KR20130107022A - Method controlling car stop using variable gain - Google Patents
Method controlling car stop using variable gain Download PDFInfo
- Publication number
- KR20130107022A KR20130107022A KR1020120028785A KR20120028785A KR20130107022A KR 20130107022 A KR20130107022 A KR 20130107022A KR 1020120028785 A KR1020120028785 A KR 1020120028785A KR 20120028785 A KR20120028785 A KR 20120028785A KR 20130107022 A KR20130107022 A KR 20130107022A
- Authority
- KR
- South Korea
- Prior art keywords
- scc
- vehicle
- gain
- calculating
- distance
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000001133 acceleration Effects 0.000 claims abstract description 17
- 230000009466 transformation Effects 0.000 claims description 3
- 230000036461 convulsion Effects 0.000 abstract description 12
- 230000002996 emotional effect Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/181—Preparing for stopping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/105—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/107—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/06—Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0022—Gains, weighting coefficients or weighting functions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/04—Vehicle stop
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4041—Position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/14—Cruise control
- B60Y2300/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/18—Propelling the vehicle
- B60Y2300/18008—Propelling the vehicle related to particular drive situations
- B60Y2300/18091—Preparing for stopping
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Human Computer Interaction (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Traffic Control Systems (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
Description
본 발명은 가변 게인을 이용한 차량 정지 제어 방법에 관한 것으로서, 보다 구체적으로는 운전 상황에 따라 가변적으로 게인을 선택하여 차량 정지를 제어하는 방법에 관한 것이다.The present invention relates to a vehicle stop control method using a variable gain, and more particularly, to a method of controlling a vehicle stop by variably selecting a gain according to a driving situation.
종래의 지능형 순항 제어 시스템(Smart Cruise Control: 이하 SCC)은 레이더를 통해 차량 전방 상황을 인식하고, 엔진 혹은 브레이크를 조작하여 운전자 개입 없이 차량의 속도를 유지하고 차 간 거리를 조정하였다.Conventional intelligent cruise control (SCC) has recognized the situation in front of the vehicle through the radar, and operated the engine or the brake to maintain the speed of the vehicle and adjust the distance between vehicles without driver intervention.
종래의 SCC는 30kph이상의 영역에서 작동하였고, Stop-and-Go 기능을 포함하면서 정지 제어 기능도 제공하게 되었으나, 정지시 후진을 하지 않는 불연속 때문에 Pitch Motion(상하 요동 움직임), Nose Dive(급강하) 등으로 불리는 큰 Jerk가 발생하게 되었다.The conventional SCC operates in the area of 30kph or more, and includes the stop-and-go function and also provides the stop control function, but due to the discontinuity that does not reverse when stopped, Pitch Motion, Nose Dive, etc. A large Jerk called
따라서, 종래의 SCC는 Over-Shoot이 없는 제어기를 사용하더라도 제동장치의 지연과 부정확성, 레이더의 지연과 오차 등으로 인해 큰 Jerk가 발생하는 문제점이 있으며, 모든 운전 상황에서 Soft Stop을 논리적으로 구현한 제어기가 아직까지 개발되고 있지 않아, 이를 적용시킬 수 없는 실정에 있다.Therefore, the conventional SCC has a problem that a large jerk occurs due to the delay and inaccuracy of the braking system and the delay and error of the radar even when using a controller without overshoot, and logically implements a soft stop in all driving situations. Since the controller is not yet developed, it cannot be applied.
즉, String-Stable, Profile Type Controller 등 기존 Stop-and-Go 제어기는 불확실성 때문에 많은 운전 상황에서 정지시 Jerk가 발생하고, 이러한 제어기를 사용하는 종래의 SCC도 많은 양상 차량에서 정지시 Jerk가 발생하게 되어 운전자에게 피로와 불쾌감을 주게 되므로, 상품성이 저해되는 문제점이 있다.In other words, existing stop-and-go controllers such as String-Stable and Profile Type Controllers generate jerks when stopped in many driving situations due to uncertainties, and conventional SCCs using such controllers also cause jerks when stopped in many aspects of vehicles. As a result of fatigue and discomfort to the driver, there is a problem that the merchandise is impaired.
한편, Bosch는 차량 정지시 ESC의 유압을 빠르게 감압하여 Jerk를 줄이는 방법으로 제품을 구현하였으나 단순히 Jerk를 줄이는 정도의 효과로 모든 운전 상황에 대응이 불가능하고, BMW는 정지 상황 등에서 가변 제어기를 제안하였으나 구체적인 방법과 결과를 제시하지 못하였다.On the other hand, Bosch implemented the product by reducing the jerk by rapidly reducing the hydraulic pressure of the ESC when the vehicle was stopped.However, simply reducing the jerk made it impossible to cope with all driving situations. No specific method and results were given.
본 발명은 상기와 같은 문제점을 감안하여 창출한 것으로서, 차량 정지 제어시 Jerk 발생을 최소화하고, Try-and-Error가 아닌 물리적이고 수학적인 전개로 현실 조건을 반영하여 체계적인 Soft Stop 기능을 구현하며, 물리적으로 Soft Stop 가능 여부를 판단하여 적용하는 가변 게인을 이용한 차량 정지 제어 방법을 제공하는 데 그 목적이 있다.The present invention was created in view of the above problems, and minimizes the generation of jerks when controlling the vehicle stop, and implements a systematic soft stop function by reflecting the real conditions by physical and mathematical development rather than Try-and-Error, It is an object of the present invention to provide a vehicle stop control method using a variable gain that determines and applies a soft stop.
전술한 목적을 달성하기 위하여, 본 발명의 일면에 따른 가변 게인을 이용한 차량 정지 제어 방법은 전방 차량이 정지되면, SSC 차량의 소프트 정지(Soft Stop) 가능 범위(wn)를 산출하는 단계; 산출된 상기 소프트 정지 가능 범위를 토대로 SCC 속도 게인(kv), SCC 거리 게인(kc)을 산출하는 단계; 및 산출된 상기 SCC 속도 게인(kv), SCC 거리 게인(kc)을 토대로 상기 SSC 차량의 가속도(ai)를 산출하는 단계를 포함한다.In order to achieve the above object, a vehicle stop control method using a variable gain according to an aspect of the present invention comprises the steps of: calculating a soft stop possible range (w n ) of the SSC vehicle, when the front vehicle is stopped; Calculating an SCC speed gain (k v ) and an SCC distance gain (k c ) based on the calculated soft stop possible range; And calculating the acceleration a i of the SSC vehicle based on the calculated SCC speed gain k v and SCC distance gain k c .
본 발명에 따르면, SCC 차량 정지 제어시 Jerk 발생을 감소시킬 수 있고, Nose Dive와 Pitch Motion을 억제할 수 있다.According to the present invention, it is possible to reduce the occurrence of Jerk during the SCC vehicle stop control, and to suppress the nose dive and the pitch motion.
특히 불연속 Jerk를 감소시킬 수 있어서 현격한 감성 품질 및 상품성을 향상시킬 수 있고, 승차감 또한 향상시킬 수 있다.In particular, it is possible to reduce the discontinuous Jerk, thereby improving the marked emotional quality and commerciality, and also improve the riding comfort.
Soft Stop 기능을 수학적, 물리적으로 구현할 수 있어서 다양한 차종에 체계적으로 적용 가능하다.The soft stop function can be implemented mathematically and physically, so it can be systematically applied to various models.
도 1은 본 발명의 일 실시예에 따른 가변 게인을 이용한 차량 정지 제어 방법을 설명하기 위한 흐름도.
도 2는 본 발명의 가변 게인 산출을 설명하기 위한 도면.1 is a flowchart illustrating a vehicle stop control method using a variable gain according to an exemplary embodiment of the present invention.
2 is a view for explaining the variable gain calculation of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 용이하게 이해할 수 있도록 제공되는 것이며, 본 발명은 청구항의 기재에 의해 정의된다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자 이외의 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. And is intended to enable a person skilled in the art to readily understand the scope of the invention, and the invention is defined by the claims. It is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In the present specification, the singular form includes plural forms unless otherwise specified in the specification. It is noted that " comprises, " or "comprising," as used herein, means the presence or absence of one or more other components, steps, operations, and / Do not exclude the addition.
이하, 도 1 및 도 2를 참조하여 본 발명의 일 실시예에 따른 가변 게인을 이용한 차량 정지 제어 방법을 설명한다. 도 1은 본 발명의 일 실시예에 따른 가변 게인을 이용한 차량 정지 제어 방법을 설명하기 위한 흐름도이고, 도 2는 본 발명의 가변 게인 산출을 설명하기 위한 도면이다.Hereinafter, a vehicle stop control method using a variable gain according to an exemplary embodiment of the present invention will be described with reference to FIGS. 1 and 2. 1 is a flowchart illustrating a vehicle stop control method using a variable gain according to an exemplary embodiment of the present invention, and FIG. 2 is a diagram illustrating a variable gain calculation according to the present invention.
도 1에 도시된 바와 같이, 전방 차량이 정지하였는지 여부를 판단한다(S700).As shown in FIG. 1, it is determined whether or not the front vehicle is stopped (S700).
예컨대, 레이더가 차량의 전방 상황을 인식하여 그 정보를 전달하면, 전달된 차량의 전방 상황 정보를 토대로 전방 차량이 정지하였는지 여부를 판단한다.For example, when the radar recognizes the front situation of the vehicle and transmits the information, it is determined whether the front vehicle is stopped based on the forward situation information of the vehicle.
판단결과, 전방 차량이 정지하지 않은 경우, 기존 SCC 로직 연산을 수행하여 차량 가속도(ai)를 산출하고(S701), 산출된 차량 가속도로 차량이 주행하도록 한다(S707).As a result of the determination, when the front vehicle is not stopped, the vehicle acceleration a i is calculated by performing an existing SCC logic operation (S701), and the vehicle is driven at the calculated vehicle acceleration (S707).
차량의 주행 제어를 위해 기존 SCC 로직 연산을 수행하기 위한 차량 가속도 계산식은 수학식 1과 같다.The vehicle acceleration calculation formula for performing an existing SCC logic operation for driving control of the vehicle is shown in Equation 1.
(ai : SCC 목표 가속도 , kv : SCC 속도 게인, kc : SCC 거리 게인, vt, xt : 전방 차량 속도, 위치, vs, xs : SCC 제어 차량 속도, 위치, Cd : 목표 차 간 거리, e : 차 간 거리)(a i : SCC target acceleration, k v : SCC speed gain, k c : SCC distance gain, v t , x t : forward vehicle speed, position, v s , x s : SCC controlled vehicle speed, position, C d : Distance between target cars, e: distance between cars)
그러나, 단계(S700) 판단결과, 전방 차량이 정지한 경우, Soft Stop 가능 범위(wn)를 산출한다(S702).However, as a result of the determination in step S700, when the vehicle ahead stops, the soft stop possible range w n is calculated (S702).
예컨대, 수학적 물리적으로 정지 제어가 가능한 게인 영역을 모두 산출한다.For example, all gain areas that can be mathematically physically controlled to stop are calculated.
즉, scalar 설계 변수 wn을 정의하고, 이 scalar 설계 변수로 Soft Stop을 위한 제약 조건을 매칭한다.That is, scalar design variable w n is defined and the constraint for soft stop is matched with this scalar design variable.
Soft Stop이 가능하기 위한 제약 조건, 즉 wn에 매칭 조건 변환은 수학식 2와 같다.Constraints for enabling soft stops, that is, matching conditions to w n are converted into Equation 2.
wn: Scalar 변환 설계 변수, e(0) : 차 간 거리 , amax : SCC 최대 허용 가속도, c0 : 목표 정지 거리, exp : exponentialw n : Scalar transformation design variable, e (0): distance between cars, a max : SCC maximum allowable acceleration, c 0 : target stop distance, exp: exponential
산출된 Soft Stop 가능 범위가 존재하는지 여부를 판단한다(S703).It is determined whether the calculated soft stop possible range exists (S703).
예컨대, Soft Stop이 가능하기 위한 제약 조건이 범위로 산출되는지, 수치로 산출되는지 여부를 판단하고, 판단결과, 범위로 산출되면, 도 2에 도시된 바와 같이, 산출된 범위의 중앙값을 wn으로 선택하며(S704), 그러나, 판단결과, 수치로 산출되면, 산출된 수치 중 최대값을 wn으로 선택한다(S705).For example, it is determined whether the constraint for enabling the soft stop is calculated as a range or a numerical value. When the determination result is a range, as shown in FIG. 2, the median value of the calculated range is defined as w n . If it is determined that the numerical value is determined (S704), however, the maximum value of the calculated numerical values is selected as w n (S705).
선택된 wn에서 kv와 kc를 계산하고, 예컨대, kv, kc의 wn변환 법은 수학식 3과 같으며,Calculate k v and k c at the selected w n , for example, the w n transformation of k v , k c is given by Equation 3,
Tg : SCC Time Gap[sec]T g : SCC Time Gap [sec]
계산된 kv와 kc를 토대로 차량 가속도(ai)를 계산하고(S706), 계산된 차량 가속도로 차량이 정지되도록 한다(S707).The vehicle acceleration a i is calculated based on the calculated k v and k c (S706), and the vehicle is stopped by the calculated vehicle acceleration (S707).
전술한 바와 같이, 본 발명에 따르면, 매우 부드러운 저속/정지 제어를 할 수 있어서 기존 SCC 대비 상품성, 감성 품질을 크게 향상시킬 수 있고, Soft Stop이 불가능한 기존 SCC 대비 현격한 차이를 갖는 SCC를 구현할 수 있으며, Try-and-Error가 아닌 수학적, 물리적 설계로 많은 특성 차이가 있을 수 있는 다양한 차종에 체계적인 Soft Stop을 적용시킬 수 있다.As described above, according to the present invention, it is possible to achieve very smooth low speed / stop control, thereby greatly improving the merchandise and emotion quality compared to the existing SCC, and to implement an SCC having a sharp difference compared to the existing SCC where soft stop is impossible. In addition, it is possible to apply systematic soft stop to various models that may have many characteristic differences by mathematical and physical design rather than Try-and-Error.
즉, 본 발명은 SCC 차량 정지 제어시 Jerk 발생을 감소시킬 수 있고, Nose Dive와 Pitch Motion을 억제할 수 있으며, 특히 불연속 Jerk를 감소시킬 수 있어서 현격한 감성 품질 및 상품성을 향상시킬 수 있고, 승차감 또한 향상시킬 수 있으며, Soft Stop 기능을 수학적, 물리적으로 구현할 수 있어서 다양한 차종에 체계적으로 적용 가능하다.That is, the present invention can reduce the occurrence of jerk during the SCC vehicle stop control, can suppress the nose dive and pitch motion, in particular can reduce the discontinuous jerk can improve the sharp emotional quality and marketability, ride comfort In addition, it can be improved and the Soft Stop function can be implemented mathematically and physically so that it can be systematically applied to various models.
이상 바람직한 실시예와 첨부도면을 참조하여 본 발명의 구성에 관해 구체적으로 설명하였으나, 이는 예시에 불과한 것으로 본 발명의 기술적 사상을 벗어나지 않는 범주내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
Although the configuration of the present invention has been described in detail with reference to the preferred embodiments and the accompanying drawings, this is only an example, and various modifications are possible within the scope without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be limited by the illustrated embodiments, but should be determined by the scope of the appended claims and equivalents thereof.
Claims (6)
산출된 상기 소프트 정지 가능 범위를 토대로 SCC 속도 게인(kv), SCC 거리 게인(kc)을 산출하는 단계; 및
산출된 상기 SCC 속도 게인(kv), SCC 거리 게인(kc)을 토대로 상기 SSC 차량의 가속도(ai)를 산출하는 단계
를 포함하는 가변 게인을 이용한 차량 정지 제어 방법.Calculating a soft stop possible range w n of the SSC vehicle when the vehicle ahead is stopped;
Calculating an SCC speed gain (k v ) and an SCC distance gain (k c ) based on the calculated soft stop possible range; And
Calculating an acceleration a i of the SSC vehicle based on the calculated SCC speed gain k v and SCC distance gain k c .
Vehicle stop control method using a variable gain comprising a.
상기 소프트 정지 가능 범위(wn)를 산출하는 단계는
(wn: Scalar 변환 설계 변수, e(0) : 차 간 거리 , amax : SCC 최대 허용 가속도, c0 : 목표 정지 거리, exp : exponential)
상기 수학식을 사용하여 상기 소프트 정지 가능 범위를 산출하는 것
인 가변 게인을 이용한 차량 정지 제어 방법.The method of claim 1,
The step of calculating the soft stop possible range (w n ) is
(w n : Scalar transformation design variable, e (0): distance between cars, a max : SCC maximum allowable acceleration, c 0 : target stop distance, exp: exponential)
Calculating the soft stop possible range using the equation
Vehicle stop control method using variable gain.
산출된 상기 소프트 정지 가능 범위(wn)가 범위로 산출되는지, 수치로 산출되는지 여부를 판단하는 단계; 및
판단결과, 범위로 산출되면, 산출된 범위의 중앙값을 wn으로 선택하고, 수치로 산출되면, 산출된 수치 중 최대값을 wn으로 선택하는 단계를 포함하는 것
인 가변 게인을 이용한 차량 정지 제어 방법.The method of claim 1, wherein the calculating of the soft stop possible range (w n ),
Determining whether the calculated soft stop possible range (w n ) is calculated as a range or a numerical value; And
Judgment result, comprising the steps of: when calculating the range, selecting the median of the calculated range to w n, and when calculating a value, choose the maximum of the calculated value w to the n
Vehicle stop control method using variable gain.
상기 SCC 속도 게인(kv), SCC 거리 게인(kc)을 산출하는 단계는
(Tg : SCC Time Gap[sec])
상기 수학식을 사용하여 상기 SCC 속도 게인(kv), 상기 SCC 거리 게인(kc)을 산출하는 것
인 가변 게인을 이용한 차량 정지 제어 방법.The method of claim 1,
The step of calculating the SCC speed gain (k v ), SCC distance gain (k c ) is
(T g : SCC Time Gap [sec])
Calculating the SCC velocity gain (k v ) and the SCC distance gain (k c ) using the equation
Vehicle stop control method using variable gain.
상기 SSC 차량의 가속도(ai)를 산출하는 단계는
(ai : SCC 목표 가속도 , kv : SCC 속도 게인, kc : SCC 거리 게인, vt, xt : 전방 차량 속도, 위치, vs, xs : SCC 제어 차량 속도, 위치, Cd : 목표 차 간 거리, e : 차 간 거리)
상기 수학식을 사용하여 상기 SSC 차량의 가속도(ai)를 산출하는 것
인 가변 게인을 이용한 차량 정지 제어 방법.The method of claim 1,
Calculating the acceleration a i of the SSC vehicle
(a i : SCC target acceleration, k v : SCC speed gain, k c : SCC distance gain, v t , x t : forward vehicle speed, position, v s , x s : SCC controlled vehicle speed, position, C d : Distance between target cars, e: distance between cars)
Calculating an acceleration a i of the SSC vehicle using the equation
Vehicle stop control method using variable gain.
산출된 가속도(ai)를 적용하여 상기 SSC 차량을 소프트 정지되도록 제어하는 단계를 더 포함하는 가변 게인을 이용한 차량 정지 제어 방법.The method of claim 1,
And controlling the SSC vehicle to be soft-stopped by applying the calculated acceleration (a i ).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120028785A KR101953904B1 (en) | 2012-03-21 | 2012-03-21 | Method Controlling Car Stop Using Variable Gain |
CN201310081711.1A CN103318182B (en) | 2012-03-21 | 2013-03-14 | Utilize the vehicle method for controlling stopping of variable gain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120028785A KR101953904B1 (en) | 2012-03-21 | 2012-03-21 | Method Controlling Car Stop Using Variable Gain |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130107022A true KR20130107022A (en) | 2013-10-01 |
KR101953904B1 KR101953904B1 (en) | 2019-03-04 |
Family
ID=49187318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120028785A KR101953904B1 (en) | 2012-03-21 | 2012-03-21 | Method Controlling Car Stop Using Variable Gain |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101953904B1 (en) |
CN (1) | CN103318182B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10179578B2 (en) | 2015-12-14 | 2019-01-15 | Hyundai Motor Company | Method for controlling braking of vehicle to prevent jerk when parking or stopping vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001150976A (en) * | 1999-11-22 | 2001-06-05 | Toyota Motor Corp | Travel controller for vehicle |
JP2007314179A (en) * | 2007-08-09 | 2007-12-06 | Toyota Motor Corp | Running controller |
JP2011219077A (en) * | 2010-04-14 | 2011-11-04 | Hyundai Motor Co Ltd | Automatic stop and start control method of vehicle distance control system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6526346B2 (en) * | 2000-05-16 | 2003-02-25 | Nissan Motor Co., Ltd. | System and method for controlling vehicle velocity and inter-vehicle distance |
JP4674491B2 (en) * | 2005-05-20 | 2011-04-20 | 日産自動車株式会社 | Preceding vehicle tracking control device |
JP4306764B2 (en) * | 2007-06-04 | 2009-08-05 | トヨタ自動車株式会社 | Inter-vehicle distance control device |
JP5026381B2 (en) * | 2008-09-25 | 2012-09-12 | 日立オートモティブシステムズ株式会社 | Acceleration / deceleration control device |
-
2012
- 2012-03-21 KR KR1020120028785A patent/KR101953904B1/en active IP Right Grant
-
2013
- 2013-03-14 CN CN201310081711.1A patent/CN103318182B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001150976A (en) * | 1999-11-22 | 2001-06-05 | Toyota Motor Corp | Travel controller for vehicle |
JP2007314179A (en) * | 2007-08-09 | 2007-12-06 | Toyota Motor Corp | Running controller |
JP2011219077A (en) * | 2010-04-14 | 2011-11-04 | Hyundai Motor Co Ltd | Automatic stop and start control method of vehicle distance control system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10179578B2 (en) | 2015-12-14 | 2019-01-15 | Hyundai Motor Company | Method for controlling braking of vehicle to prevent jerk when parking or stopping vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN103318182B (en) | 2016-01-20 |
CN103318182A (en) | 2013-09-25 |
KR101953904B1 (en) | 2019-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102037036B1 (en) | System for controlling an automated drive of a vehicle | |
KR101883063B1 (en) | Driving control apparatus for vehicle | |
CN106548660B (en) | Determining a theoretical trajectory of a vehicle | |
CN108137051B (en) | Method and device for controlling route planning of own vehicle and vehicle | |
CN110286681B (en) | Dynamic automatic driving track-changing planning method for curvature-variable curve | |
EP3530535B1 (en) | Vehicle movement control device, vehicle movement control method, and vehicle movement control program | |
EP3725627B1 (en) | Method for generating vehicle control command, and vehicle controller and storage medium | |
JP5780996B2 (en) | Vehicle travel control device | |
JP6512137B2 (en) | Vehicle travel control device | |
KR101376209B1 (en) | Control System and Method for Stopping Vehicle | |
WO2013180206A1 (en) | Vehicle control device | |
JP6838623B2 (en) | Adaptive cruise controller and control method | |
CN111439264B (en) | Implementation method of lane change control model based on man-machine hybrid driving | |
US20240300536A1 (en) | Implementing slowdown manoeuvres in autonomous vehicles | |
CN114162122B (en) | Automatic driving control method based on longitudinal safety and vehicle | |
CN109774714A (en) | Control method and device for automatic driving vehicle | |
CN109677407A (en) | Speed controller | |
US20240101154A1 (en) | Method for planning an at least partly automated driving process by means of a driver assistance system | |
EP3048024B1 (en) | Method and apparatus for adaptive cruise control in a road vehicle | |
KR20130107022A (en) | Method controlling car stop using variable gain | |
JP6313834B2 (en) | Vehicle control device | |
JP4169028B2 (en) | VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE WITH VEHICLE DRIVE OPERATION ASSISTANCE DEVICE | |
Zhang et al. | Longitudinal acceleration allocation for cooperative adaptive cruise control including platoon kinematics | |
JP4631931B2 (en) | VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE WITH VEHICLE DRIVE OPERATION ASSISTANCE DEVICE | |
Mustafar et al. | Optimal Design of an Adaptive Cruise Control System for Driving Comfort and Fuel Economy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |