KR20130097681A - Method for surface treating - Google Patents

Method for surface treating Download PDF

Info

Publication number
KR20130097681A
KR20130097681A KR1020130019515A KR20130019515A KR20130097681A KR 20130097681 A KR20130097681 A KR 20130097681A KR 1020130019515 A KR1020130019515 A KR 1020130019515A KR 20130019515 A KR20130019515 A KR 20130019515A KR 20130097681 A KR20130097681 A KR 20130097681A
Authority
KR
South Korea
Prior art keywords
nitride
titanium
carbide
coating
wear resistance
Prior art date
Application number
KR1020130019515A
Other languages
Korean (ko)
Inventor
김육중
Original Assignee
주식회사 에이치와이티씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이치와이티씨 filed Critical 주식회사 에이치와이티씨
Publication of KR20130097681A publication Critical patent/KR20130097681A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C25/00Profiling tools for metal extruding
    • B21C25/02Dies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: A shape and structure of a short runner with improved wear resistance, and a surface processing method thereof are provided to implement not only effective and continuous wear resistance but also excellent suitability especially for a tool with a thin wall. CONSTITUTION: A surface processing method of a shape and structure of a short runner with improved wear resistance comprises the following steps. A metal object to be processed is provided. The metal object is coated through a vapor deposition process on a predetermined position. The coating is implemented by a coating substance which is selected from a group composed of a carbide, a nitride, an oxide, and a mixture of the carbide, the nitride, and the oxide. The coating substance is a substance which is selected from a group which is composed of a titanium carbide, a titanium nitride, a titanium bromide, a vanadium carbide, a chromium carbide, an aluminum oxide, a silicon nitride, titanium, a titanium-aluminum nitride, and an aluminum-chrome nitride; and any one between the nitride and the carbide from the same substances of the group.

Description

내마모성이 향상된 쇼트런너의 형상및 구조와 표면처리방법{METHOD FOR SURFACE TREATING} Shape and structure of short runner with improved wear resistance and surface treatment method {METHOD FOR SURFACE TREATING}

본 발명은 내마모성이 향상된 쇼트런너의 형상및 구조와 표면처리방법에 관한 것이다. The present invention relates to a shape and structure of the short runner with improved wear resistance and a surface treatment method.

본 발명은 내마모성 향상을 위한 금속의 표면처리 방법에 관한 것으로서 좀 더 자세하게는 압출공구 - 특히 알루미늄 또는 알루미늄 합금과 같은 금속의 압출을 위해 적어도 하나의 성형 개구부(shaping opening)를 갖는 디스크-형 프레싱 또는 압출 다이 - 의 표면처리방법에 관한 것으로, 상기 압출 공구는 표면 코팅을 갖는 스틸, 초경합금을 포함할 수 있다.
FIELD OF THE INVENTION The present invention relates to a method for surface treatment of metals for improved wear resistance, and more particularly to extrusion tools-in particular disk-type pressings having at least one shaping opening for the extrusion of metals such as aluminum or aluminum alloys or Extrusion die-relates to a surface treatment method, the extrusion tool may comprise steel, cemented carbide having a surface coating.

현재 성형된 알루미늄 파트의 제작을 위해 사용되는 종래의 프레싱 공구의 경도(hardness)는, 만족스러운 내마모성을 제공하지 못하고 있다. 이러한 이유로 인해, 그러한 압출 공구는 공지된 여러 가지의 공정을 이용하여 경화된다.
The hardness of conventional pressing tools currently used for the production of molded aluminum parts does not provide satisfactory wear resistance. For this reason, such extrusion tools are cured using a variety of known processes.

고온-가공 스틸로 제작된 압출 공구는 더 일반적으로 약 46 내지 50HRC로의 가공 제작 이후에 경화되고, 그런 후에 그라인딩, 고속가공기, 머시닝센타, EDM 및 와이어-EDM에 의한 공동 가공(cavity sinking)에 의해 마무리된다. 압출 공구는 일반적으로 알루미늄 프레싱 기계에서 시험되고, 필요시, 수정이 이루어진다. 그 때 압출 공구가 압출 동작에 대한 준비가 이루어지면, 질화 처리(nitriding)에 의해 사전 규정된 방식으로 약 1000Hv의 표면 경도로 설정되며 이러한 경도 값이 실질적인 정황에서 사용 중일 때 적절한 내마모성을 제공한다는 것을 보여준다.
Extrusion tools made of hot-working steel are more commonly cured after fabrication fabrication to about 46-50 HRC, and then by cavity sinking by grinding, high speed machining, machining centers, EDM and wire-EDM. It is finished. Extrusion tools are generally tested on aluminum pressing machines and, if necessary, modifications are made. If the extrusion tool is then ready for extrusion operation, it is set by nitriding to a surface hardness of about 1000 Hv in a pre-defined manner and that these hardness values provide adequate wear resistance when in practical use. Shows.

알려진 질화 처리 공정은 시안산염을 이용하여 염욕질화 처리를 포함한다. 그러나, 이러한 공정은 심각한 환경적인 문제를 가져 온다. 가스에 의한 질화 처리는, 제작된 경화 층이 비교적 두껍고 그 결과 매우 한정된 인성(toughness) 레벨을 갖는다는 단점을 갖는다. 또, 플라즈마질화 처리 방법이 있지만, 이러한 공정은 개구부에 얇은 슬롯을 갖는 공구에는 적합하지 않다.
Known nitriding processes include salt bath nitriding with cyanate. However, this process brings serious environmental problems. Nitriding with gas has the disadvantage that the resulting cured layer is relatively thick and as a result has a very limited level of toughness. In addition, although there is a plasma nitridation treatment method, this process is not suitable for a tool having a thin slot in the opening.

질화 처리를 수반하는 알려진 경화 공정은 또한, 경화 층이 증가하는 온도, 즉 약 500도의 온도에서 확산한다는 공통적인 단점을 갖는데, 예를 들어 염욕질화 처리에 의해 제작된 층은 약 15시간 이후에는 더 이상 존재하지 않는다.
Known curing processes involving nitriding also have a common drawback that the hardening layer diffuses at increasing temperatures, ie, temperatures of about 500 degrees, for example, layers produced by salt bath nitriding treatments after about 15 hours No longer exists.

프레싱 동작에서, 질화 처리 층이 확산 효과로 인해 사라졌다면, 프레싱 동작은 중단되어야 하며 공구는 산 세척을 하지 않고(pickled free), 세정되고 다시 질화 처리된다. 사용된 스틸의템퍼링 온도 근처에서 빈번한 추가-질화처리를 통해, 경화 및 기본 강도는 연속적으로 감소하고, 그 결과 때 이른 장애가 발생한다. 따라서, 예를 들어 얇은-벽을 갖는 공구의 경우에, 달성될 수 있는 서비스 시간은, 부수적인 비용의 단점을 갖는 갱신된 추가 -질화 처리가 필요하게 되기 전에 약 30과 1000 프레싱 동작 사이이다. In the pressing operation, if the nitriding layer has disappeared due to the diffusion effect, the pressing operation must be stopped and the tool is pickled free, cleaned and nitrided again. Through frequent addition-nitriding treatment near the tempering temperature of the steel used, the hardening and base strength are continuously reduced, resulting in early failures. Thus, for example in the case of a thin-walled tool, the service time that can be achieved is between about 30 and 1000 pressing operations before an updated further -nitriding process is required with the disadvantages of incidental cost.

종래의 공구가공공정은 열처리-> 연마-> 아크가공 순으로 이루어졌는데 기존의 아크 가공의 경우 베아링면 입출구의 R가공으로 표면 성질의 변화가 발생하는 것은 고속가공기를 사용함으로써 모든 가공부위를 동시에 가공하여 표면 성질의 변화를 적게 할 수 있다. Conventional tool processing process consists of heat treatment-> polishing-> arc processing. In the case of conventional arc processing, the surface property change occurs by R processing at the inlet and outlet of the bearing surface. The change in surface properties can be reduced.

그런데 고속가공을 하더라도 알루미늄을 사용하는 경우에 누적공차가 발생하는 문제점이 있다.
However, even when the high-speed machining, there is a problem that the accumulated tolerance occurs when using aluminum.

상기한 바와 같은 문제점을 극복하기 위하여 본 발명은 높은 경도를 달성하는 금속처리방법을 제공하는데 마모로부터의 효과적으로 지속적인 보호를 제공할 뿐 아니라, 특히 얇은벽을 갖는 공구에 대한 우수한 적합성을 수반하는 압출 공구를 제공하는 것을 목적으로 하며 간단한 방식으로 환경 오염 없이 구현될 수 있도록 하는 것을 목적으로 한다. In order to overcome the above problems, the present invention provides a metal processing method that achieves high hardness, which not only provides effective continuous protection from abrasion, but also involves an excellent suitability for tools with particularly thin walls. It aims to provide a solution and to be implemented in a simple manner without environmental pollution.

보다자세하게는 고속가공기를 을 사용하여 가공할때 누적공차를 줄이는 방법을 제공하는 것을 목적으로 한다. More specifically, the object of the present invention is to provide a method of reducing accumulated tolerances when machining using a high speed machine.

상기한 바와 같은 목적을 달성하기 위하여 내마모성 향상을 위한 금속의 표면처리방법을 제공하는데, In order to achieve the object as described above to provide a surface treatment method of a metal for improving the wear resistance,

처리대상이 되는 금속을 제공하는 단계와 Providing a metal to be treated;

기상증착방식에의해 미리 결정된 위치에서 상기 금속을 코팅하는 단계를 포함할 수 있다. The method may include coating the metal at a predetermined position by vapor deposition.

상기 코팅은 탄화물, 질화물, 산화물 및 이들의 혼합물로 구성된 그룹으로부터 선택된 물질인 것일 수 있다. The coating may be a material selected from the group consisting of carbides, nitrides, oxides and mixtures thereof.

상기 코팅물질은 탄화 티타늄, 질화 티타늄, 붕화 티타늄 The coating material is titanium carbide, titanium nitride, titanium boride

바나듐 탄화물, 탄화 크로뮴, 산화 알루미늄, 질화 실리콘, 티타늄, 산화알루미늄, 티타늄알루미늄 질화물, 알루미늄크롬 질화물로 구성된 그룹으로부터 선택된 물질과, 이들 물질의 질화물, 탄화물 중 어느 하나인 것일 수 있다. It may be one selected from the group consisting of vanadium carbide, chromium carbide, aluminum oxide, silicon nitride, titanium, aluminum oxide, titanium aluminum nitride, and aluminum chromium nitride, and nitrides and carbides of these materials.

금속을 코팅하는 단계 전후에 금속의 경도를 높이기 위한 처리 단계가 더 포함된 것일 수 있다.
Before and after coating the metal may further include a treatment step for increasing the hardness of the metal.

상기한 바와 같은 본 발명에 의하여 금속에 높은 내마모성을 갖도록 하는 처리가 가능하다. According to the present invention as described above it is possible to treat the metal to have a high wear resistance.

도1,2는 본 발명에 따르는 일실시예를 도시하는 도면1 and 2 show an embodiment according to the present invention.

이하 본 발명을 상세하게 설명한다. 본 발명은 공구의 가공에 있어서 열처리->연마->아크 가공으로 이루어진던 것을 아크가공을 고속가공기를 이용한 가공으로 대체하여 아크가공에 의해 발생하던 표면성질의 변화를 줄이도록 하였다. Hereinafter, the present invention will be described in detail. In the present invention, in the processing of the tool, the heat treatment-> polishing-> arc processing is replaced with the arc processing by the high speed processing machine to reduce the surface property change caused by the arc processing.

그런데 고속가공기를 이용하여 동시가공을 함에 따라 표면 성질의 변화가 적게 일정한 가공을 할 수는 있지만 알루미늄을 사용하는 경우에(특히 섭씨 알루미늄의 압출온도인 섭씨 450도에서) 고속가공을 하는 경우 누적공차가 발생하게 되었다. However, due to the simultaneous processing using a high speed processing machine, it is possible to process with a small change in the surface properties, but in the case of using aluminum (particularly at the 450 ° C extrusion temperature of aluminum), the cumulative tolerance Has occurred.

이러한 누적공차를 줄이기 위하여 증착방식을 이용한 증착공정을 추가 함으로써 이러한 단점을 해결할 수 있었다. 증착공장은 PVD와 CVD두가지 방법을 사용하여 이루어질 수 있는데 이하 이러한 공정을 좀더 자세하게 설명한다.
In order to reduce the cumulative tolerance, this problem can be solved by adding a deposition process using a deposition method. Deposition plants can be accomplished using two methods, PVD and CVD, which are described in more detail below.

본 발명은 기상증착방식을 이용하여 완성된코팅은 탄화 티타늄, 질화 티타늄, 붕소 티타늄, 탄화 바나듐, 탄화 크로뮴, 산화 알루미늄, 질화 실리콘, 티타늄알루미늄 질화물, 알루미늄크롬 질화물및 이들의 조합을 포함하는 그룹으로부터 선택된 코팅 물질로 만들어지며 이러한 코팅 물질은 물리적 기상 증착 공정(PVD)에서는 500℃ 미만의 진공 챔버 내에서 타겟금속과 반응가스가플라즈마 상태에서 금속의 표면에 증착되며,화학적 기상 증착(CVD) 공정은 1000℃ 이상의 온도에서의 가스 증착 공정에 의해 금속의 표면에 도포된다. The coatings completed using the vapor deposition method are selected from the group consisting of titanium carbide, titanium nitride, boron titanium, vanadium carbide, chromium carbide, aluminum oxide, silicon nitride, titanium aluminum nitride, aluminum chromium nitride, and combinations thereof. The coating material is made of the selected coating material. In the physical vapor deposition process (PVD), the target metal and the reactant gas are deposited on the surface of the metal in a plasma state in a vacuum chamber below 500 ° C. It is apply | coated to the surface of a metal by the gas deposition process at the temperature of 1000 degreeC or more.

화학적 기상 증착(CVD) 공정의경우 고체 혹은 액체 상태의 원료를 기체상태로 반응챔버에 주입해야 하기 때문에 원료를 기체화 시킬 수 있는 장치가 부가적으로 필요하며 기화된 원료가 반응 챔버에서 반응하기 전까지 다시 응축되지 않도록 하는 장치도 부가적으로 필요하게 된다.
In the chemical vapor deposition (CVD) process, a solid or liquid raw material must be injected into the reaction chamber in a gaseous state, and thus an additional device for gasifying the raw material is needed. An additional device is also needed to prevent condensation again.

본 발명에 의해 PVD 코팅을 처리할 경우, 처리 대상이 되는 금속을 1 차적으로 가공한 후에 가공이 완료된 압출공구에 세척을 실시하고 PVD 진공챔버에 코팅을 적용하기 위한 셋팅을 실시한다, 셋팅이 완료된 압출공구는 PVD 진공챔버에 장입되고 코팅 물질 증착을 위해 진공펌프를 이용하여 In the case of PVD coating according to the present invention, after processing the metal to be treated primarily, the washing process is performed on the finished extrusion tool and the setting is performed to apply the coating to the PVD vacuum chamber. The extrusion tool is loaded into a PVD vacuum chamber and a vacuum pump is used to deposit the coating material.

5X10-5mbar이하의 고진공을 만든다. 진공 챔버 내부에 고진공이 형성되고 챔버가 가열된 후, 아르곤 가스와 같은 불활성 가스를 이용한 에칭공정을 통해 압출공구 표면의 얇은 산화피막 등이 제거된다. 에칭공정 이후약 450℃ 정도에서 목적하는 금속을 증발시키고 반응성 가스인 질소를 주입하여 플라즈마 상태가 만들어 진 다음 압출공구에 (-) 전압이 인가되어 목적하는 압출 공구에 타겟의 금속 물질과반응 가스에서 이온화된(+)이온이 압출공구의 표면에 증착된다.증착이 완료되면 냉각 가스를 통해 냉각이 이루어진다. Creates a high vacuum below 5X10 -5 mbar. After the high vacuum is formed inside the vacuum chamber and the chamber is heated, a thin oxide film on the surface of the extrusion tool is removed through an etching process using an inert gas such as argon gas. After the etching process, the target metal is evaporated at about 450 ℃ and the reactive gas is injected to form a plasma state. Then, a negative voltage is applied to the extrusion tool. Ionized (+) ions are deposited on the surface of the extrusion tool. When the deposition is complete, cooling is accomplished by cooling gas.

이것은 다음과 같은 공정으로 이루어진다.This is done by the following process.

1)처리대상이 되는 금속을 제공하는단계와 1) providing a metal to be treated;

2)경화시키는 과정을 포함하여 금속을 1차적으로 가공하는 단계와 2) primarily processing the metal, including hardening;

3)전술한 코팅물질로 PVD공정에 의해 상기 금속을 코팅하는 단계.
3) coating the metal by the PVD process with the coating material described above.

본 발명에 의해 PVD 처리를 실시하는 경우, PVD 공정에 의해 얻어지는 고경도의 박막은 고 진공의 조건 하에서 증착하고자 하는 합금 및 금속 물질을 ARC(아아크)를 이용하여 이온화된 상태로 증발시키고반응성 가스를 주입하여 타겟금속 증기와 반응성가스를 플라즈마 상태로 만든 후(-) 전압의 인가에 의해 압출공구의 표면에 고경도의 세라믹 박막이 형성된다. 이러한 세라믹 박막은 Hv 3,000 이상의 높은 경도를 나타내며 이는 압출공구의 내마모성을 향상시켜 준다.When the PVD treatment is carried out according to the present invention, the high hardness thin film obtained by the PVD process evaporates the alloy and the metal material to be deposited under high vacuum conditions in an ionized state using ARC (arc) and reacts the reactive gas. After injection, the target metal vapor and the reactive gas are converted into a plasma state, and a high hardness ceramic thin film is formed on the surface of the extrusion tool by applying a negative voltage. This ceramic thin film has a high hardness of Hv 3,000 or more, which improves the wear resistance of the extrusion tool.

PVD 처리의 공정온도는 약 450℃ 정도이므로, PVD 처리 후 초경공구나 STD61 재종과 같은 열간공구강의 경우에는 추가적인 후 열처리 없이 초기의 경도를 그대로 유지하며 공정온도에 의한 압출 공구치수의 변형도 없다. 코팅의 내마모성 개선에 대한 효과를 극대화하기 위해서 압출공구의 성형부는 반드시 PVD 처리 전 최적의 표면조도를 만들어야 하며 코팅 후는 초기의 표면조도를 그대로 유지한다.Since the process temperature of PVD treatment is about 450 ℃, in the case of cemented carbide or hot-drilled steel such as STD61 grade, the initial hardness is maintained without additional post-heat treatment, and there is no deformation of the extrusion tool size by the process temperature. In order to maximize the effect of improving the wear resistance of the coating, the molded part of the extrusion tool must make the optimum surface roughness before the PVD treatment and maintain the initial surface roughness after coating.

특히, 알루미늄크롬 질화물의 경우에는 화학적으로 안정적이며 내마모 특성이 우수하고 1,100℃의 고온에서도 내산화성이 유지되어 뛰어난 내마모성을 보여준다.In particular, aluminum chromium nitride is chemically stable, has excellent abrasion resistance, and maintains oxidation resistance even at a high temperature of 1,100 ° C., thereby showing excellent abrasion resistance.

또한, PVD 코팅은 질화처리된 열간공구강의 표면에도 적용이 가능하며 질화처리에 의해 1차 경화된 압출공구의 표면은 더욱 견고한 PVD 코팅층의 지지 기반을 제공하여 우수한 내마모성을 제공한다.
In addition, the PVD coating can be applied to the surface of the nitrided hot-hole oral cavity, and the surface of the extruded tool first hardened by the nitriding treatment provides the support base of the more robust PVD coating layer to provide excellent wear resistance.

본 발명에 의해 CVD 처리를 실시할 경우, 처리 대상이 되는 금속을 1차적으로 가공한 후에 기체형태의 주입가스(TiCl4등)을 금속의 표면으로 이동시키는데 이때 질소와 수소 가스를 함께 주입시키며 가공될 금속을 섭씨 850도내지 1000도 정도로 가열시킨다.섭씨 1000도 이상이 될 수도 있다. 이 과정에서 TiN(s)이 금속의 표면에 생성되면서 성장하는 단계를 거치게 된다. 이후 높은 경도를 달성하기 위해 ??칭(quenching) 및 템퍼링이 이루어질 수 있다.
In the CVD process according to the present invention, after processing the metal to be treated first, the gas-like injection gas (TiCl 4, etc.) is transferred to the surface of the metal, where nitrogen and hydrogen gas are injected together and processed. Heat the metal to be 850 to 1000 degrees Celsius, or even more than 1000 degrees Celsius. In this process, TiN (s) is formed on the surface of the metal and is grown. Quenching and tempering can then be done to achieve high hardness.

이것은 다음과 같은 공정으로 요약된다. This is summarized by the following process.

1)처리대상이 되는 금속을 제공하는단계와 1) providing a metal to be treated;

2)경화시키는 과정을 포함하여 금속을 1차적으로 가공하는 단계와 2) primarily processing the metal, including hardening;

3)전술한 코팅물질로 CVD공정에 의해 미리 결정된 위치에서 상기 금속을 코팅하는 단계. 3) coating the metal at a predetermined position by a CVD process with the above-described coating material.

4)추가적인 경도 강화단계
4) additional hardness step

2)의 1차가공단계이후 고속가공공정이 추가될 수 있다. After the first machining step in 2), a high-speed machining process may be added.

중요한 화학반응은 다음의 화학식으로 표현될 수 있는데 이 화학 반응은 CVD-반응이며 여기서 개시 제품은 증기의 형태로 존재하고, 메인 제품은 고체 바디의 형태로 분리되고, 부산물은 기체 형태이다. 고온 CVD-공정에 따라 질화 티타늄에 대한 전체 반응 수학식이 본 명세서에서 예로서 설명되고, 여기서 An important chemical reaction can be represented by the formula: This chemical reaction is a CVD reaction, where the starting product is in the form of a vapor, the main product is separated in the form of a solid body, and the by-product is in gaseous form. The overall reaction equation for titanium nitride according to the high temperature CVD-process is described herein as an example, where

(g)=기체 및 (s)=고체: (g) = gas and (s) = solid:

H2 H 2

TiCl4(g) + 1/2 N2(g) + 2 H2(g) -> TiN(s) + 4HCl(g) TiCl 4 (g) + 1/2 N 2 (g) + 2 H 2 (g)-> TiN (s) + 4HCl (g)

850-1000℃ 850-1000 ℃

이 경우에 환원 캐리어 기체(H2)는 과도하게 첨가된다. 상기 반응에서 금속은 섭씨 850도이상 바람직하게는 섭씨 1000도 이상으로 가열되고 상기 반응도 이러한 조건에서 일어나며 그 이후에 기본 물질의 경화, 즉 높은 경도를 달성하기 위해 공구 스틸의 ??칭(quenching) 및 템퍼링이 이루어진다.
In this case, the reducing carrier gas H 2 is excessively added. In the reaction the metal is heated to at least 850 degrees Celsius and preferably to at least 1000 degrees Celsius and the reaction also takes place under these conditions, after which the quenching and Tempering takes place.

열적으로 활성화된 CVD-공정 - 화학 증기 증착 -은 표면 상의 성장에 의해 또는 붕화물, 탄화물, 질화물, 산화물의 확산에 의해, 단일 결정의 제작, 탄소 또는 세라믹으로 섬유 구조의 주입을 위해, 그리고 일반적으로 얇은 층의 증착을 위해 본래 알려져 있는데 본 발명에 따른 절차는, 추가 후-처리 없이 공구 자체의 내구성을 늘리기 위한 내마모성 층을 형성하는데 이러한 특성은, CVD-공정에 의해 도포되고 바람직하게 1000℃ 이상의 온도로 도포되는 코팅으로 인해 제공되는데 본 발명은 기본적으로 약 500 내지 600℃의 온도 미만 - 사용된 스틸 물질의 템퍼링 한계 -으로 유지하는 종래의 경화 공정보다 우수하다. Thermally activated CVD-processes-chemical vapor deposition-are produced by growth on surfaces or by diffusion of borides, carbides, nitrides, oxides, for the production of single crystals, for the injection of fiber structures into carbon or ceramics, and in general The procedure according to the invention forms an abrasion resistant layer for increasing the durability of the tool itself without further post-treatment, which is applied by a CVD process and is preferably at least 1000 ° C. It is provided because of the coating applied at a temperature, which is basically superior to conventional curing processes that maintain below a temperature of about 500 to 600 ° C.—the tempering limit of the steel material used.

확실하게도, CVD-코팅은 코팅 동작 이후에 마무리된 공구의 경화를 요구한다 그러나 공구에서의 흐름 현상의 적절한 제어에 의해 그리고, 본발명을 실시하기 위해 특히 낮은-비틀림의 고온-작용 스틸의 본 발명에 따른 선택에 의해, 그러한 기술은 놀랍고 예측하기 힘든 방식으로 관리될 수 있고, 경화 및 내마모성에 관해 뛰어난 특성을 제공한다.
Certainly, CVD-coating requires hardening of the finished tool after the coating operation but by the proper control of flow phenomena in the tool and in particular to the invention the invention of low-torsion hot-acting steel By choice according to such a technique, such a technique can be managed in a surprising and unpredictable manner, providing excellent properties with regard to curing and wear resistance.

본 발명에 따른 공정은 위에서 설명한 TiCl4 이외에도 탄화 티타늄, 질화 티타늄, 붕화 티타늄, 탄화 바나듐, 탄화 크로뮴, 산화 알루미늄 및 질화 실리콘이 사용될 수 있다. 어떠한 물질이 사용되느냐에 따라 Hv 2000과 Hv=약 4000 사이의 마이크로 경도(microhardness) 레벨을 달성하는 것이 가능하다. 특히 CVD-공정에 의해 도포된, 탄화 티타늄 또는 산화 알루미늄은 뛰어난 인성(toughness)을 갖는 한편, 예를 들어 탄화 크로뮴은 내마모성이 특히 우수하고 , 균열 또는 기공의 영향을 덜 받는다. 특히 또한 탄화 티타늄은 유리한 마찰 특성에 의해 추가적으로 구별된다. In the process according to the invention, in addition to TiCl 4 described above, titanium carbide, titanium nitride, titanium boride, vanadium carbide, chromium carbide, aluminum oxide and silicon nitride may be used. Depending on which material is used, it is possible to achieve microhardness levels between Hv 2000 and Hv = about 4000. Titanium carbide or aluminum oxide, in particular applied by a CVD-process, has excellent toughness, while chromium carbide, for example, is particularly good in wear resistance and less affected by cracks or pores. In particular also titanium carbide is further distinguished by its advantageous frictional properties.

복잡한 형태의 금속에서도 정밀하고 균일하고 일정한 코팅 CVD-절차에 고유한 산란 성능으로 인해, 특히 높은 정밀도를 갖는 균일한 일정한 코팅을 도포하는 것이 가능하다 Thanks to the scattering performance inherent in precise, uniform and uniform coating CVD procedures even with complex metals, it is possible to apply uniform, uniform coatings with particularly high precision.

결점(defect) 비율 및 공구 품질의 유리한 비율 본 발명에 따라 압출 다이의 제작 및 코팅에서, 잘-관리될 수 있는 CVD-공정은 상당한 절차상의 신뢰성 및 우수한 재생성을 제공하여, 매우 낮은 거부 수준으로, 매우 높은 등급의 품질의 공구를 제작하는 것이 가능하다
Advantageous Ratios of Defect Ratio and Tool Quality In the fabrication and coating of extrusion dies according to the present invention, well-managed CVD-processes provide significant procedural reliability and good reproducibility, with very low rejection levels, It is possible to produce very high quality tools

바람직하게, 본 발명에 따른 압출 다이의 제작에 사용된 개시 물질은 양호한 고온 특성을 갖는 튼튼한 스틸이고, 예를 들어 Cr, Mo 또는 텅스텐과 합금되고, 예를 들어 높은 단단함 수준에 대해ESR(Electro-Slag REmelting)에 의해 용융될 수 있으며 초경합금등도 사용이 가능하다.
Preferably, the starting materials used in the manufacture of the extrusion dies according to the invention are solid steels with good high temperature properties, for example alloyed with Cr, Mo or tungsten, for example ESR (Electro-) for high rigidity levels. It can be melted by slag remelting) and cemented carbide can be used.

심지어 다층 구조에서 전술한 코팅 물질, 이러한 코팅 물질의 임의의 조합, 또는 대안적인 적합한 물질은 5 내지 6시간 동안 약 700 내지 약 1050℃의 온도에서 CVD-공정에 의해 증착된다. Even in the multilayer structure the coating materials described above, any combination of these coating materials, or alternative suitable materials are deposited by CVD-process at a temperature of about 700 to about 1050 ° C. for 5-6 hours.

이러한 방식으로 제작된 공구는 그러한 코팅 절차 이후에 다시 경화된다. Tools made in this way are cured again after such coating procedures.

사용된 금속은 CVD-코팅 공정에 연결되는 온도에서의 상승으로 인해 어떠한 상당한 비틀림 또는 변형도 발생하지 않도록 선택된다.
The metal used is chosen such that no significant twist or deformation occurs due to the rise in temperature that is connected to the CVD-coating process.

본 발명에 따라 사용된 기상증착 방식에 의하여 형성된 코팅은추가적으로 우수한 내마모성을 제공한다 The coating formed by the vapor deposition method used in accordance with the invention additionally provides excellent wear resistance.

우수한 밀착력 ; 매우 우수한 밀착력은 야금학적 특징으로 인해, 기상증착 방식에 의해 기본 물질과 코팅 사이에서 이루어진다.Good adhesion; Very good adhesion is achieved between the base material and the coating by means of vapor deposition due to the metallurgical characteristics.

본 발명에 따라 제작되는 그러한 종류의 공구를 이용하여 실제 압출 동작에 관해 - 예를 들어 성형된 알루미늄 부분에 관해 - 적용될 수 있는데 여기서 본 발명은 또한 알루미늄의 흐름 특성이 또한 고려되고 이와 같이 압출 다이의 설계 구성 및 경화에 수반된다는 고려사항을 포함한다, 이에 관해, 특히 이전의 시뮬레이션 계산에 의해 그러한 흐름 특성을 고려하는 것이 바람직하다. It can be applied with respect to the actual extrusion operation-for example with respect to the molded aluminum part-using a tool of that kind made in accordance with the invention, in which the present invention also takes into account the flow properties of the aluminum and thus Considerations involved in design construction and hardening, in this regard it is particularly desirable to consider such flow characteristics by previous simulation calculations.

그 결과, 이것은 크게 증가된 서비스 시간을 제공하고 본 명세서의 도입부에 설명된 바와 같이 공구의 유지 보수는 또한 특히 더 이상 필요하지 않다. 더욱이, 낮은 레벨의 마찰은 본 발명에 따른 기상증착공정에 의해 도포된 코팅 물질로 인해 유리하게 달성되고, 압출 다이의 처리 또는 프레싱 속도는 개선되고, 더 나은 성형품의 표면 품질의 향상이 가능하다.
As a result, this provides for a greatly increased service time and maintenance of the tool is also no longer particularly needed as described at the beginning of this specification. Moreover, a low level of friction is advantageously achieved due to the coating material applied by the vapor deposition process according to the invention, the treatment or pressing speed of the extrusion die is improved, and better surface quality of the molded article is possible.

본 발명에 따른 증착방식은 고속가공후에도 사용될 수 있으며 일반 금형에 사용하여 공구의 수명을 늘이는 용도로도 사용이 될 수 있다.
The deposition method according to the present invention can be used even after high-speed processing and can be used for the purpose of extending the life of a tool by using a general mold.

Claims (4)

내마모성이 향상된 쇼트런너의 형상및 구조와 표면처리방법으로서
처리대상이 되는 금속을 제공하는 단계와
기상증착공정에 의해 미리 결정된 위치에서 상기 금속을 코팅하는 단계를 포함하는,
내마모성이 향상된 쇼트런너의 형상및 구조와 표면처리방법
As the shape, structure and surface treatment method of short runner with improved wear resistance
Providing a metal to be treated;
Coating the metal at a predetermined location by vapor deposition;
Shape and structure of short runner with improved wear resistance and surface treatment method
제1항에 있어서, 상기 코팅은 탄화물, 질화물, 산화물 및 이들의 혼합물로 구성된 그룹으로부터 선택된 물질인 것을 특징으로 하는, 내마모성이 향상된 쇼트런너의 형상및 구조와 표면처리방법
The method of claim 1, wherein the coating is a material selected from the group consisting of carbides, nitrides, oxides, and mixtures thereof.
제1항에 있어서, 상기 코팅물질은 탄화 티타늄, 질화 티타늄, 붕화 티타늄,바나듐 탄화물, 탄화 크로뮴, 산화 알루미늄, 질화 실리콘, 티타늄,산화알루미늄, 티타늄알루미늄 질화물, 알루미늄크롬 질화물로 구성된 그룹으로부터 선택된 물질과, 이들물질의 질화물, 탄화물중 어느 하나인 것을 특징으로 하는, 내마모성이 향상된 쇼트런너의 형상및 구조와 표면처리방법
The method of claim 1, wherein the coating material is selected from the group consisting of titanium carbide, titanium nitride, titanium boride, vanadium carbide, chromium carbide, aluminum oxide, silicon nitride, titanium, aluminum oxide, titanium aluminum nitride, and aluminum chromium nitride. Wear resistance improved short runner, characterized in that any one of the nitride, carbide of these materials and surface treatment method
제1항에 있어서, 금속을 코팅하는 단계 전후에 금속의 경도를 높이기 위한 처리 단계가 더 포함된 것을 특징으로 하는, 내마모성이 향상된 쇼트런너의 형상및 구조와 표면처리방법


The method of claim 1, further comprising a treatment step for increasing the hardness of the metal before and after coating the metal.


KR1020130019515A 2012-02-23 2013-02-22 Method for surface treating KR20130097681A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120018218 2012-02-23
KR1020120018218 2012-02-23

Publications (1)

Publication Number Publication Date
KR20130097681A true KR20130097681A (en) 2013-09-03

Family

ID=49449941

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130019515A KR20130097681A (en) 2012-02-23 2013-02-22 Method for surface treating

Country Status (1)

Country Link
KR (1) KR20130097681A (en)

Similar Documents

Publication Publication Date Title
US6482476B1 (en) Low temperature plasma enhanced CVD ceramic coating process for metal, alloy and ceramic materials
JP4762077B2 (en) Hardening method of steel member, hardened steel member and hardened surface protective agent
JP6084996B2 (en) Strengthening adhesion of low temperature ceramic coating
JPH0120219B2 (en)
KR20140019947A (en) Coating material for aluminum die casting and the method for manufacturing thereof
US6176153B1 (en) Process for manufacturing an extrusion tool using a CVD process
JP2002307129A (en) Coating tool for warm and hot working having excellent lubricant adhesion and wear resistance
Zimmerman Boriding (boronizing) of Metals
EP3006601B1 (en) Method for manufacturing mold for cold working use
JP2002307128A (en) Coating tool for warm and hot working having excellent seizure resistance and wear resistance
KR100327741B1 (en) Method for surface treatment of forging die
JP2010222648A (en) Production method of carbon steel material and carbon steel material
KR20130097681A (en) Method for surface treating
KR20130097680A (en) Method for surface treating
JP2005068499A (en) Metallic product provided with hard film having excellent adhesion, method of producing the metallic product, and cutting tool and die coated with the hard film
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP7303207B2 (en) A layer of hard material on a metal substrate
KR20090060966A (en) Process for diffusing titanium and nitride into a material having a generally compact, granular microstructure and products produced thereby
RU2354743C2 (en) Application method of thin-film coating on metal works
JP5258928B2 (en) Hardening method of steel member, hardened steel member and hardened surface protective agent
RU2451108C1 (en) Steel tool or carbide tool treatment method
WO2007015514A1 (en) LAYERED Fe-BASED ALLOY AND PROCESS FOR PRODUCTION THEREOF
JP2005008920A (en) Chromium based nitride film deposition method
JP2012092364A (en) Surface-coated member and method for manufacturing the same
JP2022534753A (en) Coated forming tools for improved performance and service life

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application