KR20130081429A - Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts thereby - Google Patents

Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts thereby Download PDF

Info

Publication number
KR20130081429A
KR20130081429A KR1020120002401A KR20120002401A KR20130081429A KR 20130081429 A KR20130081429 A KR 20130081429A KR 1020120002401 A KR1020120002401 A KR 1020120002401A KR 20120002401 A KR20120002401 A KR 20120002401A KR 20130081429 A KR20130081429 A KR 20130081429A
Authority
KR
South Korea
Prior art keywords
magnetic
enzyme
nanocatalyst
silica
mimicking
Prior art date
Application number
KR1020120002401A
Other languages
Korean (ko)
Other versions
KR101350722B1 (en
Inventor
장정호
이선영
이지호
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020120002401A priority Critical patent/KR101350722B1/en
Publication of KR20130081429A publication Critical patent/KR20130081429A/en
Application granted granted Critical
Publication of KR101350722B1 publication Critical patent/KR101350722B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE: A method for synthesizing an enzyme-mimic magnetic nanocatalyst and the synthesized enzyme-mimic magnetic nanocatalyst synthesized thereby are provided to obtain the same effect of an enzyme and to reduce the coagulation, toxicity, and oxidation of particles. CONSTITUTION: A method for synthesizing an enzyme-mimic magnetic nanocatalyst comprises the steps of: synthesizing magnetite magnetic nanoparticles by adding an alkaline aqueous solution into a mixed aqueous solution of Fe^2+ and Fe^3+ to be simultaneously precipitated; coating the surfaces of the magnetite magnetic nanoparticles with silica based on a silica precursor using a sol-gel method under a basic atmosphere; and reforming the surfaces of the silica coated magnetic nanoparticles using a functional silane cross-linking agent.

Description

효소 모방 자성나노촉매의 합성방법 및 그에 의하여 합성된 효소 모방 자성나노촉매{Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts thereby}Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts Thus

본 발명은 효소 모방 자성나노촉매의 합성방법 및 그에 의하여 합성된 효소 모방 자성나노촉매에 관한 것으로서, 자세하게는 초상자성을 가지고 있어 물질의 분리와 재사용에 용이한 자성나노입자로부터 제조된 실리카 코팅 자성나노입자를 사용하여 촉매 반응이 잘 알려진 효소 카이모트립신의 활성자리를 모방한 효소 모방 자성나노촉매를 합성하는 방법 및 그에 의하여 합성된 효소 모방 자성나노촉매에 관한 것이다.
The present invention relates to a method for synthesizing an enzyme-mimicking magnetic nanocatalyst and to an enzyme-mimicking magnetic nanocatalyst synthesized by the present invention. The present invention relates to a method for synthesizing an enzyme-mimicking magnetic nanocatalyst that mimics the active site of the enzyme chymotrypsin, which is well known in terms of catalytic reaction, and to an enzyme-mimicking magnetic nanocatalyst synthesized thereby.

생체 내 에서도 항체, 효소와 같은 생체 고분자는 각각의 특이한 용도에 따라 선택적으로 기질을 인식하기 때문에 신호를 전달하거나 촉매작용을 하게 되어 독특한 생체기능을 유지한다. 생체 고분자는 몇몇 종류를 제외하고는 인공적 합성이 매우 어렵고, 연구나 응용에 필요한 양을 만드는 데 한계가 있다. 또한 안정성 또는 장기 보관성에서 항체, 효소와 같은 생체 고분자의 기능을 모방한 인공 효소에 비해 뒤떨어지고, 반응이 거의 수용액에서만 이루어지기 때문에 유기 용매와 같은 다른 용매를 사용할 수 없을 뿐만 아니라 사용 후 회수가 어렵다는 단점을 가지고 있다. 이러한 단점을 해결하고자 최근 항체, 효소와 같은 생체 고분자의 기능을 모방한 인공 효소의 개발에 대한 연구가 증가하고 있다.Even in vivo, biopolymers such as antibodies and enzymes selectively recognize substrates according to their specific uses, thereby transmitting or catalyzing signals to maintain unique biological functions. Biopolymers, with few exceptions, are very difficult to synthesize artificially and have limitations in producing the quantities needed for research and applications. In addition, it is inferior to artificial enzymes that mimic the functions of biopolymers such as antibodies and enzymes in stability or long-term storage, and because the reaction is performed almost in aqueous solution, other solvents such as organic solvents cannot be used and recovery after use is also possible. It has the disadvantage of being difficult. In order to solve these drawbacks, research on the development of artificial enzymes that mimic the functions of biological polymers such as antibodies and enzymes has been increasing.

마그네타이트(magnetite, Fe3O4) 자성나노입자는 산화철 나노입자(Iron oxide nanoparticles)의 종류로 1~100nm의 크기를 가지며 초상자성의 특성을 가진다. 자성나노입자에 실리카 코팅을 하면 기능성 실란 가교제(silane coupling agent)를 이용한 입자의 표면의 개질이 용이하게 되며, 화학적 안정성이 우수해진다. 자성나노입자는 저비용으로 합성이 가능하고, 물질의 분리와 재사용, 대량 생산, 효율성, 단순성 등의 장점을 가지고 있다. Magnetite (magnetite, Fe 3 O 4 ) magnetic nanoparticles are a type of iron oxide nanoparticles (iron oxide nanoparticles) having a size of 1 ~ 100nm and has a superparamagnetic characteristic. When the silica coating on the magnetic nanoparticles is easy to modify the surface of the particles by using a functional silane coupling agent (silane coupling agent), the chemical stability is excellent. Magnetic nanoparticles can be synthesized at low cost and have advantages such as separation and reuse of materials, mass production, efficiency and simplicity.

한편, 효소 카이모트립신은 펩타이드 결합의 가수분해를 촉매하는 Protease로서, 활성자리는 Serin(195)의 hydroxyl group, Aspartic acid(102)의 carboxyl group 그리고 Histidine(57)의 imidazole group으로 구성되어 있다. 이 효소는 방향족 아미노산 잔기(Trp, Phe, Tyr 등)에 인접한 펩타이드 결합에 특이적으로 작용하고, 작은 에스터 화합물과 아마이드 화합물의 가수분해를 촉매한다.Meanwhile, the enzyme chymotrypsin is a protease that catalyzes the hydrolysis of peptide bonds. The active site is composed of a hydroxyl group of Serin (195), a carboxyl group of Aspartic acid (102) and an imidazole group of Histidine (57). This enzyme specifically acts on peptide bonds adjacent to aromatic amino acid residues (Trp, Phe, Tyr, etc.) and catalyzes the hydrolysis of small ester and amide compounds.

본 발명에서는 상기에서 설명한 마그네타이트 자성나노입자에 실리카 코팅을 하여 물질의 분리와 재사용에 용이하면서도 입자의 응집, 독성 및 산화특성을 줄일 수 있을 뿐만 아니라 효소 카이모트립신과 같은 촉매 효과를 구현하면서 경제성을 증가시킬 수 있는 효소 모방 자성나노촉매의 합성방법을 개발하였다.
In the present invention, by applying the silica coating on the magnetite magnetic nanoparticles described above, it is not only easy to separate and reuse materials, but also reduce the aggregation, toxicity and oxidation characteristics of the particles, and increase the economic efficiency while implementing a catalytic effect such as the enzyme chymotrypsin. A method of synthesizing a magnetic nanocatalyst that mimics an enzyme can be developed.

본 발명의 목적은 초상자성을 가지고 있어 물질의 분리와 재사용에 용이하면서도 입자의 응집, 독성 및 산화를 줄일 수 있고, 효소의 촉매 효과를 동일하게 구현할 수 있어 바이오센서, 바이오촉매, 프로테옴 연구 등에 널리 응용될 수 있는 효소 모방 자성나노촉매의 합성방법 및 그에 의하여 합성된 효소 모방 자성나노촉매를 제공하는 것이다.
The object of the present invention is superparamagnetic, so it is easy to separate and reuse materials, and can reduce particle aggregation, toxicity and oxidation, and can realize the same catalytic effect of enzymes, which is widely used in biosensors, biocatalysts, and proteome research. The present invention provides a method for synthesizing an enzyme-mimicking magnetic nanocatalyst and an enzyme-mimicking magnetic nanocatalyst synthesized thereby.

상술한 바와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 i) Fe2+와 Fe3+의 혼합수용액에 알칼리 수용액을 첨가하여 상기 이온들을 동시에 침전시켜 마그네타이트(magnetite, Fe3O4) 자성 나노입자를 합성하는 단계; ii) 염기분위기 하에서 실리카 전구체를 사용하여 솔-젤 법(sol-gel process)으로 상기 마그네타이트 자성 나노입자 표면을 실리카 코팅시키는 단계; 및 iii) 상기 실리카로 코팅된 자성나노입자의 표면을 기능성 실란 가교제(silane couplig agent)를 사용하여 개질하는 단계;를 포함하는 효소 모방 자성나노촉매의 합성방법을 제공한다.In order to achieve the object of the present invention as described above, the present invention i) by adding an aqueous alkali solution to the mixed aqueous solution of Fe 2+ and Fe 3+ to simultaneously precipitate the ions magnetite (magnetite, Fe 3 O 4 ) magnetic Synthesizing nanoparticles; ii) silica coating the magnetite magnetic nanoparticle surface with a sol-gel process using a silica precursor under a base atmosphere; And iii) modifying the surface of the magnetic nanoparticles coated with silica using a functional silane couplig agent.

이때, 상기 기능성 실란 가교제는 카이모트립신(Chymotrypsin)의 활성자리(Ser-195, His-57, Asp-102)를 모방하기 위하여, 3-아미노프로필 트리메톡시실란(Aminopropyl trimethoxysilane), 카복시 에틸실란트리올(Carboxy ethylsilanetriol), 트리에톡시-3-(2-이미다졸린-1-일) 프로필실란(Triethoxy-3-(2-imidazolin-1-yl)propylsilane) 또는 이들의 혼합물로 이루어질 수 있으며, 이 경우 제조된 효소 모방 자성나노촉매는 펩타이드 결합, 에스터 화합물 및 아마이드(amide) 화합물을 가수분해하는 것을 특징으로 한다. At this time, the functional silane crosslinking agent to mimic the active sites (Ser-195, His-57, Asp-102) of the chymotrypsin (Chymotrypsin), 3-aminopropyl trimethoxysilane, carboxy ethylsilane tree Carboxy ethylsilanetriol, triethoxy-3- (2-imidazolin-1-yl) propylsilane (Triethoxy-3- (2-imidazolin-1-yl) propylsilane) or mixtures thereof, In this case, the prepared enzyme-mimicking magnetic nanocatalyst is characterized by hydrolyzing a peptide bond, an ester compound and an amide compound.

또한, 상기 기능성 실란 가교제가 효소의 활성 자리인 아미노산 잔기를 구성하기 위하여 아민기, 이미다졸기 및 카르복실기로부터 선택되는 어느 하나 이 상의 작용기를 가지는 것이 바람직하다.It is also preferred that the functional silane crosslinker has at least one functional group selected from amine groups, imidazole groups and carboxyl groups in order to constitute amino acid residues which are active sites of the enzyme.

한편, 본 발명은 상기의 방법으로 합성된 효소 모방 자성나노촉매를 제공 하며, 이때 상기 마그네이트 자성나노입자의 입자크기는 7~10nm이고, 상기 실리카로 코팅된 자성나노 입자의 입자크기가 20~100nm인 것이 바람직하다. 이와 같이 합성된 효소 모방 자성나노촉매는 바이오센서, 바이오촉매, 프로테옴 연구 등 다양한 분야에 응용될 수 있다.
On the other hand, the present invention provides an enzyme-mimetic magnetic nanocatalyst synthesized by the above method, wherein the particle size of the magnetized magnetic nanoparticles is 7 ~ 10nm, the particle size of the magnetic nanoparticles coated with silica is 20 ~ It is preferable that it is 100 nm. The enzyme mimic magnetic nanocatalyst synthesized as described above may be applied to various fields such as biosensor, biocatalyst, proteome research, and the like.

본 발명에 따라 합성된 효소 모방 자성나노촉매는 초상자성을 가지고 있어 물질의 분리와 재사용에 용이하면서도 입자의 응집, 독성 및 산화를 줄일 수 있고, 효소의 촉매 효과를 동일하게 구현할 수 있어 바이오센서, 바이오촉매, 프로테옴 연구 등에 널리 응용될 수 있다.
Enzyme-mimicking magnetic nanocatalyst synthesized according to the present invention has superparamagnetism, which is easy to separate and reuse materials, reduce aggregation, toxicity and oxidation of particles, and can implement the catalytic effect of enzymes in biosensor, It can be widely applied to biocatalyst, proteome research and the like.

도 1은 p-nitrophenyl alkyl esters의 가수분해 경로를 개략적으로 나타낸 그림이다.
도 2는 자성나노입자의 합성 공정도이다.
도 3은 실리카 코팅 자성나노입자의 합성 공정도이다.
도 4는 효소 모방 자성나노촉매의 합성 공정도이다.
도 5는 효소 모방 자성나노촉매의 합성 모식도이다.
도 6은 자성나노입자의 투과 전자 현미경(TEM, tranmission electron microscopy) 사진이다.
도 7은 실리카 코팅 자성나노입자의 외피부/내부구조가 나타난 투과 전자 현미경(TEM, tranmission electron microscopy) 사진이다.
도 8은 자성나노입자와 실리카 코팅 자성나노입자의 FT-IR(fourier transform infrared) 분광분석 그래프이다.
도 9는 효소 모방 자성나노촉매의 FT-IR(fourier transform infrared) 분광분석 그래프이다.
도 10 (a)~(d)는 시간에 따른 유리되는 p-Nitrophenol을 정량화한 그래프로서, (a)는 기질별 카이모트립신에 의해 유리되는 p-Nitrophenol을 정량화한 그래프이고, (b)~(d)는 각각 기질 p-Nitrophenyl butyrate(PNPB), p-Nitrophenyl octanoate(PNPO), p-Nitrophenyl dodecanoate(PNPD)가 효소 모방 자성나노촉매에 의해 유리되는 p-Nitrophenol을 정량화한 그래프이다.
도 11은 기질별 카이모트립신과 효소 모방 자성나노촉매의 반응률 그래프이다.
도 12는 기질별 효소 모방 자성나노촉매의 최대 속도 그래프이다.
도 13은 기질별 효소 모방 자성나노촉매의 전환수 그래프이다.
도 14는 기질별 효소 모방 자성나노촉매의 촉매 효율 상수 그래프이다.
도 15는 기질별 효소 모방 자성나노촉매의 특이성 상수 그래프이다.
1 is a schematic view showing the hydrolysis pathway of p -nitrophenyl alkyl esters.
2 is a synthetic process chart of magnetic nanoparticles.
3 is a synthetic process chart of silica coated magnetic nanoparticles.
4 is a synthetic process diagram of an enzyme-mimicking magnetic nanocatalyst.
5 is a schematic diagram showing the synthesis of an enzyme-mimicking magnetic nanocatalyst.
6 is a transmission electron microscopy (TEM) photograph of magnetic nanoparticles.
7 is a transmission electron microscopy (TEM) photograph showing the outer skin / internal structure of silica coated magnetic nanoparticles.
8 is a graph of four-ier transform infrared (FT-IR) spectroscopy of magnetic nanoparticles and silica coated magnetic nanoparticles.
9 is a graph of four-ier transform infrared (FT-IR) spectroscopy of an enzyme-mimicking magnetic nanocatalyst.
Figure 10 (a) ~ (d) is a graph quantifying the free p -Nitrophenol over time, (a) is a graph quantifying the p -Nitrophenol liberated by chymotrypsin by substrate, (b) ~ ( d) is a graph of quantifying p -Nitrophenol in which substrates p -Nitrophenyl butyrate (PNPB), p -Nitrophenyl octanoate (PNPO), and p -Nitrophenyl dodecanoate (PNPD) are liberated by an enzyme mimicking magnetic nanocatalyst, respectively.
Figure 11 is a graph of the reaction rate of chymotrypsin and enzyme mimic magnetic nanocatalyst by substrate.
12 is a graph showing the maximum rate of enzyme-mimicking magnetic nanocatalyst by substrate.
13 is a graph of the number of conversion of enzyme-mimicking magnetic nanocatalyst by substrate.
14 is a graph of catalytic efficiency constants of enzyme-mimicking magnetic nanocatalysts by substrate.
15 is a graph of specificity constants of enzyme-mimicking magnetic nanocatalysts by substrate.

상기 본 발명의 일 양상에 따른 효소 모방 자성나노촉매의 합성방법 및 그에 의하여 합성된 효소 모방 자성나노촉매를 첨부한 도면을 참조하여 상세하게 설명하면 다음과 같다.A method of synthesizing an enzyme-mimicking magnetic nanocatalyst according to an aspect of the present invention and an enzyme-mimicking magnetic nanocatalyst synthesized thereby are described in detail with reference to the accompanying drawings.

본 발명의 자성 나노입자는 i) Fe2+과 Fe3+의 혼합수용액에 알칼리 수용액을 첨가하여 상기 이온들을 동시에 침전시켜 마그네타이트(magnetite, Fe3O4) 자성나노입자를 합성하는 단계, ii) 염기 분위기 하에서 실리카 전구체를 사용하여 솔-젤 법(sol-gel process)으로 상기 마그네타이트 자성나노입자 표면을 실리카 코팅시키는 단계, 및 iii) 상기 실리카로 코팅된 자성나노입자의 표면을 기능성 실란 가교제(silane couplig agent)를 사용하여 개질하는 단계를 통하여 제조된다. Magnetic nanoparticles of the present invention comprises the steps of i) adding an aqueous alkali solution to a mixed aqueous solution of Fe 2+ and Fe 3+ to precipitate the ions simultaneously to synthesize magnetite (magnetite, Fe 3 O 4 ) magnetic nanoparticles, ii) Silica coating the surface of the magnetite magnetic nanoparticles by a sol-gel process using a silica precursor under a base atmosphere, and iii) a functional silane crosslinker is formed on the surface of the magnetic nanoparticles coated with silica. It is prepared through the step of modifying using a couplig agent.

공침법으로 합성된 본 발명의 자성 나노입자는 7~10nm의 크기를 가지고 표면이 하이드록실 그룹(OH)로 구성되어 있어 친수성(hydrophilic)을 띤다. 마그네타이트 자성나노입자 합성의 일반적의 반응식은 다음 반응식 (1)식과 같으며, 본 발명에서는 아래 식에 근거하여 자성나노입자를 합성하였다.Magnetic nanoparticles of the present invention synthesized by the co-precipitation method has a size of 7 ~ 10nm and the surface is composed of hydroxyl groups (OH) is hydrophilic (hydrophilic). The general scheme of the magnetite magnetic nanoparticle synthesis is shown in the following scheme (1), and in the present invention, magnetic nanoparticles were synthesized based on the following formula.

FeCl2 + 2FeCl3 + 8NH4OH -> Fe(OH)2 + 2Fe(OH)3 + 8NH4Cl (1) FeCl 2 + 2FeCl 3 + 8 NH 4 OH-> Fe (OH) 2 + 2Fe (OH) 3 + 8 NH 4 Cl (1)

-> Fe3O4 + 8NH4Cl + 4H2O-> Fe 3 O 4 + 8 NH 4 Cl + 4H 2 O

상기 자성나노입자의 실리카 코팅은 TEOS(Tetraethyl orthosilicate)와 같은 실리카 전구체를 사용하여 금속 알콕사이드의 가수분해와 축합반응을 통하여 금속 산화물을 제조하는 솔-젤법(Sol-gel process)으로 염기 분위기에서 합성된다. 다음 반응식 (2)에서 식으로 간단히 나타내었다. The silica coating of the magnetic nanoparticles is synthesized in a base atmosphere by a sol-gel process for producing a metal oxide through hydrolysis and condensation reaction of a metal alkoxide using a silica precursor such as tetraethyl orthosilicate (TEOS). . It is briefly shown in the following scheme (2).

가수분해 : M-OR + H2O -> M-OH + R-O H (2)Hydrolysis: M-OR + H 2 O-> M-OH + RO H (2)

축 합 : M-OR + M-OH -> M-O-M + R-OH Condensation: M-OR + M-OH-> M-O-M + R-OH

M-OR + M-OH -> M-O-M + H2OM-OR + M-OH-> MOM + H 2 O

(M : Metal or Silicon, R : Alkyl) (M: Metal or Silicon, R: Alkyl)

염기 분위기 조건에서의 가수분해반응은 알콕사이드 전구체의 R그룹이 하이드록시 그룹(OH)으로 치환이 진행됨에 따라 더욱 가속화되어 치환이 완결된 상태로 가수분해가 진행된다. 중합속도가 빨라서 가교(cross-linking)된 졸(sol)이 먼저 형성 되고 비결정성 실리카 쉘(amorphous silica shell)이 얻어진다. The hydrolysis reaction under basic atmospheric conditions is further accelerated as the R group of the alkoxide precursor is substituted with the hydroxy group (OH), and the hydrolysis proceeds in a state where the substitution is completed. The high rate of polymerization results in the formation of cross-linked sol first, resulting in an amorphous silica shell.

실리카 코팅을 함으로써 상기 자성나노입자들이 뭉치는 현상을 막을 수 있고, 입자 표면의 하이드록시 그룹이 다양한 가교제(coupling agent)와 공유결합을 하여 효소 모방 자성나노촉매의 합성이 용이하며, 화학적 안정성이 향상되어서 다양한 바이오 분야에 응용이 가능하다는 장점을 가지게 된다. 상기 실리카로 코팅된 자성나노입자는 20~100nm의 입자크기를 가진다. Silica coating prevents agglomeration of the magnetic nanoparticles, and the hydroxy group on the surface of the particle covalently bonds with various coupling agents to facilitate synthesis of an enzyme-mimicking magnetic nanocatalyst and improve chemical stability. It has the advantage that it can be applied to various bio fields. Magnetic nanoparticles coated with silica have a particle size of 20 ~ 100nm.

한편, 본 발명의 효소 모방 자성나노촉매는 효소의 활성자리인 아미노산 잔기를 구성하기 위하여 기능성 실란 가교제(silane couplig agent)를 사용하여 실리카로 코팅된 자성나노촉매의 표면을 개질하여 제조하였다. On the other hand, the enzyme mimetic magnetic nanocatalyst of the present invention was prepared by modifying the surface of the magnetic nanocatalyst coated with silica using a functional silane couplig agent to form an amino acid residue which is an active site of the enzyme.

상기 기능성 실란 가교제는 아민기, 이미다졸기 및 카르복실기로부터 선택되는 어느 하나 이상의 작용기를 가질 수 있으며, 일 실시예로 카이모트립신(Chymotrypsin)의 활성자리(Ser-195, His-57, Asp-102)를 모방하기 위하여, 3-아미노프로필 트리메톡시실란(Aminopropyl trimethoxysilane), 카복시에틸실란트리올(Carboxyethylsilanetriol), 트리에톡시-3-(2-이미다졸린-1-일)프로필실란(Triethoxy-3-(2-imidazolin-1-yl)propy lsilane) 또는 이들의 혼합물로 이루어질 수 있다. The functional silane crosslinking agent may have any one or more functional groups selected from amine groups, imidazole groups, and carboxyl groups, and in one embodiment, active sites (Ser-195, His-57, Asp-102) of chymotrypsin To mimic the 3-aminopropyl trimethoxysilane, Carboxyethylsilanetriol, Triethoxy-3- (2-imidazolin-1-yl) propylsilane (Triethoxy-3 -(2-imidazolin-1-yl) propylsilane) or mixtures thereof.

실리카 코팅으로 표면에 형성된 하이드록시 그룹(OH)은 Si-O-Si와 같은 공유 결합 형식에 의해 상기 실란과 결합한다. 실란화 반응은 두 가지 단계로 나타난다. 첫째로, 실란 가교제(silane coupling agnet)는 실란 고분자로 응축된다. 둘째, 응축된 고분자들은 하이드록실 그룹과 가수분해 반응을 통한 공유결합으로 실리카 코팅 자성나노입자의 표면을 형성한다. 상기 합성 과정의 모식도를 도 5에 나타내었다.The hydroxy group (OH) formed on the surface by the silica coating binds to the silane by a covalent bond type such as Si-O-Si. The silanization reaction occurs in two stages. Firstly, a silane coupling agent is condensed into a silane polymer. Second, the condensed polymers form the surface of the silica-coated magnetic nanoparticles by covalent bonding through hydroxylation with hydroxyl groups. A schematic diagram of the synthesis process is shown in FIG. 5.

이하, 본 발명에 따른 효소 모방 자성나노촉매의 실시예 및 실험예를 상세히 살펴본다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
Hereinafter, examples and experimental examples of the enzyme-mimicking magnetic nanocatalyst according to the present invention will be described in detail. However, the following examples are provided only to aid understanding of the present invention, and the scope of the present invention is not limited to the following examples.

[[ 실시예Example 1] 자성나노입자의 합성 1] Synthesis of Magnetic Nanoparticles

실온에서 FeCl2·4H2O와 FeCl3·6H2O을 각각 H2O에 녹여 2M Fe2 +용액과 1M Fe3 +용액을 제조하였다. 2M Fe2 +용액 10mL와 1M Fe3 +용액 40mL를 혼합한 용액에 0.7M NH4OH 500mL를 한 방울씩 천천히 적가시킨 후 한 시간 동안 교반(stirring)시킨다. 이때 용액의 색은 주황색에서 검정색으로 변하게 된다. 자성분리 후, 에탄올(ethanol)로 세척하여 24시간 동안 진공 건조하여 자성나노입자(magnetic nanoparticles, MNPs)를 합성하였다. 상기 실시예의 자성나노입자의 합성 과정을 도 2에 나타내었다.
2 · 4H 2 O with an FeCl 3 · 6H 2 O to 2M FeCl Fe + 2 solution and 1M Fe + 3 solution dissolved in H 2 O each was prepared at room temperature. 2M Fe + 2 solution and 10mL 1M Fe + 3 solution was added dropwise to a solution mixture of 40mL 0.7M NH 4 OH 500mL slowly dropwise and the mixture was stirred (stirring) for the time. The color of the solution changes from orange to black. After magnetic separation, washed with ethanol (ethanol) and vacuum dried for 24 hours to synthesize magnetic nanoparticles (magnetic nanoparticles, MNPs). A synthesis process of the magnetic nanoparticles of the above example is shown in FIG. 2.

[실시예 2] 실리카 코팅된 자성나노입자의 합성Example 2 Synthesis of Silica Coated Magnetic Nanoparticles

MNPs 100mg을 시클로헥산(cyclohexane) 100mL에 올레산(oleic acid) 4mL를 넣고 3시간 동안 분산시켰다. 다음 시클로헥산 900mL에 Igepal CO-520 44g을 분산시킨 용액에 MNPs 분산용액을 넣어주고 교반시키면서 NH4OH 8mL와 Tetraethyl orthosilicate(TEOS) 6mL를 넣고 20시간 동안 상온에서 교반하였다. 반응 후 메탄올(methanol)을 넣어주고 원심분리로 얻어진 침전물은 에탄올을 이용하여 세척한 후, 진공 건조를 24시간 동안 하여 직경 20~100nm 갖는 실리카로 코팅된 자성나노입자(silica coate magnetic nanoparticle, Si-MNPs)를 제조하였다. 상기 실시예의 실리카 코팅된 자성나노입자의 합성 과정을 도 3에 나타내었다. 100 mg of MNPs were added to 100 mL of cyclohexane and 4 mL of oleic acid was dispersed for 3 hours. Next, MNPs dispersion solution was added to a solution of 44 g of Igepal CO-520 dispersed in 900 mL of cyclohexane, and stirred, and 4 mL of NH 4 OH and 6 mL of tetraethyl orthosilicate (TEOS) were added and stirred at room temperature for 20 hours. After the reaction, methanol (methanol) was added and the precipitate obtained by centrifugation was washed with ethanol, and vacuum dried for 24 hours, and then coated with silica coated silica nanoparticles having a diameter of 20 to 100 nm. MNPs) were prepared. The synthesis process of the silica coated magnetic nanoparticles of the above example is shown in FIG. 3.

[실시예 3] 효소 모방 자성 나노촉매의 합성Example 3 Synthesis of Enzyme-mimicking Magnetic Nanocatalyst

각각의 둥근 플라스크에 제조된 Si-MNPs 2.0g에 톨루엔(toluene) 250mL을 넣고 2시간 정도 교반 후, 3-Aminopropyl trimethoxysilane 8.0g, Carboxyethyl silanetriol 32.0g, Triethoxy-3-(2 -imidazolin-1-yl)propylsilane 8.0g을 넣고 온도 110℃에서 6시간 동안 환류(reflux)를 해준다. 반응 후 원심분리(3200rpm, 5min)하여 톨루엔을 이용하여 세척한 후, 진공 건조를 24시간 동안 하여 효소 모방 자성나노촉매(enzyme-mimic magnetic nanocatalysts)를 합성하였다. 상기 실시예의 효소 모방 자성나노촉매의 합성 과정을 도 4에 나타내었다.
250 mL of toluene was added to 2.0 g of the Si-MNPs prepared in each round flask, followed by stirring for about 2 hours. ) 8.0 g of) propylsilane is added and refluxed at a temperature of 110 ° C. for 6 hours. After the reaction was centrifuged (3200rpm, 5min) and washed with toluene, vacuum drying for 24 hours to synthesize enzyme-mimic magnetic nanocatalysts (enzyme-mimic magnetic nanocatalysts). The synthesis process of the enzyme-mimicking magnetic nanocatalyst of the above example is shown in FIG. 4.

[실시예 4] Example 4 pp -Nitrophenyl alkyl esters(PNPE)의 가수분해Hydrolysis of Nitrophenyl Alkyl Esters (PNPE)

1) 0.1M Tris-buffer의 제조1) Preparation of 0.1M Tris-buffer

증류수 100mL에 염산(HCl) 21.876mL을 넣어 6M HCl을 만들어 준다. Tris 12.114g에 증류수 800mL를 넣어 교반시킨 용액에 6M HCl을 사용하여 pH meter로 pH 7.6을 맞춰주면서 용액이 1000mL가 되도록 증류수를 넣어준다.Add 21.876mL of hydrochloric acid (HCl) to 100mL of distilled water to make 6M HCl. Add 800 mL of distilled water to 12.114 g of Tris and adjust the pH to 7.6 with a pH meter using 6M HCl. Add distilled water to make 1000mL solution.

2) PNPE solution의 제조2) Preparation of PNPE Solution

PNPE의 종류인 p-Nitrophenyl butyrate(PNPB), p-Nitrophenyl octanoate(PNPO), p-Nitrophenyl dodecanoate(PNPD)를 기질로 사용하였다. Tetrahydrofuran(THF)에 녹인 후 증류수에 희석시킨다. 측정하고자 하는 농도에 맞춰 0.1M Tris-HCl buffer에 희석시켜 사용한다. P- Nitrophenyl butyrate (PNPB), p- Nitrophenyl octanoate (PNPO), and p- Nitrophenyl dodecanoate (PNPD) were used as substrates. It is dissolved in tetrahydrofuran (THF) and diluted in distilled water. Dilute to 0.1M Tris-HCl buffer according to the concentration to be used.

3) 카이모트립신의 PNPE 가수분해3) PNPE hydrolysis of chymotrypsin

카이모트립신 1mg을 0.1M Tris buffer 1mL에 녹인 후 PNPE 용액에 넣어 시간별로 25에서 shaking 하여 유리되는 p-Nitrophenol(PNP)을 UV-Vis spectrophotometer를 측정하여 정량한다.Was dissolved in 0.1M Tris buffer 1mL chymotrypsin 1mg PNPE put in solution is quantified by a p -Nitrophenol (PNP) is glass and by time shaking in 25 measures the UV-Vis spectrophotometer.

4) 효소 모방 자성나노촉매의 PNPE 가수분해4) PNPE Hydrolysis of Enzyme-mimicking Magnetic Nanocatalysts

150mg의 각각의 촉매를 15mL 원심분리 튜브에 0.1M Tris buffer 1mL와 PNPE 용액 1mL를 넣어 시간별로 shaking 하여 준다. 이 때 온도는 25℃로 유지해준다. UV-Vis spectrophotometer로 유리되는 PNP를 정량하였다.
150mg of each catalyst is added to 1mL 0.1M Tris buffer and 1mL PNPE solution in a 15mL centrifuge tube. At this time, the temperature is maintained at 25 ℃. Free PNP was quantified by UV-Vis spectrophotometer.

[[ 실험예Experimental Example 1] 자성나노입자와 실리카 코팅 자성나노입자의  1] of magnetic nanoparticles and silica coated magnetic nanoparticles TEMTEM 분석 결과 Analysis

도 6과 도 7은 제조된 마그네타이트 자성나노입자와 실리카 코팅 자성나노입자의 미세구조를 관찰하기위해 투과전자현미경(transmission electron microscope, TEM)으로 찍은 이미지이다. 자성나노입자의 입자크기는 7~10nm 정도로 완전한 구형은 아니지만, 거의 구형에 가까운 형태를 띠고 있었다. 실리카 코팅 자성나노입자는 가운데 점 같은 자성나노입자를 중심으로 구형의 실리카가 코팅되었다. 자성나노입자의 실리카 코팅 막 형성에 의해 입자의 크기는 20~100nm로 증가하였다.
6 and 7 are images taken with a transmission electron microscope (TEM) to observe the microstructure of the prepared magnetite magnetic nanoparticles and silica coated magnetic nanoparticles. The particle size of the magnetic nanoparticles was not nearly spherical but about 7-10 nm, but almost spherical. Silica-coated magnetic nanoparticles were spherical silica coated around magnetic nanoparticles such as dots. The size of the particles was increased to 20-100 nm by the formation of the silica coating film of the magnetic nanoparticles.

[[ 실험예Experimental Example 2] 자성 나노입자와 실리카 코팅된 자성나노입자의  2] of magnetic nanoparticles and silica coated magnetic nanoparticles FTFT -- IRIR 분석 결과 Analysis

도 8은 KBr method로 자성나노입자와 실리카 코팅된 자성나노입자를 FT-IR을 사용하여 분석한 스펙트럼이다. 기기의 특성상 650cm-1~4000cm-1까지 측정하였고, 3428cm-1에서 hydroxy stretching vibration peak이 2960cm-1에서 C-H stretching vibration peak, 1630cm-1에서 Metal oxide peak, 1098cm-1에서 Si-O-Si vibration peak, 860cm-1에서 Si-C vibration peak가 관찰되었다.
8 is a spectrum of magnetic nanoparticles and silica coated magnetic nanoparticles by KBr method using FT-IR. Was measured by the nature 650cm -1 ~ 4000cm -1 of the device, from 3428cm -1 hydroxy stretching vibration peak at the 2960cm -1 CH stretching vibration peak, Metal oxide peak, Si-O-Si vibration at 1098cm -1 1630cm -1 in A Si-C vibration peak was observed at the peak, 860 cm −1 .

[[ 실험예Experimental Example 3] 효소 모방 자성나노촉매의  3] Enzyme Mimicization of Magnetic Nanocatalysts FTFT -- IRIR 분석 결과 Analysis

도 9은 실리카 코팅된 자성나노입자 표면에 실란을 개질시켜 제조된 효소모방 자성나노촉매의 FT-IR을 KBr method로 분석한 spectrum이다. 기기의 특성상 650cm-1~4000cm- 1 까지 측정하였다. 실리카로 코팅된 자성나노입자에서 나타난 3426cm-1에서 hydroxy stretching vibration peak이 2944cm-1에서 C-H stretching vibration peak, 1664cm-1에서 Metal oxide peak, 1095cm-1에서 Si-O-Si vibration peak, 800~950cm-1에서 Si-C vibration peak이 관찰되었다 . 아민은 1488cm-1에서 N-H vibration peak을 이미다졸은 1450cm-1에서 aromatic ring의 C=C peak, 카르복시는 1571cm-1에서 C=O vibration peak를 확인하였다. Multifunction은 아민, 이미다졸 그리고 카르복시 그룹을 모두 입자 표면에 개질한 것이다. 분석 결과 세 그룹이 모두 개질되었음을 확인하였다.
FIG. 9 is a spectrum of FT-IR of an enzyme-mimicking magnetic nanocatalyst prepared by modifying a silane on a silica coated magnetic nanoparticle surface by KBr method. Due to the nature of the device measured up to 650cm -1 ~ 4000cm - 1 . At 3426cm -1 appear in the magnetic nanoparticles coated with silica hydroxy stretching vibration peak yi at 2944cm -1 CH stretching vibration peak, Metal oxide peak, Si-O-Si vibration peak, 800 ~ 950cm at 1095cm -1 1664cm -1 in Si-C vibration peaks were observed at -1 . NH amine is a vibration peak imidazole is the C = C peak at 1450cm -1 aromatic ring, from 1488cm -1-carboxy was confirmed from 1571cm -1 C = O vibration peak. Multifunction is a modification of all of the amine, imidazole and carboxy groups on the particle surface. The analysis confirmed that all three groups were modified.

[[ 실험예Experimental Example 5] 효소 모방 자성나노촉매의 효율 5] Efficiency of Enzyme-mimicking Magnetic Nanocatalyst

상기에서 제조된 각각의 효소 모방 자성나노촉매인 Si-MNPs@Amine, Si-MNPs@Imidazole, Si-MNPs@Carboxyl, Si-MNPs@Multifunction과 기질 p-Nitrophenyl butyrate(PNPB), p-NItrophenyl octanoate(PNPO), p-Nitrophenyl dodecanoate(PNPD)를 사용하여 가수분해 효율을 비교하였다. Si-MNPs @ Amine, Si-MNPs @ Imidazole, Si-MNPs @ Carboxyl, Si-MNPs @ Multifunction and the substrates p -Nitrophenyl butyrate (PNPB), p -NItrophenyl octanoate PNPO), p -Nitrophenyl dodecanoate (PNPD) were used to compare the hydrolysis efficiency.

도 10은 카이모트립신과 효소 모방 자성나노촉매를 사용하여 시간에 따라 유리되는 PNP를 UV-Vis분석을 통하여 정량화한 그래프이다. 기질의 농도는 50μM, 촉매의 양은 150mg을 사용하였다. 그래프에서 보이는 것처럼 효소 모방 자성나노촉매는 카이모트립신과 같은 효과를 구현하여 PNPE를 PNP로 가수분해하며, 30min에서 반응이 거의 끝나는 확인하였다. FIG. 10 is a graph quantifying PNP released over time using chymotrypsin and an enzyme mimicking magnetic nanocatalyst through UV-Vis analysis. The substrate concentration was 50 μM and the catalyst amount was 150 mg. Enzyme-mimicking magnetic nanocatalyst, as shown in the graph, embodies the same effect as chymotrypsin, hydrolyzing PNPE to PNP, and confirmed that the reaction was almost finished at 30 min.

도 11은 도 10을 통하여 구한 카이모트립신과 효소 모방 자성나노촉매의 반응률 그래프이다. Si-MNPs@Multifunction 촉매의 반응률이 카이모트립신보다 좋음을 확인하였다.FIG. 11 is a graph showing the reaction rate between chymotrypsin and enzyme-mimicking magnetic nanocatalyst obtained through FIG. 10. It was confirmed that the reaction rate of Si-MNPs @ Multifunction catalyst was better than chymotrypsin.

하기 표 1,2,3,4와 도 12,13,14,15를 통하여 각각의 효소 모방 자성나노촉매의 효율을 나타내었다. 한 가지의 기능기로 표면이 개질된 효소 모방 자성나노촉매보다 세 가지의 기능기로 개질된 Si-MNPs@Multifunction 촉매의 효율이 좋음을 확인하였다.Tables 1, 2, 3, 4 and 12, 13, 14, and 15 show the efficiency of the respective enzyme-mimicking magnetic nanocatalysts. It was confirmed that the efficiency of the Si-MNPs @ Multifunction catalyst modified with three functional groups was higher than that of the magnetic nanocatalyst whose surface was modified with one functional group.

Figure pat00001
Figure pat00001

<Si-MNPs@Amine의 미카엘리스-멘텐 매개변수>        <Michaelis-menten parameter of Si-MNPs @ Amine>

Figure pat00002
Figure pat00002

<Si-MNPs@Imidazole의 미카엘리스-멘텐 매개변수>        <Michaelis-Menten Parameters of Si-MNPs @ Imidazole>

Figure pat00003
Figure pat00003

<Si-MNPs@Carboxyl의 미카엘리스-멘텐 매개변수>        <Michaelis-Menten Parameters of Si-MNPs @ Carboxyl>

Figure pat00004
Figure pat00004

<Si-MNPs@Multifunction의 미카엘리스-멘텐 매개변수>
<Michalis-Menten parameter of Si-MNPs @ Multifunction>

상기 실시예 및 실험예에서 볼 수 있듯이, 본 발명은 카이모트립신의 활성자리(Ser195, His57, Asp102)를 모방한 효소 모방 자성나노촉매를 제조하여 에스터 화합물의 가수분해 반응을 수행함으로써 카이모트립신과 같은 효과를 구현할 수 있음을 보여주었다.As can be seen in the above Examples and Experimental Examples, the present invention provides an enzyme-mimicking magnetic nanocatalyst that mimics the active site of chymotrypsin (Ser 195 , His 57 , Asp 102 ) to carry out the hydrolysis reaction of the ester compound. It has been shown that it can achieve the same effect as trypsin.

본 발명은 상술한 특정의 실시예 및 설명에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능하며, 그와 같은 변형은 본 발명의 보호 범위 내에 있게 된다.
The present invention is not limited to the above-described specific embodiments and descriptions, and various modifications can be made to those skilled in the art without departing from the gist of the present invention claimed in the claims. And such modifications are within the scope of protection of the present invention.

Claims (8)

i) Fe2+과 Fe3 +의 혼합수용액에 알칼리 수용액을 첨가하여 상기 이온들을 동시에 침전시켜 마그네타이트(magnetite, Fe3O4) 자성나노입자를 합성하는 단계;
ⅱ) 염기분위기 하에서 실리카 전구체를 사용하여 솔-젤 법(sol-gel process)으로 상기 마그네타이트 자성나노입자 표면을 실리카 코팅시키는 단계; 및
ⅲ) 상기 실리카로 코팅된 자성나노입자의 표면을 기능성 실란 가교제(silane couplig agent)를 사용하여 개질하는 단계;
를 포함하는 효소 모방 자성나노촉매의 합성방법.
i) adding an aqueous alkali solution to the mixed aqueous solution of Fe 2 + and Fe 3 + to precipitate the ions simultaneously to synthesize magnetite (magnetite, Fe 3 O 4 ) magnetic nanoparticles;
Ii) silica coating the magnetite magnetic nanoparticle surface by a sol-gel process using a silica precursor under a base atmosphere; And
Iii) modifying the surface of the magnetic nanoparticles coated with silica using a functional silane couplig agent;
Synthesis method of enzyme-mimicking magnetic nanocatalyst comprising a.
제1항에 있어서,
상기 기능성 실란 가교제가 효소의 활성자리인 아미노산 잔기를 구성하기 위하여 아민기, 이미다졸기 및 카르복실기로부터 선택되는 어느 하나 이상의 작용기를 가지는 것을 특징으로 하는 효소 모방 자성나노촉매의 합성방법.
The method of claim 1,
The functional silane crosslinking agent has an at least one functional group selected from an amine group, an imidazole group and a carboxyl group to form an amino acid residue which is an active site of the enzyme.
제2항에 있어서,
상기 기능성 실란 가교제가 카이모트립신(Chymotrypsin)의 활성자리(Ser-195, His-57, Asp-102)를 모방하기 위하여 3-아미노프로필 트리메톡시실란(Aminopropyl trimethoxysilane), 카복시에틸 실란트리올(Carboxyethyl silanetriol), 트리에톡시-3-(2-이미다졸린-1-일)프로필실란(Triethoxy-3-(2-imidazolin-1-yl)propylsilane) 또는 이들의 혼합물로 이루어지는 것을 특징으로 하는 효소 모방 자성나노촉매의 합성방법.
The method of claim 2,
The functional silane crosslinker is 3-aminopropyl trimethoxysilane, carboxyethyl silanetriol (Carboxyethyl) to mimic the active sites (Ser-195, His-57, Asp-102) of chymotrypsin silanetriol), triethoxy-3- (2-imidazolin-1-yl) propylsilane (Triethoxy-3- (2-imidazolin-1-yl) propylsilane) or mixtures thereof Synthesis method of magnetic nanocatalyst.
제3항에 있어서,
펩타이드 결합, 에스터 화합물, 및 아마이드(amide) 화합물을 가수분해하는 것을 특징으로 하는 효소 모방 자성 나노촉매의 합성방법.
The method of claim 3,
A method for synthesizing an enzyme-mimicking magnetic nanocatalyst comprising hydrolyzing a peptide bond, an ester compound, and an amide compound.
청구항 제1항 내지 제4항 중 어느 한 항의 합성방법에 의하여 제조된 효소 모방 자성나노촉매.An enzyme-mimicking magnetic nanocatalyst prepared by the method of any one of claims 1 to 4. 제5항에 있어서,
상기 마그네이트 자성나노입자의 평균 입자크기가 7~10nm인 것을 특징으로 하는 효소 모방 자성나노촉매의 합성방법.
The method of claim 5,
A method for synthesizing an enzyme-mimicking magnetic nanocatalyst, characterized in that the average particle size of the magnetic magnetic nanoparticles is 7-10 nm.
제5항에 있어서,
상기 실리카로 코팅된 자성나노입자의 평균 입자크기가 20~100nm인 것을 특징으로 하는 효소 모방 자성나노촉매의 합성방법.
The method of claim 5,
The method of synthesizing a magnetic nanocatalyst according to claim 2, wherein the average particle size of the magnetic nanoparticles coated with silica is 20 to 100 nm.
제5항에 있어서,
바이오센서, 바이오촉매, 프로테옴 연구에 사용되는 것을 특징으로 하는 효소 모방 자성나노촉매의 합성방법.
The method of claim 5,
A method for synthesizing an enzyme-mimicking magnetic nanocatalyst, which is used for biosensor, biocatalyst, proteome research.
KR1020120002401A 2012-01-09 2012-01-09 Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts thereby KR101350722B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120002401A KR101350722B1 (en) 2012-01-09 2012-01-09 Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120002401A KR101350722B1 (en) 2012-01-09 2012-01-09 Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts thereby

Publications (2)

Publication Number Publication Date
KR20130081429A true KR20130081429A (en) 2013-07-17
KR101350722B1 KR101350722B1 (en) 2014-01-16

Family

ID=48993123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120002401A KR101350722B1 (en) 2012-01-09 2012-01-09 Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts thereby

Country Status (1)

Country Link
KR (1) KR101350722B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150092443A (en) * 2014-02-04 2015-08-13 포항공과대학교 산학협력단 High-sensitive lateral flow immunoassay chip using enzyme-mimetic nanoparticles and Methods sensing using thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897846B (en) * 2015-06-23 2016-08-17 江南大学 A kind of based on the alkaline phosphatase activities detection method being formed in situ non-photoactive nanoparticles material simulation enzyme

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989289B1 (en) * 2007-08-14 2010-10-22 재단법인서울대학교산학협력재단 Magnetic-Surface Enhanced Raman Scattering Particles, Preparation Method thereof, and Biosensor Using the Same
KR101079722B1 (en) 2009-05-07 2011-11-04 경희대학교 산학협력단 Hybrid Nanoparticles and Biocatalysts Using the Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150092443A (en) * 2014-02-04 2015-08-13 포항공과대학교 산학협력단 High-sensitive lateral flow immunoassay chip using enzyme-mimetic nanoparticles and Methods sensing using thereof
WO2015119386A1 (en) * 2014-02-04 2015-08-13 포항공과대학교 산학협력단 High-sensitivity and lateral-flow immunochromatographic chip using enzyme-mimic inorganic nanoparticles and detection method using same

Also Published As

Publication number Publication date
KR101350722B1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
Wang et al. Facile preparation of Fe3O4@ MOF core-shell microspheres for lipase immobilization
Bilal et al. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review
Hong et al. Stabilization of α-chymotrypsin by covalent immobilization on amine-functionalized superparamagnetic nanogel
Khoobi et al. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: Characterization and application
Patel et al. Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization
Lim et al. Magnetically recyclable nanocatalyst systems for the organic reactions
Yong et al. Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization
Kralj et al. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups
Li et al. Fabrication of graphene oxide decorated with Fe 3 O 4@ SiO 2 for immobilization of cellulase
Esmaeilnejad-Ahranjani et al. Amine-functionalized magnetic nanocomposite particles for efficient immobilization of lipase: Effects of functional molecule size on properties of the immobilized lipase
Durdureanu-Angheluta et al. Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface
Shukoor et al. Fabrication of a silica coating on magnetic γ-Fe2O3 nanoparticles by an immobilized enzyme
Kurt et al. Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification
Ling et al. Covalent immobilization of penicillin G acylase onto Fe 3 O 4@ chitosan magnetic nanoparticles
Jiang et al. Enzyme@ silica hybrid nanoflowers shielding in polydopamine layer for the improvement of enzyme stability
Sharma et al. Surface modified ormosil nanoparticles
Aghababaie et al. Novel approaches to immobilize Candida rugosa lipase on nanocomposite membranes prepared by covalent attachment of magnetic nanoparticles on poly acrylonitrile membrane
Ziegler-Borowska et al. Magnetic nanoparticles with surfaces modified with chitosan–poly [N-benzyl-2-(methacryloxy)-N, N-dimethylethanaminium bromide] for lipase immobilization
Woo et al. Synthesis of magnetic/silica nanoparticles with a core of magnetic clusters and their application for the immobilization of His-tagged enzymes
Long et al. Sol–gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe 3 O 4–chitosan) nanoparticles improves thermal and operational stability
Abdollahi et al. Fabrication of the robust and recyclable tyrosinase-harboring biocatalyst using ethylenediamine functionalized superparamagnetic nanoparticles: nanocarrier characterization and immobilized enzyme properties
Lotfi et al. Synthesis of Fe3O4@ SiO2/isoniazid/Cu (II) magnetic nanocatalyst as a recyclable catalyst for a highly efficient preparation of quinolines in moderate conditions
Song et al. Efficient immobilization of enzymes onto magnetic nanoparticles by DNA strand displacement: a stable and high-performance biocatalyst
KR101350722B1 (en) Synthesis method of enzyme-mimic magnetic nanocatalysts, and enzyme-mimic magnetic nanocatalysts thereby
Zeng et al. Synthesis of magnetic nanoparticles with an IDA or TED modified surface for purification and immobilization of poly-histidine tagged proteins

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20120109

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20130812

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20131219

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140107

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140108

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20170109

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20170109

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20180105

Start annual number: 5

End annual number: 5

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20191018