면적 당 농도는 약 8.3 mg/m2 이었다.
The silver nanoparticles prepared in Example 1 were coated on a composition containing bamboo activated carbon to prepare a building material. More specifically, gypsum was fixed at 50% (weight ratio) and bamboo activated carbon was mixed with water and kneaded, and then, in Example 1, on a test specimen having a square shape (width x length x thickness (18 cm x 18 cm x 1.5 cm)). To prepare the silver nanoparticles, 1 wt% of Tween20 was used as a dispersant and 5 mM NaBH 4 was used as a reducing agent. The size of the prepared silver nanoparticles was about 10 to 40 nm, and the concentration per surface area was about 8.3 mg / m 2 .

실험예Experimental Example 1. 항균성 실험 1. Antimicrobial test

실시예 1에서 제조한, 은 나노입자 용액의 항균성을 확인하기 위하여, 대장균 (E. coli , KCTC 2441)을 TSB(Tryptic Soy Broth, Becton, Dickinson&company)배지에 희석평판배양법으로 배양하였다. 보다 구체적으로는, 각 평판접시에 은 나노입자 용액 0.1mL, 대장균 배양액 0.3 mL, 45℃의 TSB 배지 4 mL를 넣고 섞어 굳힌 후, 24시간 경과 후에 생성된 대장균의 집락을 계수하여 은 농도에 따른 항균 정도를 평가하였다. 대조군으로는 상용 은 파우더를 이용하였다. 그 결과를 도 4에 나타내었다. In order to confirm the antimicrobial activity of the silver nanoparticle solution prepared in Example 1, Escherichia coli ( E. coli , KCTC 2441) was incubated in a diluted plate culture method in TSB (Tryptic Soy Broth, Becton, Dickinson & Company) medium. More specifically, 0.1 mL of silver nanoparticle solution, E. coli culture medium 0.3 mL, and 4 mL of TSB medium at 45 ° C. are added to each plate, and the mixture is hardened. The colonies of E. coli generated after 24 hours are counted according to the silver concentration. The degree of antibacterial was evaluated. Commercial silver powder was used as a control. The results are shown in Fig.

도 4에 나타낸 바와 같이, 본 발명의 475 ppm 농도의 은 나노입자 용액을 대장균과 섞어서 배양한 경우, 99.5%의 항균성을 나타냄을 확인하였다. 특히, 상기 결과는 동일한 양의 상용 은 파우더 용액 (54% 항균성)보다 우수한 결과였다. 상기 결과를 통하여, 본 발명의 은 나노입자가 코팅된 대나무 활성탄은 우수한 향균력을 가지고 있음을 확인하였다.
As shown in FIG. 4, when the silver nanoparticle solution of 475 ppm concentration of the present invention was mixed with E. coli and cultured, 99.5% of the antimicrobial activity was confirmed. In particular, the results were superior to the same amount of commercially available silver powder solutions (54% antimicrobial). Through the above results, it was confirmed that the bamboo activated carbon coated silver nanoparticles of the present invention has excellent antibacterial activity.

실험예Experimental Example 2. 휘발성 유기화합물의 흡착성 실험  2. Adsorption test of volatile organic compounds

은 나노입자가 코팅된 대나무 활성탄의 건축재료로서의 가능성을 확인하기 위하여, 휘발성 유기화합물의 흡착성을 실험하였다. 보다 구체적으로는, 용적이 160 ㎥(가로 25 ㎝×세로 25 ㎝×높이 25 ㎝)인 챔버 내에 은 나노입자가 코팅된 대나무 활성탄을 넣고, 습도변화를 최소화하는 조건 및 실온에서 밀폐 후 실험하였다. 대조군으로는 은 나노입자가 코팅되지 않은 대나무 활성탄을 이용하였다. In order to confirm the possibility of silver nanoparticles coated bamboo activated carbon as a building material, the adsorption of volatile organic compounds was examined. More specifically, bamboo activated carbon coated with silver nanoparticles was placed in a chamber having a volume of 160 m 3 (25 cm × 25 cm × 25 cm in height), and tested after sealing at room temperature and under conditions of minimal humidity change. As a control, bamboo activated carbon not coated with silver nanoparticles was used.

벤젠(Benzene) 에 대한 흡착성 분석은 은 나노입자가 코팅된 대나무 활성탄이 있는 챔버에 기화시킨 벤젠(SIGAMA, USA)을 주입한 후, 30분 간격으로 총 2시간 동안 실험하였다. 측정방법은 고체 흡착관을 이용한 용매추출법을 이용하였으며, ORBO Tube-32(SUPELCO, USA)를 사용하였다. 측정 시 사용한 펌프는 측정 전, 후의 유량변화가 비교적 적은 MP-Σ300(SIBATA, Japan)를 이용하여 1.5ℓ/min으로 5분간 총 1ℓ를 포집하였다. 흡착된 고체 흡착관의 내부 충진물을 3㎖ 바이알에 담은 뒤, 이황화수소 (CS2)용액(99.9%, Sigma Aldrich) 1㎖를 주입하여 교반기(SWB-03, JEJO TECH)에서 30분 동안 일정하게 교반하여 추출한 후, 추출한 액 1㎕를 취하여 가스크로마토그래피(GC-FID)로 측정하였다. CLP-BTEX-10X 표준물질을 토대로 0.1ppm, 0.3ppm, 0.5ppm, 1.0ppm에서 검량선을 작성하여 벤젠의 농도를 산출하였다. Adsorption analysis of Benzene was performed by injecting vaporized benzene (SIGAMA, USA) into a chamber containing silver nanoparticles coated bamboo activated carbon for 2 hours at 30 minute intervals. The solvent extraction method using a solid adsorption tube was used, and ORBO Tube-32 (SUPELCO, USA) was used. The pump used for measurement collected a total of 1 L at 1.5 L / min for 5 minutes using MP-Σ300 (SIBATA, Japan), which had a relatively small flow rate change before and after the measurement. The internal filling of the adsorbed solid adsorption tube was placed in a 3 ml vial, and then 1 ml of hydrogen disulfide (CS 2 ) solution (99.9%, Sigma Aldrich) was injected into the stirrer (SWB-03, JEJO TECH) for 30 minutes. After stirring and extracting, 1 µl of the extracted solution was taken and measured by gas chromatography (GC-FID). Based on the CLP-BTEX-10X standard, a calibration curve was prepared at 0.1 ppm, 0.3 ppm, 0.5 ppm, and 1.0 ppm to calculate the concentration of benzene.

포름알데히드와 벤젠의 흡착량은 하기 수학식 1로 계산하였다. The adsorption amount of formaldehyde and benzene was calculated by the following equation.

[수학식 1][Equation 1]

총 흡입 시료량 (㎥) = (AS - Ab) * V / CA Total suction sample volume (㎥) = (A S -A b ) * V / C A

(CA : 실내공기시료 중 포름알데히드 또는 벤젠의 농도(㎍/㎥), (C A : concentration of formaldehyde or benzene in the indoor air sample (㎍ / ㎥),

AS : 실내공기시료 분석 결과값(㎍/㎖), A S : Indoor air sample analysis result value (㎍ / ㎖),

Ab : DNPH 바탕 시험값(㎍/㎖), A b : DNPH background test value (㎍ / ㎖),

V : 아세토나이트릴 추출 부피(㎖))
V: acetonitrile extraction volume (ml)

포름알데이히드 및 벤젠에 대한 흡착성 실험 결과를 각각 도 5 및 도 6에 나타내었다. Adsorption test results for formaldehyde and benzene are shown in FIGS. 5 and 6, respectively.

도 5에 나타낸 바와 같이, 은 나노입자가 코팅되지 않은 대나무 활성탄에 비하여 (도 5의 위), 본 발명의 은 나노입자가 코팅된 대나무 활성탄의 경우 (도 5의 아래), 120분 이내에 80% 이상의 높은 포름알데히드 흡착률을 보임을 확인하였다. As shown in FIG. 5, compared to bamboo activated carbon without silver nanoparticles coated (above FIG. 5), in the case of bamboo activated carbon coated silver nanoparticles of the present invention (under FIG. 5), 80% within 120 minutes. It was confirmed that the above high formaldehyde adsorption rate.

또한, 도 6에 나타낸 바와 같이, 은 나노입자가 코팅되지 않은 대나무 활성탄에 비하여 (도 6의 위), 본 발명의 은 나노입자가 코팅된 대나무 활성탄의 경우 (도 6의 아래), 120분 이내에 80% 이상의 높은 포름알데히드 흡착률을 보임을 확인하였다.In addition, as shown in Figure 6, compared to the bamboo activated carbon uncoated silver nanoparticles (above Figure 6), in the case of the bamboo activated carbon coated silver nanoparticles of the present invention (under Figure 6), within 120 minutes It was confirmed that the high formaldehyde adsorption rate of more than 80%.

상기 결과를 통하여, 본 발명의 은 나노입자가 코팅된 대나무 활성탄은 대표적인 휘발성 유기화합물인 포름알데히드 및 벤젠에 대하여 우수한 흡착력을 가지고 있어, 건축재료로 유용하게 이용될 수 있음을 확인하였다.
Through the above results, it was confirmed that the bamboo activated carbon coated with silver nanoparticles of the present invention has excellent adsorptivity to formaldehyde and benzene, which are representative volatile organic compounds, and thus can be usefully used as a building material.

Claims (9)

(a) 은 나노입자를 제조하는 단계; 및
(b) 활성탄을 포함하는 건축용 조성물에 상기 (a) 단계의 은 나노입자를 코팅하는 단계;를 포함하는 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법.
(a) preparing silver nanoparticles; And
(b) coating the silver nanoparticles of step (a) on a building composition comprising activated carbon; and a method for manufacturing building materials having improved antibacterial and adsorptive power to volatile organic compounds.
제 1항에 있어서, 상기 (a)단계에서 은 나노입자는 PVP(Polyvinylpyrrolidinone), SDS (Sodium n-Dodecyl Sulfate) 및 Tween20 (Polyoxyethylene Sorbitan Monooleate)으로 이루어진 군에서 선택되는 어느 하나의 분산제를 이용하고, 하이드라진 하이드레이트(Hydrazine hydrate) 또는 NaBH4 중 어느 하나의 환원제를 이용하여 환원 침전법을 통해 제조되는 것을 특징으로 하는, 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법.
According to claim 1, wherein the silver nanoparticles in the step (a) using any one selected from the group consisting of PVP (Polyvinylpyrrolidinone), SDS (Sodium n-Dodecyl Sulfate) and Tween20 (Polyoxyethylene Sorbitan Monooleate), A method for producing a building material having improved adsorption capacity to antibacterial and volatile organic compounds, characterized in that it is prepared by a reduction precipitation method using a reducing agent of any one of hydrazine hydrate (Hydrazine hydrate) or NaBH 4 .
제 1항에 있어서, 상기 (a)단계에서 은 나노입자는 0.5 내지 1.5 wt%의 Tween20을 분산제로 이용하고, 2 내지 10 mM의 NaBH4 를 환원제로 이용하여 제조되는 것을 특징으로 하는, 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법.
According to claim 1, wherein the silver nanoparticles in step (a) using 0.5 to 1.5 wt% of Tween20 as a dispersant, 2 to 10 mM NaBH 4 Method for producing a building material, characterized in that the production using the reducing agent, the adsorption power to the antibacterial and volatile organic compounds.
제 1항에 있어서, 상기 (a)단계에서 은 나노입자의 크기는 2 내지 100 nm 인 것을 특징으로 하는, 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법.
The method of claim 1, wherein the size of the silver nanoparticles in the step (a) is 2 to 100 nm, the antibacterial power and the adsorptive power to volatile organic compounds.
제 1항에 있어서, 상기 (b) 단계에서 활성탄은 참나무, 굴참나무, 졸참나무, 너도밤나무, 상수리나무, 소나무, 대나무, 벚나무, 박달나무, 자작나무, 뽕나무, 밤나무, 야자나무 및 톱밥으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법.
The method according to claim 1, wherein in the step (b) the activated carbon is made of oak, oyster oak, prunus oak, beech, oak, pine, bamboo, cherry, birch, birch, mulberry, chestnut, palm and sawdust A method for producing a building material, characterized in that at least one selected from the group, the antibacterial and adsorptive power to volatile organic compounds.
제 5항에 있어서, 상기 활성탄은 대나무 활성탄인 것을 특징으로 하는, 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법.
The method of claim 5, wherein the activated carbon is bamboo activated carbon, wherein the antibacterial and adsorptive power to volatile organic compounds is improved.
제 1항에 있어서, 상기 (b) 단계에서 코팅은 화학 기상 증착 (chemical vapor deposition), 물리 기상 증착 (physical vapor deposition), 화학 및 전기화학 코팅 (chemical and electrochemical coatings), 스프레이 (spraying), 광학 코팅 (optical coatings), 스핀 코팅 (spin coating), 딥 코팅 (dip coating), 바 코팅 (bar coating) 및 자외선 코팅 (UV coatings) 으로 이루어진 군으로부터 선택된 1종 이상의 방법을 이용하여 수행하는 것을 특징으로 하는, 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법.
The method of claim 1, wherein the coating in step (b) comprises chemical vapor deposition, physical vapor deposition, chemical and electrochemical coatings, spraying, optical Characterized in that it is carried out using at least one method selected from the group consisting of optical coatings, spin coatings, dip coatings, bar coatings and UV coatings. The manufacturing method of the building material, which has improved antibacterial and adsorptive power to volatile organic compounds.
제 1항에 있어서, 상기 휘발성 유기화합물은 포름알데히드 또는 벤젠인 것을 특징으로 하는, 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료의 제조방법.
The method of claim 1, wherein the volatile organic compound is formaldehyde or benzene, wherein the antibacterial and adsorptive power to the volatile organic compound is improved.
제 1항 내지 제 8항 중 어느 한 항의 제조방법에 의해 제조되는 은 나노입자가 코팅된 활성탄을 포함하는, 향균력 및 휘발성 유기화합물에 대한 흡착력이 개선된 건축재료.

A building material with improved antibacterial and adsorptive power to volatile organic compounds, comprising activated carbon coated with silver nanoparticles prepared by the method of any one of claims 1 to 8.

KR1020120028923A 2012-03-21 2012-03-21 Building material having improved antibacterial effect and absorptivity, and method preparing for the same KR20130107098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120028923A KR20130107098A (en) 2012-03-21 2012-03-21 Building material having improved antibacterial effect and absorptivity, and method preparing for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120028923A KR20130107098A (en) 2012-03-21 2012-03-21 Building material having improved antibacterial effect and absorptivity, and method preparing for the same

Publications (1)

Publication Number Publication Date
KR20130107098A true KR20130107098A (en) 2013-10-01

Family

ID=49630615

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120028923A KR20130107098A (en) 2012-03-21 2012-03-21 Building material having improved antibacterial effect and absorptivity, and method preparing for the same

Country Status (1)

Country Link
KR (1) KR20130107098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032065A (en) * 2015-06-06 2015-11-11 杭州笨鸟环保科技有限公司 Active carbon filter screen and preparation method thereof
CN106077706A (en) * 2016-08-22 2016-11-09 王利萍 A kind of preparation method of Ramulus Mori nano-ag composite
KR20180041391A (en) * 2016-10-14 2018-04-24 주식회사 엔트리생활건강 Adsorbent of life harmful substances having antibiotic and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105032065A (en) * 2015-06-06 2015-11-11 杭州笨鸟环保科技有限公司 Active carbon filter screen and preparation method thereof
CN106077706A (en) * 2016-08-22 2016-11-09 王利萍 A kind of preparation method of Ramulus Mori nano-ag composite
KR20180041391A (en) * 2016-10-14 2018-04-24 주식회사 엔트리생활건강 Adsorbent of life harmful substances having antibiotic and manufacturing method thereof

Similar Documents

Publication Publication Date Title
La Russa et al. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials
De Filpo et al. Preventing fungal growth in wood by titanium dioxide nanoparticles
Sánchez et al. Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions
CN102277044B (en) Bamboo charcoal odor-removing antibacterial emulsion paint and preparation method thereof
Huang et al. Comparison of resistance improvement to fungal growth on green and conventional building materials by nano-metal impregnation
Yang et al. Preparation and characterization of functional fabrics from bamboo charcoal/silver and titanium dioxide/silver composite powders and evaluation of their antibacterial efficacy
CN106310978B (en) Composite air filter membrane based on chitosan and graphene oxide and preparation method thereof
Zhao et al. Multifunctional hybrid porous filters with hierarchical structures for simultaneous removal of indoor VOCs, dusts and microorganisms
DE112013007096T5 (en) Formaldehyde absorbent and its method of use
CN103966769A (en) Method for preparing photocatalysis self-cleaning nanometer fiber felt
KR101794243B1 (en) Composition for adsorbing and decomposing a compound inducing an odor, product comprising the same and method for preparing the same
CN108850006B (en) Quick-acting composite deodorant and preparation method thereof
CN107737578B (en) Preparation method of anion antibacterial adsorption material composition
Yang et al. Evaluation of the antibacterial efficacy of bamboo charcoal/silver biological protective material
KR101585396B1 (en) Deodorant manufacturing method and its purpose
CN102427720A (en) Nanostructural composition of biocide
KR100605004B1 (en) Water-soluble paint composition containing illite powder
KR20130107098A (en) Building material having improved antibacterial effect and absorptivity, and method preparing for the same
Ganguli et al. Nanomaterials in antimicrobial paints and coatings to prevent biodegradation of man-made surfaces: A review
Chen et al. Control of bioaerosols in indoor environment by filter coated with nanosilicate platelet supported silver nanohybrid (AgNPs/NSP)
KR20110125742A (en) Formaldehyde-adsorbent comprising amine-functionalized mesoporous materials
KR20190012805A (en) FUNCTIONAL PAINT COMPOSITIONS WITH ANTIMICROBIAL AND MOTHPROOfING ACTIVITY
Amorim et al. Antifungal and photocatalytic activity of smart paint containing porous microspheres of TiO2
KR100985435B1 (en) Preparation Method of Inorganic Coating Composition with Humidity control and Harmful Materials Reduction Function
CN105478075A (en) Air-purifying modified nano-composite material for aqueous system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application