KR20130090698A - Apparatus and method for treating gas powder for semicouductor process system - Google Patents

Apparatus and method for treating gas powder for semicouductor process system Download PDF

Info

Publication number
KR20130090698A
KR20130090698A KR1020120012022A KR20120012022A KR20130090698A KR 20130090698 A KR20130090698 A KR 20130090698A KR 1020120012022 A KR1020120012022 A KR 1020120012022A KR 20120012022 A KR20120012022 A KR 20120012022A KR 20130090698 A KR20130090698 A KR 20130090698A
Authority
KR
South Korea
Prior art keywords
powder
gas
reaction chamber
chamber
reaction
Prior art date
Application number
KR1020120012022A
Other languages
Korean (ko)
Other versions
KR101909429B1 (en
Inventor
김익년
김성락
Original Assignee
(주)트리플코어스코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)트리플코어스코리아 filed Critical (주)트리플코어스코리아
Priority to KR1020120012022A priority Critical patent/KR101909429B1/en
Publication of KR20130090698A publication Critical patent/KR20130090698A/en
Application granted granted Critical
Publication of KR101909429B1 publication Critical patent/KR101909429B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Treating Waste Gases (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE: An apparatus and method for processing gas powder for a semiconductor processing system are provided to increase the lifetime of a pump by including a processing chamber and a reaction chamber. CONSTITUTION: A processing chamber (100) receives a processing gas. A reaction chamber receives an exhaust gas. A pump (120) applies a vacuum to the processing chamber. A heating block raises the temperature of the reaction chamber. A cooling block collects powder. [Reference numerals] (AA) ALD exhaust gas

Description

반도체 공정 시스템용 가스 파우더처리 장치 및 방법{Apparatus and method for treating gas powder for semicouductor process system}Apparatus and method for treating gas powder for semicouductor process system

본 발명은 반도체 공정 시스템용 가스 파우더처리 장치 및 방법에 관한 것으로, 보다 상세하게는 플라즈마를 이용하여 원자막 화학기상공정에서 배출되는 파우더를 효과적으로 제거하여, 공정 효율을 향상시키고, 펌프 수명을 연장시킬 수 있는 반도체 공정 시스템용 가스 파우더처리 장치 및 방법에 관한 것이다. The present invention relates to a gas powder treatment apparatus and method for a semiconductor process system, and more particularly, to effectively remove powder discharged from an atomic membrane chemical vapor process using plasma, thereby improving process efficiency and extending pump life. The present invention relates to a gas powder processing apparatus and method for a semiconductor processing system.

반도체 제조에는 가스를 이용하여 반응을 유도하는 공정이 많이 사용된다. 이 중 하나는 박막을 증착하는 증착공정으로, 이 중 하나는 원자막 화학기상증착공정이다. 원자막 화학기상증착공정(ALD CVD) 공정은 반응 가스를 한번에 같이 흘리지않고, 수초간 번갈아 흘려서 기판위에서의 반응을 최소화함으로서 원자크기만큼의 박막을 키우는데 적절하다. 단, 대부분의 반응가스가 서로 만나지 않고 배기라인을 통하여 펌프로 유입되며, 이러한 배기 진행중 반응하여 배기라인이나 펌프에 쌓여 문제를 일으키고있다. 대표적인 예로서, WN (Tungsten Nitride) 공정이 있으며, 반응가스로는 WF6, NH3, B2H6등의 가스를 수초 (1-3초)씩 순차적으로 흘려서 반응시키는 공정이다.In semiconductor manufacturing, a process of inducing a reaction using a gas is frequently used. One of them is a deposition process for depositing a thin film, and one of them is an atomic film chemical vapor deposition process. The ALD CVD process is suitable for growing an atomic size thin film by minimizing the reaction on the substrate by alternately flowing the reactant gas for several seconds without flowing the reaction gas at once. However, most of the reaction gas is introduced into the pump through the exhaust line without meeting each other, and the reaction occurs during the exhaust and accumulates in the exhaust line or the pump, causing a problem. As a representative example, there is a Tungsten Nitride (WN) process, and the reaction gas is a process in which gases such as WF 6, NH 3, and B 2 H 6 are sequentially flowed for several seconds (1-3 seconds).

여기에서 WF6는 B2H6나 NH3등과 고온에서 반응하며 (보통은 150도씨 이상), WB, WN등의 부산물을 만들어낸다.Here, WF6 reacts with B2H6 or NH3 at high temperatures (usually above 150 ° C), producing by-products such as WB and WN.

WF6와 NH3의 ALD CVD공정중의 반응 메커니즘은 다음 식과 같다. The reaction mechanism of ALD CVD process of WF6 and NH3 is as follows.

WFx + NH3 → W-NH* + HF + F2WFx + NH3 → W-NH * + HF + F2

W-NH* + WF6 → WN-WF* + HF + F2W-NH * + WF6 → WN-WF * + HF + F2

여기에서 W-NH*, WN-WF* 등은 잔류의 WF6와 NH3등에 반응하며, 쉽게 생성물을 만드는 프리커서 역할을 하고있다. 이후 반응된 물질중, W, WN, W2N 등은 솔리드 물질로 파우더 혹은 코팅된 물질로 잔류하게 되고, 나머지 WFx, NFx, H2등은 가스상태로 배기된다. 이러한 반응 메커니즘은 공정중 순차적으로 유입되는 가스와, 그 잔류가스가 반응하며 반응물을 만들어내고, 미반응 가스 대부분은 배기라인 등에 잔류물질로 남아 지속적으로 조금씩 반응하여, 배관 막힘 등으로 펌프 수명을 단축시킨다. 이와 같이 공정가스를 반응시키는 반도체 공정에서는 공정 후 배출되는 미반응 가스의 반응이 펌프 등과 같은 공정장치에 벌어지는 문제가 발생한다.
Here, W-NH *, WN-WF * reacts with residual WF6 and NH3, and acts as a precursor to easily produce the product. Then, among the reacted materials, W, WN, W2N and the like remain as a powder or a coated material as a solid material, the remaining WFx, NFx, H2 and the like is exhausted in a gaseous state. This reaction mechanism reacts with the gas which is sequentially introduced during the process, and the residual gas reacts to produce the reactant, and most of the unreacted gas remains as a residual material in the exhaust line and continuously reacts little by little, shortening the pump life by clogging the pipe. Let's do it. As described above, in a semiconductor process in which a process gas is reacted, a problem occurs that a reaction of an unreacted gas discharged after the process occurs in a process apparatus such as a pump.

이에 따라, 본 발명이 해결하려는 과제는 ALD CVD와 같은 반도체 공정 중 배출되는 반응가스의 반응에 따라 형성되는 파우더 등과 같은 잔류물을 효과적으로 처리할 수 있는, 저압용 파우더 처리 장치를 제공하는 것이다. Accordingly, the problem to be solved by the present invention is to provide a low-pressure powder processing apparatus that can effectively process the residue, such as powder formed by the reaction of the reaction gas discharged during the semiconductor process, such as ALD CVD.

상기 과제를 해결하기 위하여, 본 발명은 공정가스가 유입되어 반응하는 공정챔버(110) 및 상기 공정챔버(110)에 진공을 인가하기 위한 펌프(120)를 구비한 반도체 공정 시스템용 가스 파우더처리 장치로, 상기 장치는 상기 공정챔버로부터 배출되는 배기가스가 유입되는 반응챔버(111); 상기 반응챔버(111) 내에 구비되어, 상기 반응챔버(111) 내 온도를 상승시키는 히팅블록((113); 상기 반응챔버(111) 내에서 상기 배기가스 반응에 따라 형성된 파우더가 포집되는 쿨링블록(117); 및 상기 포집된 파우더를 가스화시키기 위한 플로린계 라디칼을 상기 반응챔버(111) 내로 공급하기 위한 플라즈마 공급원(115)을 포함하는 것을 특징으로 하는 원자막 화학기상증착공정 파우더 처리장치를 제공한다. In order to solve the above problems, the present invention is a gas powder processing apparatus for a semiconductor process system having a process chamber 110 is introduced into the process gas and the pump 120 for applying a vacuum to the process chamber 110 The apparatus includes a reaction chamber 111 into which exhaust gas discharged from the process chamber is introduced; A heating block 113 provided in the reaction chamber 111 to increase a temperature in the reaction chamber 111; a cooling block in which powder formed according to the exhaust gas reaction is collected in the reaction chamber 111; 117) and a plasma source 115 for supplying florin-based radicals for gasifying the collected powder into the reaction chamber 111. .

본 발명에 따른 파우더 처리장치는 공정챔버와 펌프 사이에 저압으로 운전되는 반응챔버를 포함하며, 상기 반응챔버에서 미반응 가스 등을 반응시켜, 잔류 가스가 펌프로 유입되는 것을 방지한다. 더 나아가 리모트 플라즈마 시스템을 이용하여, 배기가스에 라디칼을 혼합시켜, 포집된 W, WN, W2N 등의 부산물을 챔버 내에서 제거한다. 이로써 펌프 수명 연장, 높은 반도체 공정효율 등을 달성할 수 있다. The powder processing apparatus according to the present invention includes a reaction chamber operated at a low pressure between the process chamber and the pump, and reacts the unreacted gas in the reaction chamber, thereby preventing the residual gas from flowing into the pump. Furthermore, using a remote plasma system, radicals are mixed in the exhaust gas to remove by-products such as W, WN, and W2N trapped in the chamber. This can achieve longer pump life, higher semiconductor process efficiency, and the like.

도 1은 본 발명의 일 실시예에 따른 ALD 공정 파우더 처리장치를 포함하는 ALD 공정 시스템의 모식도이다.
도 2는 본 발명의 일 실시예에 따른 파우더 처리 장치를 포함하는 시스템의 모식도이다.
도 3은 본 발명의 일 실시예에 따른 히팅블록 및 쿨링블록을 포함하는 반응챔버의 단면도이다.
도 4는 본 발명의 일 실시예에 따른 ALD공정 부산물 처리 방법의 단계도이다.
1 is a schematic diagram of an ALD process system including an ALD process powder processing apparatus according to an embodiment of the present invention.
2 is a schematic diagram of a system including a powder processing apparatus according to an embodiment of the present invention.
3 is a cross-sectional view of a reaction chamber including a heating block and a cooling block according to an embodiment of the present invention.
Figure 4 is a step of the ALD process by-product processing method according to an embodiment of the present invention.

본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야만 한다. In order to fully understand the present invention, operational advantages of the present invention, and objects achieved by the practice of the present invention, reference should be made to the accompanying drawings and the accompanying drawings which illustrate preferred embodiments of the present invention.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 설명하는 실시예에 한정되는 것이 아니다. 그리고, 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략되며, 도면의 동일한 참조부호는 동일한 부재임을 나타낸다. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the preferred embodiments of the present invention with reference to the accompanying drawings. However, the present invention can be implemented in various different forms, and is not limited to the embodiments described. In order to clearly describe the present invention, parts that are not related to the description are omitted, and the same reference numerals in the drawings denote the same members.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 “...부”, “...기”, “모듈”, “블록” 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Throughout the specification, when an element is referred to as " including " an element, it does not exclude other elements unless specifically stated to the contrary. The terms "part", "unit", "module", "block", and the like described in the specification mean units for processing at least one function or operation, And a combination of software.

본 발명은 상술한 문제를 해결하기 위하여, ALD와 같은 가스공정이 진행되는 공정챔버와 상기 공정챔버에 진공압을 인가하기 위한 펌프 사이에 별도의 반응챔버를 구비시켜, 상기 공정챔버로부터 배출되는 미반응 가스가 바로 펌프로 유입되는 방지하며, 이로써 펌프의 파우더에 의한 막힘 그리고 F 라디컬에 의한 펌프 부식 등의 문제를 효과적으로 방지한다. 이하 ALD 공정을 이용하여, 본 발명에 따른 파우더 처리장치를 상세히 설명하나, 본 발명에 따른 가스 파우더 처리장치는 가스가 사용되며, 가스 간 반응에 따른 부산물이 펌프 등에 형성될 수 있는 임의의 모든 공정에 사용될 수 있다.  In order to solve the above problem, the present invention provides a separate reaction chamber between a process chamber through which a gas process such as ALD is performed and a pump for applying a vacuum pressure to the process chamber, thereby discharging from the process chamber. The reaction gas is prevented from directly flowing into the pump, thereby effectively preventing problems such as powder clogging of the pump and corrosion of the pump due to F radical. Hereinafter, the powder processing apparatus according to the present invention will be described in detail using the ALD process, but the gas powder processing apparatus according to the present invention uses gas, and any process in which a by-product according to the reaction between gases can be formed in a pump or the like. Can be used for

도 1은 본 발명의 일 실시예에 따른 ALD 공정 파우더 처리장치를 포함하는 ALD 공정 시스템의 모식도이다. 본 발명에서 파우더 처리 장치는 공정챔버로부터 배출되는 배기가스를 미리 반응시켜, 파우더화하고, 이를 다시 플라즈마 라디칼로 가스화 처리하는 장치 전반을 의미한다. 1 is a schematic diagram of an ALD process system including an ALD process powder processing apparatus according to an embodiment of the present invention. In the present invention, the powder treatment apparatus refers to a general apparatus for reacting the exhaust gas discharged from the process chamber in advance to powderize and gasification it again with plasma radicals.

도 1을 참조하면, 본 발명의 일 실시예에 따른 ALD 공정 시스템은 ALD 공정이 진행되는 공정챔버(100), 상기 공정챔버(100)와 라인 연결되어, 상기 공정챔버(100)에 ALD 공정에 필요한 진공압을 인가하는 펌프(120)를 포함한다. 특히, 본 발명의은 상기 공정챔버(100)와 펌프(120) 사이에 구비되며, 상기 공정챔버로부터 배출되는 미반응 가스를 체류, 반응시켜, 상기 미반응가스로부터 파우더 형성하고, 이후 이를 가스화하여 처리하기 위한 별도의 파우더 처리 장치(110)를 포함한다. Referring to FIG. 1, an ALD process system according to an embodiment of the present invention is connected to a process chamber 100 in which an ALD process is performed and the process chamber 100 is connected to an ALD process in the process chamber 100. A pump 120 for applying the required vacuum pressure. In particular, the present invention is provided between the process chamber 100 and the pump 120, the unreacted gas discharged from the process chamber is retained and reacted to form a powder from the unreacted gas, after which the gas is processed It includes a separate powder processing device 110 to.

도 2는 본 발명의 일 실시예에 따른 파우더 처리 장치를 포함하는 시스템의 모식도이다.2 is a schematic diagram of a system including a powder processing apparatus according to an embodiment of the present invention.

도 2를 참조하면, 본 발명에 따른 파우더 처리는 공정챔버(100)로부터 미반응 가스가 유입되며, 고온(섭씨 150도 이상)으로 유지되는 반응챔버(111)를 포함한다. 이와 같이 본 발명은 공정챔버와 펌프 사이에 별도의 반응챔버를 구비시켜, 상기 공정챔버로부터 배출되는 미반응가스를 펌프 전단에서 반응시키고, 상기 반응에 따라 형성된 파우더를 가스화하여 처리한다. Referring to FIG. 2, the powder treatment according to the present invention includes a reaction chamber 111 in which unreacted gas is introduced from the process chamber 100 and maintained at a high temperature (150 degrees Celsius or more). Thus, the present invention is provided with a separate reaction chamber between the process chamber and the pump, the unreacted gas discharged from the process chamber is reacted at the front end of the pump, and the powder formed according to the reaction is processed by gasification.

본 발명자는ALD 공정이 순차적인 반응가스 유입으로, 가스간 반응을 최소화시키며, 그 결과 공정가스 대부분은 배기라인으로 유입되고, 유입된 공정가스는 배기라인 또는 펌프에서 반응하여, 펌프 등에 손상을 입힌다. The inventors of the present invention minimized the reaction between gases due to the sequential inflow of reaction gas, and as a result, most of the process gas is introduced into the exhaust line, and the introduced process gas reacts in the exhaust line or the pump, causing damage to the pump and the like. .

본 발명은 파우더 형성을 상기 펌프 전단에 구비된 반응챔버(111)내에서 진행하고, 더 나아가, 상기 포집된 파우더를 플로린계 라디칼을 이용, 가스화시킨다. The present invention proceeds to form the powder in the reaction chamber 111 provided at the front end of the pump, and further, the collected powder is gasified using a florin-based radical.

따라서, 본 발명에 따른 파우더 처리는 반응챔버(111) 전단인 포어라인(112)에 플로린계 라디칼을 공급하기 위한 플라즈마 공급원(115)이 연결되며, 본 발명의 일 실시예에서 상기 플라즈마 공급원은 원격 플라즈마 공급원이었다. Therefore, the powder treatment according to the present invention is connected to the plasma source 115 for supplying the florin-based radicals to the foreline 112 in front of the reaction chamber 111, in one embodiment of the present invention, the plasma source is remote It was a plasma source.

원격 플라즈마 방식으로 형성된 플로린계 라디칼은 배기가스와 혼합되어, 반응챔버(111)로 유입되며, 고온 조건 하에서 반응, 부산물인 파우더를 형성한다. 따라서, 본 발명에 따른 파우더 처리 장치의 반응챔버(111) 내에는 히팅블록(113)이 구비되며, 공정챔버에서는 순차적으로 공급됨으로써 반응과 접촉이 최소화된 미반응 배기가스는 일종의 버퍼챔버인 반응챔버(111)에서 반응하여, 부산물을 형성하게 된다. 이로써 종래 기술과 같이 미반응 가스의 직접 펌프 유입 및 이에 따란 파우더 형성의 문제를 효과적으로 방지한다. Florin-based radicals formed by the remote plasma method are mixed with the exhaust gas, flow into the reaction chamber 111, and react under high temperature conditions to form powders which are by-products. Therefore, the heating block 113 is provided in the reaction chamber 111 of the powder processing apparatus according to the present invention. In the process chamber, the unreacted exhaust gas minimized reaction and contact by being sequentially supplied is a reaction chamber which is a kind of buffer chamber. Reaction at 111 results in the formation of by-products. This effectively prevents the problem of direct pump inflow of unreacted gas and subsequent powder formation as in the prior art.

따라서, 본 발명에 따른 파우더 처리장치는 고온으로 유지되는 반응챔버(111)를 포함하며, 본 발명에 따른 ALD 공정용 파우더 처리장치는 원격 플라즈마 공급원(Remote Plasma Source, RPS, 113)이 상기 반응챔버(111) 전단의 포어라인에 연결될 수 있다. Accordingly, the powder processing apparatus according to the present invention includes a reaction chamber 111 maintained at a high temperature, and the powder processing apparatus for the ALD process according to the present invention includes a remote plasma source (RPS) 113 as the reaction chamber. (111) can be connected to the foreline of the front end.

또한, 본 발명에 따른 파우더 처리장치의 반응챔버(111) 내에는 챔버 내 온도를 섭씨 150도 이상의 고온으로 유지시키기 위한 히팅블록(113)을 더 포함한다. 상기 히팅블록(113)은 전기적 방식으로 반응챔버(111) 내 온도를 상승시키며, 상기 히팅블록(113)은 바람직하게는 공정챔버와 연결된 반응챔버(111) 상단에 구비되는 것이 바람직하다. 이로써 미반응 공정가스는 반응챔버 상단에서 반응하여, 부산물을 형성하게 된다. In addition, the reaction chamber 111 of the powder processing apparatus according to the present invention further includes a heating block 113 for maintaining the temperature in the chamber at a high temperature of 150 degrees Celsius or more. The heating block 113 raises the temperature in the reaction chamber 111 in an electrical manner, and the heating block 113 is preferably provided on the top of the reaction chamber 111 connected to the process chamber. As a result, the unreacted process gas reacts at the top of the reaction chamber to form a byproduct.

또한, 본 발명에 따른 반응챔버(111) 내에는 상기 반응에 따라 형성된 부산물 등을 냉각시켜 포집하기 위한 쿨링블록(117)가 구비된다. 즉, 반응에 따라 형성된 파우더 등의 부산물은 히팅블록에 의하여 가열된 상태이며, 진공펌프에 의하여 이동 중 상기 쿨링블록(117)에 의하여 냉각되어, 포집된다. 더 나아가, 상기 포집된 파우더 등의 부산물은 반응챔버(111) 전단에서 배기가스와 혼합된 폴로린 계열의 라디칼에 의하여 분해되어, 가스처리된다. 즉, 본 발명에서 상기 쿨링블록(117)은 유입되는 F 라디칼과 파우더간의 반응시간을 높여 주기 위하여, 온도 냉각에 따라 파우더의 이동도를 떨어뜨려, 포집하며, 이로써 하기 식에 따라 진행되는 세정 공정의 효율을 향상시킨다. In addition, in the reaction chamber 111 according to the present invention, a cooling block 117 for cooling and collecting by-products formed according to the reaction is provided. That is, by-products such as powder formed according to the reaction are heated by the heating block, and are cooled by the cooling block 117 while being collected by the vacuum pump. Furthermore, the by-products such as the collected powder are decomposed by the pololine-based radicals mixed with the exhaust gas at the front end of the reaction chamber 111, and is gas treated. That is, in the present invention, in order to increase the reaction time between the incoming F radical and the powder, the cooling block 117 drops the mobility of the powder according to temperature cooling, and collects it, thereby proceeding according to the following formula. To improve the efficiency.

W, W2N, WN + F- → WF*, WF* + N2W, W2N, WN + F- → WF *, WF * + N2

본 발명의 일 실시예에서 상기 히팅블록(113)과 쿨링블록(117) 형태는 제한이 없으나, 쿨링블록(117)의 경우 단위 블록 복수 개가 결합된 구조일 수 있다. 또한, 상기 쿨링블록(117)은 상기 반응챔버(111) 높이 범위 내에서 변경할 수 있으며, 이로써 부산물과 F 라디컬의 반응을 극대화시키며, 펌프 유입을 방지할 수 있다. 즉, 플라즈마 공급원으로부터의 플라즈마에 의하여 플라즈마화되는 플로린계열의 가스는 비록 파우더를 제거하는데에는 유용하지만, 펌프로 유입되는 경우, 펌프에 기계적 손상을 일으킬 수 있으며, 따라서, 본 발명은 히팅블록과 쿨링블록사이의 거리를 조절하여, 공정 조건에 따라 파우더와 플로린계 라디칼의 반응시간을 적절히 조절하며, 이로써 펌프로의 라디칼 유입을 최소화시킨다. In one embodiment of the present invention, the heating block 113 and the cooling block 117 is not limited in shape, but the cooling block 117 may have a structure in which a plurality of unit blocks are combined. In addition, the cooling block 117 can be changed within the height of the reaction chamber 111, thereby maximizing the reaction of the by-products and F radicals, it is possible to prevent the pump inflow. That is, a florin-based gas that is plasmad by a plasma from a plasma source, although useful for removing powder, may enter the pump and cause mechanical damage to the pump, thus, the present invention provides a heating block and cooling By controlling the distance between the blocks, the reaction time of the powder and florin radicals is properly adjusted according to the process conditions, thereby minimizing radical inflow into the pump.

본 발명의 일 실시예는 히팅블록과 쿨링블록 구조를 통하여 유입되는 가스들의 반응시간을 최대로 유지하도록 한다. One embodiment of the present invention to maximize the reaction time of the gas flowing through the heating block and cooling block structure.

도 3은 본 발명의 일 실시예에 따른 히팅블록 및 쿨링블록을 포함하는 반응챔버의 단면도이다.3 is a cross-sectional view of a reaction chamber including a heating block and a cooling block according to an embodiment of the present invention.

도 3을 참조하면, 본 발명의 일 실시예에 따른 히팅블록(117)은

Figure pat00001
자 형태, 즉, 상부면이 개방된 상자 또는 바구니 형태이며, 상기 상부면 방향으로 반응가스 및 미반응 공정가스가 혼합되어 유입된다. 즉, 상기
Figure pat00002
구조의 격벽은 유입되는 가스를 최대한 히팅블록(117)에 접촉시키는 배플과 같은 역할을 수행하며, 상기 히팅블록(117)의 격벽 안쪽에서 가스는 반응하여 파우더 등의 부산물이 형성된다. 3, the heating block 117 according to an embodiment of the present invention
Figure pat00001
In the shape of a child, that is, a box or a basket in which the upper surface is opened, a reaction gas and an unreacted process gas are introduced into the upper surface in a mixture. That is,
Figure pat00002
The partition wall of the structure serves as a baffle for contacting the incoming gas to the heating block 117 as much as possible, and by-products such as powder are formed by reacting the gas inside the partition wall of the heating block 117.

또한, 쿨링블록(119)은 상기 히팅블록(117) 외곽의 반응챔버(111) 내벽을 에워싼다. 즉, 히팅블록(117)의 격벽을 타고 외부로 나오는 파우더 등은 상기 쿨링블록(119)와 접촉하여, 온도가 하강하며, 이로써 부산물은 쿨링블록(119)에 포집될 수 있다. In addition, the cooling block 119 surrounds the inner wall of the reaction chamber 111 outside the heating block 117. That is, the powder and the like coming out of the partition of the heating block 117 is in contact with the cooling block 119, the temperature is lowered, whereby by-products can be collected in the cooling block (119).

본 발명은 상술한 파우더 처리 장치를 이용한 ALD공정 부산물 처리 방법을 제공한다. The present invention provides an ALD process by-product processing method using the above-described powder processing apparatus.

본 발명은 상술한 파우더 처리 장치를 이용한 ALD공정 부산물 처리 방법을 제공한다. The present invention provides an ALD process by-product processing method using the above-described powder processing apparatus.

도 3은 본 발명의 일 실시예에 따른 ALD공정 부산물 처리 방법의 단계도이다. Figure 3 is a step of the ALD process by-product processing method according to an embodiment of the present invention.

도 3을 참조하면, 상기 원자막 화학기상증착공정이 진행된 공정챔버로부터 배출되는 배기가스에 플로린계 라디칼을 혼합시키고, 상기 플로린계 라디칼이 혼합된 배기가스를 섭씨 150도 이상의 고온으로 반응시켜 파우더를 형성한다. 이후, 상기 형성된 파우더를 냉각하는 방식으로 포집하고, 상기 혼합된 플로린계 라디칼을 이용하여 가스화시킨다.Referring to FIG. 3, Florin-based radicals are mixed with the exhaust gas discharged from the process chamber where the atomic film chemical vapor deposition process is performed, and the exhaust gas mixed with the Florin-based radicals is reacted at a high temperature of 150 degrees Celsius or higher to obtain powder. Form. Thereafter, the formed powder is collected by cooling, and gasified using the mixed florin-based radicals.

본 발명에서 상기 고온의 상한은 특별한 제한이 없으나, 상기 반응챔버에 손상을 일으키지 않는 수준, 예를 들어 섭씨 300도 이하가 바람직하다.In the present invention, the upper limit of the high temperature is not particularly limited, but is preferably a level that does not cause damage to the reaction chamber, for example, 300 degrees Celsius or less.

본 발명은 이러한 방식으로 미반응된 공정가스를 별도 챔버에서 반응시켜, 부산물을 미리 형성시키고, 상기 부산물을 냉각하여 포집한다. 상기 포집된 부산물은 반응챔버에 유입되는 라디칼 등에 의하여 분해되어, 다시 가스화되며, 이로써 상기 가스화된 부산물은 배기장치에 달라붙거나 쌓이지 않고 쉽게 펌핑되어 배출될 수 있다. The present invention reacts the unreacted process gas in a separate chamber in this manner to form by-products in advance, and cools and collects the by-products. The collected by-products are decomposed by radicals introduced into the reaction chamber and gasified again, whereby the gasified by-products can be easily pumped out without being stuck or accumulated in the exhaust device.

이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명이 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이와 균등하거나 또는 등가적인 변형 모두는 본 발명 사상의 범주에 속한다 할 것이다.
As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited to the above-described embodiments, which can be variously modified and modified by those skilled in the art to which the present invention pertains. Modifications are possible. Accordingly, the spirit of the invention should be understood only by the claims set forth below, and all equivalent or equivalent modifications will fall within the scope of the invention.

Claims (7)

공정가스가 유입되어 반응하는 공정챔버(110) 및 상기 공정챔버(110)에 진공을 인가하기 위한 펌프(120)를 구비한 반도체 공정 시스템용 가스 파우더처리 장치로, 상기 장치는
상기 공정챔버로부터 배출되는 배기가스가 유입되는 반응챔버(111);
상기 반응챔버(111) 내에 구비되어, 상기 반응챔버(111) 내 온도를 상승시키는 히팅블록((113);
상기 반응챔버(111) 내에서 상기 배기가스 반응에 따라 형성된 파우더가 포집되는 쿨링블록(117); 및
상기 포집된 파우더를 가스화시키기 위한 플로린계 라디칼을 상기 반응챔버(111) 내로 공급하기 위한 플라즈마 공급원(115)을 포함하는 것을 특징으로 하는 원자막 화학기상증착공정 파우더 처리장치.
A gas powder processing apparatus for a semiconductor processing system having a process chamber 110 into which a process gas is introduced and a pump 120 for applying a vacuum to the process chamber 110.
A reaction chamber 111 into which exhaust gas discharged from the process chamber is introduced;
A heating block (113) provided in the reaction chamber (111) to increase a temperature in the reaction chamber (111);
A cooling block 117 in which powder formed according to the exhaust gas reaction is collected in the reaction chamber 111; And
And a plasma source (115) for supplying florin-based radicals for gasifying the collected powder into the reaction chamber (111).
제 1항에 있어서,
상기 플라즈마 공급원(115)으로부터 플로린계 라디칼은 상기 반응챔버(111) 전단에서 상기 반응챔버(111)에 유입되는 배기가스에 혼합되는 것을 특징으로 하는 반도체 공정 시스템용 가스 파우더처리 장치.
The method of claim 1,
Florin-based radicals from the plasma source 115 is mixed with the exhaust gas flowing into the reaction chamber (111) in front of the reaction chamber (111).
제 1항에 있어서,
상기 플라즈마 공급원은 리모트 플라즈마 공급원인 것을 특징으로 하는 반도체 공정 시스템용 가스 파우더처리 장치.
The method of claim 1,
And said plasma source is a remote plasma source.
제 1항에 있어서,
상기 히팅블록(117)은 상부면이 개방된 상자형태이며, 상기 쿨링블록은 상기 히팅블록(117) 외곽의 반응챔버(111) 내벽을 에워싸는 형태인 것을 특징으로 하는 반도체 공정 시스템용 가스 파우더처리 장치.
The method of claim 1,
The heating block 117 is a box shape having an upper surface open, the cooling block is a gas powder processing apparatus for a semiconductor processing system, characterized in that the form surrounding the inner wall of the reaction chamber 111 outside the heating block 117. .
반도체 공정 시스템용 가스 파우더 처리방법으로, 상기 방법은
상기 원자막 화학기상증착공정이 진행된 공정챔버로부터 배출되는 배기가스에 플로린계 라디칼을 혼합시키는 단계;
상기 플로린계 라디칼이 혼합된 배기가스를 섭씨 150도 이상의 고온으로 반응시켜 파우더를 형성시키는 단계;
상기 형성된 파우더를 포집하는 단계; 및
상기 냉각된 파우더를 가스화시키는 단계를 포함하는 것을 특징으로 하는 반도체 공정 시스템용 가스 파우더 처리방법.
Gas powder treatment method for semiconductor processing system, the method
Mixing the florin-based radicals into the exhaust gas discharged from the process chamber in which the atomic film chemical vapor deposition process is performed;
Reacting the exhaust gas containing the florin-based radicals at a high temperature of 150 degrees Celsius or more to form a powder;
Collecting the formed powder; And
And gasifying the cooled powder.
제 5항에 있어서, 상기 방법은
상기 가스화된 파우더 가스를 진공펌프를 이용 배기시키는 단계를 더 포함하는 것을 특징으로 하는 반도체 공정 시스템용 가스 파우더 처리방법.
The method of claim 5, wherein the method
And gas exhausting the gasified powder gas using a vacuum pump.
제 5항에 있어서,
상기 파우더를 포집하는 단계는 상기 파우더를 별도의 쿨링블록으로 냉각시키는 방식으로 진행되는 것을 특징으로 하는 반도체 공정 시스템용 가스 파우더 처리방법.
6. The method of claim 5,
Collecting the powder is a gas powder processing method for a semiconductor processing system, characterized in that the process is carried out by cooling the powder in a separate cooling block.
KR1020120012022A 2012-02-06 2012-02-06 Apparatus and method for treating gas powder for semicouductor process system KR101909429B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120012022A KR101909429B1 (en) 2012-02-06 2012-02-06 Apparatus and method for treating gas powder for semicouductor process system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120012022A KR101909429B1 (en) 2012-02-06 2012-02-06 Apparatus and method for treating gas powder for semicouductor process system

Publications (2)

Publication Number Publication Date
KR20130090698A true KR20130090698A (en) 2013-08-14
KR101909429B1 KR101909429B1 (en) 2018-10-18

Family

ID=49216231

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120012022A KR101909429B1 (en) 2012-02-06 2012-02-06 Apparatus and method for treating gas powder for semicouductor process system

Country Status (1)

Country Link
KR (1) KR101909429B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019241718A1 (en) * 2018-06-15 2019-12-19 Lam Research Corporation Cleaning system for removing deposits from pump in an exhaust of a substrate processing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970058780A (en) * 1996-01-23 1997-08-12 김경균 HAZARDOUS COMPONENT PROCESSING APPARATUS AND METHOD
KR100806041B1 (en) * 2006-08-29 2008-02-26 동부일렉트로닉스 주식회사 An apparatus for fabricating semiconductor device and a method of fabricating semiconductor device using the same
KR101065013B1 (en) * 2009-10-16 2011-09-15 한국기계연구원 Plasma reactor for abatement of hazardous material and driving method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970058780A (en) * 1996-01-23 1997-08-12 김경균 HAZARDOUS COMPONENT PROCESSING APPARATUS AND METHOD
KR100806041B1 (en) * 2006-08-29 2008-02-26 동부일렉트로닉스 주식회사 An apparatus for fabricating semiconductor device and a method of fabricating semiconductor device using the same
KR101065013B1 (en) * 2009-10-16 2011-09-15 한국기계연구원 Plasma reactor for abatement of hazardous material and driving method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019241718A1 (en) * 2018-06-15 2019-12-19 Lam Research Corporation Cleaning system for removing deposits from pump in an exhaust of a substrate processing system

Also Published As

Publication number Publication date
KR101909429B1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
CN107868944B (en) Titanium nitride atomic layer deposition device and deposition method thereof
US8147786B2 (en) Gas exhaust system of film-forming apparatus, film-forming apparatus, and method for processing exhaust gas
JP6463339B2 (en) MOCVD layer growth method with subsequent multi-step cleaning steps
US8679287B2 (en) Method and apparatus for preventing ALD reactants from damaging vacuum pumps
CN102414786B (en) NH is utilized in position after cleaning3decontamination of MOCVD chamber processes
TWI502630B (en) Thermal treatment apparatus
JP5877702B2 (en) Film forming apparatus and film forming method
CN103290387B (en) CVD reactor process chamber cleaning method
JP2009188198A (en) Method of manufacturing semiconductor device and substrate treatment apparatus
US20190122880A1 (en) Method for washing semiconductor manufacturing apparatus component, apparatus for washing semiconductor manufacturing apparatus component, and vapor phase growth apparatus
KR101909430B1 (en) Apparatus and method for treating gas powder for semicouductor process system
US10253427B2 (en) Epitaxial growth apparatus and method of manufacturing a semiconductor device
KR20130090698A (en) Apparatus and method for treating gas powder for semicouductor process system
US20070184188A1 (en) Method for cleaning a thin film forming apparatus and method for forming a thin film using the same
JPH01218013A (en) Reaction apparatus
KR102435330B1 (en) Apparatus for manufacturing trisilylamine and Method for manufacturing the same
KR100605103B1 (en) Semiconductor fabrication equipment and method of fabricating the same
JP6489478B2 (en) Manufacturing method of semiconductor device
JP2012049405A (en) Pump applied to semiconductor manufacturing apparatus
TW200535276A (en) Method and apparatus for maintaining by-product volatility in deposition process
RU2002107048A (en) METHOD FOR FORMING POLYCRYSTALLINE SILICON LAYERS
KR20050109202A (en) Semiconductor manufacturing apparatus including powder collector

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right