KR20130101790A - Installation route survey - Google Patents

Installation route survey Download PDF

Info

Publication number
KR20130101790A
KR20130101790A KR1020120022802A KR20120022802A KR20130101790A KR 20130101790 A KR20130101790 A KR 20130101790A KR 1020120022802 A KR1020120022802 A KR 1020120022802A KR 20120022802 A KR20120022802 A KR 20120022802A KR 20130101790 A KR20130101790 A KR 20130101790A
Authority
KR
South Korea
Prior art keywords
signal
power line
exploration
detection
value
Prior art date
Application number
KR1020120022802A
Other languages
Korean (ko)
Other versions
KR101977093B1 (en
Inventor
이현창
Original Assignee
이현창
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이현창 filed Critical 이현창
Priority to KR1020120022802A priority Critical patent/KR101977093B1/en
Publication of KR20130101790A publication Critical patent/KR20130101790A/en
Priority to KR1020190051916A priority patent/KR102373747B1/en
Application granted granted Critical
Publication of KR101977093B1 publication Critical patent/KR101977093B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/1659Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 to indicate that the value is within or outside a predetermined range of values (window)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/30Measuring the maximum or the minimum value of current or voltage reached in a time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage

Abstract

PURPOSE: A power line route exploration technique and apparatus with improved signal reception in a noise region are provided to improve the accuracy of route exploration and minimize a surrounding influence on the route exploration. CONSTITUTION: A magnetic field sensor detects a current signal for exploration flowing through power lines. A filter unit removes a power frequency and a multiple component signal from signals inputted to a sensor. An analog-to-digital converter (ADC) digitizes signals passing through the filter unit. A time controller checks a combination of a logical value 0 received at a next power frequency time and an initial logical value 1 and among signals passing through the ADC to determine a noise and exploration signal. A signal display unit displays the exploration signal size value of the logical value 1 received at the next power frequency time on the basis of an exploration signal detected by the time controller. [Reference numerals] (AA) Ferrite coil (magnetic field sensor); (BB) 600 Hz band filter; (CC) Wave form measurement point

Description

부하전류에 영향을 받지않는 전력선 설치경로 탐사방법{Installation route survey}Installation route survey method that is not affected by load current

지중에 매설되거나 은폐된 전력선의 설치(매설)경로를 탐사하기 위한 기술Technology for exploring the installation (burying) route of underground or concealed power lines

지중에 매설되거나 은폐되어 육안으로 확인 불가한 전력선의 설치경로를 탐사하기 위해 발명인은 대한민국 등록특허 10-0778089(도심지 다중변압기 설치장소에서의 지중 저압회선 탐사시스템 및 방법)에서 육안확인 불가한 매설, 은폐된 전력선별 설치경로를 탐사하기 위해 운전중인 전력선의 부하측에서 단말장치에서 짧은 순간 전류성(전류임펄스) 신호를 발생하고, 이 때 흐르는 전류에 의해 유기된 자계 신호를 전력선 근처에서 경로탐사장치를 사용하여 검출하고, 변압기(전원)에 설치된 주장치는 해당 전력선 정보를 단말장치에 전달하여 회선 구성을 파악하는 시스템 및 방법을 소개하였다. In order to explore the installation path of power lines that are buried or concealed in the ground and not visible to the naked eye, the inventors have unregistered buried in the Korean low patent line 10-0778089 (Underground low-voltage line exploration system and method in the multi-transformer installation place in the city) In order to detect the hidden power line installation path, a short instantaneous current (current impulse) signal is generated at the terminal of the power line in operation, and at this time, the magnetic field signal induced by the flowing current is routed near the power line. The system and the method of detecting the circuit configuration by using the detector and the asserted value installed in the transformer (power source) are transmitted to the terminal device.

전력선 설치(매설)경로를 지상에서 탐사하기 위해서는 짧은 순간 발생된 탐사용 전류성 신호에 의해 유기된 자계신호를 얼마나 정확하게 전력선 근처에서 검출할 수 있느냐가 관건이다.The key to exploring the power line installation (burying) path is how accurately the magnetic field signal generated by the short-lived exploratory current signal can be detected near the power line.

먼저 관련 기술을 이해하기 위해 설명하면 [도 1]은 매설 전력선의 설치경로 탐사를 하기 위한 장치의 구성 사례이다. 즉 변압기(10)에 연결되어 전력을 공급하고 있는 전력선의 회선 구성 및 설치경로를 탐사하기 위해 전원측에 탐사용 주장치(20)와 부하측에 단말장치(30)를 전력선의 상선(11)과 중성선(12)에 연결하여 아주 짧은 순간 (0.5 ~ 1.5 msec) 60~100A 이하의 전류를 흐르도록 한다. 탐사용 전류 흐름(31)에 따라 자계신호(32)가 전력선을 따라 형성되고 이를 지상에서 경로탐사장치(40)를 사용하여 설치경로(41) 또는 주장치에 연결된 로고스키 코일(22)을 통해 회선구성 정보(21)를 탐사한다.First, in order to understand the related technology, FIG. 1 is an example of the configuration of a device for exploring the installation path of a buried power line. That is, in order to explore the line configuration and installation path of the power line connected to the transformer 10 and supplying power, the main device 20 on the power supply side and the terminal device 30 on the load side are connected to the merchant line 11 and the neutral wire (the power line). 12) and let a current of less than 60 ~ 100A flow in a very short moment (0.5 ~ 1.5 msec). The magnetic field signal 32 is formed along the power line according to the probe current flow 31 and is connected to the installation path 41 or the Rogowski coil 22 connected to the main device using the path probe 40 on the ground. The configuration information 21 is explored.

[도 2]는 전력주파수 전압신호 파형(101)이고 부하전류가 최소가 되는 상향 제로크로싱점(106)과 하향 제로크로싱점(105)이 있는데 이 중 하향 제로크로싱 점에 약간 못미쳐 탐사용 전류펄스(104)를 발생하면 전류파형(102)의 최대점(103)보다 더 크게 나타나며 발생하여 이로 인해 발생하는 자계신호의 최대값을 측정하면 간단히 탐사신호를 검출할 수 있었다.2 shows an uplink zero crossing point 106 and a downlink zero crossing point 105 in which the power frequency voltage signal waveform 101 is minimized and the load current is minimal. When the pulse 104 is generated, it appears to be larger than the maximum point 103 of the current waveform 102. When the maximum value of the generated magnetic field signal is measured, the probe signal can be detected simply.

이에따라 랜덤하게(임의의) 시작점에서 1싸이클(16.7msec)동안 자계신호의 누산값을 측정하고 이전 값과 비교하여 신호 유무를 판정한다 Accordingly, the accumulated value of the magnetic field signal is measured at random (random) starting point for one cycle (16.7 msec) and compared with the previous value to determine the presence of the signal.

그러나 상기 화면은 부하말단과 같이 부하전류가 적고, 매설된 전력선이 하나만 있는 경우 탐사신호를 명확히 구분할 수 있는 반면, 변압기 또는 맨홀 근처와 같이 여러 개의 전력선이 밀집되어 자계신호가 혼합된 복잡한 파형들이 나타난다.However, the screen can clearly distinguish the detection signal when the load current is low and there is only one embedded power line, such as the end of the load.However, complex waveforms in which magnetic field signals are mixed due to dense power lines such as near a transformer or a manhole appear. .

다음은 변압기 근처에서 자계신호를 측정한 파형이다. 노랑점의 피크점은 +- 같은 값으로 연속하여 나타나고 있다. 이러한 경우에 탐사전류에 의한 자계신호는 그리 크지 않아 이를 자세히 분석하여야만 정확히 탐사가 가능한 것이다The following is a waveform of magnetic field signal measured near transformer. The peak point of the yellow point is continuously displayed with the same value as +-. In this case, the magnetic field signal due to the exploration current is not so large that it can be accurately detected only by analyzing it in detail.

위와같이 부하전류와 탐사신호 전류가 더해진 자계 신호를 검출하여 탐사신호 유무를 검출할 때 발생되는 오류를 방지하기 위해 다음 두가지In order to prevent the error that occurs when detecting the presence of the detection signal by detecting the magnetic field signal plus the load current and the detection signal current as described above,

기능을 변경, 추가하였음Changed function and added

1. 부하전류 제거1. Remove load current

2. 시간동기 기능2. Time synchronization function

먼저 전체 신호를 비교하지 않고 탐사신호 발생 구간만 비교하기 위해 부하전류 값 제거하였음First, the load current value was removed to compare only the detection signal generation section without comparing the entire signal.

위에서 언급한 것과 같이 기존 기술에서는 부하전류와 탐사전류의 합에 의한 자계신호를 매 사이클마다 비교하여 신호값의 변동이 있으면 이를 검출하여 1 또는 0으로 판단하였다. 그러나 위와같이 탐사신호 검출이 부하전류 크기에 영향을 받아 이를 해소하고자 부하전류에 의해 유기되는 자계신호(60Hz~300Hz)를 제거하고자 입력신호와 디지털변환기 사이에 600Hz 대역 필터를 추가하여, 탐사신호만을 검출하도록 하였음 As mentioned above, in the conventional technology, the magnetic field signal by the sum of the load current and the probe current is compared every cycle, and if there is a change in the signal value, it is determined as 1 or 0. However, the detection signal detection is affected by the load current, and the 600Hz band filter is added between the input signal and the digital converter to remove the magnetic field signal (60Hz ~ 300Hz) induced by the load current. Detected

필터링 후 경로탐사장치의 ADC(디지탈부호화장치)입력신호는 아래와 같이 60Hz 전력주파수의 사인파는 제거되고 600Hz 대역의 높은 주파수 성분만을 나타낸다. After filtering, the ADC (Digital Encoder) input signal of the path probe removes the sine wave of the 60Hz power frequency and shows only the high frequency component of the 600Hz band as shown below.

탐사신호 검출의 정확성을 향상하기 위해 다음과 같은 순서로 신호발생 시간과 신호검출 시간을 동기화 및 검출시간을 작게 축소하여 다른 신호의 영향을 최소화합니다In order to improve the accuracy of detection signal detection, minimize the influence of other signals by synchronizing the signal generation time and signal detection time and reducing the detection time in the following order.

1. 단말장치를 전력선에 연결하고 경로탐사 전류펄스 발생 모드로 1. Connect the terminal equipment to the power line and enter the path detection current pulse generation mode.

전환합니다.   Switch.

2. 단말장치는 전력주파수의 하향 제로크로싱점에 근접하여 전류펄스를 1~1.5msec발생하고(신호1), 다음 주기(1T=16.7msec 이후)에는 발생하지 않고(신호0), 그다음 주기에는 전류펄스를 발생(신호1)하여 1010 신호를 1차례 발생합니다. 그리고 다시 1.9초(114싸이클, 60Hz일 경우)후에 다시 1010신호를 다시 전송합니다.2. The terminal equipment generates 1 ~ 1.5msec of current pulse near the downlink zero crossing point of power frequency (signal 1) and does not occur in the next cycle (after 1T = 16.7msec) (signal 0). Generates a current pulse (signal 1) to generate 1010 signals once. After 1.9 seconds (114 cycles, 60Hz), the 1010 signal is transmitted again.

3. 경로탐사장치에서 자계신호 중 첫 번째 피크값을 검출하고 다음 주기에 같은 신호가 연속되는지 확인합니다. 만약 동일한 피크값이 연속되면 이 피크점은 무시합니다.3. The path detector detects the first peak value of the magnetic field signal and checks if the same signal continues in the next cycle. If the same peak values are continuous, this peak point is ignored.

즉 가와 나의 피크는 다음 주기(다,라)에서 반복되므로 이를 무시하고 3번째 피크인 마에서 다음 피크가 있는지 여부를 확인합니다.That is, the peaks of Ka and Na are repeated in the next cycle (da, d), so ignore them to see if there is a next peak at the third peak, Ma.

4. 피크 마에서 경로탐사장치를 전력선에 근접하여 전류펄스에 의해 발생되는 자계의 첫 번째 최대 피크를 검출합니다.4. At the peak edge, the path probe is located close to the power line to detect the first maximum peak of the magnetic field generated by the current pulse.

경로탐사 정확도 향상 및 주변영향 최소화Improved route detection accuracy and minimized ambient effects

[도1]은 이전기술에서 경로탐사장치 구성
[도2]는 전압파형과 전류 탐사신호 발생시간 비교
[도3]은 하향 상향 방향 제로크로싱 시간 비교
[도4]는 0값과 1값의 비교
[도5]는 대전류 부하에 포함된 탐사신호 파형
[도6]는 대전류 부하에 포함된 탐사신호를 해석한 값
[도7]은 상전류와 중성전류 파형비교
[도8]은 중성선 전류 파형 예
[도9]는 중성선전류의 상변화 순서
[도10]은 중성선 전류에 함유된 펄스 해석예
[도11]은 탐사신호 입력단 변경(개선)회로 예
[도12]는 탐사신호 입력단 변경 후 상전류와 중성전류 파형 예
[도13]은 동기가 이뤄지지 않을 때 탐사신호 구분방법 예(이전기술)
[도14]는 탐사신호가 아닌 부하전류의 피크 파형의 연속발생 사례
[도15]는 탐사신호 검출의 정확도 향상을 위한 시간동기 프레임 설명
[도16]은 피크값 비교에 의한 탐사신호 구분방법 설명(신호가 아닌경우)
[도17]은 탐사신호 구분방법(신호일 경우)
[도18]은 탐사신호의 극성구분 방법 설명
1 is a path detection device in the previous technology
2 is a comparison of voltage waveform and current detection signal generation time
Figure 3 is a downward upward direction zero crossing time comparison
4 is a comparison of 0 and 1 values.
5 is a probe signal waveform included in a large current load
6 is a value of analyzing the detection signal included in the large current load
7 is a comparison of the phase current and the neutral current waveform
8 is a neutral current waveform example
9 is a sequence of phase change of neutral current
10 is a pulse analysis example contained in the neutral current
11 is an example of the detection signal input stage change (improvement) circuit
12 is an example of the phase current and neutral current waveform after the detection signal input stage change
Figure 13 is an example of the detection signal classification method when the synchronization is not achieved (previous technology)
Fig. 14 shows the continuous generation of the peak waveform of the load current rather than the detection signal.
15 illustrates a time synchronization frame for improving the accuracy of detection signal detection.
Figure 16 illustrates the detection signal classification method by comparing the peak value (if the signal is not)
Figure 17 shows the detection signal classification method (in the case of a signal)
Fig. 18 explains the polarity classification method of the detection signal

그러나 필터링 후에도 여전히 경로탐사용 전류펄스와 유사한 신호들이 많이 함유되어 있어 단순한 최대값 검출만으로는 탐사신호를 정확히 구분할 수 없어 다음과 같이 전류성 신호 발생시간과 동기된 탐사신호 검출방식을 고안하였다 However, after filtering, there are still many signals similar to path search current pulses, so the detection signal cannot be distinguished by simple maximum detection alone.

불필요하게 신호 전체를 비교하여 판단하는 것이 아니라 신호펄스가 발생하는 시간대만 신호를 검출하고 이를 비교하는 방식으로 하였다Instead of judging the entire signal unnecessarily, the system detects and compares the signal only during the time zone in which the signal pulse occurs.

이전 방식에서는 1사이클 단위(16.7msec동안)로 측정된 자계의 신호를 측정하고 이전 측정값과 비교하여 탐사신호의 유무를 판정했음In the previous method, the signal of the magnetic field measured in units of 1 cycle (for 16.7 msec) was measured and compared with the previous measurement to determine the presence or absence of the detection signal.

본 프로그램은 전력선 설치(매설)경로를 지상에서 전력선을 통해 전류임펄스 신호가 흐르면서 발생하는 자계신호를 검출(탐사)하여 설치(매설)경로를 파악하는 경로탐사장치의 운전프로그램임. 이전에는 피크값만을 각 싸이클의 제로크로싱점에서 비교하여 1 또는 0으로 비교하였으나 본 프로그램에서는 평균값을 비교하는 Ta기능과 피크값을 비교하는 T기능을 번갈아가며 비교 탐사할 수 있도록 하였음 This program is designed to provide current impulse through power lines on the ground. This is an operation program of the path search device that detects (detects) the installed (burying) path by detecting (detecting) the magnetic field signal generated by the flow of the signal. Previously, only the peak value was compared at the zero crossing point of each cycle and compared to 1 or 0. However, in this program, the Ta function comparing the average value and the T function comparing the peak value are alternately explored.

1. 장치 초기화 후 최초 1. First time after device initialization 전류임펄스Current impulse 신호에 의해 스캔하는 주기( Period to scan by signal 싸이클Cycle ) )

동기하여In sync 비교용 평균값 시작점을 일치시킴 Matches the starting point of the mean for comparison

2. 매 1.9초마다 발생하는 2. every 1.9 seconds 전류임펄스Current impulse 신호와  Signal and 동기하기Motivate 위하여 맨  To the top 처음 인First time

지된Underground 펄스 신호 검출 후 "1.9초-7 &Quot; 1.9 sec-7 after pulse signal detection CycleCycle " 점에서 다음 신호의 유무를 " Whether the next signal

파악하여 값이 7    Grasp your value 7 bitbit 의 값이 0101000일 경우 탐사신호로 인지If the value of is 0101000, it is recognized as an exploration signal.

3. 신호의 유무는 평균값의 크기를 3. The presence or absence of the signal indicates the magnitude of the average value. 이전값과Previous value 비교하여 구분하고 신호 크 Compare and distinguish signal size

기의 값은 피크     The value of the peak is the peak 크기값으로By size 표시 Display

부호sign

Claims (4)

활선 전력선의 경로 및 전력선 회선구성 탐사 등을 위해
전력선에 흐르는 탐사용 전류신호를 검출하는 자계 센서;
상기 센서에 입력된 신호 중 전력주파수 및 배수 성분 신호 제거 필터부;
상기 필터부 통과 신호를 디지털화 하는 ADC부;
상기 ADC부 통과 신호 중에 최초의 논리값 1과 다음 전력주파수 시간에 수신된 논리값 0의 조합을 확인하여 잡음과 탐사신호를 판정하는 시간제어부;
상기 시간제어부에서 검출한 탐사신호를 기준하여 다음 전력주파수 시간에 수신되는 논리값 1의 탐사신호 크기 값 등을 표시하는 신호표시부;
를 포함하는 것을 특징으로 하는 잡음지역에서 신호 수신율 향상된 전력선 탐사신호 수신장치
For exploring the path of live power line and power line circuit configuration
A magnetic field sensor for detecting a probe current signal flowing through the power line;
A power frequency and drain component signal removing filter unit among the signals input to the sensor;
An ADC unit for digitizing the filter passing signal;
A time control unit which determines a noise and a detection signal by checking a combination of the first logic value 1 and the logic value 0 received at a next power frequency time among the ADC pass signals;
A signal display unit for displaying a detection signal magnitude value of a logic value 1 received at a next power frequency time based on the detection signal detected by the time controller;
Power line detection signal receiving device with improved signal reception rate in a noisy area comprising a
상기 1항에서
시간제어부는 측정시간 대역에서 평균값 또는 피크값을 선택, 비교하여 논리값을 결정하는 것을 특징으로 하는 잡음지역에서 신호 수신율 향상된 전력선 탐사 수신장치
In 1 above
Power line detection receiver improved signal reception rate in the noisy region, characterized in that the time control unit selects and compares the average value or peak value in the measurement time band to determine the logic value
전력선의 경로 및 회선탐사 등을 위해
탐사신호와 잡음신호를 구분할 수 있도록 전력주파수 시간과 동기하여 논리값 1과 논리값 0의 조합으로 탐사용 전류신호를 발생하는 것을 특징으로 하는 잡음 지역에서 신호 수신율 향상된 전력선 탐사 송신장치
For path and line exploration of power lines
Signal detection rate improved power line detection transmitter in noisy areas, characterized in that the detection current signal is generated by combining the logic value 1 and the logic value 0 in synchronization with the power frequency time so as to distinguish between the detection signal and the noise signal
활선 전력선의 경로 및 전력선 회선구성 탐사 등을 위해
전력주파수 시간에 동기하여 논리값 1과 논리값 0을 조합하여 탐사용 전류신호를 발생하는 탐사 송신장치를 전력선에 연결하는 단계;
상기 탐사 송신장치의 전원 측 전력선 설치 경로 상에서 자계신호를 수신하여 최초 논리값 1을 검출하고 다음 전력주파수 시간에 설정된 논리값의 조합과 일치하는 신호 여부를 확인하여 탐사신호라 판단되면 신호 크기 값 등을 표시하는 탐사 수신장치를 포함하는 것을 특징으로 하는 잡음 지역에서 신호 수신율 향상된 전력선 탐사방법
For exploring the path of live power line and power line circuit configuration
Coupling an exploration transmitter to a power line, wherein the exploration transmitter is configured to generate a probe current signal by combining a logic value 1 and a logic value 0 in synchronization with the power frequency time;
Receives a magnetic field signal on the power line installation path of the probe and detects the first logical value 1 and checks whether the signal matches the combination of the logical values set at the next power frequency time. Improved power line detection method of the signal reception rate in the noisy area, characterized in that it comprises an exploration receiving device for displaying
KR1020120022802A 2012-03-06 2012-03-06 Apparatus and method for surveying power lines KR101977093B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120022802A KR101977093B1 (en) 2012-03-06 2012-03-06 Apparatus and method for surveying power lines
KR1020190051916A KR102373747B1 (en) 2012-03-06 2019-05-03 Apparatus and method for surveying power lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120022802A KR101977093B1 (en) 2012-03-06 2012-03-06 Apparatus and method for surveying power lines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190051916A Division KR102373747B1 (en) 2012-03-06 2019-05-03 Apparatus and method for surveying power lines

Publications (2)

Publication Number Publication Date
KR20130101790A true KR20130101790A (en) 2013-09-16
KR101977093B1 KR101977093B1 (en) 2019-09-10

Family

ID=49451800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120022802A KR101977093B1 (en) 2012-03-06 2012-03-06 Apparatus and method for surveying power lines

Country Status (1)

Country Link
KR (1) KR101977093B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160037375A (en) * 2014-09-26 2016-04-06 이현창 The method and apparatus for identifying the power cable with time synchronized measuring function
CN108490311A (en) * 2018-03-22 2018-09-04 中国南方电网有限责任公司超高压输电公司检修试验中心 Weak impact signal extraction based on power frequency sampling and separation method
WO2019190170A1 (en) * 2018-03-26 2019-10-03 이현창 Device and method for detecting high-voltage power distribution line path having improved stability
KR20190112669A (en) * 2018-03-26 2019-10-07 이현창 Safety enhanced apparatus and method for tracing the sheathed medium voltage cable
JP2020187148A (en) * 2013-11-19 2020-11-19 ヒュン チャン リー Search voltage transmitter or search current transmitter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220089823A (en) * 2020-12-22 2022-06-29 이현창 The method for detecting the weak signal under severe noisy environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227858A (en) * 2002-02-04 2003-08-15 Ntt Power & Building Facilities Inc Wiring search device
KR100778089B1 (en) * 2007-03-27 2007-11-20 이현창 System and method for acquiring underground lv networks configured with plural transformers in the urban area
JP2008164460A (en) * 2006-12-28 2008-07-17 Tokyo Electric Power Co Inc:The Cable electroscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227858A (en) * 2002-02-04 2003-08-15 Ntt Power & Building Facilities Inc Wiring search device
JP2008164460A (en) * 2006-12-28 2008-07-17 Tokyo Electric Power Co Inc:The Cable electroscope
KR100778089B1 (en) * 2007-03-27 2007-11-20 이현창 System and method for acquiring underground lv networks configured with plural transformers in the urban area

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187148A (en) * 2013-11-19 2020-11-19 ヒュン チャン リー Search voltage transmitter or search current transmitter
KR20160037375A (en) * 2014-09-26 2016-04-06 이현창 The method and apparatus for identifying the power cable with time synchronized measuring function
CN108490311A (en) * 2018-03-22 2018-09-04 中国南方电网有限责任公司超高压输电公司检修试验中心 Weak impact signal extraction based on power frequency sampling and separation method
WO2019190170A1 (en) * 2018-03-26 2019-10-03 이현창 Device and method for detecting high-voltage power distribution line path having improved stability
KR20190112669A (en) * 2018-03-26 2019-10-07 이현창 Safety enhanced apparatus and method for tracing the sheathed medium voltage cable
CN111902727A (en) * 2018-03-26 2020-11-06 李铉昌 High-voltage power line path detection device and method with improved stability
US11435379B2 (en) 2018-03-26 2022-09-06 Hyun Chang Lee Device and method for detecting high-voltage power distribution line path having improved stability

Also Published As

Publication number Publication date
KR101977093B1 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
KR20130101790A (en) Installation route survey
AU2019232858B2 (en) Mobile electric leakage detection device and method
US6549011B2 (en) Conductor tracing system
KR102531154B1 (en) Apparatus for surveying power lines
KR101559533B1 (en) Mobile Apparatus And Method For Locating Earth Leaking Point
CA3070340C (en) Device and method for enhancing accuracy of detecting leakage current
CN102735994B (en) A kind of input based on capacitance sensing non-contact signal or the method and apparatus detecting
KR20150037291A (en) Apparatus and method for monitoring partial discharge
CN101504448B (en) Integral polarity test method for current mutual inductor
KR102373747B1 (en) Apparatus and method for surveying power lines
RU49287U1 (en) METAL DETECTOR
CN110441825B (en) Visual detection method for electric wire in wall
KR20150089271A (en) discriminant method between Partial Discharge signal and imported noise on mold transfomer in switchboard
CN111565555B (en) Electromagnetic frequency (EMF) detection safety shovel for detecting the presence of underground power cables during excavation
KR100463450B1 (en) Apparatus for generating pulsating current signal and apparatus for ouputing sensed signal for detecting the position of an electricity leakage of power lines for lighting pole
KR101532901B1 (en) System and its method for multi detection of underground object
EP1217391A2 (en) Conductor tracing system
KR20160002428A (en) Pinpointing the earth leaking point under TN-C environment
Jeon et al. Electric Leakage Point Detection System of Underground Power Cable Using Half-period Modulated Transmission Waveform and Earth Electric Potential Measurement
JP2013036899A (en) Accident point survey device and accident point survey method
JP2015102862A (en) Core wire contrast device using static induction from power line or the like
JPH0440380A (en) Search device for grounding fault point of cable

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent