KR20130092300A - Catalysts for preparing 1-hexene and method for preparing 1-hexene using the same - Google Patents

Catalysts for preparing 1-hexene and method for preparing 1-hexene using the same Download PDF

Info

Publication number
KR20130092300A
KR20130092300A KR1020120013949A KR20120013949A KR20130092300A KR 20130092300 A KR20130092300 A KR 20130092300A KR 1020120013949 A KR1020120013949 A KR 1020120013949A KR 20120013949 A KR20120013949 A KR 20120013949A KR 20130092300 A KR20130092300 A KR 20130092300A
Authority
KR
South Korea
Prior art keywords
group
substituted
unsubstituted
groups
hexene
Prior art date
Application number
KR1020120013949A
Other languages
Korean (ko)
Other versions
KR101543056B1 (en
Inventor
박재영
김영국
김화규
윤승웅
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020120013949A priority Critical patent/KR101543056B1/en
Publication of KR20130092300A publication Critical patent/KR20130092300A/en
Application granted granted Critical
Publication of KR101543056B1 publication Critical patent/KR101543056B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/107Alkenes with six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation

Abstract

PURPOSE: A catalyst for manufacturing 1-hexene and a manufacturing method of 1-hexene are provided to increase the selectivity of 1-hexene in ethylene trimerization and manufacture 1-hexene from ethylene with high selectivity by using a new, eco-friendly, and chrome-free catalyst and the said catalyst. CONSTITUTION: A transition metal compound is expressed by either chemical formula 1 or chemical formula 3. A catalyst for manufacturing 1-hexene comprises: the catalyst of the transition metal compound, alkylaluminum or weakly coordinating Lewis acid cocatalyst which activates the transition metal compound by reacting with the transition metal compound. The ethylene trimerization is the unique characteristic of the manufacturing method of 1-hexene in the presence of the catalyst for manufacturing 1-hexene as claimed in Claim 6. The reaction temperature ranges from 0°C to 200°C, and the reaction pressure ranges from 1 bar to100 bar.

Description

1­헥센 제조용 촉매 및 1­헥센의 제조방법{CATALYSTS FOR PREPARING 1­HEXENE AND METHOD FOR PREPARING 1­HEXENE USING THE SAME}Catalyst for producing 1-hexene and method for producing 1-hexene {CATALYSTS FOR PREPARING 1-HEXENE AND METHOD FOR PREPARING 1-HEXENE USING THE SAME}

본 발명은 1-헥센 제조용 신규 촉매 및 이를 이용한 1-헥센의 제조 방법에 관한 것으로서, 보다 상세하게는 에틸렌 삼량화(Trimerization) 반응에서 1-헥센의 선택도를 증가시키는 신규 촉매, 및 상기 촉매를 이용함으로써 에틸렌으로부터 1-헥센을 높은 선택성으로 제조할 수 있는 신규 제조방법에 관한 것이다.
The present invention relates to a novel catalyst for preparing 1-hexene and a method for preparing 1-hexene using the same, more particularly, a novel catalyst for increasing the selectivity of 1-hexene in an ethylene trimerization reaction, and the catalyst. The present invention relates to a novel process for producing 1-hexene from ethylene with high selectivity.

1-헥센은 선형 저밀도 폴리에틸렌 제조를 위한 공중합 단량체로서 중요한 석유화학 공업 원료물질로 이용되고 있다. 1-hexene is used as an important petrochemical industry raw material as a copolymerization monomer for producing linear low density polyethylene.

현재까지 1-헥센의 제조방법은 주로 에틸렌을 올리고머화(Oligomerization)하여 다양한 1-올레핀(1-Olefin) 혼합물을 제조한 후, 제조된 혼합물로부터 1-헥센을 분리 정제하여 제조하거나, 또는 석탄으로부터 제조된 합성가스를 이용하여 제조된 1-올레핀 혼합물로부터 1-헥센을 추출 분리하는 방법 등이 사용되었다. 그러나 전술한 방법에 의하면 상업적으로 유용한 1-헥센, 1-옥텐(1-Octene) 이외에도 다양한 올레핀류가 동시에 포함되므로, 분리 비용이 높은 단점이 있다. To date, 1-hexene is mainly manufactured by oligomerizing ethylene to prepare various 1-olefin mixtures, and then separating and purifying 1-hexene from the mixture, or from coal. A method of extracting and separating 1-hexene from the prepared 1-olefin mixture using the prepared syngas was used. However, according to the aforementioned method, since various olefins are simultaneously included in addition to commercially useful 1-hexene and 1-octene, the separation cost is high.

이에, 1-헥센을 선택적으로 제조할 수 있는 에틸렌 삼량화 기술이 개발되었으며, 현재에도 다양한 연구가 진행되고 있다. 그러나 현재까지 상업화된 에틸렌 삼량화 촉매는 주로 크롬(Cr)계 화합물을 사용하는 것인데, 이러한 크롬계 화합물의 독성으로 인해 환경 문제가 야기될 가능성이 높다. 또한 촉매의 성능이 고온, 고압에서 발현되기 때문에, 에너지 소비형 공정이라고 할 수 있다.Accordingly, ethylene trimerization technology capable of selectively preparing 1-hexene has been developed, and various studies are still in progress. However, ethylene trimerization catalysts commercialized to date are mainly chromium (Cr) -based compounds, which are likely to cause environmental problems due to the toxicity of these chromium-based compounds. Moreover, since the performance of a catalyst is expressed at high temperature and high pressure, it can be said to be an energy consumption type process.

따라서 종래 크롬계 촉매를 대체하면서, 1-헥센에 높은 선택성을 갖는 신규 촉매를 개발하는 기술이 절실히 요구되고 있다.
Therefore, there is an urgent need for a technique for developing a new catalyst having high selectivity in 1-hexene while replacing the conventional chromium-based catalyst.

본 발명은 전술한 문제점을 해결하기 위해서 안출된 것으로서, 1-헥센의 선택성이 증가된 비(非) 크롬(Cr)계 1-헥센 제조용 촉매를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object thereof is to provide a catalyst for producing a non-chromium (Cr) 1-hexene having increased selectivity of 1-hexene.

또한 본 발명은 상기 비크롬계 1-헥센 제조용 촉매를 사용하여 에너지 저소비형 1-헥센 제조방법을 제공하는 것을 또 다른 목적으로 한다.
In addition, another object of the present invention is to provide a low energy consumption type 1-hexene production method using the catalyst for producing non-chromium 1-hexene.

본 발명은 하기 화학식 1 내지 화학식 3 중 어느 하나로 표시되는 것을 특징으로 하는 전이금속 화합물, 바람직하게는 1-헥센 제조용 주촉매를 제공한다.The present invention provides a transition metal compound, preferably a main catalyst for producing 1-hexene, which is represented by any one of the following Chemical Formulas 1 to 3.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

상기 식에서, Where

M은 주기율표상의 3족 내지 10족 원소로 이루어진 군에서 선택되고, M is selected from the group consisting of Group 3 to Group 10 elements on the periodic table,

Cp는 치환 또는 비치환된 시클로펜타디에닐 골격을 가지는 리간드이며, Cp is a ligand having a substituted or unsubstituted cyclopentadienyl skeleton,

B는 주기율표상의 13족 내지 16족 원소를 포함하는 연결그룹(bridging group)으로서, 이때 연결그룹은 하나 이상의 이종 원자를 포함하거나 또는 인접하는 기와 고리를 형성할 수 있으며,B is a bridging group containing elements of Groups 13-16 on the periodic table, where the linking group may contain one or more heteroatoms or form a ring with adjacent groups,

n은 1 내지 10의 정수이며,n is an integer from 1 to 10,

m은 0 내지 5의 정수이고, m이 0일 경우 시클로펜타디에닐 골격을 갖는 리간드에 결합된 치환체는 모두 수소이며,m is an integer from 0 to 5, and when m is 0, all substituents bound to the ligand having a cyclopentadienyl skeleton are hydrogen,

Ar은 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 또는 치환 또는 비치환된 탄소수 5 내지 30의 헤테로아릴기이며,Ar is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 30 carbon atoms,

O와 N은 각각 산소 (Oxygen) 원자와 질소 (Nitrogen) 원자이며, O and N are oxygen atoms and nitrogen atoms, respectively

Q1, Q2 및 Q3는 산소 원자와 질소 원자를 연결하는 연결기로서, 하기 화학식 4로 표시되며, Q1, Q2 and Q3 are a linking group connecting an oxygen atom and a nitrogen atom, and are represented by the following Chemical Formula 4,

Figure pat00004
Figure pat00004

R, R1, R2는 서로 같거나 또는 상이하며, 각각 독립적으로 수소 원자, 할로겐기, 치환 또는 비치환된 탄소수 1~20개의 알킬기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴기, 치환 또는 비치환된 탄소수 1~20개의 실릴알킬기, 치환 또는 비치환된 탄소수 1~20개의 할로알킬기, 치환 또는 비치환된 탄소수 6~20개의 아릴기, 치환 또는 비치환된 탄소수 7~20개의 아릴알킬기, 치환 또는 비치환된 탄소수 7~20개의 알킬아릴기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴기, 치환 또는 비치환된 탄소수 6~20개의 실릴아릴기, 치환 또는 비치환된 탄소수 1~20개의 알콕시기, 치환 또는 비치환된 탄소수 1~20개의 알킬실록시기, 치환 또는 비치환된 탄소수 6~20개의 아릴옥시기, 및 치환 또는 비치환된 아미노기로 이루어진 군에서 선택되며, 이때 치환기를 구성하는 알킬 부분은 사슬(chain)형, 가지(branch)형이 가능하며, 치환기의 치환수가 둘 이상이면 치환기들 간의 결합으로 고리(ring)를 형성하거나 또는 비형성하며,R, R 1 and R 2 are the same as or different from each other, and each independently a hydrogen atom, a halogen group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, substituted Or unsubstituted C1-C20 alkylsilyl group, substituted or unsubstituted C1-C20 silylalkyl group, substituted or unsubstituted C1-C20 haloalkyl group, substituted or unsubstituted C6-C20 aryl Groups, substituted or unsubstituted C7-20 arylalkyl groups, substituted or unsubstituted C7-20 alkylaryl groups, substituted or unsubstituted C6-C20 arylsilyl groups, substituted or unsubstituted C6 ˜20 silylaryl groups, substituted or unsubstituted C1-C20 alkoxy groups, substituted or unsubstituted C1-C20 alkylsiloxy groups, substituted or unsubstituted C6-C20 aryloxy groups, and substituted Or an unsubstituted amino group It is selected from the group, wherein the alkyl moiety constituting the substituent can be chain (chain), branch (branch) type, and if there are two or more substituents of substituents, the ring between the substituents to form a ring (ring) or non-formation ,

Y1, Y2는 서로 같거나 또는 상이하며, 각각 독립적으로 수소 원자, 치환 또는 비치환된 탄소수 1~20개의 알킬기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴기, 치환 또는 비치환된 탄소수 1~20개의 실릴알킬기, 치환 또는 비치환된 탄소수 6~20개의 아릴기, 치환 또는 비치환된 탄소수 7~20개의 아릴알킬기, 치환 또는 비치환된 탄소수 7~20개의 알킬아릴기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴기, 및 치환 또는 비치환된 탄소수 6~20개의 실릴아릴기로 구성된 군으로부터 선택되며,Y 1 and Y 2 are the same as or different from each other, and each independently a hydrogen atom, a substituted or unsubstituted C1-20 alkyl group, a substituted or unsubstituted C3-20 cycloalkyl group, a substituted or unsubstituted carbon number 1-20 alkylsilyl groups, substituted or unsubstituted C1-C20 silylalkyl groups, substituted or unsubstituted C6-C20 aryl groups, substituted or unsubstituted C7-20 arylalkyl groups, substituted or unsubstituted It is selected from the group consisting of a substituted C7-20 alkylaryl group, a substituted or unsubstituted C6-C20 arylsilyl group, and a substituted or unsubstituted C6-C20 silylaryl group,

X1, X2는 서로 같거나 또는 상이하며, 각각 독립적으로 수소 원자, 할로겐기, 치환 또는 비치환된 탄소수 1~20개의 알킬기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴기, 치환 또는 비치환된 탄소수 1~20개의 실릴알킬기, 치환 또는 비치환된 탄소수 1~20개의 할로알킬기, 치환 또는 비치환된 탄소수 6~20개의 아릴기, 치환 또는 비치환된 탄소수 7~20개의 아릴알킬기, 치환 또는 비치환된 탄소수 7~20개의 알킬아릴기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴기, 치환 또는 비치환된 탄소수 6~20개의 실릴아릴기, 치환 또는 비치환된 탄소수 1~20개의 알콕시기, 치환 또는 비치환된 탄소수 1~20개의 알킬실록시기, 치환 또는 비치환된 탄소수 6~20개의 아릴옥시기, 및 테트라하이드로보레이트(Tetrahydroborate)기로 구성된 군으로부터 선택된다. X 1 and X 2 are the same as or different from each other, and each independently a hydrogen atom, a halogen group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted A substituted C1-C20 alkylsilyl group, a substituted or unsubstituted C1-C20 silylalkyl group, a substituted or unsubstituted C1-C20 haloalkyl group, a substituted or unsubstituted C6-C20 aryl group, Substituted or unsubstituted C7-20 arylalkyl group, substituted or unsubstituted C7-20 alkylaryl group, substituted or unsubstituted C6-20 arylsilyl group, substituted or unsubstituted C6-20 Silylaryl groups, substituted or unsubstituted C1-C20 alkoxy groups, substituted or unsubstituted C1-C20 alkylsiloxy groups, substituted or unsubstituted C6-C20 aryloxy groups, and tetrahydroborate Tetrahydroborate group It is selected from the group consisting.

여기서, 상기 M은 티타늄(Ti), 지르코늄(Zr), 바나듐(V) 및 탄탈(Ta)로 이루어진 군에서 선택되는 것이 바람직하다. Here, M is preferably selected from the group consisting of titanium (Ti), zirconium (Zr), vanadium (V) and tantalum (Ta).

또한 상기 B는 치환 또는 비치환된 탄소수 1~20개의 알킬렌기; 치환 또는 비치환된 탄소수 3~20개의 시클로알킬렌기; 치환 또는 비치환된 탄소수 1~20개의 알킬실릴렌기; 치환 또는 비치환된 탄소수 6~20개의 할로알킬렌기; 치환 또는 비치환된 탄소수 6~20개의 아릴알킬렌기; 치환 또는 비치환된 탄소수 6~20개의 아릴실릴렌기; 치환 또는 비치환된 탄소수 5~40개의 아릴렌기; 및 두 개의 아릴렌기 사이에 치환 또는 비치환된 탄소수 1~20개의 알킬렌기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬렌기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴렌기, 치환 또는 비치환된 탄소수 6~20개의 할로알킬렌기, 치환 또는 비치환된 탄소수 6~20개의 아릴알킬렌기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴렌기, 및 치환 또는 비치환된 탄소수 7~20개의 알킬아릴렌기를 포함하는 작용기로 이루어진 군에서 선택된다. 이때 탄소와 규소에 2 종류 이상의 치환기가 결합될 경우, 이들 치환기가 서로 연결되어 고리를 형성할 수 있는 작용기로 이루어진 군에서 선택될 수 있다.In addition, B is a substituted or unsubstituted C 1-20 alkylene group; A substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms; Substituted or unsubstituted C1-C20 alkylsilylene group; A substituted or unsubstituted haloalkylene group having 6 to 20 carbon atoms; Substituted or unsubstituted arylalkylene group having 6 to 20 carbon atoms; Substituted or unsubstituted arylsilylene group having 6 to 20 carbon atoms; A substituted or unsubstituted arylene group having 5 to 40 carbon atoms; And substituted or unsubstituted C1-C20 alkylene group, substituted or unsubstituted C3-C20 cycloalkylene group, substituted or unsubstituted C1-C20 alkylsilylene group between two arylene groups, substituted or Unsubstituted C6-C20 haloalkylene group, substituted or unsubstituted C6-C20 arylalkylene group, substituted or unsubstituted C6-C20 arylsilylene group, and substituted or unsubstituted C7-C20 It is selected from the group consisting of functional groups containing three alkyl arylene groups. In this case, when two or more kinds of substituents are bonded to carbon and silicon, these substituents may be selected from the group consisting of functional groups capable of being linked to each other to form a ring.

또한 본 발명은 (A) 전술한 전이금속 화합물계 주촉매; 및 (B) 상기 전이금속 화합물과 반응하여 전이금속 화합물을 활성화시키는 알킬알루미늄계 또는 약배위 루이스산계 조촉매 화합물을 포함하는 1-헥센 제조용 촉매를 제공한다.In addition, the present invention (A) the above-described transition metal compound-based main catalyst; And (B) a catalyst for preparing 1-hexene comprising an alkylaluminum-based or weakly coordinated Lewis acid-based promoter compound which reacts with the transition metal compound to activate the transition metal compound.

아울러, 본 발명은 전술한 1-헥센 제조용 촉매의 존재 하에서 에틸렌을 삼량화 반응시키는 것을 특징으로 하는 1-헥센의 제조방법을 제공한다.
In addition, the present invention provides a method for producing 1-hexene, characterized in that the ethylene trimerization reaction in the presence of the catalyst for producing 1-hexene described above.

본 발명에 따른 비크롬(Cr) 전이금속계 신규 촉매는 에틸렌의 삼량화 반응에 적용되어 1-헥센만을 선택적으로 제조하는데 유용하게 사용될 뿐만 아니라 친환경적이고 제조공정의 경제성을 향상시킬 수 있다.
The non-chromium (Cr) transition metal-based novel catalyst according to the present invention can be applied to the trimerization reaction of ethylene, which is not only useful for selectively preparing 1-hexene, but also is environmentally friendly and can improve the economics of the manufacturing process.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 에틸렌으로부터 1-헥센을 제조시 사용하는 주촉매로 상기 화학식 1 내지 화학식 3 중 어느 하나를 만족하는 비(非) 크롬(Cr)계 전이금속 화합물계 촉매 및 상기 촉매를 주촉매로 사용하는 1-헥센의 제조방법을 제공한다.The present invention uses a non-chromium (Cr) -based transition metal compound catalyst satisfying any one of Formulas 1 to 3 as a main catalyst for producing 1-hexene from ethylene and the catalyst as a main catalyst. It provides a method for preparing 1-hexene.

보다 상세하게, 본 발명에서는 에틸렌 삼량화 반응에 촉매 활성을 가지는 비(非) Cr계 전이금속 화합물과 알코올 아민계 리간드를 조합하여 적용함으로써 삼량화 반응이 일어나는 전이금속 주변의 리간드 배위 형태 및 전자 특성에 미세한 변화를 유도하여 에틸렌 삼량화 반응에 관여하는 촉매의 특성을 제어하고자 한다.More specifically, in the present invention, by applying a combination of a non-Cr-based transition metal compound having an catalytic activity and an alcohol amine ligand to the ethylene trimerization reaction, the ligand coordination form and the electronic properties around the transition metal where the trimerization reaction occurs In order to control the characteristics of the catalyst involved in the ethylene trimerization reaction by inducing a slight change in the ethylene trimerization reaction.

즉, 화학식 1 내지 화학식 3에서 표기한 Cp기에 Bn-Ar 기를 도입함으로써 리간드 배위 형태에 변화를 주어 선택적으로 1-헥센만 생성되도록 하고, 전자가 풍부한 여러자리 알코올 아민기를 도입함으로써 주촉매가 활성화되어 양이온이 되었을 때 안정화시켜 주는 역할을 하여 1-헥센에 고활성을 나타내는 촉매를 제공한다.
That is, by introducing a Bn-Ar group into the Cp group represented by Formulas 1 to 3, the ligand coordination form is changed to selectively generate only 1-hexene, and the main catalyst is activated by introducing an electron-rich multidentate alcohol amine group. When the cation is stabilized to provide a catalyst having a high activity in 1-hexene.

<전이금속 화합물계 촉매><Transition metal compound catalyst>

본 발명에 따른 1-헥센 제조용 주촉매는 상기 화학식 1 내지 화학식 3 중 어느 하나로 표시될 수 있다.The main catalyst for preparing 1-hexene according to the present invention may be represented by any one of Formulas 1 to 3.

상기 화학식 1 내지 3에서, 알코올 아민계 리간드는 전술한 화학식에 기재된 O, N, Q1, Q2, Q3, Y1, Y2로 구성될 수 있다. In Formulas 1 to 3, the alcohol amine ligand may be composed of O, N, Q 1 , Q 2 , Q 3 , Y 1 , and Y 2 described in the above-described formula.

또한 화학식 1 내지 3에서 표시된 화살표는 배위결합 형태의 고리횡단 결합(transannular interaction)을 의미하는 것으로서 Q1, Q2, Q3의 길이에 따라 생성될 수도 있고, 생성되지 않을 수도 있다. In addition, the arrows indicated in Formulas 1 to 3 mean transannular interactions in the form of coordination bonds, and may or may not be generated according to the lengths of Q 1 , Q 2 , and Q 3 .

본 발명에 따른 화학식 1 내지 3에서, M으로 사용 가능한 금속은 활성이 높은 주기율표 상의 4~5족 원소가 바람직하다. 보다 구체적으로는 크롬계 촉매보다 낮은 온도 및 압력에서 1-헥센을 제조할 수 있도록, 티타늄(Ti), 지르코늄(Zr), 바나듐(V) 및 탄탈(Ta)로 이루어진 군에서 각각 선택될 수 있다.In Chemical Formulas 1 to 3 according to the present invention, the metal which can be used as M is preferably a Group 4 to 5 element on the periodic table having high activity. More specifically, it may be selected from the group consisting of titanium (Ti), zirconium (Zr), vanadium (V) and tantalum (Ta) so as to produce 1-hexene at a lower temperature and pressure than chromium-based catalysts. .

또한 상기 화학식 1 내지 3에서, 시클로펜타디에닐 골격을 갖는 리간드(Cp)의 비제한적인 예로는 시클로펜타디에닐(Cyclopentadienyl)기, 인데닐(Indenyl)기 및 플루오레닐(Fluorenyl)기 등이 있다. In addition, in Chemical Formulas 1 to 3, non-limiting examples of the ligand (Cp) having a cyclopentadienyl skeleton include a cyclopentadienyl group, an indenyl group, and a fluorenyl group. have.

상기 화학식 1 내지 3에서, B에 포함되는 연결 그룹으로는 붕소(B), 탄소(C), 질소(N), 산소(O), 규소(Si), 인(P), 및 황(S)으로 구성된 군으로부터 선택된 1종 이상을 포함하는 연결그룹이 바람직하며, 보다 바람직하게는 탄소(C) 및/또는 규소(Si)를 포함하는 연결 그룹이다. 이때 B는 선택적으로 이종원자들을 가질 수 있고, 고리를 형성할 수 있다.In Formulas 1 to 3, the linking groups included in B include boron (B), carbon (C), nitrogen (N), oxygen (O), silicon (Si), phosphorus (P), and sulfur (S). A linking group including at least one member selected from the group consisting of: is more preferably a linking group including carbon (C) and / or silicon (Si). B may optionally have heteroatoms and form a ring.

사용 가능한 B의 바람직한 예로는, 치환 또는 비치환된 탄소수 1~20개의 알킬렌(Alkylene)기; 치환 또는 비치환된 탄소수 3~20개의 시클로알킬렌(Cycloalkylene)기; 치환 또는 비치환된 탄소수 1~20개의 알킬실릴렌(Alkylsilylene)기; 치환 또는 비치환된 탄소수 6~20개의 할로알킬렌(Haloalkylene)기; 치환 또는 비치환된 탄소수 6~20개의 아릴알킬렌(Arylalkylene)기; 치환 또는 비치환된 탄소수 6~20개의 아릴실릴렌(Arylsilylene)기; 치환 또는 비치환된 탄소수 5~40개의 아릴렌(Arylene)기; 및 두 개의 아릴렌기 사이에 치환 또는 비치환된 탄소수 1~20개의 알킬렌(Alkylene)기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬렌(Cycloalkylene)기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴렌(Alkylsilylene)기, 치환 또는 비치환된 탄소수 6~20개의 할로알킬렌(Haloalkylene)기, 치환 또는 비치환된 탄소수 6~20게의 아릴알킬렌(Arylalkylene)기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴렌(Arylsilylene)기, 또는 치환 또는 비치환된 탄소수 7~20개의 알킬아릴렌(Alkylarylene)기를 포함하는 작용기로 이루어진 군에서 선택될 수 있으며, 이때 탄소와 규소에 2 종류 이상의 치환기가 결합될 경우, 이들 치환기가 서로 연결되어 고리를 형성할 수 있는 작용기로 이루어진 군에서 선택될 수 있다. 일례로, 탄소나 규소 모두 14족 원소이므로 메틸기 두개가 치환될 경우 그 두 메틸기가 연결되서 싸이클로프로필 같은 고리를 형성할 수도 있다.Preferred examples of B that can be used include substituted or unsubstituted C1-20 alkylene (Alkylene) groups; Substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms; Substituted or unsubstituted C1-C20 alkylsilylene group; Substituted or unsubstituted Haloalkylene group having 6 to 20 carbon atoms; Substituted or unsubstituted arylalkylene group having 6 to 20 carbon atoms; Substituted or unsubstituted arylsilylene group having 6 to 20 carbon atoms; A substituted or unsubstituted arylene group having 5 to 40 carbon atoms; And a substituted or unsubstituted C1-20 alkylene (Alkylene) group between the two arylene groups, a substituted or unsubstituted C3-20 C20 cycloalkylene group, a substituted or unsubstituted C1 ~ 20 alkylsilylene groups, substituted or unsubstituted C6-C20 haloalkylene groups, substituted or unsubstituted C6-C20 arylalkylene groups, substituted or unsubstituted A arylsilylene group having 6 to 20 ring carbon atoms, or a functional group including a substituted or unsubstituted Alkylarylene group having 7 to 20 carbon atoms, and may be selected from carbon and silicon. When two or more kinds of substituents are bonded, these substituents may be selected from the group consisting of functional groups capable of being linked to each other to form a ring. For example, since both carbon and silicon are Group 14 elements, when two methyl groups are substituted, the two methyl groups may be linked to form a cyclopropyl-like ring.

상기 화학식 1 내지 3에서, 아릴기(Ar)는 π-전자들이 비편재화(delocalized) 되어 있는 당업계의 통상적인 탄소수 6 ~ 30개의 아릴기를 제한 없이 사용할 수 있으며, 또는 질소 (N), 산소 (O) 등의 헤테로원자(Hetero atom)가 포함된 탄소수 5 내지 30의 헤테로아릴기를 사용할 수 있다. 바람직한 예로는 페닐(phenyl)기, 바이페닐(Biphenyl)기, 터페닐(Terphenyl)기 나프탈릴(naphthalyl)기, 안트라실(anthracyl), 펜안트릴(phenanthryl), 피리디닐(Pyridinyl), 피라지닐(Pyrazinyl)기, 퀴놀리닐(Quinolinyl) 기 등이 있다. 이때 상기 아릴기는 치환기를 포함하거나 또는 포함하지 않을 수도 있으며, 상기 치환기는 Cp 기에 치환된 치환기(R)와 동일하다.In Chemical Formulas 1 to 3, the aryl group (Ar) may be used without limitation, an ordinary aryl group having 6 to 30 carbon atoms in the art that π-electrons are delocalized, or nitrogen (N), oxygen ( A heteroaryl group having 5 to 30 carbon atoms containing a hetero atom such as O) may be used. Preferred examples include phenyl group, biphenyl group, terphenyl group naphthalyl group, anthracyl, phenanthryl, pyridinyl, pyridinyl, Pyrazinyl), quinolinyl group and the like. In this case, the aryl group may or may not include a substituent, and the substituent is the same as the substituent (R) substituted in the Cp group.

상기 R, R1, R2, Q1, Q2, Q3, Y1, Y2, X1, X2에서, '치환 또는 비치환된'이라는 용어가 기재된 치환기는, 각각 독립적으로 할로겐, C1~C40의 알킬기, C3~C40의 시클로알킬기, C3~C40의 헤테로시클로알킬기, 및 C6~C60의 아릴기로 구성된 군으로부터 선택된 하나 이상의 치환기로 치환될 수 있다.In the above R, R 1 , R 2 , Q 1 , Q 2 , Q 3 , Y 1 , Y 2 , X 1 and X 2 , the substituents having the term “substituted or unsubstituted” are each independently halogen, It may be substituted with one or more substituents selected from the group consisting of C 1 ~ C 40 alkyl group, C 3 ~ C 40 cycloalkyl group, C 3 ~ C 40 heterocycloalkyl group, and C 6 ~ C 60 aryl group.

본 발명에서 사용되는 용어 "알킬기"는 단지 탄소 및 수소 원자만을 함유하는 포화 관능기를 의미한다. 또한, 용어 "알킬기"는 선형, 분지형 또는 시클릭 알킬기를 의미할 수 있다. 선형 알킬기의 예로는 비제한적으로 메틸기, 에틸기, 프로필기, 부틸기 등을 들 수 있다. 분지형 알킬기의 예로는 비제한적으로 t-부틸을 들 수 있다. 시클릭 알킬기의 예로는 비제한적으로 시클로프로필기, 시클로펜틸기, 시클로헥실기 등을 들 수 있다. As used herein, the term "alkyl group" means a saturated functional group containing only carbon and hydrogen atoms. The term "alkyl group" may also mean a linear, branched or cyclic alkyl group. Examples of linear alkyl groups include, but are not limited to, methyl groups, ethyl groups, propyl groups, butyl groups and the like. Examples of branched alkyl groups include, but are not limited to, t-butyl. Examples of the cyclic alkyl group include, but are not limited to, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like.

또한 상기 화학식 1 내지 3의 Rm에서 m이 0이 아닌 경우(예, 1~5), R은 동일하게 표기되더라도 같거나 상이할 수 있으며, 각각 독립적으로 선택될 수 있다.In addition, when m is not 0 (eg, 1 to 5) in R m of Chemical Formulas 1 to 3, R may be the same as or different from each other, and may be independently selected.

한편 본 발명에 따라 화학식 1 내지 3로 표기되는 전이금속 화합물은, 전이금속(M)을 중심으로 하여 다수의 결합자리를 갖는 알코올아민계 리간드를 포함한다. 사용 가능한 알코올 아민계 리간드의 비제한적인 예로는, N-(2-히드록시에틸)아민(N-(2-Hydroxyethyl)amine), N,N-비스-(2-히드록시에틸)아민(N,N-Bis-(2-hydroxyethyl)amine), N,N,N-트리스-(2-히드록시에틸)아민(N,N,N-Tris-(2-hydroxyethyl)amine), (N-(3-히드록시프로필)아민(N-(3-hydroxypropyl)amine), N,N-비스-(3-히드록시프로필)아민(N,N-Bis-(3-hydroxypropyl)amine), N,N,N-트리스-(3-히드록시프로필)아민(N,N,N-Tris-(3-hydroxypropyl)amine), N-(4-히드록시부틸)아민(N-(4-Hydroxybutyl)amine), N,N-비스-(4-히드록시부틸)아민(N,N-Bis-(4-hydroxybutyl)amine), N,N,N-트리스-(4-히드록시부틸)아민(N,N,N-Tris-(4-hydroxybutyl)amine), N-(5-히드록시펜틸)아민(N-(5-Hydroxypentyl)amine), N,N-비스-(5-히드록시펜틸)아민(N,N-Bis-(5-hydroxypentyl)amine), N,N,N-트리스-(5-히드록시펜틸)아민(N,N,N-Tris-(5-hydroxypentyl)amine), N-(6-히드록시헥실)아민(N-(6-Hydroxyhexyl)amine), N,N-비스-(6-히드록시헥실)아민(N,N-Bis-(6-Hydroxyhexyl)amine), N,N,N-트리스-(6-히드록시헥실)아민(N,N,N-Tris-(6-Hydroxyhexyl)amine), (N-2-히드록시에틸)메틸아민(N-(2-Hydroxyethyl)methylamine), (N-2-히드록시에틸)에틸아민(N-(2-Hydroxyethyl)ethylamine), N,N-비스-(2-히드록시에틸)메틸아민(N,N-Bis-(2-hydroxyethyl)methylamine), N,N-비스-(2-히드록시에틸)에틸아민(N,N-Bis-(2-hydroxyethyl)ethylamine), (N-3-히드록시프로필)메틸아민(N-(3-Hydroxypropyl)methylamine), (N-3-히드록시프로필)에틸아민(N-(3-Hydroxypropyl)ethylamine), N,N-비스-(3-히드록시프로필)메틸아민(N,N-Bis-(3-hydroxypropyl)methylamine), N,N-비스-(3-히드록시프로필)에틸아민(N,N-Bis-(3-hydroxypropyl)ethylamine), (N-2-히드록시에틸)디메틸아민(N-(2-Hydroxyethyl)dimethylamine), (N-2-히드록시에틸)디에틸아민(N-(2-Hydroxyethyl)diethylamine), (N-3-히드록시프로필)디메틸아민(N-(3-Hydroxypropyl)dimethylamine), (N-3-히드록시프로필)디에틸아민(N-(3-Hydroxypropyl)diethylamine),Meanwhile, the transition metal compound represented by Chemical Formulas 1 to 3 according to the present invention includes an alcoholamine ligand having a plurality of binding sites centered on the transition metal (M). Non-limiting examples of alcohol amine based ligands that can be used include N- (2-hydroxyethyl) amine ( N- (2-Hydroxyethyl) amine), N, N- bis- (2-hydroxyethyl) amine ( N , N- Bis- (2-hydroxyethyl) amine), N, N, N- tris- (2-hydroxyethyl) amine ( N, N, N- Tris- (2-hydroxyethyl) amine), ( N- ( 3-hydroxypropyl) amine ( N- (3-hydroxypropyl) amine), N, N - bis- (3-hydroxypropyl) amine ( N, N - Bis- (3-hydroxypropyl) amine), N, N , N- tris- (3-hydroxypropyl) amine ( N, N, N- Tris- (3-hydroxypropyl) amine), N- (4-hydroxybutyl) amine ( N- (4-Hydroxybutyl) amine) , N, N - bis- (4-hydroxybutyl) amine ( N, N - Bis- (4-hydroxybutyl) amine), N, N, N- tris- (4-hydroxybutyl) amine ( N, N , N- Tris- (4-hydroxybutyl) amine), N- (5-hydroxypentyl) amine ( N- (5-Hydroxypentyl) amine), N, N- bis- (5-hydroxypentyl) amine ( N , N- Bis- (5-hydroxypentyl) amine), N, N, N- tris- (5-hydroxypentyl) amine (N, N, N- tris- ( 5-hydroxypentyl) amine), N- (6 -Hydroxyhexyl) amine ( N - (6-Hydroxyhexyl) amine) , N, N- bis (6-hydroxyhexyl) amine (N, N- Bis- (6- Hydroxyhexyl) amine), N, N, N- tris- (6-hydroxy Hydroxyhexyl) amine ( N, N, N- Tris- (6-Hydroxyhexyl) amine), ( N- 2 hydroxyethyl) methylamine ( N- (2-Hydroxyethyl) methylamine), ( N- 2 hydroxy Ethyl) ethylamine ( N- (2-Hydroxyethyl) ethylamine), N, N - bis- (2-hydroxyethyl) methylamine ( N, N- Bis- (2-hydroxyethyl) methylamine), N, N- bis - (2-hydroxyethyl) amine (N, N- Bis- (2- hydroxyethyl) ethylamine), (N- 3- hydroxypropyl) methylamine (N- (3-hydroxypropyl) methylamine ), (N- 3-hydroxypropyl) ethylamine ( N- (3-Hydroxypropyl) ethylamine), N, N - bis- (3-hydroxypropyl) methylamine ( N, N - Bis- (3-hydroxypropyl) methylamine), N , N - bis- (3-hydroxypropyl) ethylamine ( N , N- Bis- (3-hydroxypropyl) ethylamine), ( N- 2-hydroxyethyl) dimethylamine ( N- (2-Hydroxyethyl) dimethylamine) , (N- 2- hydroxyethyl) amine, diethyl (N- (2-hydroxyethyl) diethylamine ), (N- 3- De-hydroxypropyl) dimethylamine (N- (3-Hydroxypropyl) dimethylamine ), (N- 3- hydroxypropyl) amine, diethyl (N- (3-Hydroxypropyl) diethylamine ),

N-(2-메틸-2-히드록시에틸)아민(N-(2-Methyl-2-hydroxyethyl)amine), N-(1-메틸-2-히드록시에틸)아민(N-(1-Methyl-2-hydroxyethyl)amine), N-(1,2-디메틸-2-히드록시에틸)아민(N-(1.2-Dimethyl-2-hydroxyethyl)amine), N,N-비스-(2-메틸-2-히드록시에틸)아민(N,N-Bis-(2-methyl-2-hydroxyethyl)amine), N,N-비스-(1-메틸-2-히드록시에틸)아민(N,N-Bis-(1-methyl-2-hydroxyethyl)amine), N,N-비스-(1,2-디메틸-2-히드록시에틸)아민(N,N-Bis-(1,2-Dimethyl-2-hydroxyethyl)amine), N,N,N-트리스-(2-메틸-2-히드록시에틸)아민(N,N,N-Tris-(2-methyl-2-hydroxyethyl)amine), N,N,N-트리스-(1-메틸-2-히드록시에틸)아민(N,N,N-Tris-(1-methyl-2-hydroxyethyl)amine), N- (2-methyl-2-hydroxyethyl) amine ( N- (2-Methyl-2-hydroxyethyl) amine), N- (1-methyl-2-hydroxyethyl) amine ( N- (1-Methyl -2-hydroxyethyl) amine), N- (1,2-dimethyl-2-hydroxyethyl) amine ( N- (1.2-Dimethyl-2-hydroxyethyl) amine), N, N- bis- (2-methyl- 2-hydroxyethyl) amine ( N, N - Bis- (2-methyl-2-hydroxyethyl) amine), N, N -bis- (1-methyl-2-hydroxyethyl) amine ( N, N- Bis -(1-methyl-2-hydroxyethyl) amine), N, N - bis- (1,2-dimethyl-2-hydroxyethyl) amine ( N, N - Bis- (1,2-Dimethyl-2-hydroxyethyl ) amine), N, N, N- tris- (2-methyl-2-hydroxyethyl) amine ( N, N, N- Tris- (2-methyl-2-hydroxyethyl) amine), N, N, N - tris - (1-methyl-2-hydroxyethyl) amine (N, N, N- tris- ( 1-methyl-2-hydroxyethyl) amine),

N-(3-메틸-3-히드록시프로필)아민(N-(3-Methyl-3-hydroxypropyl)amine), N-(2-메틸-3-히드록시프로필)아민(N-(2-Methyl-3-hydroxypropyl)amine), N-(1-메틸-3-히드록시프로필)아민(N-(1-Methyl-3-hydroxypropyl)amine), N-(2,3-디메틸-3-히드록시프로필)아민(N-(2,3-Dimethyl-3-hydroxypropyl)amine), N-(1,3-디메틸-3-히드록시프로필)아민(N-(1,3-Dimethyl-3-hydroxypropyl)amine), N-(1,2-디메틸-3-히드록시프로필)아민(N-(1,2-Dimethyl-3-hydroxypropyl)amine), N-(1,2,3-트리메틸-3-히드록시프로필)아민(N-(1,2,3-Triimethyl-3-hydroxypropyl)amine), N- (3-methyl-3-hydroxypropyl) amine ( N- (3-Methyl-3-hydroxypropyl) amine), N- (2-methyl-3-hydroxypropyl) amine ( N- (2-Methyl -3-hydroxypropyl) amine), N- (1-methyl-3-hydroxypropyl) amine ( N- (1-Methyl-3-hydroxypropyl) amine), N- (2,3-dimethyl-3-hydroxy Propyl) amine ( N- (2,3-Dimethyl-3-hydroxypropyl) amine), N- (1,3-dimethyl-3-hydroxypropyl) amine ( N- (1,3-Dimethyl-3-hydroxypropyl) amine amine), N- (1,2-dimethyl-3-hydroxypropyl) amine ( N- (1,2-dimethyl-3-hydroxypropyl) amine), N- (1,2,3-trimethyl-3-hydride Oxypropyl) amine ( N- (1,2,3-Triimethyl-3-hydroxypropyl) amine),

N,N-비스-(3-메틸-3-히드록시프로필)아민(N,N-Bis-(3-methyl-3-hydroxypropyl)amine), N,N-비스-(2-메틸-3-히드록시프로필)아민(N,N-Bis-(2-methyl-3-hydroxypropyl)amine), N,N-비스-(1-메틸-3-히드록시프로필)아민(N,N-Bis-(1-methyl-3-hydroxypropyl)amine), N,N-비스-(2,3-디메틸-3-히드록시프로필)아민(N,N-Bis-(2,3-dimethyl-3-hydroxypropyl)amine), N,N-비스-(1,3-디메틸-3-히드록시프로필)아민(N,N-Bis-(1,3-dimethyl-3-hydroxypropyl)amine), N,N-비스-(1,2-디메틸-3-히드록시프로필)아민(N,N-Bis-(1,2-dimethyl-3-hydroxypropyl)amine), N,N-비스-(1,2,3-트리메틸-3-히드록시프로필)아민(N,N-Bis-(1,2,3-trimethyl-3-hydroxypropyl)amine), N, N - bis- (3-methyl-3-hydroxypropyl) amine ( N, N- Bis- (3-methyl-3-hydroxypropyl) amine), N, N- bis- (2-methyl-3- hydroxypropyl) amine (N, N- bis- (2- methyl-3-hydroxypropyl) amine), N, N- bis- (1-methyl-3-hydroxypropyl) amine (N, N- bis- ( 1-methyl-3-hydroxypropyl) amine), N, N - bis- (2,3-dimethyl-3-hydroxypropyl) amine ( N, N - Bis- (2,3-dimethyl-3-hydroxypropyl) amine ), N, N - bis- (1,3-dimethyl-3-hydroxypropyl) amine ( N, N- Bis- (1,3-dimethyl-3-hydroxypropyl) amine), N, N- bis- ( 1,2-dimethyl-3-hydroxypropyl) amine (N, N- bis- (1,2- dimethyl-3-hydroxypropyl) amine), N, N- bis (1,2,3-trimethyl -3 -Hydroxypropyl) amine ( N, N- Bis- (1,2,3-trimethyl-3-hydroxypropyl) amine),

N,N,N-트리스-(3-메틸-3-히드록시프로필)아민(N,N,N-Tris-(3-methyl-3-hydroxypropyl)amine), N,N,N-트리스-(2-메틸-3-히드록시프로필)아민(N,N,N-Tis-(2-methyl-3-hydroxypropyl)amine), N,N,N-트리스-(1-메틸-3-히드록시프로필)아민(N,N,N-Tris-(1-methyl-3-hydroxypropyl)amine), N,N,N-트리스-(2,3-디메틸-3-히드록시프로필)아민(N,N,N-Tris-(2,3-dimethyl-3-hydroxypropyl)amine), N,N,N-트리스-(1,3-디메틸-3-히드록시프로필)아민(N,N,N-Tris-(1,3-dimethyl-3-hydroxypropyl)amine), N,N,N-트리스-(1,2-디메틸-3-히드록시프로필)아민(N,N,N-Tris-(1,2-dimethyl-3-hydroxypropyl)amine), N,N,N-트리스-(1,2,3-트리메틸-3-히드록시프로필)아민(N,N,N-Tris-(1,2,3-trimethyl-3-hydroxypropyl)amine), N, N, N- tris- (3-methyl-3-hydroxypropyl) amine ( N, N, N- Tris- (3-methyl-3-hydroxypropyl) amine), N, N, N- tris- ( 2-methyl-3-hydroxypropyl) amine ( N, N, N- Tis- (2-methyl-3-hydroxypropyl) amine), N, N, N- tris- (1-methyl-3-hydroxypropyl Amine ( N, N, N- Tris- (1-methyl-3-hydroxypropyl) amine), N, N, N- tris- (2,3-dimethyl-3-hydroxypropyl) amine ( N, N, N- Tris- (2,3-dimethyl-3-hydroxypropyl) amine), N, N, N- tris- (1,3-dimethyl-3-hydroxypropyl) amine ( N, N, N- Tris- ( 1,3-dimethyl-3-hydroxypropyl) amine), N, N, N- tris- (1,2-dimethyl-3-hydroxypropyl) amine ( N, N, N- Tris- (1,2-dimethyl -3-hydroxypropyl) amine), N, N, N- tris- (1,2,3-trimethyl-3-hydroxypropyl) amine ( N, N, N- Tris- (1,2,3-trimethyl- 3-hydroxypropyl) amine),

N-(2-메틸-2-히드록시에틸)메틸아민(N-(2-Methyl-2-hyroxyethyl)methylamine), N-(1-메틸-2-히드록시에틸)메틸아민(N-(1-Methyl-2-hyroxyethyl)methylamine), N-(1,2-디메틸-2-히드록시에틸)메틸아민(N-(1,2-Dimethyl-2-hyroxyethyl)methylamine), N,N-비스-(2-메틸-2-히드록시에틸)메틸아민(N,N-Bis-(2-methyl-2-hyroxyethyl)methylamine), N,N-비스-(1-메틸-2-히드록시에틸)메틸아민(N,N-Bis-(1-methyl-2-hyroxyethyl)methylamine), N,N-비스-(1,2-디메틸-2-히드록시에틸)메틸아민(N,N-Bis-(1,2-dimethyl-2-hyroxyethyl)methylamine), N- (2-methyl-2-hydroxyethyl) methylamine ( N- (2-Methyl-2-hyroxyethyl) methylamine), N- (1-methyl-2-hydroxyethyl) methylamine ( N- (1 -Methyl-2-hyroxyethyl) methylamine), N- (1,2-dimethyl-2-hydroxyethyl) methylamine ( N- (1,2-Dimethyl-2-hyroxyethyl) methylamine), N, N- bis- (2-Methyl-2-hydroxyethyl) methylamine ( N, N -Bis- (2-methyl-2-hyroxyethyl) methylamine), N, N- bis- (1-methyl-2-hydroxyethyl) methyl amine (N, N- bis- (1- methyl-2-hyroxyethyl) methylamine), N, N- bis - (1,2-dimethyl-2-hydroxyethyl) methyl amine (N, N- bis- (1 , 2-dimethyl-2-hyroxyethyl) methylamine),

N-(2-메틸-2-히드록시에틸)에틸아민(N-(2-Methyl-2-hyroxyethyl)ethylamine), N-(1-메틸-2-히드록시에틸)에틸아민(N-(1-Methyl-2-hyroxyethyl)ethylamine), N-(1,2-디메틸-2-히드록시에틸)에틸아민(N-(1,2-Dimethyl-2-hyroxyethyl)ethylamine), N,N-비스-(2-메틸-2-히드록시에틸)에틸아민(N,N-Bis-(2-methyl-2-hyroxyethyl)ethylamine), N,N-비스-(1-메틸-2-히드록시에틸)에틸아민(N,N-Bis-(1-methyl-2-hyroxyethyl)ethylamine), N,N-비스-(1,2-디메틸-2-히드록시에틸)에틸아민(N,N-Bis-(1,2-dimethyl-2-hyroxyethyl)ethylamine), N- (2-methyl-2-hydroxyethyl) ethylamine ( N- (2-Methyl-2-hyroxyethyl) ethylamine), N- (1-methyl-2-hydroxyethyl) ethylamine ( N- (1 -Methyl-2-hyroxyethyl) ethylamine), N- (1,2-dimethyl-2-hydroxyethyl) ethylamine ( N- (1,2-Dimethyl-2-hyroxyethyl) ethylamine), N, N- bis (2-Methyl-2-hydroxyethyl) ethylamine ( N, N -Bis- (2-methyl-2-hyroxyethyl) ethylamine), N, N- bis- (1-methyl-2-hydroxyethyl) ethyl amine (N, N- bis- (1- methyl-2-hyroxyethyl) ethylamine), N, N- bis - (1,2-dimethyl-2-hydroxyethyl) amine (N, N- bis- (1 , 2-dimethyl-2-hyroxyethyl) ethylamine),

N-(3-메틸-3-히드록시프로필)메틸아민(N-(3-Methyl-3-hydroxypropyl)methylamine), N-(2-메틸-3-히드록시프로필)메틸아민(N-(2-Methyl-3-hydroxypropyl)methylamine), N-(1-메틸-3-히드록시프로필)메틸아민(N-(1-Methyl-3-hydroxypropyl)methylamine), N-(2,3-디메틸-3-히드록시프로필)메틸아민(N-(2,3-Dimethyl-3-hydroxypropyl)methylamine), N-(1,3-디메틸-3-히드록시프로필)메틸아민(N-(1,3-Dimethyl-3-hydroxypropyl)methylamine), N-(1,2-디메틸-3-히드록시프로필)메틸아민(N-(1,2-Dimethyl-3-hydroxypropyl)methylamine), N-(1,2,3-트리메틸-3-히드록시프로필)아민(N-(1,2,3-Triimethyl-3-hydroxypropyl)methylamine), N- (3-methyl-3-hydroxypropyl) methylamine ( N- (3-Methyl-3-hydroxypropyl) methylamine), N- (2-methyl-3-hydroxypropyl) methylamine ( N- (2 -Methyl-3-hydroxypropyl) methylamine), N- (1-methyl-3-hydroxypropyl) methylamine ( N- (1-Methyl-3-hydroxypropyl) methylamine), N- (2,3-dimethyl-3 -Hydroxypropyl) methylamine ( N- (2,3-Dimethyl-3-hydroxypropyl) methylamine), N- (1,3-dimethyl-3-hydroxypropyl) methylamine ( N- (1,3-Dimethyl -3-hydroxypropyl) methylamine), N- (1,2-dimethyl-3-hydroxypropyl) methylamine ( N- (1,2-Dimethyl-3-hydroxypropyl) methylamine), N- (1,2,3 -Trimethyl-3-hydroxypropyl) amine ( N- (1,2,3-Triimethyl-3-hydroxypropyl) methylamine),

N-(3-메틸-3-히드록시프로필)에틸아민(N-(3-Methyl-3-hydroxypropyl)ethylamine), N-(2-메틸-3-히드록시프로필)에틸아민(N-(2-Methyl-3-hydroxypropyl)ethylamine), N-(1-메틸-3-히드록시프로필)에틸아민(N-(1-Methyl-3-hydroxypropyl)ethylamine), N-(2,3-디메틸-3-히드록시프로필)에틸아민(N-(2,3-Dimethyl-3-hydroxypropyl)ethylamine), N-(1,3-디메틸-3-히드록시프로필)에틸아민(N-(1,3-Dimethyl-3-hydroxypropyl)ethylamine), N-(1,2-디메틸-3-히드록시프로필)에틸아민(N-(1,2-Dimethyl-3-hydroxypropyl)ethylamine), N-(1,2,3-트리메틸-3-히드록시프로필)에틸아민(N-(1,2,3-Triimethyl-3-hydroxypropyl)ethylamine), N- (3-methyl-3-hydroxypropyl) ethylamine ( N- (3-Methyl-3-hydroxypropyl) ethylamine), N- (2-methyl-3-hydroxypropyl) ethylamine ( N- (2 -Methyl-3-hydroxypropyl) ethylamine), N- (1-methyl-3-hydroxypropyl) ethylamine ( N- (1-Methyl-3-hydroxypropyl) ethylamine), N- (2,3-dimethyl-3 -Hydroxypropyl) ethylamine ( N- (2,3-Dimethyl-3-hydroxypropyl) ethylamine), N- (1,3-dimethyl-3-hydroxypropyl) ethylamine ( N- (1,3-Dimethyl -3-hydroxypropyl) ethylamine), N- (1,2-dimethyl-3-hydroxypropyl) ethylamine ( N- (1,2-dimethyl-3-hydroxypropyl) ethylamine), N- (1,2,3 -Trimethyl-3-hydroxypropyl) ethylamine ( N- (1,2,3-Triimethyl-3-hydroxypropyl) ethylamine),

N,N-비스-(3-메틸-3-히드록시프로필)메틸아민(N,N-Bis-(3-methyl-3-hydroxypropyl)methylamine), N,N-비스-(2-메틸-3-히드록시프로필)메틸아민(N,N-Bis-(2-methyl-3-hydroxypropyl)methylamine), N,N-비스-(1-메틸-3-히드록시프로필)메틸아민(N,N-Bis-(1-methyl-3-hydroxypropyl)methylamine), N,N-비스-(2,3-디메틸-3-히드록시프로필)메틸아민(N,N-Bis-(2,3-dimethyl-3-hydroxypropyl)methylamine), N,N-비스-(1,3-디메틸-3-히드록시프로필)메틸아민(N,N-Bis-(1,3-dimethyl-3-hydroxypropyl)methylamine), N,N-비스-(1,2-디메틸-3-히드록시프로필)메틸아민(N,N-Bis-(1,2-dimethyl-3-hydroxypropyl)methylamine), N,N-비스-(1,2,3-트리메틸-3-히드록시프로필)메틸아민(N,N-Bis-(1,2,3-trimethyl-3-hydroxypropyl)methylamine), N, N - bis- (3-methyl-3-hydroxypropyl) methylamine ( N, N- Bis- (3-methyl-3-hydroxypropyl) methylamine), N, N- bis- (2-methyl-3 - hydroxypropyl) methyl amine (N, N- bis- (2- methyl-3-hydroxypropyl) methylamine), N, N- bis- (1-methyl-3-hydroxypropyl) methyl amine (N, N- Bis- (1-methyl-3-hydroxypropyl) methylamine), N, N - bis- (2,3-dimethyl-3-hydroxypropyl) methylamine ( N, N- Bis- (2,3-dimethyl-3 -hydroxypropyl) methylamine), N, N - bis- (1,3-dimethyl-3-hydroxypropyl) methylamine ( N, N - Bis- (1,3-dimethyl-3-hydroxypropyl) methylamine), N, N - bis- (1,2-dimethyl-3-hydroxypropyl) methylamine ( N, N- Bis- (1,2-dimethyl-3-hydroxypropyl) methylamine), N, N- bis- (1,2 , 3-trimethyl-3-hydroxypropyl) methylamine ( N, N- Bis- (1,2,3-trimethyl-3-hydroxypropyl) methylamine),

N,N-비스-(3-메틸-3-히드록시프로필)에틸아민(N,N-Bis-(3-methyl-3-hydroxypropyl)ethylamine), N,N-비스-(2-메틸-3-히드록시프로필)에틸아민(N,N-Bis-(2-methyl-3-hydroxypropyl)ethylamine), N,N-비스-(1-메틸-3-히드록시프로필)에틸아민(N,N-Bis-(1-methyl-3-hydroxypropyl)ethylamine), N,N-비스-(2,3-디메틸-3-히드록시프로필)에틸아민(N,N-Bis-(2,3-dimethyl-3-hydroxypropyl)ethylamine), N,N-비스-(1,3-디메틸-3-히드록시프로필)에틸아민(N,N-Bis-(1,3-dimethyl-3-hydroxypropyl)ethylamine), N,N-비스-(1,2-디메틸-3-히드록시프로필)에틸아민(N,N-Bis-(1,2-dimethyl-3-hydroxypropyl)ethylamine), N,N-비스-(1,2,3-트리메틸-3-히드록시프로필)에틸아민(N,N-Bis-(1,2,3-trimethyl-3-hydroxypropyl)ethylamine), N, N - bis- (3-methyl-3-hydroxypropyl) ethylamine ( N, N- Bis- (3-methyl-3-hydroxypropyl) ethylamine), N, N- bis- (2-methyl-3 -hydroxypropyl) amine (N, N- bis- (2- methyl-3-hydroxypropyl) ethylamine), N, N- bis- (1-methyl-3-hydroxypropyl) amine (N, N- Bis- (1-methyl-3-hydroxypropyl) ethylamine), N, N - bis- (2,3-dimethyl-3-hydroxypropyl) ethylamine ( N, N- Bis- (2,3-dimethyl-3 -hydroxypropyl) ethylamine), N, N - bis- (1,3-dimethyl-3-hydroxypropyl) ethylamine ( N, N - Bis- (1,3-dimethyl-3-hydroxypropyl) ethylamine), N, N - bis- (1,2-dimethyl-3-hydroxypropyl) ethylamine ( N, N- Bis- (1,2-dimethyl-3-hydroxypropyl) ethylamine), N, N- bis- (1,2 , 3-trimethyl-3-hydroxypropyl) ethylamine ( N, N- Bis- (1,2,3-trimethyl-3-hydroxypropyl) ethylamine),

N-(2-메틸-2-히드록시에틸)디메틸아민(N-(2-Methyl-2-hyroxyethyl)dimethylamine), N-(1-메틸-2-히드록시에틸)디메틸아민(N-(1-Methyl-2-hyroxyethyl)dimethylamine), N-(1,2-디메틸-2-히드록시에틸)디메틸아민(N-(1,2-Dimethyl-2-hyroxyethyl)dimethylamine), N- (2-methyl-2-hydroxyethyl) dimethylamine ( N- (2-Methyl-2-hyroxyethyl) dimethylamine), N- (1-methyl-2-hydroxyethyl) dimethylamine ( N- (1 -Methyl-2-hyroxyethyl) dimethylamine), N- (1,2-dimethyl-2-hydroxyethyl) dimethylamine ( N- (1,2-Dimethyl-2-hyroxyethyl) dimethylamine),

N-(2-메틸-2-히드록시에틸)디에틸아민(N-(2-Methyl-2-hyroxyethyl)diethylamine), N-(1-메틸-2-히드록시에틸)디에틸아민(N-(1-Methyl-2-hyroxyethyl)diethylamine), N-(1,2-디메틸-2-히드록시에틸)디에틸아민(N-(1,2-Dimethyl-2-hyroxyethyl)diethylamine), N- (2-methyl-2-hydroxyethyl) diethylamine ( N- (2-Methyl-2-hyroxyethyl) diethylamine), N- (1-methyl-2-hydroxyethyl) diethylamine ( N- (1-Methyl-2-hyroxyethyl) diethylamine), N- (1,2-dimethyl-2-hydroxyethyl) diethylamine ( N- (1,2-Dimethyl-2-hyroxyethyl) diethylamine),

N-(3-메틸-3-히드록시프로필)디메틸아민(N-(3-Methyl-3-hydroxypropyl)dimethylamine), N-(2-메틸-3-히드록시프로필)디메틸아민(N-(2-Methyl-3-hydroxypropyl)dimethylamine), N-(1-메틸-3-히드록시프로필)디메틸아민(N-(1-Methyl-3-hydroxypropyl)dimethylamine), N-(2,3-디메틸-3-히드록시프로필)디메틸아민(N-(2,3-Dimethyl-3-hydroxypropyl)dimethylamine), N-(1,3-디메틸-3-히드록시프로필)디메틸아민(N-(1,3-Dimethyl-3-hydroxypropyl)dimethylamine), N-(1,2-디메틸-3-히드록시프로필)디메틸아민(N-(1,2-Dimethyl-3-hydroxypropyl)dimethylamine), N-(1,2,3-트리메틸-3-히드록시프로필)디메틸아민(N-(1,2,3-Triimethyl-3-hydroxypropyl)dimethylamine), N- (3-methyl-3-hydroxypropyl) dimethylamine ( N- (3-Methyl-3-hydroxypropyl) dimethylamine), N- (2-methyl-3-hydroxypropyl) dimethylamine ( N- (2 -Methyl-3-hydroxypropyl) dimethylamine), N- (1-methyl-3-hydroxypropyl) dimethylamine ( N- (1-Methyl-3-hydroxypropyl) dimethylamine), N- (2,3-dimethyl-3 -Hydroxypropyl) dimethylamine ( N- (2,3-Dimethyl-3-hydroxypropyl) dimethylamine), N- (1,3-dimethyl-3-hydroxypropyl) dimethylamine ( N- (1,3-Dimethyl -3-hydroxypropyl) dimethylamine), N- (1,2-dimethyl-3-hydroxypropyl) dimethylamine ( N- (1,2-Dimethyl-3-hydroxypropyl) dimethylamine), N- (1,2,3 -Trimethyl-3-hydroxypropyl) dimethylamine ( N- (1,2,3-Triimethyl-3-hydroxypropyl) dimethylamine),

N-(3-메틸-3-히드록시프로필)디에틸아민(N-(3-Methyl-3-hydroxypropyl)diethylamine), N-(2-메틸-3-히드록시프로필)디에틸아민(N-(2-Methyl-3-hydroxypropyl)diethylamine), N-(1-메틸-3-히드록시프로필)디에틸아민(N-(1-Methyl-3-hydroxypropyl)diethylamine), N-(2,3-디메틸-3-히드록시프로필)디에틸아민(N-(2,3-Dimethyl-3-hydroxypropyl)diethylamine), N-(1,3-디메틸-3-히드록시프로필)디에틸아민(N-(1,3-Dimethyl-3-hydroxypropyl)diethylamine), N-(1,2-디메틸-3-히드록시프로필)디에틸아민(N-(1,2-Dimethyl-3-hydroxypropyl)diethylamine), N-(1,2,3-트리메틸-3-히드록시프로필)디에틸아민(N-(1,2,3-Triimethyl-3-hydroxypropyl)diethylamine) 등의 화합물로부터 히드록시기의 수소 이온 (Proton)이 제거된 형태를 가질 수 있다.
N- (3-methyl-3-hydroxypropyl) diethylamine ( N- (3-Methyl-3-hydroxypropyl) diethylamine), N- (2-methyl-3-hydroxypropyl) diethylamine ( N- (2-methyl-3-hydroxypropyl ) diethylamine), N- (1- methyl-3-hydroxypropyl) amine, diethyl (N- (1-methyl-3 -hydroxypropyl) diethylamine), N- (2,3- Dimethyl-3-hydroxypropyl) diethylamine ( N- (2,3-Dimethyl-3-hydroxypropyl) diethylamine), N- (1,3-dimethyl-3-hydroxypropyl) diethylamine ( N- ( 1,3-Dimethyl-3-hydroxypropyl) diethylamine), N- (1,2-dimethyl-3-hydroxypropyl) diethylamine ( N- (1,2-dimethyl-3-hydroxypropyl) diethylamine), N- Hydrogen ion (Proton) of hydroxy group was removed from compound such as (1,2,3-trimethyl-3-hydroxypropyl) diethylamine ( N- (1,2,3-Triimethyl-3-hydroxypropyl) diethylamine) It may have a form.

<1-헥센 제조용 촉매><1-hexene manufacturing catalyst>

본 발명에 따른 1-헥센 제조용 촉매는, (A) 상기 화학식 1 내지 3 중 어느 하나로 표시되는 신규 전이금속 화합물계 주촉매; 및 (B) 상기 전이금속 화합물과 반응하여 전이금속 화합물을 활성화시키는 조촉매 화합물을 포함한다.The catalyst for producing 1-hexene according to the present invention includes (A) a novel transition metal compound-based main catalyst represented by any one of Formulas 1 to 3; And (B) a cocatalyst compound that reacts with the transition metal compound to activate the transition metal compound.

조촉매 화합물은 전이금속 화합물계 주촉매(A)의 중심금속(M)을 양이온화하거나 또는 활성화시켜 에틸렌이 중심금속과 반응이 잘 되도록 하는 역할을 한다.The cocatalyst compound catalyzes or activates the central metal (M) of the transition metal compound-based main catalyst (A) so that ethylene reacts well with the central metal.

상기 조촉매 화합물은 당 업계에 통상적으로 알려진 1-헥센 제조용 알킬알루미늄계 또는 약배위 루이스산계 조촉매를 제한 없이 사용할 수 있으며, 하기 예시된 화학식 5 내지 화학식 7로 보다 구체화될 수 있다. 그러나 본 발명의 조촉매 화합물이 하기 예시된 것들에 의해 한정되는 것은 아니다.The cocatalyst compound may be used without limitation, an alkylaluminum-based or weakly coordinating Lewis acid-based cocatalyst for preparing 1-hexene commonly known in the art, and may be more embodied by Chemical Formulas 5 to 7 illustrated below. However, the promoter compounds of the present invention are not limited by those illustrated below.

Figure pat00005
Figure pat00005

Figure pat00006
Figure pat00006

Figure pat00007
Figure pat00007

상기 화학식 5에서, R3는 탄소수 1~10개의 알킬기이며, r은 1~70의 정수이다.In Formula 5, R 3 is an alkyl group having 1 to 10 carbon atoms, and r is an integer of 1 to 70.

상기 화학식 6에서, R4, R5, R6는 서로 같거나 상이하며, 각각 독립적으로 탄소수 1~10개의 알킬기, 탄소수 1~10개의 알콕시기, 또는 할로겐기이고, R4, R5, R6 중 적어도 하나 이상은 탄소수 1~10개의 알킬기이다.In Formula 6, R 4 , R 5 , R 6 are the same as or different from each other, each independently represent an alkyl group of 1 to 10 carbon atoms, an alkoxy group of 1 to 10 carbon atoms, or a halogen group, R 4 , R 5 , R At least one or more of 6 is an alkyl group having 1 to 10 carbon atoms.

상기 화학식 7에서, C는 루이스 염기(Lewis Base)의 수소이온(Proton) 결합 양이온(Cation)이거나, 산화력이 있는 금속 또는 비금속 화합물이고, D는 주기율표상의 5~15족에 속하는 원소와 유기물질의 화합물이다. 이때 상기 C가 없을 경우, D는 루이스 산(Lewis acid)의 성질을 띄는 화합물이다.In Chemical Formula 7, C is a Lewis ion cation or cation (oxidation) metal or non-metallic compound, D is an element and an organic material belonging to groups 5 to 15 of the periodic table Compound. In the absence of C, D is a compound having properties of Lewis acid.

본 발명에서 상기 화학식 5로 표시되는 화합물은 선형(chain), 환형(cyclic) 또는 그물(network) 구조를 가질 수 있으며, 이의 비제한적인 예로는 메틸알루미녹산(Methylaluminoxane), 에틸알루미녹산(Ethylaluminoxane), 부틸알루미녹산(Butylaluminoxane), 헥실알루미녹산(Hexylaluminoxane), 옥틸알루미녹산(Octylaluminoxane), 데실알루미녹산(Decylaluminoxane), 또는 이들의 혼합물 등이 있다. In the present invention, the compound represented by Chemical Formula 5 may have a linear, cyclic or network structure, and non-limiting examples thereof include methylaluminoxane and ethylaluminoxane. Butyl aluminoxane (Butylaluminoxane), hexyl aluminoxane (Hexylaluminoxane), octyl aluminoxane (Octylaluminoxane), decyl aluminoxane (Decylaluminoxane), or a mixture thereof.

또한 상기 화학식 6으로 표시되는 화합물의 비제한적인 예로는 트리메틸알루미늄(Trimethylaluminum), 트리에틸알루미늄(Triethylaluminum), 트리부틸알루미늄(Tributylaluminum), 트리헥실알루미늄(Trihexylaluminum), 트리옥틸알루미늄(Trioctylaluminum), 트리데실알루미늄(Tridecylaluminum) 등의 트리알킬알루미늄; 디메틸알루미늄 메톡사이드(Dimethylaluminum methoxide), 디에틸알루미늄 메톡사이드(Diethylaluminum methoxide), 디부틸알루미늄 메톡사이드(Dibutylaluminum methoxide) 등의 디알킬알루미늄 알콕사이드(Dialkylaluminum alkoxide); 디메틸알루미늄 클로라이드(Dimethylaluminum chloride), 디에틸알루미늄 클로라이드(Diethylaluminum chloride), 디부틸알루미늄 클로라이드(Dibutylaluminum chloride) 등의 디알킬알루미늄 할라이드(Dialkylaluminum halide); 메틸알루미늄 디메톡사이드(Methylaluminum dimethoxide), 에틸알루미늄 디메톡사이드(Ethylaluminum dimethoxide), 부틸알루미늄 디메톡사이드(Butylaluminum dimethoxide) 등의 알킬알루미늄 디알콕사이드(Alkylaluminum dialkoxide); 메틸알루미늄 디클로라이드(Methylaluminum dichloride), 에틸알루미늄 디클로라이드(Ethylaluminum dichloride), 부틸알루미늄 디클로라이드(Butylaluminum dichloride) 등의 알킬알루미늄 디할라이드(Alkylaluminum dihalide) 등을 들 수 있다.In addition, non-limiting examples of the compound represented by Formula 6 include Trimethylaluminum, Triethylaluminum, Tributylaluminum, Trihexylaluminum, Trioctyl aluminum, Tridecylluminum, Tridecyl Trialkylaluminum such as aluminum (Tridecylaluminum); Dialkylaluminum alkoxides such as dimethylaluminum methoxide, diethylaluminum methoxide, and dibutylaluminum methoxide; Dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, and dibutylaluminum chloride; Alkyl aluminum dialkoxides such as methylaluminum dimethoxide, ethylaluminum dimethoxide, and butylaluminum dimethoxide; Alkylaluminum dihalide, such as methylaluminum dichloride, ethylaluminum dichloride, and butylaluminum dichloride, etc. are mentioned.

또한 상기 화학식 7로 표시되는 화합물의 비제한적인 예로는, 트리메틸암모늄 테트라페닐보레이트(Trimethylammonium tetraphenylborate), 트리에틸암모늄 테트라페닐보레이트(Triethylammonium tetraphenylborate), 트리프로필암모늄 테트라페닐보레이트(Tripropylammonium tetraphenylborate), 트리부틸암모늄 테트라페닐보레이트(Tributylammonium tetraphenylborate), 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트(Trimethylammonium tetrakis(pentafluorophenyl)borate), 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트(Triethylammonium tetrakis(pentafluorophenyl)borate), 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트(Tripropylammonium tetrakis(pentafluorophenyl)borate), 트리부틸암모늄 테트라키스(펜타플루오로페닐)보레이트(Tributylammonium tetrakis(pentafluorophenyl)borate), 아닐리늄 테트라페닐보레이트(Anilinium tetraphenylborate), 아닐리늄 테트라키스(펜타플루오로페닐)보레이트(Anilinium tetrakis(pentafluorophenyl)borate), 피리디늄 테트라페닐보레이트(Pyridinium tetraphenylborate), 피리디늄 테트라키스(펜타플루오로페닐)보레이트(Pyridinium tetrakis(pentafluorophenyl)borate), 페로세늄 테트라키스(펜타플루오로페닐)보레이트(Ferrocenium tetrakis(pentafluorophenyl)borate), 실버 테트라페닐보레이트(Silver tetraphenylborate), 실버 테트라키스(펜타플루오로페닐)보레이트(Silver tetrakis(pentafluorophenyl)borate), 트리스(펜타플루오로페닐)보레인(Tris(pentafluorophenyl)borane), 트리스(2,3,5,6-테트라플루오로페닐)보레인(Tris(2,3,5,6-tetrafluorophenyl)borane), 트리스(2,3,4,5-테트라페닐페닐)보레인(Tris(2,3,4,5-tetraphenylphenyl)borane), 트리스(3,4,5-트리플루오로페닐)보레인(Tris(3,4,5-trifluorophenyl)borane) 등을 들 수 있다. 본 발명에 따른 조촉매 화합물은 상기 예시된 화합물로만 한정되지 않으며, 본 발명의 촉매 제조시 단독 또는 2종 이상 혼합하여 사용할 수 있다.In addition, non-limiting examples of the compound represented by the formula (7), trimethylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tributylammonium Tributylammonium tetraphenylborate, Trimethylammonium tetrakis (pentafluorophenyl) borate, Triethylammonium tetrakis (pentafluorophenyl) borate, Triethylammonium tetrakis (pentafluorophenyl) borate Tripropylammonium tetrakis (pentafluorophenyl) borate, Tributylammonium tetrakis (pentafluorophenyl) borate, Anilinium tetraphenylborate linium tetraphenylborate, anilinium tetrakis (pentafluorophenyl) borate, pyridinium tetraphenylborate, pyridinium tetrakis (pentafluorophenyl) borate (Pyridinium tetrakis (pentafluorophenyl) borate borate), ferrocenium tetrakis (pentafluorophenyl) borate, silver tetraphenylborate, silver tetrakis (pentafluorophenyl) borate (Silver tetrakis (pentafluorophenyl) borate ), Tris (pentafluorophenyl) borane, Tris (2,3,5,6-tetrafluorophenyl) borane (Tris (2,3,5,6-tetrafluorophenyl) borane ), Tris (2,3,4,5-tetraphenylphenyl) borane (Tris (2,3,4,5-tetraphenylphenyl) borane), tris (3,4,5-trifluorophenyl) borane ( Tris (3,4,5-trifluorophenyl) borane) etc. are mentioned. The cocatalyst compound according to the present invention is not limited to the above-exemplified compounds, and may be used alone or in admixture of two or more kinds in preparing the catalyst of the present invention.

본 발명에 따른 조촉매는 상기 화학식 1 내지 3로 표시되는 주촉매를 활성화하기만 한다면 이의 사용량에 특별한 제한이 없으나, 그 종류에 따라 사용량에 차이가 있을 수 있다. 일례로 조촉매와 주촉매 간의 몰비는 1:1 ~ 106 : 1 범위 내에서 주로 사용 가능하며, 1:1 내지 5×104:1 범위 내에서 사용되는 것이 바람직하다.
Cocatalyst according to the present invention is not particularly limited as long as it activates the main catalyst represented by the above formulas (1) to (3), there may be a difference in the amount used. For example, the molar ratio between the promoter and the main catalyst may be mainly used within the range of 1: 1 to 10 6 : 1, and preferably used within the range of 1: 1 to 5 × 10 4 : 1.

<1-헥센의 제조방법><1-Hexene Manufacturing Method>

본 발명은 상술한 1-헥센 제조용 촉매를 에틸렌 삼량화 반응에 투입하여 높은 선택성으로 1-헥센을 제조하는 방법을 제공한다. The present invention provides a method for preparing 1-hexene with high selectivity by introducing the above-described catalyst for producing 1-hexene into an ethylene trimerization reaction.

이와 같이 에틸렌의 삼량화 반응을 수행함에 있어서 본 발명의 촉매계가 보다 높은 촉매활성을 발현하기 위해서는, 적절한 반응용매를 사용하며, 촉매계 구성에 필요한 성분, 즉 주촉매, 조촉매, 그 외 기타 첨가제 화합물을 선택된 반응조건에서 일정 범위의 성분비로 사용하는 것이 바람직하다. 이때 삼량화 반응은 슬러리상, 액상, 기상 및 괴상에서 실시될 수 있으며, 슬러리상이나 액상에서 반응이 실시되는 경우 매질로 반응용매를 사용할 수 있다. In order to express higher catalytic activity in the catalyst system of the present invention in performing the trimerization reaction of ethylene, an appropriate reaction solvent is used, and components necessary for the composition of the catalyst system, namely, a main catalyst, a promoter, and other additive compounds Is preferably used in a range of component ratios under selected reaction conditions. In this case, the trimerization reaction may be carried out in a slurry phase, a liquid phase, a gaseous phase, or a bulk, and when the reaction is performed in a slurry phase or a liquid phase, a reaction solvent may be used as a medium.

상기 제조방법의 바람직한 일례를 들면, 반응기 내에 전술한 1-헥센 제조용 촉매(예, 주촉매, 조촉매), 에틸렌 및 용매를 투입하여 에틸렌을 삼량화 반응시킴으로써 1-헥센을 제조할 수 있다.As a preferable example of the production method, 1-hexene can be prepared by subjecting the above-described catalyst for producing 1-hexene (eg, main catalyst, cocatalyst), ethylene and a solvent to trimerization of ethylene.

1-헥센을 제조하기 위해 반응기에 투입되는 용매로는 당 업계에 알려진 통상적인 용매를 제한없이 사용할 수 있으며, 가급적 상기 1-헥센 제조용 촉매 및 에틸렌에 대한 용해도가 우수한 것을 사용하는 것이 바람직하다. 사용 가능한 용매로는 정제된 탄화수소 화합물을 사용할 수 있으며, 이의 비제한적인 예로는 노르말헥산, 노르말헵탄, 시클로헥산, 톨루엔, 벤젠 등 또는 이들의 혼합물 등이 있다. As a solvent added to the reactor for preparing 1-hexene, a conventional solvent known in the art may be used without limitation, and it is preferable to use a catalyst for preparing 1-hexene and one having excellent solubility in ethylene. As a usable solvent, a purified hydrocarbon compound may be used, and non-limiting examples thereof include normal hexane, normal heptane, cyclohexane, toluene, benzene, and the like, or mixtures thereof.

전술한 1-헥센 제조용 촉매 및 용매 이외에, 본 발명에서는 1-헥센 제조에 사용되는 통상적인 첨가제를 사용할 수 있다. In addition to the catalyst and solvent for preparing 1-hexene described above, the present invention may use conventional additives used for preparing 1-hexene.

본 발명에 따른 1-헥센 제조 과정은 크게 ⅰ) 반응기에 용매와 조촉매, 주촉매인 메탈로센 화합물 순서로 주입하거나, ⅱ) 반응기에 용매와 조촉매의 일부를 주입하고, 나머지 조촉매로 주촉매를 활성화 시킨 후 주입함으로써 이루어질 수 있다. 1-hexene production process according to the present invention is largely iii) injecting a solvent and a cocatalyst, a metallocene compound as the main catalyst in the reactor, or ii) injecting a part of the solvent and the cocatalyst into the reactor, the remaining cocatalyst This can be done by activating the main catalyst and then injecting it.

한편, 반응기에 본 발명의 촉매를 투입함에 있어, 상기 (A) 전이금속 화합물과 (B) 조촉매 화합물의 함량은 특별히 한정되지 않으나, 일례로 반응계에서 사용되는 (B)/(A)의 몰비는 1/1~106/1 범위일 수 있으며, 바람직하게는 1/1 ~ 5×104/1의 몰비로 사용될 수 있다. On the other hand, in adding the catalyst of the present invention to the reactor, the content of the (A) transition metal compound and (B) cocatalyst compound is not particularly limited, for example, the molar ratio of (B) / (A) used in the reaction system 1/1 and 10 may be a 6/1 range, preferably be used in a molar ratio of 1/1 ~ 5 × 10 4/1 .

또한, 본 발명의 촉매 존재 하에 에틸렌을 삼량화시키는 반응 조건은 특별히 한정되지 아니하며, 일례로 반응 온도는 0~200℃, 바람직하게는 20~100℃이며, 반응 압력은 1~100bar, 바람직하게는 5~20bar 이다. 반응 지속시간은 촉매계의 활성에 따라 변화가 있으나, 5분 ~ 3시간 범위의 반응시간을 적용함으로써 반응을 효과적으로 완결할 수 있다.In addition, the reaction conditions for trimerizing ethylene in the presence of the catalyst of the present invention are not particularly limited. For example, the reaction temperature is 0 to 200 ° C, preferably 20 to 100 ° C, and the reaction pressure is 1 to 100 bar, preferably 5 ~ 20 bar. The reaction duration varies depending on the activity of the catalyst system, but the reaction can be effectively completed by applying a reaction time in the range of 5 minutes to 3 hours.

본 발명의 촉매계에서 에틸렌을 삼량화하여 1-헥센을 선택적으로 제조하는 반응을 수행한 결과, 조합되는 리간드의 구조적 특성과 화학적 특성에 따라, 넓은 범위의 촉매 활성에서 1-헥센 선택도 향상 결과를 얻을 수 있었다 (하기 표 1 참조). As a result of performing the reaction to selectively produce 1-hexene by trimerizing ethylene in the catalyst system of the present invention, 1-hexene selectivity is improved in a wide range of catalytic activity depending on the structural and chemical properties of the ligand to be combined. Could be obtained (see Table 1 below).

이하, 본 발명의 실시예에 대해 보다 상세하게 설명한다. 그러나, 하기 실시예들은 본 발명의 이해를 돕기 위해 예시된 것으로, 본 발명의 범위가 이에 한정되는 것으로 해석되어서는 안되며, 본 발명의 사상을 일탈하지 않고 하기의 실시예들로부터 다양한 변형 및 변경이 가능하다.
Hereinafter, embodiments of the present invention will be described in more detail. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention as defined in the appended claims. It is possible.

<재료 및 측정기기><Materials and Measuring Equipment>

하기 모든 합성 반응은 질소(Nitrogen) 또는 아르곤(Argon) 등의 비활성 분위기(Inert Atmosphere) 하에서 진행되었고, 표준 쉴렌크(Standard Schlenk) 기술과 글러브 박스(Glove Box) 기술을 이용하였다.
All of the following synthesis reactions were conducted under an Inert Atmosphere such as Nitrogen or Argon, using standard Schlenk technology and Glove Box technology.

테트라하이드로퓨란(Tetrahydrofuran, THF), 노르말헥산(n-Hexane), 노르말펜탄(n-Pentane), 디에틸에테르(Diethyl Ether), 메틸렌클로라이드(Methylene Chloride, CH2Cl2) 등의 합성용 용매(Solvent)는 활성화된 알루미나 층(Activated Alumina Column)을 통과시켜 수분을 제거한 후, 활성화된 분자체(Molecular Sieve 5ㅕ, Yakuri Pure Chemicalst Co.) 상에서 보관하면서 사용하였다. Synthetic solvents such as tetrahydrofuran (THF), normal hexane (n-Hexane), normal pentane (n-Pentane), diethyl ether, methylene chloride (Methylene Chloride, CH 2 Cl 2 ) Solvent was used to remove water by passing through an activated alumina layer and then stored on an activated molecular sieve (Molecular Sieve 5 ㅕ, Yakuri Pure Chemicalst Co.).

화합물의 NMR 구조 분석에 사용되는 이중수소치환클로로포름(Chloroform-d, CDCl3) 및 중수소화벤젠(benzene-d6, C6D6)은 Cambridge Isotope Laboratories사에서 구매한 후 활성화된 분자체(Molecular Sieve 5A, Yakuri Pure Chemicals Co) 상에서 건조하여 사용하였다.
The dihydrosubstituted chloroform (Chloroform-d, CDCl 3 ) and deuterated benzene (benzene-d 6 , C 6 D 6 ) used in the NMR structure analysis of the compound were purchased from Cambridge Isotope Laboratories and then activated molecular sieves (Molecular Sieve 5A, Yakuri Pure Chemicals Co) was used for drying.

노르말부틸리튬(n-Butyllithium (2.5M Solution in n-Hexane)), 페닐리튬(Phenyllithium (1.8M solution in Dibutyl ether)), 1-브로모-3,5-디메틸벤젠(1-Bromo-3,5-dimethylbenzene), 6,6-디메틸풀벤(6,6-Dimethylfulvene), 트리에탄올아민(Triethanolamine), 트리에틸아민(Triethylamine), 6,6-펜타메틸풀벤(6,6-pentamethylfulvene), 트리메틸실릴클로라이드(Trimethylsilyl chloride), 티타니움 클로라이드(TiCl4), 탄탈룸 클로라이드(TaCl5), 무수 황산마그네슘(Magnesium sulfate, anhydrous) 등은 Sigma-Aldrich사에서 구매하여 정제 없이 사용하였다. N-Butyllithium (2.5M Solution in n-Hexane), Phenyllithium (1.8M solution in Dibutyl ether), 1-Bromo-3,5-dimethylbenzene (1-Bromo-3, 5-dimethylbenzene), 6,6-dimethylfulvene, triethanolamine, triethylamine, 6,6-pentamethylfulvene, trimethylsilyl chloride Trimethylsilyl chloride, titanium chloride (TiCl 4 ), tantalum chloride (TaCl 5 ), anhydrous magnesium sulfate (Magnesium sulfate, anhydrous) and the like were purchased from Sigma-Aldrich and used without purification.

1H NMR 상온에서 Bruker Advance 400 Spectrometer를 사용하여 측정하였고, NMR 스펙트럼(Spectrum)의 화학적 이동값(Chemical Shift)은 중수소화클로로포름(CDCl3)과 중수소화벤젠(C6D6)이 나타내는 화학적 이동값 δ=7.24 ppm, 7.16 ppm을 각각 기준으로 표시하였다.
1 H NMR was measured using a Bruker Advance 400 Spectrometer at room temperature, and the chemical shift of the NMR spectrum was determined by deuterated chloroform (CDCl 3 ) and deuterated benzene (C 6 D 6 ). The values δ = 7.24 ppm and 7.16 ppm were respectively indicated by reference.

<< 실시예Example 1~5. 전이금속 화합물  1-5. Transition metal compound 주촉매의Main catalyst 합성> Synthesis>

실시예 1. [ηExample 1. [η 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 CMeCMe 2-2- 3,5-Me3,5-Me 22 CC 66 HH 33 ]Ti(N(CH] Ti (N (CH 22 CHCH 22 O)O) 33 )의 합성 [촉매1]) Synthesis [Catalyst 1]

1-1. C1-1. C 55 HH 33 (SiMe(SiMe 33 )) 22 CMeCMe 2-2- 3,5-Me3,5-Me 22 CC 66 HH 33 의 합성Synthesis of

1.15g(5.3mmol) [C5H4CMe2-3,5-Me2C6H3]Li을 50ml 디에틸에테르에 녹인 뒤, 얼음 물로 온도를 낮추고 0.7ml (0.6g, 5.5mmol) 트리메틸실릴 클로라이드 용액을 적가하여 상온으로 천천히 올려 밤새 교반하였다. 그 다음, 얻어진 흰색 현탁액을 -30℃로 온도를 낮추고 부틸리튬 용액 5.4mmol (2.5M sol'n in hexanes)을 적가하였다. 반응 혼합물을 상온으로 온도를 올려주고, 3시간 교반시켜 준 후 얼음물을 이용하여 온도를 낮춘 후 0.8ml (0.7g, 6.4mmol) 트리메틸실릴 클로라이드 용액을 적가하여 상온으로 천천히 올려 밤새 저어주었다. 그 다음, 얻어진 혼합액을 얼음물(100ml)에 붓는다. 유기층만 디에틸에테르(50ml x 2)로 추출하여 모으고 무수황산마그네슘으로 건조하여 여과시켰다. 용매를 회전증발기로 증발시킨 뒤 얻어진 노란색 오일을 160℃, 0.4 torrr 하에서 증류하여 C5H3(SiMe3)2CMe2-3,5-Me2C6H3 1.26g(3.5mmol)을 66% 수율로 얻었다. Dissolve 1.15 g (5.3 mmol) [C 5 H 4 CMe 2- 3,5-Me 2 C 6 H 3 ] Li in 50 ml diethyl ether, lower the temperature with ice water, and add 0.7 ml (0.6 g, 5.5 mmol) trimethyl. The silyl chloride solution was added dropwise and slowly raised to room temperature and stirred overnight. The resulting white suspension was then cooled to −30 ° C. and 5.4 mmol (2.5 M sol'n in hexanes) of butyllithium solution was added dropwise. The reaction mixture was warmed to room temperature, stirred for 3 hours, lowered in temperature with ice water, and then slowly added to a solution of 0.8 ml (0.7 g, 6.4 mmol) trimethylsilyl chloride dropwise to room temperature and stirred overnight. Then, the obtained mixed liquid is poured into ice water (100 ml). Only the organic layer was extracted with diethyl ether (50 ml x 2), collected, dried over anhydrous magnesium sulfate, and filtered. After evaporating the solvent with a rotary evaporator, the yellow oil obtained was distilled at 160 ° C. and 0.4 torrr to obtain 1.26 g (3.5 mmol) of C 5 H 3 (SiMe 3 ) 2 CMe 2- 3,5-Me 2 C 6 H 3 66 Obtained in% yield.

상기 C5H3(SiMe3)2CMe2-3,5-Me2C6H3의 합성을 확인한 1H NMR의 결과는 하기와 같다. The result of the C 5 H 3 (SiMe 3) 2 CMe 2- 3,5-Me 2 C 6 H 3 1 H NMR confirmed the synthesis of this is as follows.

1H NMR (400 MHz, CDCl3): δ 6.90 (s, 2H, Ar o-H), 6.78 (s, 1H, Ar p-H), 6.37 (m, 2H, Cp H), 6.19 (m, 1H, Cp H), 2.24 (s, 6H, ArCH3), 1.51 (s, 6H, C(CH3)2), -0.05 (s, 18H, Si(CH3)3).
1 H NMR (400 MHz, CDCl 3 ): δ 6.90 (s, 2H, Ar oH), 6.78 (s, 1H, Ar pH), 6.37 (m, 2H, Cp H), 6.19 (m, 1H, Cp H ), 2.24 (s, 6H, ArCH 3), 1.51 (s, 6H, C (CH 3) 2), -0.05 (s, 18H, Si (CH 3 ) 3 ).

1-2. [η1-2. [? 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 CMeCMe 2-2- 3,5-Me3,5-Me 22 CC 66 HH 33 ]TiCl] TiCl 33 의 합성Synthesis of

상기 C5H3(SiMe3)2CMe2-3,5-Me2C6H3 1.18g(3.3mmol)를 40ml 디클로로메탄에 녹인 뒤, -40℃로 온도를 낮추고 당량의 티타니움 클로라이드(1M sol'n in M.C)를 천천히 가해주었다. 상온으로 온도를 올린 뒤 밤새 저어주었다. 진공상에서 휘발성 물질들을 증발시킨 후, 잔여물을 노르말펜탄으로 제거하여 1.02g(2.3mmol, 72%)의 밝은 갈색의 결정을 얻었다.The C 5 H 3 (SiMe 3) 2 CMe 2- 3,5-Me 2 C 6 H 3 1.18g (3.3mmol) after a 40ml dissolved in dichloromethane, the equivalent amount of titanium cooled to -40 ℃ chloride (1M sol'n in MC) was added slowly. The temperature was raised to room temperature and then stirred overnight. After evaporation of the volatiles in vacuo, the residue was removed with normal pentane to yield 1.02 g (2.3 mmol, 72%) of light brown crystals.

상기 [η5-(3-SiMe3)C5H3CMe2-3,5-Me2C6H3]TiCl3의 합성을 확인한 1H NMR의 결과는 하기와 같다. The result of the [η5- (3-SiMe 3) C 5 H 3 CMe 2- 3,5-Me 2 C 6 H 3] 1 H NMR confirmed the synthesis of TiCl 3 is as follows.

1H NMR (400 MHz, C6D6): δ 6.96 (m, 1H, Cp H), 6.69 (s, 2H, Ar o-H), 6.64 (m, 2H, Cp H and Ar p H), 6.55 (m, 1H, Cp H), 2.08 (s, 6H, ArCH3), 1.70 (s, 6H, C(CH3)2), 0.13 (s, 9H, Si(CH3)3).
1 H NMR (400 MHz, C 6 D 6 ): δ 6.96 (m, 1H, Cp H), 6.69 (s, 2H, Ar oH), 6.64 (m, 2H, Cp H and Ar p H), 6.55 ( m, 1H, Cp H), 2.08 (s, 6H, ArCH 3 ), 1.70 (s, 6H, C (CH 3 ) 2), 0.13 (s, 9H, Si (CH 3 ) 3 ).

1-3. [η1-3. [? 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 CMeCMe 2-2- 3,5-Me3,5-Me 22 CC 66 HH 33 ]Ti(N(CH] Ti (N (CH 22 CHCH 22 O)O) 33 )의 합성) Synthesis of

상기 합성예 1-2에서 제조된 [η5-(3-SiMe3)C5H3CMe2-3,5-Me2C6H3]TiCl3 5.917 mmol을 50ml 톨루엔에 녹인 뒤, -78℃로 온도를 낮추고 당량의 트리에탄올아민, 삼 당량의 트리에틸아민 톨루엔 용액을 적가하여 상온으로 올린 후 50℃로 가열하며 밤새 저어주었다. 주황색 현탁액을 셀라이트 필터링한 후 진공에서 건조한 후 헥산으로 세척하여 약 1g(2.095mmol, 35%) 아이보리색 고체를 얻었다. 5.917 mmol of [η5- (3-SiMe 3 ) C 5 H 3 CMe 2 -3,5-Me 2 C 6 H 3 ] TiCl 3 prepared in Synthesis Example 1-2 was dissolved in 50 ml toluene, and then −78 ° C. The temperature was lowered, and an equivalent amount of triethanolamine and three equivalents of triethylamine toluene solution were added dropwise to room temperature, followed by heating overnight at 50 ° C. The orange suspension was filtered through Celite, dried in vacuo and washed with hexane to give about 1 g (2.095 mmol, 35%) ivory solid.

상기 [η5-(3-SiMe3)C5H3CMe2 -3,5-Me2C6H3]Ti(N(CH2CH2O)3)의 합성을 확인한 1H NMR의 결과는 하기와 같다. The [η 5- (3-SiMe 3 ) C 5 H 3 CMe 2 - 3,5-Me 2 C 6 H 3] Ti (N (CH 2 CH 2 O) 3) Results of 1 H NMR confirmed the synthesis of Is as follows.

1H NMR (400 MHz, CDCl3): δ 6.87(s, 2H, Ar-o), 6.77(s, 1H, Ar-p), 6.35-6.37(q, 3H, Cp), 4.26-4.3 (q, 6H, NCH2CH2O), 2.26-2.96(t, 6H, NCH2CH2O), 2.27 (s, 6H, ArCH3), 1.7 (s, 6H, C(CH3)2) 0.18(s, 9H, Si(CH3)3).
1 H NMR (400 MHz, CDCl 3 ): δ 6.87 (s, 2H, Ar-o), 6.77 (s, 1H, Ar-p), 6.35-6.37 (q, 3H, Cp), 4.26-4.3 (q , 6H, NCH 2 CH 2 O), 2.26-2.96 (t, 6H, NCH 2 CH 2 O), 2.27 (s, 6H, ArCH 3 ), 1.7 (s, 6H, C (CH 3 ) 2 ) 0.18 ( s, 9H, Si (CH 3 ) 3 ).

실시예 2. (ηExample 2. (η 5-5- CC 55 HH 44 CMeCMe 22 Ph)Ti(N(CHPh) Ti (N (CH 22 CHCH 22 O)O) 33 )) 의 합성 [촉매 2]Synthesis of [Catalyst 2]

2-1. C2-1. C 55 HH 44 (SiMe(SiMe 33 )CMeCMe 22 Ph의 합성Synthesis of Ph

페닐리튬 용액 (2.0M sol in dibutyl ether, 7.5ml, 15mmol)을 20 ml의 디에틸에테르에 녹인 뒤, -40℃로 온도를 낮추고 당량의 6,6-디메틸풀벤(1.593g, 15mmol)을 20ml 디에틸에테르에 녹인 뒤 천천히 가하였다. 반응 혼합물을 상온으로 온도를 올려주고, 1시간 동안 교반하였다. 용매를 진공에서 제거한 뒤, 헥산 (15ml x 3)으로 세척하고 진공에서 건조하여 하얀 고체가 분리되었다.Dissolve phenyllithium solution (2.0M sol in dibutyl ether, 7.5ml, 15mmol) in 20ml of diethyl ether, lower the temperature to -40 ℃ and 20ml of equivalent 6,6-dimethylpulbene (1.593g, 15mmol) It was dissolved in diethyl ether and slowly added. The reaction mixture was warmed to room temperature and stirred for 1 hour. The solvent was removed in vacuo, washed with hexane (15ml x 3) and dried in vacuo to separate white solid.

얻어진 고체를 다시 테트라하이드로퓨란 용액에 녹인 후, 0℃로 온도를 낮추고 1.2 당량의 트리메틸실릴 클로라이드 (1.955g, 18mmol)2.27ml를 적가하여 상온으로 천천히 올려 밤새 저어주었다. 그 다음, 얻어진 옅은 노란색을 띄는 용액을 얼음물(100ml)에 부었다. 유기층만 디에틸에테르 (50ml x3)로 추출하여 모으고 무수황산마그네슘으로 건조하여 여과시켰다. 용매를 회전증발기로 증발시킨 뒤 얻어진 노란색 오일을 180℃, 0.4torr에서 증류하여 갈색 오일의 리간드 C5H4(SiMe3)CMe2Ph 를 58%의 수율로 얻었다.After dissolving the obtained solid in tetrahydrofuran solution again, the temperature was lowered to 0 ° C., and 2.27 ml of 1.2 equivalents of trimethylsilyl chloride (1.955 g, 18 mmol) was added dropwise and stirred slowly at room temperature. Then, the obtained pale yellow solution was poured into ice water (100 ml). Only the organic layer was extracted with diethyl ether (50 ml x 3), collected, dried over anhydrous magnesium sulfate, and filtered. The solvent was evaporated with a rotary evaporator, and the yellow oil obtained was distilled at 0.4 torr at 180 ° C. to obtain a ligand C 5 H 4 (SiMe 3 ) CMe 2 Ph of brown oil in a yield of 58%.

상기 C5H4(SiMe3)CMe2Ph 의 합성을 확인한 1H NMR의 결과는 하기와 같다.Results of 1 H NMR confirming the synthesis of C 5 H 4 (SiMe 3 ) CMe 2 Ph are as follows.

1H-NMR (400 MHz, 22℃, CDCl3): d 0.29 (s, 9 H, SiMe3), 1.87 (s, 6 H, CMe2), 6.70-6.47 (m, 4 H, C5H4), 7.64-7.43 (m, 5H, Ph).
1 H-NMR (400 MHz, 22 ° C., CDCl 3 ): d 0.29 (s, 9 H, SiMe 3 ), 1.87 (s, 6 H, CMe 2 ), 6.70-6.47 (m, 4 H, C 5 H 4 ), 7.64-7.43 (m, 5H, Ph).

2-2. (η2-2. (? 5-5- CC 55 HH 44 CMeCMe 22 Ph)TiClPh) TiCl 33 의 합성Synthesis of

상기 2-1에서 제조된 리간드 C5H4(SiMe3)CMe2Ph (2.2395g, 6.278mmol)를 30ml의 디클로로메탄에 녹인 뒤, -78℃로 온도를 낮추고 당량의 티타튬클로라이드 (1M sol in dichloromethane) 6.23ml를 천천히 가한 뒤, 상온으로 올린 뒤 밤새 저어주었다. 얻어진 짙은 붉은색 용액의 용매를 모두 진공으로 제거하면 오일 형태의 (η5-C5H4CMe2Ph)TiCl3 를 50% 수율로 1.059g 얻었다.The ligand C 5 H 4 (SiMe 3 ) CMe 2 Ph (2.2395 g, 6.278 mmol) prepared in 2-1 was dissolved in 30 ml of dichloromethane, and then the temperature was lowered to -78 ° C and the equivalent amount of titanium chloride (1 M sol). in dichloromethane) 6.23ml was added slowly, raised to room temperature and stirred overnight. When all of the solvent of the resulting dark red solution was removed with vacuum oil in the form of (η 5- C 5 H 4 CMe 2 Ph) 1.059g to obtain a TiCl 3 in 50% yield.

상기 (η5-C5H4CMe2Ph)TiCl3 의 합성을 확인한 1H NMR의 결과는 하기와 같다. Results of 1 H NMR confirming the synthesis of (η 5- C 5 H 4 CMe 2 Ph) TiCl 3 are as follows.

1H NMR(400MHz, C6D6): δ 7.03(d,2H,Ar-m), 6.95(t, 1H, Ar-p), 6.84(d, 2H, Ar-o), 1.53(s, 6H, 2Me)
1 H NMR (400 MHz, C 6 D 6 ): δ 7.03 (d, 2H, Ar-m), 6.95 (t, 1H, Ar-p), 6.84 (d, 2H, Ar-o), 1.53 (s, 6H, 2Me)

2-3. (η2-3. (? 5-5- CC 55 HH 44 CMeCMe 22 Ph)Ti(N(CHPh) Ti (N (CH 22 CHCH 22 O)O) 33 )) 의 합성Synthesis of

상기 합성예 2-2에서 제조된 (η5-C5H4CMe2Ph)TiCl3 6mmol을 50ml 톨루엔에 녹인 뒤, -78℃로 온도를 낮추고 당량의 트리에탄올아민, 삼 당량의 트리에틸아민 톨루엔 용액을 적가한 후 상온으로 올린 후 50℃로 가열하며 밤새 저어주었다. 주황색 현탁액을 셀라이트 필터링한 후 진공에서 건조한 후 헥산으로 세척하여 약 1.357g(3.6mmol, 60%) 아이보리색 고체를 얻었다. 6 mmol of (η 5- C 5 H 4 CMe 2 Ph) TiCl 3 prepared in Synthesis Example 2-2 was dissolved in 50 ml of toluene, and then the temperature was lowered to -78 ° C, and an equivalent of triethanolamine and three equivalents of triethylamine toluene. After the solution was added dropwise, the solution was raised to room temperature and then stirred overnight while heating to 50 ° C. The orange suspension was filtered through Celite, dried in vacuo and washed with hexane to give about 1.357 g (3.6 mmol, 60%) ivory solid.

상기 (η5-C5H4CMe2Ph)Ti(N(CH2CH2O)3)의 합성을 확인한 1H NMR의 결과는 하기와 같다. Results of 1 H NMR confirming the synthesis of (η 5- C 5 H 4 CMe 2 Ph) Ti (N (CH 2 CH 2 O) 3 ) are as follows.

1H NMR(400MHz, CDCl3): δ 6.70-6.48(m, 5H, ArH), 4.28(m, 6H, NCH2CH2O), 3.08(m, 6H, NCH2CH2O), 1.70(s, 6H, C(CH3)2)
1 H NMR (400 MHz, CDCl 3 ): δ 6.70-6.48 (m, 5H, ArH), 4.28 (m, 6H, NCH 2 CH 2 O), 3.08 (m, 6H, NCH 2 CH 2 O), 1.70 ( s, 6H, C (CH 3 ) 2 )

실시예 3.Example 3. 5-5- CC 55 HH 44 C[(CHC [(CH 22 )) 55 ]Ph}Ti(N(CH] Ph} Ti (N (CH 22 CHCH 22 O)O) 33 )) 의 합성 [촉매 3]Synthesis of [Catalyst 3]

3-1. C3-1. C 55 HH 44 (SiMe(SiMe 33 )C[(CH) C [(CH 22 )) 55 ]Ph의 합성Synthesis of Ph

페닐리튬 용액(2.0M sol in dibutyl ether, 4g, 48mmol)을 200ml의 디에틸에테르에 녹인 뒤, -50℃로 온도를 낮추고 당량의 6,6-펜타메틸렌풀벤(6.95g, 48mmol)을 20ml 디에틸에테르에 녹인 뒤 천천히 가하였다. 반응 혼합물을 상온으로 온도를 오려주고, 3시간 동안 교반하였다. 노란 용액을 0℃로 온도를 낮추고 6.4 ml (5.5g, 51mmol) 트리메틸실릴 클로라이드 (1.955g, 18mmol) 2.27ml를 적가하여 상온으로 천천히 올려 밤새 저어주었다. 그 다음, 얻어진 옅은 노란 용액을 얼음물(250ml)에 부었다. 유기층만 디에틸에테르(100mlx2)로 추출하여 모으고, 200ml 브린 용액으로 헹군 후 무수황산마그네슘으로 건조하여 여과시켰다. 용매를 회전증발기로 증발시킨 뒤 얻어진 노란색 오일을 165℃ 0.4 torr에서 증류하여 리간드 C5H4(SiMe3)C[(CH2)5]Ph 를 아이소머 혼합상태로 63%의 수율로 얻었다.Dissolve phenyllithium solution (2.0M sol in dibutyl ether, 4g, 48mmol) in 200ml diethyl ether, lower the temperature to -50 ℃ and add equivalent 6,6-pentamethylenepulbene (6.95g, 48mmol) 20ml di It was dissolved in ethyl ether and slowly added. The reaction mixture was warmed to room temperature and stirred for 3 hours. The yellow solution was lowered to 0 ° C. and 2.27 ml of 6.4 ml (5.5 g, 51 mmol) trimethylsilyl chloride (1.955 g, 18 mmol) was added dropwise and slowly stirred to room temperature and stirred overnight. The pale yellow solution obtained was then poured into ice water (250 ml). Only the organic layer was extracted with diethyl ether (100 ml × 2), collected, washed with 200 ml brine solution, dried over anhydrous magnesium sulfate, and filtered. The solvent was evaporated with a rotary evaporator, and the resulting yellow oil was distilled at 0.4 torr at 165 ° C. to obtain ligand C 5 H 4 (SiMe 3 ) C [(CH 2 ) 5 ] Ph in an isomer mixed state in 63% yield.

상기 C5H4(SiMe3)C[(CH2)5]Ph의 합성을 확인한 1H NMR의 결과는 하기와 같다.Results of 1 H NMR confirming the synthesis of C 5 H 4 (SiMe 3 ) C [(CH 2 ) 5 ] Ph are as follows.

1H NMR (400 MHz, CDCl3, main isomer): δ 7.40 (m, 2H, Ph o-H), 7.33 (m, 2H, Ph m-H), 7.15 (m, 1H, Ph p-H), 6.43 (m, 2H, Cp H), 6.15 (s, 1H, Cp H), 3.27 (s, 1H, Cp H), 2.17 (m, 4H, α-CH2), 1.65-1.40 (m, 6H, β- and γ-CH2), -0.03 (s, 9H, Si(CH3)3).
1 H NMR (400 MHz, CDCl 3 , main isomer): δ 7.40 (m, 2H, Ph oH), 7.33 (m, 2H, Ph mH), 7.15 (m, 1H, Ph pH), 6.43 (m, 2H , Cp H), 6.15 (s, 1H, Cp H), 3.27 (s, 1H, Cp H), 2.17 (m, 4H, α-CH 2 ), 1.65-1.40 (m, 6H, β- and γ- CH 2 ), -0.03 (s, 9H, Si (CH 3 ) 3 ).

3-2. {η5-C3-2. {η5-C 55 HH 44 C[(CHC [(CH 22 )) 55 ]Ph}TiCl] Ph} TiCl 33 의 합성Synthesis of

상기 3-1에서 제조된 리간드 C5H4(SiMe3)C[(CH2)5]Ph 3.70g(12.5mmol)을 40ml 메틸렌클로라이드에 녹인 후 -40℃로 온도를 낮춘 후 여기에 타이타늄 클로라이드 1.4ml(2.4g, 12.7mmol)를 천천히 가한 뒤, 상온으로 올린 뒤 밤새 저어주었다. 용매를 모두 진공으로 제거하고 30ml 펜탄으로 씻어준 후 상등액을 걷어내고, 남은 잔사에서 메틸렌클로라이드로 추출한 후 펜탄 메틸렌클로라이드 1:1(v/v)의 비율에서 재결정하여 붉은 갈색의 {C5H4(SiMe3)C[(CH2)5]Ph}TiCl3를 78%의 수율로 얻었다.Ligand C 5 H 4 (SiMe 3 ) C [(CH 2 ) 5 ] Ph 3.70 g (12.5 mmol) prepared in 3-1 above was dissolved in 40 ml of methylene chloride, and the temperature was lowered to -40 ° C, followed by titanium chloride. 1.4ml (2.4g, 12.7mmol) was added slowly, then raised to room temperature and stirred overnight. The solvents were removed in vacuo and washed with 30 ml of pentane. The supernatant was removed, extracted with methylene chloride from the remaining residue, and recrystallized at a ratio of 1: 1 (v / v) of pentane methylene chloride to give a reddish brown {C 5 H 4 (SiMe 3 ) C [(CH 2 ) 5 ] Ph} TiCl 3 was obtained in a yield of 78%.

상기 {C5H4(SiMe3)C[(CH2)5]Ph}TiCl3의 합성을 확인한 1H NMR의 결과는 하기와 같다.Results of 1 H NMR confirming the synthesis of {C 5 H 4 (SiMe 3 ) C [(CH 2 ) 5 ] Ph} TiCl 3 are as follows.

1H NMR (400 MHz, C6D6): δ 7.16-7.06 (m, 4H, Ph o- and m-H), 7.01 (m, 1H, Ph p-H), 6.31 (ps t, 3JHH ) 2.8, 2H, Cp H), 5.97 (ps t, 3JHH ) 2.8, 2H, Cp H), 2.45 (d, 2JHH ) 13.2, 2H, α-CHeq), 1.88 (m, 2H, α-CHax), 1.37 (br, 3H, β- and γ-CH2), 1.25-1.05 (m, 3H, β- and γ-CH2).
1 H NMR (400 MHz, C 6 D 6 ): δ 7.16-7.06 (m, 4H, Ph o- and mH), 7.01 (m, 1H, Ph pH), 6.31 (ps t, 3JHH) 2.8, 2H, Cp H), 5.97 (ps t, 3JHH) 2.8, 2H, Cp H), 2.45 (d, 2JHH) 13.2, 2H, α-CH eq ), 1.88 (m, 2H, α-CH ax ), 1.37 (br , 3H, β- and γ-CH2), 1.25-1.05 (m, 3H, β- and γ-CH2).

3-3. {η5-C 5 H 4 C[( CH 2 ) 5 ] Ph } Ti (N( CH 2 CH 2 O ) 3 )의 합성 3-3. Synthesis of {η5-C 5 H 4 C [( CH 2 ) 5 ] Ph } Ti (N ( CH 2 CH 2 O ) 3 )

상기 3-2에서 제조된 {η5-C5H4C[(CH2)5]Ph}TiCl3 1.92mmol(0.722g)을 50ml 톨루엔에 녹인 뒤, -78℃로 온도를 낮추고 당량의 트리에탄올아민, 삼 당량의 트리에틸아민 톨루엔 용액을 적가한 후 상온으로 올린 후 60℃로 가열하며 밤새 저어주었다. 주황색 현탁액을 셀라이트 필터링한 후 진공에서 건조한 후 헥산으로 세척하여 약 0.48g(1.152mmol, 60%) 아이보리색 고체를 얻었다. 1.92 mmol (0.722 g) of {η 5- C 5 H 4 C [(CH 2 ) 5 ] Ph} TiCl 3 prepared in 3-2 was dissolved in 50 ml toluene, and then the temperature was lowered to -78 ° C and an equivalent amount of triethanol. An amine and three equivalents of triethylamine toluene solution were added dropwise and then raised to room temperature, followed by stirring overnight with heating to 60 ° C. The orange suspension was filtered through Celite, dried in vacuo and washed with hexane to give about 0.48 g (1.152 mmol, 60%) ivory solid.

상기 {η5-C5H4C[(CH2)5]Ph}Ti(N(CH2CH2O)3)의 합성을 확인한 1H NMR의 결과는 하기와 같다. Results of 1 H NMR confirming the synthesis of {η5-C 5 H 4 C [(CH 2 ) 5 ] Ph} Ti (N (CH 2 CH 2 O) 3 ) are as follows.

1H NMR(400MHz, CDCl3): δ 7.45(d, 2H, ArH), 7.26(d, 2H, ArH), 7.15(m, 1H, ArH), 6.18(s, 2H, Cp), 6.09(s, 2H, Cp), 4.17(m, 6H, NCH2CH2O), 2.85(m, 6H, NCH2CH2O), 2.65(d, 2H, -(CH2)5), 2.02(t, 2H, -(CH2)5), 1.56(b, 3H, -(CH2)5), 1.39(m, 3H, -(CH2)5)
1 H NMR (400 MHz, CDCl 3 ): δ 7.45 (d, 2H, ArH), 7.26 (d, 2H, ArH), 7.15 (m, 1H, ArH), 6.18 (s, 2H, Cp), 6.09 (s , 2H, Cp), 4.17 (m, 6H, NCH 2 CH 2 O), 2.85 (m, 6H, NCH 2 CH 2 O), 2.65 (d, 2H,-(CH 2 ) 5 ), 2.02 (t, 2H,-(CH 2 ) 5 ), 1.56 (b, 3H,-(CH 2 ) 5 ), 1.39 (m, 3H,-(CH 2 ) 5 )

실시예 4.Example 4. [? 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 C[(CHC [(CH 22 )) 55 ]Ph}Ti(N(CH] Ph} Ti (N (CH 22 CHCH 22 O)O) 33 )) 의 합성 [촉매 4]Synthesis of [Catalyst 4]

4-1. C4-1. C 55 HH 33 (SiMe(SiMe 33 )) 22 C[(CHC [(CH 22 )) 55 ]Ph의 합성Synthesis of Ph

1.67g(7.3mmol)의 {C5H4C[(CH2)5]Ph}Li를 70ml 디에틸에테르에 녹인 후 0℃로 낮추고 0.8ml(0.7g, 6.4mmol) 트리메틸실릴 크로라이드를 적가 한 뒤 밤새 교반하였다. 하얀 현탁액을 -30℃로 낮춘 후 2.5M 부틸리튬 헥산 용액 7.3mmol을 적가한 후 천천히 상온으로 올려 3시간 교반하였다. 반응용액을 0℃로 낮춘 후 0.9ml(0.8g, 7.4mmol) 트리메틸실릴 크로라이드를 적가하고 상온에서 밤새 교반하였다. 반응용액을 100ml 얼음물에 붓고 50ml 디에틸에테르로 두 번 추출한 후 MgSO4로 건조하고, 용매를 날린 후 160℃ 0.4 torr에서 증류하여 1.28g(3.5mmol, 55%)의 생성물을 얻었다. 1.67 g (7.3 mmol) of {C 5 H 4 C [(CH 2 ) 5 ] Ph} Li was dissolved in 70 ml diethyl ether, lowered to 0 ° C., and 0.8 ml (0.7 g, 6.4 mmol) trimethylsilyl chloride was added dropwise. After stirring overnight. After lowering the white suspension to -30 ° C, 7.3mmol of 2.5M butyllithium hexane solution was added dropwise, and then slowly raised to room temperature and stirred for 3 hours. After the reaction solution was lowered to 0 ° C., 0.9 ml (0.8 g, 7.4 mmol) trimethylsilyl chloride was added dropwise and stirred at room temperature overnight. The reaction solution was poured into 100 ml of ice water, extracted twice with 50 ml of diethyl ether, dried over MgSO 4 , blown off, and distilled at 160 ° C. 0.4 torr to obtain 1.28 g (3.5 mmol, 55%) of the product.

상기 C5H3(SiMe3)2C[(CH2)5]Ph의 합성을 확인한 1H NMR의 결과는 하기와 같다.Results of 1 H NMR confirming the synthesis of C 5 H 3 (SiMe 3 ) 2 C [(CH 2 ) 5 ] Ph are as follows.

1H NMR(300 MHz, CDCl3): δ 7.45-7.1 (m, 5H, Ph H), 6.50 (m, 1H, Cp H), 6.39 (m, 1H, Cp H), 6.18 (m, 1H, Cp H), 2.2 (m, 4H, α-CH2), 1.55 (m, 6H, β- and γ-CH2), -0.07 (s, 18H, Si(CH3)3)
1 H NMR (300 MHz, CDCl 3 ): δ 7.45-7.1 (m, 5H, Ph H), 6.50 (m, 1H, Cp H), 6.39 (m, 1H, Cp H), 6.18 (m, 1H, Cp H), 2.2 (m, 4H, α-CH 2), 1.55 (m, 6H, β- and γ-CH 2), -0.07 (s, 18H, Si (CH 3 ) 3 )

4-2. [η4-2. [? 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 C[(CHC [(CH 22 )) 55 ]Ph}TiCl] Ph} TiCl 33 의 합성Synthesis of

0.34ml (0.6g, 3.2mmol) 타이타늄 테트라크로라이드 40ml 디크로로메탄 용액을 -40℃로 낮춘 후 1.2g(3.3 mmol) C5H3-(SiMe3)2C[(CH2)5]Ph를 적가한 후 상온에서 밤새 교반하였다. 진공으로 휘발성 물질들을 제거한 후 찌꺼기를 펜탄으로 세척하여 제거한 후 디크로로메탄으로 추출하여 0.68g(1.5mmol, 40%)의 붉은 갈색 결정을 얻었다. After 0.34ml (0.6g, 3.2mmol) titanium tetrachloride 40ml dichloromethane solution was lowered to -40 ° C, 1.2g (3.3 mmol) C 5 H 3- (SiMe 3 ) 2 C [(CH 2 ) 5 ] Ph was added dropwise and stirred overnight at room temperature. The volatiles were removed in vacuo and the residue was washed with pentane to remove the residue and extracted with dichloromethane to yield 0.68 g (1.5 mmol, 40%) of reddish brown crystals.

상기 [η5-(3-SiMe3)C5H3C[(CH2)5]Ph}TiCl3의 합성을 확인한 1H NMR의 결과는 하기와 같다. Results of 1 H NMR confirming the synthesis of the above [η 5- (3-SiMe 3 ) C 5 H 3 C [(CH 2 ) 5 ] Ph} TiCl 3 are as follows.

1H NMR (300 MHz, C6D6): δ 7.13 (m, 4H, Ph o- and m-H), 7.01 (m, 1H, Cp H), 6.93 (m, 1H, Ph p-H), 6.45 (m, 2H, Cp H), 2.54 (m, 2H, α-CHeq), 2.07, 1.86 (m, 1H each, α-CHax), 1.4 (br, 3H, β- and γ-CH2), 1.15 (br, 3H, β- and α-CH2), 0.13 (s, 9H, Si(CH3)3)
1 H NMR (300 MHz, C 6 D 6 ): δ 7.13 (m, 4H, Ph o- and mH), 7.01 (m, 1H, Cp H), 6.93 (m, 1H, Ph pH), 6.45 (m , 2H, Cp H), 2.54 (m, 2H, α-CH eq ), 2.07, 1.86 (m, 1H each, α-CH ax ), 1.4 (br, 3H, β- and γ-CH2), 1.15 ( br, 3H, β- and α-CH 2), 0.13 (s, 9H, Si (CH 3 ) 3 )

4-3. [η4-3. [? 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 C[(CHC [(CH 22 )) 55 ]Ph}Ti(N(CH] Ph} Ti (N (CH 22 CHCH 22 O)O) 33 ))

1.94mmol(0.869g) {η5-C5H4C[(CH2)5]Ph}TiCl3을 50ml 톨루엔에 녹인 뒤, -78℃로 온도를 낮추고 당량의 트리에탄올아민, 삼 당량의 트리에틸아민 톨루엔 용액을 적가한 후 상온으로 올린 후 60℃로 가열하며 밤새 저어주었다. 주황색 현탁액을 셀라이트 필터링한 후 진공에서 건조한 후 헥산으로 세척하여 약 0.569g(1.164mmol, 60%) 아이보리색 고체를 얻었다. 1.94 mmol (0.869 g) Dissolve {η5-C 5 H 4 C [(CH 2 ) 5 ] Ph} TiCl 3 in 50 ml toluene, lower the temperature to -78 ° C, add dropwise equivalent of triethanolamine and three equivalents of triethylamine toluene solution After raising to room temperature and heated to 60 ℃ stirred overnight. The orange suspension was filtered through Celite, dried in vacuo and washed with hexane to yield about 0.569 g (1.164 mmol, 60%) ivory solid.

상기 [η5-(3-SiMe3)C5H3C[(CH2)5]Ph}Ti(N(CH2CH2O)3)의 합성을 확인한 1H NMR의 결과는 하기와 같다. Results of 1 H NMR confirming the synthesis of [η 5- (3-SiMe 3 ) C 5 H 3 C [(CH 2 ) 5 ] Ph} Ti (N (CH 2 CH 2 O) 3 ) are as follows. .

1H NMR(400MHz, CDCl3): δ 7.44(d, 2H, ArH), 7.24(d, 2H, ArH), 7.08(t, 1H, ArH), 6.29(s, 1H, Cp), 6.17(s, 2H, Cp), 4.14(m, 6H, NCH2CH2O), 2.82(m, 6H, NCH2CH2O), 2.71(d, 1H, -(CH2)5), 2.57(d, 1H, -(CH2)5), 2.06(m, 2H, -(CH2)5), 1.53(br, 3H, -(CH2)5), 1.4(m, 3H, -(CH2)5)
1 H NMR (400 MHz, CDCl 3 ): δ 7.44 (d, 2H, ArH), 7.24 (d, 2H, ArH), 7.08 (t, 1H, ArH), 6.29 (s, 1H, Cp), 6.17 (s , 2H, Cp), 4.14 (m, 6H, NCH 2 CH 2 O), 2.82 (m, 6H, NCH 2 CH 2 O), 2.71 (d, 1H,-(CH 2 ) 5 ), 2.57 (d, 1H,-(CH 2 ) 5 ), 2.06 (m, 2H,-(CH 2 ) 5 ), 1.53 (br, 3H,-(CH 2 ) 5 ), 1.4 (m, 3H,-(CH 2 ) 5 )

실시예 5. {ηExample 5. {η 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 C[(CHC [(CH 22 )) 55 ]-3,5-Me] -3,5-Me 22 CC 66 HH 33 }Ti(N(CH} Ti (N (CH 22 CHCH 22 O)O) 33 )) 의 합성 [촉매 5]Synthesis of [Catalyst 5]

5-1. {η5-1. {η 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 C[(CHC [(CH 22 )) 55 ]-3,5-Me] -3,5-Me 22 CC 66 HH 33 }TiCl} TiCl 33

1.12g (0.010 mol) 3,5-디메틸페닐리튬을 50ml 디에틸에테르에 녹여 0℃로 낮춘 후 1.46g(0.010mol) 6,6-펜타메틸풀벤을 적가하고 상온에서 12시간 교반한 후 현탁액을 필터링하고 디에틸에테르로 씻어준 후 진공으로 건조하였다. 흐린 노란 파우더를 40ml 에테르/테트라하이드로퓨란 (5:1, v/v)에 녹인 후 0℃로 낮추고 1.08g(0.010mol) 트리메틸실릴 크로라이드 가한 후 흰색 현탁액을 상온에서 2시간 교반하였다. 0℃로 낮춘 후 2.5M(0.012mol) 부틸리튬 헥산 용액 4.8ml를 가하여 5시간 교반하였으며, 그 후 1.52g(0.014mol) 트리메틸실릴 크로라이드를 가해주었다. 상온으로 서서히 올린 후 밤새 교반하였다. 휘발성 물질들을 진공으로 제거한 후 디크로로메탄 15ml로 3번 추출하고, 실리카에 통과시켜 용매를 제거한 후 오렌지 색 오일을 바로 30ml 디크로로메탄에 녹이고 -20℃로 낮춘 후 1.5g(0.008mol) 테트라크로로타이타늄을 가하였다. 반응용액을 서서히 상온으로 승온한 후 12시간 교반하였으며, 그 다음 휘발성 물질들을 진공으로 제거하고 30ml 헥산으로 추출하였다. -30℃로 낮춰서 1.1g의 붉은 결정을 23%의 수득률로 얻었다.1.12 g (0.010 mol) 3,5-dimethylphenyllithium was dissolved in 50 ml diethyl ether, lowered to 0 ° C., and then 1.46 g (0.010 mol) 6,6-pentamethylpulbene was added dropwise and stirred at room temperature for 12 hours. Filtered and washed with diethyl ether and dried in vacuo. The pale yellow powder was dissolved in 40 ml ether / tetrahydrofuran (5: 1, v / v), lowered to 0 ° C., 1.08 g (0.010 mol) trimethylsilyl chloride was added, and the white suspension was stirred at room temperature for 2 hours. After lowering to 0 ° C., 4.8 ml of 2.5M (0.012 mol) butyllithium hexane solution was added thereto, followed by stirring for 5 hours. Then, 1.52 g (0.014 mol) trimethylsilyl chloride was added thereto. After slowly raising to room temperature, the mixture was stirred overnight. The volatiles were removed in vacuo and extracted three times with 15 ml of dichloromethane, passed through silica to remove the solvent, and the orange oil was immediately dissolved in 30 ml dichloromethane, lowered to -20 ° C, and then 1.5 g (0.008 mol). Tetrachlorotitanium was added. The reaction solution was slowly warmed up to room temperature, stirred for 12 hours, and then volatiles were removed in vacuo and extracted with 30 ml hexane. Lowered to −30 ° C. to give 1.1 g of red crystals with a yield of 23%.

상기 {η5-(3-SiMe3)C5H3C[(CH2)5]-3,5-Me2C6H3}TiCl3의 합성을 확인한 1H NMR의 결과는 하기와 같다.Results of 1 H NMR confirming the synthesis of the above {η 5- (3-SiMe 3 ) C 5 H 3 C [(CH 2 ) 5 ] -3,5-Me 2 C 6 H 3 } TiCl 3 are as follows. .

1H-NMR (400MHz, C6D6): δ 0.10 (s, 9H), 1.20-1.50 (m, 6H), 1.78-2.10 (m, 2H), 2.10 (s, 6H), 2.64 (m, 2H), 6.41 (t, 1H, 3JHH = 3.1 Hz), 6.47 (t, 1H, 3JHH = 3.1 Hz), 6.64 (br, 1H), 6.96 (br, 1H), 7.12 (br, 2H)
1 H-NMR (400 MHz, C 6 D 6 ): δ 0.10 (s, 9H), 1.20-1.50 (m, 6H), 1.78-2.10 (m, 2H), 2.10 (s, 6H), 2.64 (m, 2H), 6.41 (t, 1H, 3JHH = 3.1 Hz), 6.47 (t, 1H, 3JHH = 3.1 Hz), 6.64 (br, 1H), 6.96 (br, 1H), 7.12 (br, 2H)

5-2. {η5-2. {η 5-5- (3-SiMe(3-SiMe 33 )C) C 55 HH 33 C[(CHC [(CH 22 )) 55 ]-3,5-Me] -3,5-Me 22 CC 66 HH 33 }Ti(N(CH} Ti (N (CH 22 CHCH 22 O)O) 33 ))

1.22mmol(0.582g) {η5-(3-SiMe3)C5H3C[(CH2)5]-3,5-Me2C6H3}TiCl3을 50ml 톨루엔에 녹인 뒤, -78℃로 온도를 낮추고 당량의 트리에탄올아민, 삼 당량의 트리에틸아민 톨루엔 용액을 적가한 후 상온으로 올렸으며 60℃로 가열하며 밤새 저어주었다. 주황색 현탁액을 셀라이트 필터링한 후 진공에서 건조하였으며, 그 다음 헥산으로 세척하여 약 0.378g(0.732mmol, 60%) 아이보리색 고체를 얻었다. 1.22 mmol (0.582 g) {η 5- (3-SiMe 3 ) C 5 H 3 C [(CH 2 ) 5 ] -3,5-Me 2 C 6 H 3 } TiCl 3 dissolved in 50 ml toluene, The temperature was lowered to 78 ° C., and an equivalent amount of triethanolamine and three equivalents of triethylamine toluene solution were added dropwise, and then raised to room temperature, and stirred at 60 ° C. overnight. The orange suspension was filtered through Celite and dried in vacuo, then washed with hexane to give about 0.378 g (0.732 mmol, 60%) ivory solid.

상기 {η5-(3-SiMe3)C5H3C[(CH2)5]-3,5-Me2C6H3}Ti(N(CH2CH2O)3)의 합성을 확인한 1H NMR의 결과는 하기와 같다. Synthesis of the above {η 5- (3-SiMe 3 ) C 5 H 3 C [(CH 2 ) 5 ] -3,5-Me 2 C 6 H 3 } Ti (N (CH 2 CH 2 O) 3 ) results of 1 H NMR confirmed this is as follows.

1H NMR(400MHz, CDCl3): δ 7.42(s, 2H, ArH), 6.92(s, 1H, ArH), 6.5(s, 1H, Cp), 6.39(s, 1H, Cp), 6.35(s, 1H, Cp), 4.38(m, 6H, NCH2CH 2O), 3.24(m, 6H, NCH 2 CH2O), 2.85(d, 1H, -(CH2)5), 2.77(d, 1H, -(CH2)5), 2.46(s, 6H, 2Me), 2.42(t, 1H, -(CH2)5), 2.16(t, 1H, -(CH2)5), 1.72(br, 3H, -(CH2)5), 1.48(br, 3H, -(CH2)5), 0.25(s, 9H, SiMe3)
1 H NMR (400 MHz, CDCl 3 ): δ 7.42 (s, 2H, ArH), 6.92 (s, 1H, ArH), 6.5 (s, 1H, Cp), 6.39 (s, 1H, Cp), 6.35 (s , 1H, Cp), 4.38 (m, 6H, NCH 2 C H 2 O), 3.24 (m, 6H, NC H 2 CH 2 O), 2.85 (d, 1H,-(CH 2 ) 5 ), 2.77 ( d, 1H,-(CH 2 ) 5 ), 2.46 (s, 6H, 2Me), 2.42 (t, 1H,-(CH 2 ) 5 ), 2.16 (t, 1H,-(CH 2 ) 5 ), 1.72 (br, 3H,-(CH 2 ) 5 ), 1.48 (br, 3H,-(CH 2 ) 5 ), 0.25 (s, 9H, SiMe 3 )

<비교예><Comparative Example>

비교예는 탄탈룸 클로라이드를 촉매로 사용하였으며, 사용한 탄탈룸 클로라이드는 Sigma-Aldrich사에서 구매하여 정제 없이 사용하였다.
In the comparative example, tantalum chloride was used as a catalyst, and used tantalum chloride was purchased from Sigma-Aldrich and used without purification.

실험예 1. 에틸렌 삼량화 및 촉매 특성 평가Experimental Example 1. Evaluation of Ethylene Trimmer and Catalyst Properties

상기 실시예 1~5에서 제조된 각 전이금속 화합물의 촉매 특성을 평가하기 위해, 2L 고압반응기를 사용하여 하기와 같이 에틸렌을 삼량화 반응시켰다. 대조군으로 비교예의 탄탈륨 클로라이드를 촉매로 사용하였다. In order to evaluate the catalytic properties of each transition metal compound prepared in Examples 1 to 5, ethylene was trimerized as follows using a 2L high pressure reactor. As a control, tantalum chloride of the comparative example was used as a catalyst.

반응기를 질소로 완전히 치환하고, 톨루엔 500g, 상기 각각의 전이금속화합물 40μmol (중심금속 몰수 기준), Al/Ti 비율이 2000이 되도록 메틸알루미녹산 (Methylaluminoxane; MAO)을 투입하고 반응기 온도를 20℃로 유지시켰다. 이 온도에서 에틸렌 분압 10.0 기압이 되도록 에틸렌을 계속 공급하며 30분 동안 반응시킨 후 에틸렌 공급을 멈추고, 미반응 에틸렌은 반응기 외부로 벤트하였다. 남아있는 MAO는 20ml의 에탄올을 첨가하여 비활성화하였다. 반응물은 증류 및 여과를 통하여 액체와 고체 성분으로 분리하였으며, 액체 성분은 기체크로마토그래피를 이용하여 성분을 분석하였으며, 고체 성분은 산성화된 에탄올에서 1시간 동안 세척한 후, 70℃, 진공에서 건조되었다. 이후 촉매 활성 및 선택도를 평가하여 그 결과를 하기 표 1에 나타내었다.The reactor was completely replaced with nitrogen, 500 g of toluene, 40 μmol of each of the transition metal compounds (based on the number of moles of the center metal), and methylaluminoxane (MAO) were added so that the Al / Ti ratio was 2000, and the reactor temperature was 20 ° C. Maintained. At this temperature, the ethylene was continuously supplied for 30 minutes while the ethylene was continuously fed to have an ethylene partial pressure of 10.0 atm, and then the ethylene supply was stopped, and the unreacted ethylene was vented out of the reactor. The remaining MAO was inactivated by the addition of 20 ml of ethanol. The reactants were separated into liquid and solid components through distillation and filtration, and the liquid components were analyzed by gas chromatography. The solid components were washed in acidified ethanol for 1 hour and then dried at 70 ° C. in vacuo. . The catalyst activity and selectivity were then evaluated and the results are shown in Table 1 below.

실험 결과, 본 발명에 따른 비크롬 전이금속계 촉매는 비교예의 촉매와 대등한 1-헥센 선택도와 월등히 높은 촉매 활성을 가짐을 확인할 수 있었다. As a result, it was confirmed that the non-chromium transition metal catalyst according to the present invention had 1-hexene selectivity comparable to that of the comparative example and a significantly higher catalytic activity.

촉매 활성
(g C6/mmol 금속, h)
Catalytic activity
(g C6 / mmol metal, h)
선택도 (wt%)Selectivity (wt%)
1-헥센1-hexene 1-데센1-decene 폴리에틸렌(PE)Polyethylene (PE) 실시예1Example 1 6,5506,550 84.084.0 13.213.2 2.82.8 실시예2Example 2 2,6702,670 76.576.5 19.219.2 4.34.3 실시예3Example 3 820820 79.179.1 16.316.3 4.64.6 실시예4Example 4 2,2902,290 87.087.0 10.710.7 2.32.3 실시예5Example 5 1,8701,870 74.174.1 18.918.9 7.07.0 비교예Comparative example 280280 70.970.9 21.521.5 7.67.6

실험예Experimental Example 2. 에틸렌  2. Ethylene 삼량화Trimerization 및 촉매 특성 평가 And catalyst characterization

실시예 1의 촉매에 대해 다양한 조건 하에서의 활성과 선택도를 하기 표 2와 같이 평가하였다. The activity and selectivity under various conditions of the catalyst of Example 1 were evaluated as shown in Table 2 below.

이때 실시예 8은 촉매 주입 방식을 시린지(syringe) 방식에서 촉매 탱크(tank) 이용방법으로 변경한 것이다. 참고로, 시린지(syringe) 방식은 질소를 흘려주면서 반응기로의 공기주입을 최대한 차단하며 촉매를 주입하는 방식이고, tank 이용방법은 반응기 상태가 세팅한 온도와 에틸렌 압력에 도달했을 때 반응기에 개별적으로 부착된 촉매 탱크에 고압으로 순간적으로 분사하여 주입하는 방식이다.At this time, Example 8 is changed from the syringe injection method (syringe) to the catalyst tank (tank) method. For reference, the syringe method is a method of injecting a catalyst while blocking the injection of air into the reactor as much as possible while flowing nitrogen, and the method of using a tank individually when the temperature of the reactor reaches the set temperature and ethylene pressure. It is a method of injection by instant injection at high pressure to the attached catalyst tank.

실험 결과, 본 발명에 따른 신규 전이금속계 촉매는 다양한 조건하에서 우수한 촉매활성과 1-헥센 선택도를 동시에 나타낸다는 것을 확인할 수 있었다. 특히, 조촉매의 양과 에틸렌 분압이 높아질수록 월등히 높은 촉매 활성과 1-헥센 선택도를 가짐을 알 수 있었다. As a result, it was confirmed that the novel transition metal catalyst according to the present invention simultaneously shows excellent catalytic activity and 1-hexene selectivity under various conditions. In particular, as the amount of promoter and the ethylene partial pressure increased, it was found that the catalyst had significantly higher catalytic activity and 1-hexene selectivity.

  촉매 활성Catalytic activity 선택도 (wt%)Selectivity (wt%) MAO양
(e.q.)
MAO quantity
(eq)
EL압력
(bar)
EL pressure
(bar)
(g C6/mmol 금속, h)(g C6 / mmol metal, h) 1-헥센1-hexene 1-데센1-decene 폴리에틸렌(PE)Polyethylene (PE)
실시예1Example 1 20002000 1010 6,5506,550 84.084.0 13.213.2 2.82.8 실시예6Example 6 15001500 1010 8,9208,920 83.283.2 15.715.7 1.11.1 실시예7Example 7 1000010000 1515 11,80011,800 9090 7.27.2 2.82.8 실시예8Example 8 15001500 1010 4,4004,400 9292 6.96.9 1.11.1 실시예9Example 9 15001500 1010 2,5002,500 9292 5.35.3 2.72.7 실시예10Example 10 15001500 1010 6,6006,600 8989 9.69.6 1.41.4 - 실시예8: 촉매 주입 방식 변경 (syringe → 촉매 tank)
- 실시예9: 반응온도 20℃→50℃
- 실시예10: toluene → cyclohexane으로 solvent 변경
Example 8 catalyst injection mode change (syringe → catalyst tank)
Example 9: reaction temperature 20 ° C. → 50 ° C.
Example 10: solvent change from toluene to cyclohexane

Claims (11)

하기 화학식 1 내지 화학식 3 중 어느 하나로 표시되는 것을 특징으로 하는 전이금속 화합물:
[화학식 1]
Figure pat00008

[화학식 2]
Figure pat00009

[화학식 3]
Figure pat00010

상기 식에서,
M은 주기율표상의 3족 내지 10족 원소로 이루어진 군에서 선택되고,
Cp는 치환 또는 비치환된 시클로펜타디에닐 골격을 가지는 리간드이며,
B는 주기율표상의 13족 내지 16족 원소를 포함하는 연결그룹(bridging group)으로서, 이때 연결그룹은 하나 이상의 이종 원자를 포함하거나 또는 인접하는 기와 고리를 형성할 수 있으며,
n은 1 내지 10의 정수이며,
m은 0 내지 5의 정수이고, m이 0일 경우 시클로펜타디에닐 골격을 갖는 리간드에 결합된 치환체는 모두 수소이며,
Ar은 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 또는 탄소수 5 내지 30의 헤테로아릴기이며,
O와 N은 각각 산소 (Oxygen) 원자와 질소 (Nitrogen) 원자이며,
Q1, Q2 및 Q3는 산소 원자와 질소 원자를 연결하는 연결기로서, 하기 화학식 4로 표시되며,
[화학식 4]
Figure pat00011

R, R1, R2는 서로 같거나 또는 상이하며, 각각 독립적으로 수소 원자, 할로겐기, 치환 또는 비치환된 탄소수 1~20개의 알킬기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴기, 치환 또는 비치환된 탄소수 1~20개의 실릴알킬기, 치환 또는 비치환된 탄소수 1~20개의 할로알킬기, 치환 또는 비치환된 탄소수 6~20개의 아릴기, 치환 또는 비치환된 탄소수 7~20개의 아릴알킬기, 치환 또는 비치환된 탄소수 7~20개의 알킬아릴기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴기, 치환 또는 비치환된 탄소수 6~20개의 실릴아릴기, 치환 또는 비치환된 탄소수 1~20개의 알콕시기, 치환 또는 비치환된 탄소수 1~20개의 알킬실록시기, 치환 또는 비치환된 탄소수 6~20개의 아릴옥시기, 및 치환 또는 비치환된 아미노기로 이루어진 군에서 선택되며, 이때 이들은 인접한 기와 고리(ring)를 형성하거나 또는 비형성하며
Y1, Y2는 서로 같거나 또는 상이하며, 각각 독립적으로 수소 원자, 치환 또는 비치환된 탄소수 1~20개의 알킬기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴기, 치환 또는 비치환된 탄소수 1~20개의 실릴알킬기, 치환 또는 비치환된 탄소수 6~20개의 아릴기, 치환 또는 비치환된 탄소수 7~20개의 아릴알킬기, 치환 또는 비치환된 탄소수 7~20개의 알킬아릴기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴기, 및 치환 또는 비치환된 탄소수 6~20개의 실릴아릴기로 구성된 군으로부터 선택되며,
X1, X2는 서로 같거나 또는 상이하며, 각각 독립적으로 수소 원자, 할로겐기, 치환 또는 비치환된 탄소수 1~20개의 알킬기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴기, 치환 또는 비치환된 탄소수 1~20개의 실릴알킬기, 치환 또는 비치환된 탄소수 1~20개의 할로알킬기, 치환 또는 비치환된 탄소수 6~20개의 아릴기, 치환 또는 비치환된 탄소수 7~20개의 아릴알킬기, 치환 또는 비치환된 탄소수 7~20개의 알킬아릴기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴기, 치환 또는 비치환된 탄소수 6~20개의 실릴아릴기, 치환 또는 비치환된 탄소수 1~20개의 알콕시기, 치환 또는 비치환된 탄소수 1~20개의 알킬실록시기, 치환 또는 비치환된 탄소수 6~20개의 아릴옥시기, 및 테트라하이드로보레이트(Tetrahydroborate)기로 구성된 군으로부터 선택된다.
A transition metal compound characterized by represented by any one of the following Chemical Formulas 1 to 3:
[Formula 1]
Figure pat00008

(2)
Figure pat00009

(3)
Figure pat00010

In this formula,
M is selected from the group consisting of Group 3 to Group 10 elements on the periodic table,
Cp is a ligand having a substituted or unsubstituted cyclopentadienyl skeleton,
B is a bridging group containing elements of Groups 13-16 on the periodic table, where the linking group may contain one or more heteroatoms or form a ring with adjacent groups,
n is an integer of 1 to 10,
m is an integer from 0 to 5, and when m is 0, all substituents bound to the ligand having a cyclopentadienyl skeleton are hydrogen,
Ar is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms or a heteroaryl group having 5 to 30 carbon atoms,
O and N are oxygen atoms and nitrogen atoms, respectively
Q1, Q2 and Q3 are a linking group connecting an oxygen atom and a nitrogen atom, and are represented by the following Chemical Formula 4,
[Chemical Formula 4]
Figure pat00011

R, R 1 and R 2 are the same as or different from each other, and each independently a hydrogen atom, a halogen group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, substituted Or unsubstituted C1-C20 alkylsilyl group, substituted or unsubstituted C1-C20 silylalkyl group, substituted or unsubstituted C1-C20 haloalkyl group, substituted or unsubstituted C6-C20 aryl Groups, substituted or unsubstituted C7-20 arylalkyl groups, substituted or unsubstituted C7-20 alkylaryl groups, substituted or unsubstituted C6-C20 arylsilyl groups, substituted or unsubstituted C6 ˜20 silylaryl groups, substituted or unsubstituted C1-C20 alkoxy groups, substituted or unsubstituted C1-C20 alkylsiloxy groups, substituted or unsubstituted C6-C20 aryloxy groups, and substituted Or an unsubstituted amino group It is selected from the group, wherein these form an adjacent ring group (ring) or a non-form and
Y 1 and Y 2 are the same as or different from each other, and each independently a hydrogen atom, a substituted or unsubstituted C1-20 alkyl group, a substituted or unsubstituted C3-20 cycloalkyl group, a substituted or unsubstituted carbon number 1-20 alkylsilyl groups, substituted or unsubstituted C1-C20 silylalkyl groups, substituted or unsubstituted C6-C20 aryl groups, substituted or unsubstituted C7-20 arylalkyl groups, substituted or unsubstituted It is selected from the group consisting of a substituted C7-20 alkylaryl group, a substituted or unsubstituted C6-C20 arylsilyl group, and a substituted or unsubstituted C6-C20 silylaryl group,
X 1 and X 2 are the same as or different from each other, and each independently a hydrogen atom, a halogen group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted A substituted C1-C20 alkylsilyl group, a substituted or unsubstituted C1-C20 silylalkyl group, a substituted or unsubstituted C1-C20 haloalkyl group, a substituted or unsubstituted C6-C20 aryl group, Substituted or unsubstituted C7-20 arylalkyl group, substituted or unsubstituted C7-20 alkylaryl group, substituted or unsubstituted C6-20 arylsilyl group, substituted or unsubstituted C6-20 Silylaryl groups, substituted or unsubstituted C1-C20 alkoxy groups, substituted or unsubstituted C1-C20 alkylsiloxy groups, substituted or unsubstituted C6-C20 aryloxy groups, and tetrahydroborate Tetrahydroborate group It is selected from the group consisting.
제1항에 있어서,
상기 M은 티타늄(Ti), 지르코늄(Zr), 바나듐(V) 및 탄탈(Ta)로 이루어진 군에서 선택되는 것을 특징으로 하는 전이금속 화합물.
The method of claim 1,
The M is a transition metal compound, characterized in that selected from the group consisting of titanium (Ti), zirconium (Zr), vanadium (V) and tantalum (Ta).
제1항에 있어서,
상기 B는 치환 또는 비치환된 탄소수 1~20개의 알킬렌기; 치환 또는 비치환된 탄소수 3~20개의 시클로알킬렌기; 치환 또는 비치환된 탄소수 1~20개의 알킬실릴렌기; 치환 또는 비치환된 탄소수 6~20개의 할로알킬렌기; 치환 또는 비치환된 탄소수 6~20개의 아릴알킬렌기; 치환 또는 비치환된 탄소수 6~20개의 아릴실릴렌기; 치환 또는 비치환된 탄소수 5~40개의 아릴렌기; 및 두 개의 아릴렌기 사이에 치환 또는 비치환된 탄소수 1~20개의 알킬렌기, 치환 또는 비치환된 탄소수 3~20개의 시클로알킬렌기, 치환 또는 비치환된 탄소수 1~20개의 알킬실릴렌기, 치환 또는 비치환된 탄소수 6~20개의 할로알킬렌기, 치환 또는 비치환된 탄소수 6~20개의 아릴알킬렌기, 치환 또는 비치환된 탄소수 6~20개의 아릴실릴렌기, 및 치환 또는 비치환된 탄소수 7~20개의 알킬아릴렌기를 포함하는 작용기로 이루어진 군에서 선택되며, 이때 탄소와 규소에 2 종류 이상의 치환기가 결합될 경우, 이들 치환기는 서로 연결되어 고리를 형성할 수 있는 작용기로부터 선택되는 것이 특징인 전이금속 화합물.
The method of claim 1,
B is a substituted or unsubstituted C 1-20 alkylene group; A substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms; Substituted or unsubstituted C1-C20 alkylsilylene group; A substituted or unsubstituted haloalkylene group having 6 to 20 carbon atoms; Substituted or unsubstituted arylalkylene group having 6 to 20 carbon atoms; Substituted or unsubstituted arylsilylene group having 6 to 20 carbon atoms; A substituted or unsubstituted arylene group having 5 to 40 carbon atoms; And substituted or unsubstituted C1-C20 alkylene group, substituted or unsubstituted C3-C20 cycloalkylene group, substituted or unsubstituted C1-C20 alkylsilylene group between two arylene groups, substituted or Unsubstituted C6-C20 haloalkylene group, substituted or unsubstituted C6-C20 arylalkylene group, substituted or unsubstituted C6-C20 arylsilylene group, and substituted or unsubstituted C7-C20 It is selected from the group consisting of functional groups containing two alkyl arylene groups, wherein when two or more substituents are bonded to carbon and silicon, these substituents are selected from a functional group that can be linked to each other to form a ring compound.
제1항에 있어서,
Ar은 페닐기, 바이페닐기, 터페닐기 나프탈릴기, 안트라실, 펜안트릴, 피리디닐, 피라지닐기, 퀴놀리닐기로 구성된 군으로부터 선택되며,
상기 치환기는 각각 수소 원자, 탄소수 1~20개의 알킬(Alky)기, 탄소수 3~20개의 시클로알킬기(cycloalkyl), 탄소수 1~20개의 알킬실릴(alkylsilyl)기, 치환 또는 비치환된 탄소수 1~20개의 실릴알킬기, 탄소수 1~20개의 할로알킬(haloalkyl)기, 탄소수 6~20개의 아릴(Aryl)기, 탄소수 7~20개의 아릴알킬(Arylalkyl)기, 탄소수 6~20개의 아릴실릴(Arylsilyl)기, 탄소수 6~20개의 실릴아릴기, 탄소수 7~20개의 알킬아릴(Alkylaryl)기, 탄소수 1~20개의 알콕시(alkoxy)기, 탄소수 1~20개의 알킬실록시(Alkylsiloxy)기, 탄소수 6~20개의 아릴옥시(Aryloxy)기, 할로겐(Halogen)기 및 아미노(Amino)기로 이루어진 군에서 선택된 1종 이상의 치환기로 치환되는 것을 특징으로 하는 전이금속 화합물.
The method of claim 1,
Ar is selected from the group consisting of phenyl group, biphenyl group, terphenyl group naphthalyl group, anthracyl, phenanthryl, pyridinyl, pyrazinyl group, quinolinyl group,
The substituents each represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an cycloalkyl group having 3 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon group having 1 to 20 carbon atoms. Silylalkyl groups, C1-C20 haloalkyl groups, C6-C20 aryl groups, C6-C20 arylalkyl groups, C6-C20 arylsilyl groups , C6-C20 silylaryl group, C7-C20 alkylaryl (Alkylaryl) group, C1-C20 alkoxy group, C1-C20 Alkylsiloxy group, C6-C20 Transition metal compound, characterized in that substituted by one or more substituents selected from the group consisting of aryloxy group, halogen (Halogen) group and amino (Amino group).
(A) 제1항의 전이금속 화합물계 주촉매; 및
(B) 상기 전이금속 화합물과 반응하여 전이금속 화합물을 활성화시키는 알킬알루미늄계 또는 약배위 루이스산계 조촉매 화합물을 포함하는 1-헥센 제조용 촉매.
(A) the transition metal compound-based main catalyst of claim 1; And
(B) A catalyst for producing 1-hexene comprising an alkylaluminum-based or weakly coordinated Lewis acid-based promoter compound which reacts with the transition metal compound to activate the transition metal compound.
제5항에 있어서,
상기 조촉매 화합물(B)은 하기 화학식 5 내지 화학식 7 중 어느 하나로 표시되는 화합물인 것을 특징으로하는 1-헥센 제조용 촉매:
[화학식 5]
Figure pat00012

[화학식 6]
Figure pat00013

[화학식 7]
Figure pat00014

상기 식에서,
R3는 탄소수 1~10개의 알킬기이며, n은 1~70의 정수이며,
R4, R5, R6는 서로 같거나 또는 상이하며, 각각 독립적으로 탄소수 1~10개의 알킬기, 탄소수 1~10개의 알콕시기 또는 할로겐기로서, 이때 R4, R5, R6 중 적어도 하나 이상은 탄소수 1~10개의 알킬기이며,
C는 루이스 염기의 수소이온 결합 양이온, 산화력이 있는 금속 또는 비금속 화합물이고,
D는 주기율표상의 5~15족에 속하는 원소와 유기물질의 화합물이며, 이때 상기 C가 없으면, D는 루이스 산 성질을 띄는 화합물이다.
The method of claim 5,
The cocatalyst compound (B) is a catalyst for producing 1-hexene, characterized in that the compound represented by any one of the following formulas (5) to (7):
[Chemical Formula 5]
Figure pat00012

[Chemical Formula 6]
Figure pat00013

(7)
Figure pat00014

In this formula,
R 3 is an alkyl group having 1 to 10 carbon atoms, n is an integer of 1 to 70,
R 4 , R 5 , and R 6 are the same as or different from each other, and each independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen group, wherein at least one of R 4 , R 5 , and R 6 The above is an alkyl group having 1 to 10 carbon atoms,
C is a hydrogen ion bonding cation of a Lewis base, an oxidizing metal or nonmetallic compound,
D is a compound of an element and an organic substance belonging to Groups 5 to 15 of the periodic table. In the absence of C, D is a compound having Lewis acid property.
제6항에 있어서,
상기 화학식 5로 표시되는 화합물은 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산, 헥실알루미녹산, 옥틸알루미녹산, 및 데실알루미녹산으로 구성된 군에서 선택되는 것을 특징으로 하는 1-헥센 제조용 촉매.
The method according to claim 6,
The compound represented by the formula (5) is 1-hexene production catalyst, characterized in that selected from the group consisting of methyl aluminoxane, ethyl aluminoxane, butyl aluminoxane, hexyl aluminoxane, octyl aluminoxane, and decyl aluminoxane.
제6항에 있어서,
상기 화학식 6으로 표시되는 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리부틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 트리데실알루미늄, 디메틸알루미늄 메톡사이드, 디에틸알루미늄 메톡사이드, 디부틸알루미늄 메톡사이드, 디메틸알루미늄 클로라이드, 디에틸알루미늄 클로라이드, 디부틸알루미늄 클로라이드, 메틸알루미늄 디메톡사이드, 에틸알루미늄 디메톡사이드, 부틸알루미늄 디메톡사이드, 메틸알루미늄 디클로라이드, 에틸알루미늄 디클로라이드, 및 부틸알루미늄 디클로라이드로 구성된 군으로부터 선택되는 것을 특징으로 하는 1-헥센 제조용 촉매.
The method according to claim 6,
The compound represented by the formula (6) is trimethyl aluminum, triethyl aluminum, tributyl aluminum, trihexyl aluminum, trioctyl aluminum, tridecyl aluminum, dimethyl aluminum methoxide, diethyl aluminum methoxide, dibutyl aluminum methoxide, dimethyl aluminum Selected from the group consisting of chloride, diethylaluminum chloride, dibutylaluminum chloride, methylaluminum dimethoxide, ethylaluminum dimethoxide, butylaluminum dimethoxide, methylaluminum dichloride, ethylaluminum dichloride, and butylaluminum dichloride 1-hexene production catalyst, characterized in that.
제6항에 있어서,
상기 화학식 7로 표시되는 화합물은 트리메틸암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리부틸암모늄 테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리부틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 아닐리늄 테트라페닐보레이트, 아닐리늄 테트라키스(펜타플루오로페닐)보레이트, 피리디늄 테트라페닐보레이트, 피리디늄 테트라키스(펜타플루오로페닐)보레이트, 페로세늄 테트라키스(펜타플루오로페닐)보레이트, 실버 테트라페닐보레이트, 실버 테트라키스(펜타플루오로페닐)보레이트, 트리스(펜타플루오로페닐)보레인, 트리스(2,3,5,6-테트라플루오로페닐)보레인, 트리스(2,3,4,5-테트라페닐페닐)보레인, 및 트리스(3,4,5-트리플루오로페닐)보레인으로 구성된 군으로부터 선택되는 것을 특징으로 하는 1-헥센 제조용 촉매.
The method according to claim 6,
Compound represented by the formula (7) is trimethylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tributylammonium tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, triethylammonium Tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (pentafluorophenyl) borate, tributylammonium tetrakis (pentafluorophenyl) borate, anninium tetraphenylborate, anninium tetrakis (pentafluoro Phenyl) borate, pyridinium tetraphenylborate, pyridinium tetrakis (pentafluorophenyl) borate, ferrocenium tetrakis (pentafluorophenyl) borate, silver tetraphenylborate, silver tetrakis (pentafluorophenyl) borate, Tris (pentafluorophenyl) borane, Lis (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetraphenylphenyl) borane, and tris (3,4,5-trifluorophenyl) bore Catalyst for producing 1-hexene, characterized in that it is selected from the group consisting of phosphorus.
제6항의 1-헥센 제조용 촉매의 존재 하에서 에틸렌을 삼량화 반응시키는 것을 특징으로 하는 1-헥센의 제조방법.Method for producing 1-hexene, characterized in that the ethylene trimerization reaction in the presence of the catalyst for producing 1-hexene of claim 6. 제10항에 있어서, 상기 반응 온도는 0 내지 200℃ 범위이며, 반응 압력은 1 내지 100 bar 범위인 것을 특징으로 하는 1-헥센의 제조방법.The method of claim 10, wherein the reaction temperature is in the range of 0 to 200 ° C, and the reaction pressure is in the range of 1 to 100 bar.
KR1020120013949A 2012-02-10 2012-02-10 1 1 catalysts for preparing 1hexene and method for preparing 1hexene using the same KR101543056B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120013949A KR101543056B1 (en) 2012-02-10 2012-02-10 1 1 catalysts for preparing 1hexene and method for preparing 1hexene using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120013949A KR101543056B1 (en) 2012-02-10 2012-02-10 1 1 catalysts for preparing 1hexene and method for preparing 1hexene using the same

Publications (2)

Publication Number Publication Date
KR20130092300A true KR20130092300A (en) 2013-08-20
KR101543056B1 KR101543056B1 (en) 2015-08-07

Family

ID=49217173

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120013949A KR101543056B1 (en) 2012-02-10 2012-02-10 1 1 catalysts for preparing 1hexene and method for preparing 1hexene using the same

Country Status (1)

Country Link
KR (1) KR101543056B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501853B1 (en) * 2013-11-29 2015-03-12 롯데케미칼 주식회사 Process for preparing ethylene-propylene-diene terpolymer using transition metal compound comprising thiophene-fused cyclopentadienyl ligand

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5807325B2 (en) * 2009-09-30 2015-11-10 住友化学株式会社 Transition metal complex, method for producing the transition metal complex, catalyst for trimerization, method for producing 1-hexene, method for producing ethylene polymer, substituted cyclopentadiene compound, and method for producing the substituted cyclopentadiene compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101501853B1 (en) * 2013-11-29 2015-03-12 롯데케미칼 주식회사 Process for preparing ethylene-propylene-diene terpolymer using transition metal compound comprising thiophene-fused cyclopentadienyl ligand

Also Published As

Publication number Publication date
KR101543056B1 (en) 2015-08-07

Similar Documents

Publication Publication Date Title
CN100532400C (en) Catalyst system for the polymerization of olefins
KR101685664B1 (en) Supported hybrid catalyst and method for preparing of olefin based polymer using the same
CN105324388B (en) Bimetal complex containing cyclopentadienyl group and amidine ligand
CN101616922A (en) Contain novel the 4th group transition metal compound of cyclopentadienyl ligands, the method for preparing the method for this compound and use this compound olefin polymer
CN100432084C (en) Non-metallocenes, method for production thereof and use thereof in polymerization of olefins
KR101228582B1 (en) Metallocene catalyst for polyolefin polymerization and preparation method of polyolefin using the same
KR101654432B1 (en) Process for the preparation of 1-hexene and 1-oxtene
KR20100104564A (en) Novel transition metal complexes
KR100961079B1 (en) Catalyst for polymerization of olefin and polymerization process of olefin using the same
KR101543056B1 (en) 1 1 catalysts for preparing 1hexene and method for preparing 1hexene using the same
KR20020003874A (en) Metal Organic Catalysts For Polymerizing Unsaturated Compounds
KR20140015666A (en) Tandem catalyst system comprising transition metal compound for alpha-olefin synthesis, and preparation method for polyethylene using the system
KR101178996B1 (en) Catalysts for preparing 1-hexene and method for preparing 1-hexene using the same
JP7042122B2 (en) Olefin polymerization catalyst
Rojas et al. Substituted cyclopentadienylchromium (III) complexes containing neutral donor ligands. Synthesis, crystal structures and reactivity in ethylene polymerization
KR100834889B1 (en) Transition metal compound, catalyst for polymerization of propylene and preparation method of propylene polymer
KR101018484B1 (en) Supported catalyst for polymerization of propylene and preparation method of propylene polymer using the same
KR101787166B1 (en) Method of preparing novel ligand compound and transition metal compound
Koch et al. PH-functionalised phosphanylalkyl (silyl) cyclopentadienyl ligands:: Synthesis and catalytic properties of [{(η5-C5H4) CMe2PHtBu} MCl3](M= Ti, Zr) and [{(η5-C5H4) SiMe2PHR} ZrCl3](R= Ph, Cy)
KR102065162B1 (en) Method of preparing novel transition metal compound
KR101828645B1 (en) Novel ligand compound and transition metal compound
JP3798327B2 (en) Transition metal complexes used for olefin polymerization
KR101720843B1 (en) Manufacturing method of ethylene polymers and ethylene polymers manufactured therefrom
JP2018172666A (en) Olefin polymerization catalyst
JP2020056021A (en) Olefin polymerization catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190805

Year of fee payment: 5